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Abstract

In this thesis, we address different aspects of the airline scheduling problem. The
main difficulty in this field lies in the combinatorial complexity of the problems.
Furthermore, as airline schedules are often faced with perturbations called disruptions
(bad weather conditions, technical failures, congestion, crew illness. . . ), planning for
better performance under uncertainty is an additional dimension to the complexity of
the problem. Our main focus is to develop better schedules that are less sensitive to
perturbations and, when severe disruptions occur, are easier to recover. The former
property is known as robustness and the latter is called recoverability.

We start the thesis by addressing the problem of recovering a disrupted schedule.
We present a general model, the constraint-specific recovery network, that encodes all
feasible recovery schemes of any unit of the recovery problem. A unit is an aircraft,
a crew member or a passenger and its recovery scheme is a new route, pairing or
itinerary, respectively. We show how to model the Aircraft Recovery Problem (ARP)
and the Passenger Recovery Problem (PRP), and provide computational results for
both of them.

Next, we present a general framework to solve problems subject to uncertainty:
the Uncertainty Feature Optimization (UFO) framework, which implicitly embeds
the uncertainty the problem is prone to. We show that UFO is a generalization
of existing methods relying on explicit uncertainty models. Furthermore, we show
that by implicitly considering uncertainty, we not only save the effort of modeling an
explicit uncertainty set: we also protect against possible errors in its modeling. We
then show that combining existing methods using explicit uncertainty characterization
with UFO leads to more stable solutions with respect to changes in the noise’s nature.
We illustrate these concepts with extensive simulations on the Multi-Dimensional
Knapsack Problem (MDKP).

We then apply the UFO to airline scheduling. First, we study how robustness
is defined in airline scheduling and then compare robustness of UFO models against
existing models in the literature. We observe that the performance of the solutions
closely depend on the way the performance is evaluated. UFO solutions seem to
perform well globally, but models using explicit uncertainty have a better potential
when focusing on a specific metric.

Finally, we study the recoverability of UFO solutions with respect to the recovery
algorithm we develop. Computational results on a European airline show that UFO
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solutions are able to significantly reduce recovery costs.

Keywords: airline scheduling, recovery, constraint-specific recovery network, opti-
mization under uncertainty, robustness, recoverability, column generation.



Résumé

Dans cette thèse, nous considérons différents aspects du problème d’organisation
opérationnelle d’horaires aériens. La difficulté majeure de cette discipline réside
dans la complexité combinatoire des problèmes à résoudre. De plus, les compag-
nies aériennes sont souvent confrontées à des perturbations (mauvaises conditions
météorologiques, défaillances techniques, congestion, employés malades. . . ). Planifier
pour atteindre une meilleure performance dans cet environnement incertain ajoute
une dimension supplémentaire à la complexité du problème. Notre objectif premier
est de développer des horaires moins sensibles à ce type de perturbations et qui, si
ces perturbations sont suffisamment graves, peuvent être réparés à moindre coût. La
première propriété est connue sous le nom de robustesse et la seconde est la réparabilité
de l’horaire.

Pour commencer, dans cette thèse, nous considérons le problème de réparation
d’un horaire perturbé. Nous présentons un modèle général, appelé constraint-specific
recovery network, contenant toutes les routes de réparation admissibles pour chaque
unité du problème. Une unité peut être un avion, un membre du personnel ou un
passager et sa route de réparation correspond respectivement à un nouveau tracé,
une nouvelle rotation ou un nouvel itinéraire. Nous démontrons comment le modèle
s’applique au problème de réparation des routes d’avions (ARP) et au problème de
réparation des itinéraires des passagers (PRP) et présentons des résultats numériques
pour les deux problèmes.

Nous présentons ensuite une méthodologie générale, appelée Uncertainty Feature
Optimization (UFO), pour résoudre des problèmes dont les données sont incertaines.
La méthodologie considère l’incertitude d’un problème de manière implicite. Nous
prouvons qu’UFO est une généralisation d’autres méthodes s’appuyant sur un modèle
explicite de l’incertitude. De plus, nous montrons que, grâce à la considération im-
plicite de l’incertitude, nous n’épargnons non seulement l’effort de modélisation, mais
nous nous protégeons ainsi, par la même occasion, contre d’éventuelles erreurs dans le
modèle. Nous montrons également que la combinaison de méthodes existantes basées
sur un modèle explicite avec UFO améliore la stabilité des solutions par rapport à
d’éventuels changements de la nature de l’incertitude des données. Nous illustrons ces
concepts avec des simulations extensives sur le problème du sac-à-dos à dimensions
multiples (MDKP).

Nous appliquons ensuite la méthodologie UFO au problème d’organisation
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opérationnelle d’horaires aériens. Nous commençons par analyser la manière dont
la robustesse est définie dans le domaine aérien et comparons la robustesse des solu-
tions obtenues avec UFO avec des solutions de méthodes trouvées dans la littérature.
Nous observons que la performance d’une solution dépend fortement de la manière
dont celle-ci est évaluée. Les solutions obtenues avec UFO semblent globalement ef-
ficaces pour les différents critères de performance utilisés. En revanche, les modèles
bénéficiant d’un modèle explicite de l’incertitude ont un meilleur potentiel si
l’évaluation de la performance se limite à un critère unique.

Finalement, nous étudions la réparabilité des solutions obtenues avec UFO par
rapport à l’algorithme de réparation développé grâce au modèle constraint-specific re-
covery network. Nous présentons des résultats numériques sur des données provenant
d’une compagnie européenne. Les résultats montrent que les solutions UFO réduisent
considérablement les coûts de réparation.

Mots clés : planification d’horaires aériens, réparation d’horaires perturbés, réseau
de réparation spécifique à une unité, optimisation sous incertitude, robustesse,
réparabilité, génération de colonne.
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Chapter 1

Introduction

In the modern society, mobility, accessibility and flexibility are crucial concepts: peo-
ple tend to travel more often, further and they expect faster travel times for both
business and leisure purposes. The plane being the fastest transportation mode for
middle and long-range trips, airline traffic is rapidly expanding, reaching more desti-
nations with higher frequencies and larger aircraft. However, the airline industry is
exposed to two major drawbacks.

The first of them is a consequence of the fast expansion of airline industry in
itself. Indeed, airport capacities cannot be increased at the same extension rate than
airlines, as it involves territorial development issues, tremendous investments and
complex undertakings. The consequence is a shortage of ground-capacity or, in other
words, airport congestion: the maximal capacity of some airports is reached and
sometimes even exceeded at some times of the day.

Furthermore, being in a competitive market, airlines must keep operational costs
as low as possible to provide low fares to be able to compete for market shares. To
achieve this, resources (aircraft, crew, gates,. . . ) are used at optimized rates, implying
high yields. Unfortunately, a well known fact in optimization is that optimal solutions
are often highly sensitive to perturbations.

Air traffic is often subject to perturbations due to bad weather, crew illness, in-
creased security checks at airports, technical failures and many other factors. Such
irregular events, called disruptions, cause delays and/or flight cancelations that make
the schedule unfeasible. Airlines are therefore faced with the recovery problem, which
aims at getting back to the original schedule as soon as possible while minimizing
the associated costs, called recovery costs. These have a complex structure, as they
contain operating costs for aircraft and crew, compensation costs for delayed or mis-
connected passengers and also other legal delay compensation costs.

The consequences of a disruption are therefore amplified by both airport conges-
tion and the sensitivity of optimized schedules: a local disruption propagates through
the whole network and across all airlines, generating huge delays and, in consequence,
huge recovery costs. It is crucial for airlines to develop schedules that are more robust,
i.e. less subject to disruptions and also more recoverable, which means that, when a
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2 CHAPTER 1. INTRODUCTION

disrupted schedule has to be recovered, the induced recovery costs are minimized.

The objective of this thesis is to reduce the recovery costs at the largest possible
extent. The first and most intuitive approach is to minimize the propagation effects
by retiming or canceling flights or rerouting planes once a disruption is observed. This
problem is commonly known as the Aircraft Recovery Problem (ARP). It is a com-
binatorial problem with many technical constraints such as maintenance constraints.
In this thesis, we introduce a general model based on the concept of a unit-based re-
covery network. The model is general in the sense that it applies to the ARP, but also
to the Crew Recovery Problem (CRP) and the Passenger Recovery Problem (PRP).
The algorithms are able to solve real instances in a reasonable amount of time while
satisfying all the problem-specific constraints.

Once capable of solving the ARP, we are faced with the following question: “How
to plan for lower propagation and lower recovery costs?”. To draw a parallel, this
question is similar to prevention in medicine, which the saying “better safe than sorry”
describes perfectly. Indeed, thanks to forestalling vaccinations and screenings, many
diseases can be neutralized early enough to be easily cured or to avoid the spreading
of infectious germs. Although prevention comes at a certain cost, the investment pays
out for the global health care costs and, most important of all, the patient’s safety,
which is priceless. Indeed, a wide vaccination campaign is clearly less expensive than
controlling and curing a pandemic; similarly, dozens of cholesterol tests are probably
less costly than a single heart surgery and, in both cases, the preventive treatment
is less risky for the patient. Our objective is to develop preventive airline schedules
that are both more robust and more recoverable. As vaccination does in medicine,
robustness and/or recoverability of a schedule induces an a priori cost that allows
to reduce the spreading of a disruption and hence the recovery costs, which also
improves the satisfaction of employees and passengers. We develop a framework,
the Uncertainty Feature Optimization (UFO) framework, that generalizes existing
methods for optimization under uncertainty using implicit problem-specific metrics,
called Uncertainty Features (UFs). Thanks to these UFs, we are able to solve large
scale problems such as airline scheduling problems and we show that the obtained
solutions are indeed more robust and recoverable.

We hereafter introduce the reader to the airline scheduling problem in more details
and then summarize the contributions as well as the structure of the manuscript.

1.1 The airline scheduling problem

An expanding but competitive market. As the fastest transportation mode
for middle and long-range trips, air traffic is rapidly expanding for business or leisure
trips and for air freight. Figure 1.1 shows that the air traffic in Europe has grown
from 2 to 10 million flights in the last 40 years and that the annual growth rate,
although showing a drop due to September 11, 2001, was mainly over 5% in the last
20 years.
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Figure 1.1: Evolution of the number of flights and the corresponding yearly growth
rate in Europe. Source: Challenges of growth 2008 (2008).

According to Eurocontrol (Challenges of growth 2008, 2008), the total number of
flights will reach between 16.5 and 22.1 million flights in Europe by 2030, correspond-
ing to a multiplication factor between 1.7 and 2.9 compared to 2007. In the most
likely scenario, the annual growth is estimated to 2.7%.

In terms of revenue, the 31 airlines member of the Association of European Airlines
(AEA) generated a total profit of 1.85 billione in 2006, corresponding to an operation
margin of 3.5%.

In the US, the Federal Aviation Administration (FAA) estimates the number of
flights to increase at a rate of 2.5% per year until 2025 (FAA Aerospace Forecast
Fiscal Years 2008-2025, 2008).

The American business generates even more revenue than the European one: the
global airline revenue in the US for 2007 is estimated to $490 billion for a profit of
$5.6 billion (Annual Report 2008, 2008). The profit margin of less than 2% is however
lower than in Europe.

With such a small margin and the competitive environment due to the now opened
market of air transportation, airlines have to carefully plan their operations to make
profit and remain competitive. For this reason, airlines often recourse to operations
research techniques to optimize their schedules. Due to its size and complexity, the
airline scheduling problem is usually divided into a series of sub-problems which are
solved iteratively, taking as input the solutions of the previous stage problem. This
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results in sub-optimal solutions.

We provide in this section a non-exhaustive overview of the iterative scheduling
process of an airline. For further details, see Clausen et al. (forthcoming), Kohl et al.
(2007) or Weide (2009). We provide references for methods corresponding to the
different iterations of the process in Chapter 2.

An iterative process. The elaboration of a schedule starts approximatively one
year prior to the day of operations, the day at which the schedule is actually carried
out. Actually, most of the airlines adopt cyclic schedules, typically a daily, three-day
or weekly schedule; in this context, we discuss the elaboration process of a whole
cycle.

The first problem airline managers are faced with is which legs to fly, i.e. from
which origin to which destination airport to operate flights and at what frequency.
This problem is called the route choice problem and highly depends on the market
estimations and the business plans of an airline and requires negotiations with airports
to acquire grounding permissions (which largely depend on grand-father rules). Route
choice is a strategical decision involving mainly analytical tools such as passenger
demand forecasts; airlines usually do not recourse to operations research tools for the
route choice. The output of the route choice is the publication of the list of all flights
the airline wants to operate.

The second step of the schedule’s elaboration is the fleet assignment problem
which aims at determining which type of aircraft to use for the flights issued from
the route choice problem. The fleet assignment requires the knowledge of available
fleets and, for each flight to be flown, a passenger demand forecast. The objective is
to maximize expected revenue by assigning the right aircraft type to the right flight.

Once each flight is assigned to a fleet, we have to compute routes for each indi-
vidual aircraft within a fleet. This problem is usually called the tail assignment, the
maintenance routing or the Aircraft Scheduling Problem (ASP) and takes place 1 to 6
months before the day of operations. This problem is mainly a feasibility problem, the
solution being a route for each individual aircraft such that all flights are covered and
all technical constraints are satisfied. These constraints are mainly maintenance con-
straints of the aircraft: maintenances are enforced for obvious safety reasons and are
usually determined by criteria such as absolute time, number of take-off and landing
operations or total air time since the last maintenance of the aircraft. Note that with
the increase of computational power and advances in operations research techniques,
models embedding the fleet assignment objective (expected revenue maximization)
into the ASP have been developed; see Chapter 2 for references. We refer to the fleet
assignment and ASP as the technical part of the schedule, as opposed to the human
part, which contains the crew schedules and passenger itineraries.

Similarly to the technical part, the human part of the schedule is divided into
two main steps: first, the crew pairing problem, similar to the fleet assignment prob-
lem, aims at finding feasible routes for crew groups (pilot, co-pilot and cabin crew)
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that satisfy all contract constraints such as maximal duty time, maximal in-air time,
maximal time away from a base airport and so on. The crew rostering then assigns
individual crew members to the teams determined by the crew pairing, ensuring that
all individual crew constraints such as qualification constraints, holiday requirements,
etc. The crew pairings and rosters are usually computed 1 to 2 months before the
day of operations.

Finally, in parallel to the whole process, airlines proceed to revenue management
on the published flights: fares are set on the seats of all flights in order to maximize
the revenue, i.e. to sell as many tickets at the highest possible price. The complexity
of revenue management lies in the competitive environment, as a passenger most
often choose the ticket of the airline offering the lowest fare. Therefore, revenue
management depends on passenger demand forecasts, the number of already sold
seats and, of course, the fares of other airlines competing on the same market.

As we see from this iterative procedure, the only revenue of airlines is achieved
by the revenue management, which is a crucial part of the problem. However, given
the thin profit margin, it is also crucial for airlines to consider costs in the scheduling
phase. Methods including operating costs have already been developed, but only few
address the problem considering recovery costs.

Schedule disruptions. As airline schedules are carried out in an uncertain envi-
ronment (weather conditions, crew illness, technical failures, strikes, etc), schedules
often have to be adapted on the day of operations; events enforcing the schedule to
be adapted are called disruption. The direct consequences of disruptions are delays
and flight cancelations, implying many schedule adjustments and huge costs.

The Association of European Airlines (AEA) reports in the Europe punctuality
report 20071 that 21.1% of departures and 22.3% of arrivals of European flights are
delayed by more than 15 minutes. Eurocontrol (Challenges of growth 2008, 2008)
provides a scenario-based study for the air traffic demand in Europe until 2030; in
the most likely scenario, although airport capacity is estimated to increase by 41%,
almost 2.3 million flights (i.e. 11% of the total demand) cannot be accomodated. In
that scenario, it is estimated that 19 airports operate at full capacity for 8 hours a
day, meaning that 50% of all flights are departing or arriving at congested airports.

In the US, the picture is even worse: the Joint Economic Committee (Your Flight
Has Been Delayed Again, 2008) reports a record of 4.3 million hours arrival delays
in 2007, which are estimated to have a total economical impact of $41 billion: $19
billion for additional operational costs, $12 billion for the passenger’s value of time
and $10 billion due to spill out to other industries. The delays also have an ecological
impact, as the additional jet fuel consumed because of these delays is estimated to 740
million gallons, generating 7.1 million metric tons of carbon dioxide. This represents
almost 1.2h of the total carbon dioxide emission of the entire US in 2007 (the Energy

1http://www.ara.be

http://www.ara.be
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Information Administration2 estimates the total US emission to 6021.8 million metric
tons).

With a growth rate of 2.5% additional flights per year until 2025 (Annual Report
2008, 2008), congestion is also an issue in the US. As pointed out by Schaefer et al.
(2005), each 1% increase of the number of flights incurs a 5% increase in delays.
Given these forecasts, it is obvious that the $41 billion for 2007 (Your Flight Has
Been Delayed Again, 2008) will continuously increase if no action is taken.

It is crucial for airlines to control the frequency of disruptions and, once they
occur, to limit their effects. The recovery problem focuses on retrieving the original
schedule from a disruption as soon as possible after it occurs while minimizing the
recovery costs. This limits the consequences of the disruption. Unfortunately, min-
imizing recovery costs and makespan are two conflicting objectives; airlines usually
fix a makespan, called the recovery period, and solve the recovery problem as a cost-
minimization problem that ensures that the original schedule can be carried out as
planned after the end of the recovery period.

The recovery problem consists in taking decision on flights (delay and/or can-
celation), on aircraft routes (aircraft swaps, aircraft repositioning or use of reserve
aircraft), on crew routes (crew swaps or use reserve crew) and, finally, on passenger
routing. In general, airlines have a distinct department for the different aspects of
the recovery problem (aircraft, crew and passengers). Therefore, the airline recovery
problem is usually divided in sub-problems that are solved sequentially, as it is done
for the different scheduling problems.

The Aircraft Recovery Problem (ARP) focuses on the technical schedule. To solve
the ARP, we need the original schedule and a disruption characterization, given as a
snapshot of the position of the whole fleet. The problem is then to re-compute a new
recovery plan, which is composed of a new route for each aircraft so that the technical
part of the schedule is recovered at the end of the recovery period. The possible
decisions are delaying or canceling flights, swapping aircraft (either within a same
fleet only or across fleets), using reserve aircraft (at higher costs) or repositioning an
aircraft.

The Crew Recovery Problem (CRP) is then solved, using the recovery plan is-
sued by the ARP. The CRP aims at finding new crew pairings so that all contract
constraints are (still) satisfied, while minimizing disopportunity costs. The decisions
are mainly crew re-assignment, dead heading and possibly the use of reserve crews.
Unlike the ARP, recovering the crew schedule at the end of the recovery period is not
a necessity, but not recovering it incurs compensation costs.

Finally, the Passenger Recovery Problem (PRP) ensures that all passengers arrive
at their final destination. The objective of the PRP is to minimize a complex cost
structure based on passenger compensation fees and passenger disutility costs. The
constraints for the PRP are that all the passengers arrive at their final destination
within a limited delay (typically 18 hours), that the connection times between flights

2http://www.eia.doe.gov

http://www.eia.doe.gov
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are sufficient and that no aircraft is over-loaded. A passenger who misses a connec-
tion and has to be rerouted is called a disrupted passenger. To recover a disrupted
passenger, airlines either assign him/her to other flights within the company (up and
downgrading is possible) or book the passenger on another airline at high costs. The
latter is called a canceled passenger, referring to the fact that the passenger’s itinerary
is canceled for the airline.

1.2 Contributions

The content of this thesis contributes to two distinct fields:

1. Airline scheduling: we introduce new specific models and algorithms to solve
different aspects of both the scheduling and recovery problems;

2. Optimization under uncertainty: we develop a new framework that en-
hances the concepts of robustness and recoverability.

The main contribution to airline scheduling is the unit-specific recovery network
model which is the backbone of our recovery algorithms.

The model is general and flexible enough to be applied to different aspects of
the recovery problem (namely ARP, CRP and PRP) and can easily be adapted to
scheduling algorithms. Furthermore, the resulting column generation algorithms are
able to solve large scale instances and lead to fast heuristics finding close to optimal
solutions in low computation times. We also show that the unit-specific network
model applies to airline scheduling problems. Finally, as airline scheduling is probably
one of the most challenging scheduling problems due to its size and the complexity
of its numerous specific constraints, our contributions to airline scheduling also apply
to other scheduling problems. Remark that although the theory applies to different
parts of the schedule, our tests mainly focus on the aircraft routing problem.

Our work on optimization under uncertainty leads to a general framework, the
Uncertainty Feature Optimization (UFO). The UFO framework is meant to overcome
the main drawbacks of existing methods such as stochastic optimization or robust
optimization (Bertsimas and Sim, 2004). Indeed, such methods heavily rely on an
explicit model of the data’s noisy nature, called an uncertainty set. Within this
set, stochastic optimization seeks the solution that performs best in average whereas
robust optimization, as defined by Soyster (1973), finds the one performing best in the
worst possible scenario. UFO does not rely on an explicit noise characterization, as
uncertainty is embedded implicitly in Uncertainty Features (UFs). They are metrics
that, when optimized, improve the solutions’ robustness and/or recoverability.
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In the part dedicated to the UFO framework, we prove that the framework is
a generalization of existing methods such as stochastic optimization or the robust
optimization of Bertsimas and Sim (2004). Additionally, we use simulations on the
Multi-Dimensional Knapsack Problem (MDKP) to show the sensitivity of a robust
solution with respect to errors in the uncertainty characterization. We show that the
solutions obtained by the UFO framework are less sensitive to such errors. Finally, we
also show that UFO can be embedded in any existing method and we show that the
solutions resulting from the combination of UFO and the robust optimization inherit
from the benefits of both methods: the solutions are more robust, less sensitive to
erroneous uncertainty sets and are more efficient in terms of optimality deviation.

1.3 Manuscript outline

The manuscript is divided into four core chapters. Each of them is based on an article
and they are ordered chronologically. As most of the references in the different arti-
cles overlap, we provide an overview of the relevant studies in the literature separately.

The structure of the thesis is as below:

• Chapter 2 summarizes the most relevant studies for the content of this thesis.

• Chapter 3 introduces the unit-specific recovery network model used to solve
recovery problems and details the corresponding column generation algorithm.
This paper has been accepted for publication in Computers & Operations Re-
search (Eggenberg et al., 2010, to appear).

• Chapter 4 presents the Uncertainty Feature Optimization (UFO) framework,
which is a generalization of existing methods for optimization under uncertainty.
This Chapter is based on the paper Eggenberg et al. (2009) that has been
recommended for publication by the guest editor of the special issue for the
Cologne Twente Workshop 20083 of “Networks”.

• In Chapter 5, we discuss how to evaluate robustness and compare different ro-
bust solutions, among which applied models of the UFO framework to airline
scheduling and state of the art models. This Chapter is based on Chiraphad-
hanakul and Eggenberg (2009).

• Chapter 6 focuses on the recoverability of an airline schedule. This Chapter
corresponds to Eggenberg and Salani (2009).

• Chapter 7 concludes this thesis with some final remarks.

3http://ctw08.dti.unimi.it/

http://ctw08.dti.unimi.it/


Chapter 2

Literature review

In this Chapter, we provide a wide but non-exhaustive review of works related to
this thesis. When necessary, more detailed and specific reviews are provided in the
context of the different chapters.

We divide the literature according to two distinct methodologies:

1. studies on a priori optimization and applications to airline scheduling problems;

2. works on a posteriori optimization and methods to solve airline recovery prob-
lems.

A priori optimization methods are relevant for Chapters 4, 5 and 6 and a posteriori
methods for Chapters 3 and 4.

Without loss of generality, we consider an optimization problem formulated as a
cost-minimization problem, when not specified otherwise.

Furthermore, we assume that the reader is familiar with the standard Operations
Research techniques such as linear programming and column generation. See Dantzig
and Thapa (2003) for the theory on linear programming, Aardal et al. (2005) for
discrete optimization and Desaulniers et al. (2005) for theory and applications of
column generation.

2.1 A priori optimization

Theory: We divide works on a priori optimization into three distinct categories
according to their objective: deterministic, average-best case and worst-case based
methods.

Deterministic methods are seeking an optimal solution according to a deterministic
objective: possible uncertainty of the data is neglected. Unfortunately, as shown
by numerous studies (e.g. Birge and Louveaux, 1997, Herroelen and Leus, 2005,
Sahinidis, 2004 and references therein), deterministic optima are sensitive to small
perturbations, which may make the solution inefficient or even unfeasible.

9
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The other two types of methods overcome this negligence of uncertainty by ex-
plicitly modeling it. The model is usually called an uncertainty set, denoted U, which
describes the possible data realizations. One such realization is called a scenario. The
two methods using an uncertainty set U are exploiting it in a different way.

The former methods, called stochastic optimization, seek the solution performing
best in average. To achieve this, U is typically described by a probabilistic measure
and the objective is to minimize the expected cost on all scenarios in U. An extension
of stochastic optimization is stochastic optimization with recourse. In this approach,
the aim is to compute a first-stage solution to the original problem and an additional
recourse strategy considers, in a second-stage, the corrections to perform to a solution
for each scenario. The optimal solution is the one with the lowest expected real cost,
which is the sum of the first-stage and the recourse costs. See Birge and Louveaux
(1997), Kall and Mayer (2005) and Wallace and Ziemba (2005) for a comprehensive
introduction to stochastic optimization.

The latter methods are more conservative than stochastic optimization, as they
focus on the worst-case rather than the average case: the optimal solution is the one
performing best in the worst possible scenario in U. Such methods are known as
robust optimization, although the word stability may also be used. The pioneer of
robust optimization was Soyster (1973); more recent works are provided by Bertsimas
and Sim (2003), Ben-Tal and Nemirovski (1998), Ben-Tal and Nemirovski (1999) and
Ben-Tal and Nemirovski (2000). Bertsimas and Sim (2004) introduces a bounded
worst-case approach, for which the characterization of the worst-case is limited by a
parameter. The robust equivalent to stochastic optimization with recourse for linear
optimization, i.e. robust linear optimization with recourse, is introduced by Thiele
et al. (2009). This approach extends the first-stage problem which is the bounded
worst-case of Bertsimas and Sim (2004) with a second-stage which is the recourse.

Note that, in the literature, the term robustness might be used to describe two
concepts. The former is the ability of a solution to remain feasible, which is also
called the stability of a solution. The latter is closer to our definition of recoverability,
meaning that the solution is more flexible and can more easily be adapted if necessary.
For the remaining of this thesis, we use the former definition of robustness, i.e. we
consider it as a worst-case based method that does not consider recovery.

In the proposed classification, risk management methods (see Kall and Mayer,
2005) can be classified both as stochastic and robust optimization methods. Indeed,
for these methods, the optimal solution is the one that has the best trade-off between
expected cost and probability to be unfeasible, i.e. its risk level. The probability
to be unfeasible is usually modeled using quantile functions (Kall and Mayer, 2005).
The optimal solution is the one with lowest expected cost given a bound on the
quantile, i.e. a guarantee that the probability of the solution to be unfeasible is lower
than a given percentage. The stochasticity of risk management is that optimality
is considered as average best, whereas robustness comes from the quantile setting a
probability to be unfeasible.

A more detailed discussion of the different a priori optimization methods is pro-
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vided in Chapter 4. The remaining of this section introduces the most relevant a
priori optimization works on airline scheduling.

Deterministic airline scheduling: Given the quality and actuality of the existing
reviews, we do not provide an extensive review on literature. We focus on the most
relevant contributions with respect to the content of this thesis: we report on articles
using state-of-the-art methods that illustrate the standard problem complexity that
can be solved. We also report on works using integrated models or non-deterministic
approaches.

Weide (2009) provides a thorough review on airline scheduling methods on each
part of the scheduling process, from route choice to revenue management. Barnhart,
Belobaba and Odoni (2003) discuss the application of OR techniques in airline trans-
portation and list the associated challenges. Barnhart and Cohn (2004) give another
review on OR techniques applied to airline scheduling.

The majority of the existing scheduling methods are based on an underlying multi-
commodity network flow as described in Barnhart et al. (1998a). Most commonly,
aircraft scheduling problems use similar models to the string-based approach of Barn-
hart et al. (1998b): feasible aircraft routes are represented in a time-line network
where arcs correspond to flights and a succession of flights assigned to one aircraft
is a string. The model is then formulated as a set covering problem and solved by
column generation; instances with up to 190 flights and rotations of 14.2 flights in
average are presented. The computation times vary from 2 to approximatively 36,000
seconds.

Grönkvist (2006) presents a column generation algorithm for the aircraft schedul-
ing problem modeled as a set-covering problem. The underlying model is a connection-
based network and the pricing is solved as a resource-constrained shortest path prob-
lem; maintenance constraints are modeled as additional resource constraints. The
author uses constraint programming to accelerate the convergence of the CG algo-
rithm, eliminating unfeasible connections thanks to aircraft count and propagation
filters. Computational results on instances with up to 6013 activities are reported,
corresponding to 1 month of operations for a fleet of 43 aircraft. LP optimality is
reached in 145 to 46,989 seconds using preprocessing and propagation filtering. Using
a heuristic version that limits the number of CG iterations to 100 in the LP relaxation
leads to solutions withing 0.40% of the LP optimum within 1,921 seconds. The tests
are performed on a dual Intel Xeon 2.2 GHz computer with 512 kb L2 cache and
2048Mb RAM.

For crew pairing and crew rostering problems, the network is usually connection-
based (also known as segment timeline network), i.e. nodes correspond to flights
and arcs are possible connections between two flights; see Barnhart, Cohn, Johnson,
Klabjan, Nemhauser and Vance (2003). Another approach for the crew scheduling
problem using the Dantzig-Wolfe decomposition is proposed by Vance et al. (1997).

Klabjan et al. (2002) solve the crew scheduling problem with additional plane-
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count constraints ensuring the feasibility of forced turns, which are imposed turns
when a crew member’s rotation has to change planes. The plane schedule is adjusted
so as to satisfy all forced turns; if no such solution exists, an additional plane-count
constraint is added to the crew scheduling model which is solved again. The au-
thors show computational results for instances with up to 450 legs; no concern about
robustness is taken into account.

Cohn and Barnhart (2003) present an integrated branch-and-price model combin-
ing the crew pairing problem and key aircraft routing decisions. The authors show
that optimality of the integrated model does not require the consideration of all feasi-
ble maintenance routes: it is sufficient to consider a single column for each unique and
maximal maintenance short connect set. The column generation algorithm generates
new pairings and new maintenance routes as two different pricing problems. The pro-
posed extended crew pairing model is solved only for two instances of approximatively
125 flights as a proof of concept.

One major difficulty of airline scheduling is to derive exact integrated models that
are computationally solvable. Indeed, the combinatorial complexity of each of the
individual problems makes their integration even more difficult.

Cordeau et al. (2001) present an approach combining two connection networks
for both aircraft routing and crew and solving them using Benders’ decomposition.
The authors derive a primal subproblem involving only crew variables and then solve
both the primal problem and the subproblem by CG. The largest reported instance is
composed of 525 flights, 35 aircraft and is solved in 289.36 minutes with an optimality
gap of 1.12%. The authors compare crew costs with respect to two cost scenarios;
crew costs with sequential solving are, in average over all instances, 9.4% higher in
the first cost scenario and 5.5% higher in the second compared to the crew costs of
the integrated approach.

Mercier and Soumis (2007) present an algorithm based on the Benders’ decompo-
sition for solving simultaneously the crew pairing and the aircraft routing problems.
The combination of the two problems is done using some linking constraints, imposing
minimum connection times for crew depending on aircraft departure times. In the
solved instances, the authors allow three departure times (on-time and ±5 minutes)
for each flight. The authors report computational results for instance containing 152
to 523 flight legs, the number of aircraft are not reported. The instances are solved
between 10.88 and 1346.52 minutes on single Pentium 4 (2Ghz) processor.

Weide et al. (forthcoming) extend the model of Mercier and Soumis (2007) and
develop a CG framework similar to that of Cordeau et al. (2001). Indeed, the original
combined formulation is divided into two subproblems corresponding respectively to
the original crew pairing and aircraft routing problems. Each of these subproblems
is then solved at the pricing phase using dual information of the master problem
combining the two formulations.

Papadakos (2009) introduces an integrated model combining fleet assignment,
maintenance routing and crew pairing into a single model that is decomposed us-
ing Benders’ decomposition. The Benders method is accelerated using a recursive
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three-stage algorithm. The author shows computational results for instances with
up to 706 flight legs, 167 aircraft and 6 fleets; all instances are selected such as the
average number of flights per plane is between 4 and 4.5. Solving such instances
requires between 0.35 and 27.8 hours; the benefits compared to existing sequential or
semi-integrated methods vary from 0.03% to 2.57%. In the largest scenarios, a cost
reduction of 1.91% corresponds to an estimated annual saving of $24 million.

Robust airline scheduling: In addition to the difficulty of integration, airline
scheduling methods also have to consider the fact that airlines schedules are subject
to uncertainty, which increases the problem of the deterministic approaches even
further.

Ageeva (2000) introduces a measure of robustness of an aircraft routing based on
the number of overlaps of the different routes. The concept of robustness as defined
by the author is closer to our definition of recoverability, as Ageeva (2000) defines a
robust schedule as a schedule that can be recovered at lower costs thanks to subroute
switching. The measure of robustness is then incorporated in the objective of the
nominal problem and the model solved using a string-based model similar to Lan
et al. (2006). Computational results of networks with up to 37 flights show that the
robustness metric can be improved by up to 35%. The analysis does not extend to
recovery statistics.

Ehrgott and Ryan (2000) present a robust optimization scheme for the crews’ tour
of duty planning. Robustness is achieved by increasing the number of connections
with buffer time, i.e. connections that have a higher connection time than the minimal
required one. The resulting multi-objective optimization problem is solved using the
ε-constraint method: the initial cost objective is relaxed and an additional constraint
limiting the maximal cost of the solution is introduced. Only preliminary results
showing the trade-off effect between robustness and cost are reported.

Shebalov and Klabjan (2006) introduce a robust approach to the crew pairing
problem. They introduce the move-up crews, i.e. the possible crew swaps on the day
of operations, as a robustness metric. The problem is modeled as a large scale inte-
ger program solved by a combination of delayed column generation and Lagrangian
relaxation; robustness, i.e. move-up crews, is optimized within a given optimality
range of the deterministic optimum. The authors evaluate the obtained solutions
after running a crew recovery module in response to randomly generated disruptions.
The results show that the operational costs are indeed decreased with respect to the
original schedule, but that the trade-off between robustness and optimality deviation
has to be carefully explored depending on the cost structure.

Kang (2004) introduces the concept of degradable schedules : the schedule is de-
composed into independent layers (sub-schedules). The focus on robustness is mainly
stressed for layers with high revenues. The method focuses on fleet assignment and
aircraft routing to achieve degradability. The degradable schedule partitioning model
is solved as a multi-commodity network flow model. Variants of the schedule partition-
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ing are the degradable fleet assignment, for which the revenue of the fleet assignment
problem is considered and the degradable aircraft routing extending the string-based
model of Barnhart et al. (1998b). Simulation results show that using degradable
schedules reduces the overall operational costs (including delay and potential recov-
ery costs).

Listes and Dekker (2005) address the robust fleet assignment problem using a
scenario aggregation-based approach. The problem is modeled as a multi-commodity
flow with additional ground capacity constraints on a space-time network. The robust
model is the one maximizing the mean revenue on a selected set of scenarios and the
solution is computed using the scenario aggregation algorithm. The authors discuss
an interesting point, namely the generation of the scenarios and evaluation of the
obtained solution with respect to the deterministic solution using expected revenues.
Listes and Dekker (2005) suggest to compare solutions with scenarios that are not
used in stochastic formulation. A case study on a network with 1,978 weekly flights
served by 68 planes is considered. The stochastic model uses 25 scenarios and the
scenario aggregation computes solutions within 4.5 hours of computation on a 933MHz
Pentium III machine with 256MB RAM. When evaluated on simulated scenarios, the
stochastic solution has a profit of 15% higher than the deterministic solution using
expected costs.

Lan et al. (2006) present two methods with different optimization interests. A
first method aiming at delay propagation reduction is formulated using a mixed in-
teger program with stochastic inputs to estimate delays. A second passenger-based
approach minimizes the number of disrupted passengers by retiming departure time
of flight legs within a small time window. Computational results on one of the major
U.S. airlines are provided, obtaining up to 40% less disrupted passengers and a win of
51% on the total passenger delay, when using the data of August 2000. We introduce
the approach of Lan et al. (2006) in detail in Chapter 5.

Rosenberger et al. (2003a) present a discrete event semi-Markov process to model
the stochastic behavior of the disruption occurrences and describe the SimAir simu-
lator for airline operations. Only independent random events are considered, severe
climatic perturbation that could extend on several airports, for example, are not
considered. The simulation aims at comparing the efficiency of different recovery
strategies such as compensatory rest delays, short cycle cancelation, reserve crew or
passenger push-back, and present a performance measure to compare the approaches.
Results for a single example with 119 daily flights testing some crew recovery heuris-
tics for different schedules are provided. Although no explicit research on robustness
nor recoverability is done in this paper, the authors show that schedules obtained by
including expected recovery costs perform better than optimal deterministic schedules
with no consideration of potential disruption.

Rosenberger et al. (2004) solve a robust fleet assignment problem based on Barn-
hart et al. (1998b), where maximizing short cycles and hub isolation aim at improving
the short cycle cancelation recovery strategy. The motivation is that, in application,
operators often cancel an entire plane’s rotation (or cycle) in order to cope with
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the rotation’s continuity problems when canceling single flights only. Different fleet-
assignment models are analytically compared on simulated disruptions, in terms of
criteria such as average delay, percentage of flights delayed by less than 15 minutes,
the percentage of canceled flights, or the number of times aircraft rerouting is per-
formed. Simulations are performed on 3 instances of up to 2,558 daily flight legs on
500 days of operations, using SimAir (Rosenberger et al., 2003a) as a simulator and
the aircraft recovery optimization model of Rosenberger et al. (2003b). The reported
results show that using sub-optimal solutions of the deterministic problem allow for
improving a schedule’s robustness and recoverability. The main conclusion is that
robustness and recoverability can be improved by embedding, in the deterministic
models, generic proxies such as hub isolation, additional short-cycles, route overlaps
as in Ageeva (2000) or move-up crews as in Shebalov and Klabjan (2006).

Smith and Johnson (2006) define a robust fleet assignment model using station
purity constraints, which limit the number of fleet types serving a same airport. When
adding purity constraints, maintenance cost can be reduced by up to $29 million per
year; estimated crew planning costs are reduced by $100 million, with additional
savings to be expected in operations.

Yen and Birge (2006) present a stochastic approach with recourse to the crew
scheduling problem that adds delay costs in the objective of the classical deterministic
model in order to minimize the cascading delay effects. Computational results on
test problems with up to 79 flights and 11 aircraft are presented, using a sample of
100 scenarios for the stochastic model; the obtained solutions show the benefit of
considering uncertainty with respect to the original solution. Interestingly, the more
a solution is robust, the more crews tend to stay on a same aircraft, i.e. there are
fewer connections.

Burke et al. (forthcoming) introduce a multi-objective optimization approach to
the airline schedules using robustness objectives, improved by both flight retiming
and aircraft rerouting; the fleet assignment is fixed. The multi-objective is tackled
by exploring the Pareto optimization. A schedule’s robustness, called reliability, is
measured with respect to a probabilistic measure of on-time departures; the schedule’s
flexibility, i.e. recoverability, is defined by the number of swapping opportunities.
The resulting problem is then solved using a genetic algorithm. The authors present
simulation results for KLM, one of the largest European airline, with up to 504 flights
and 13 aircraft. Simulation results show that the used robustness objective, that is the
number of grounded planes, improves both reliability and flexibility of the schedules.

Gao et al. (2009) present an integrated robust fleet and crew planning method,
where robustness is achieved by imposing station purity constraints as in Smith and
Johnson (2006). The problem is modeled as a mixed integer program of large size.
Adding station purity can improve the crew solution by 2% to 3%, reducing the yearly
costs by 5 to 8 million dollars.

Liebchen et al. (2007) introduce an interesting approach combining robustness
and recovery applied to railway transportation. Recoverable robustness is defined as
a solution that can be recovered by a limited effort within a limited set of scenar-
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ios. Interestingly, the authors define the recovery costs in terms of a set of recovery
algorithms and not a unique recovery scheme. Unfortunately, this work is purely the-
oretical: the proposed formulation is clearly computationally intractable in general,
and only some illustrative examples are presented.

2.2 A posteriori optimization

Theory: A posteriori optimization methods are reactive processes based on a wait-
and-see strategy for problems with varying data and are commonly called on-line
algorithms. Such algorithms determine the response to data changes, which can
either be deterministic or random. The performance of these algorithms is difficult
to measure, as it depends on the way the data are revealed. The competitivity ratio
is the most common performance metric. It corresponds to the ratio obtained by
dividing the value of the solution found by the algorithm by the optimal solution of
the deterministic problem (i.e. when all data are deterministically known). For more
details on on-line algorithms, see Albers (2003).

Airline recovery: As shown in Chapter 1, airlines operate in a highly variable
environment, which often faces them with the problem of recovering a disrupted
schedule; recovery algorithms are in fact on-line algorithms relying on a baseline
schedule, i.e. whatever happens, the solution of the recovery must lead to the baseline
schedule after some time. In general, the on-line strategy is to compute a new schedule
that minimizes the recovery costs while ensuring that the schedule is recovered at a
fixed time.

The field of recovery algorithms was developed in the last 10 years mainly. For
general surveys on airline scheduling in the recovery perspective, we refer to Kohl
et al. (2007) and Clausen et al. (forthcoming), who give an overview of the literature
and discuss different approaches to cope with irregular events for all aircraft, crews
and passengers.

There are few contributions in which planning the maintenance operations are
considered in combination with the aircraft recovery problem. In Stojković et al.
(2002) the authors consider the maintenance constraints and provide a real time
algorithm that does not affect the routing decision. Only Sriram and Hagani (2003)
consider maintenance and routing decisions together but aircraft maintenance checks
can be performed only during the night and unexpected maintenance requirements
are not considered. The problem is solved using a randomized heuristic based on
an underlying network flow model. Problems with up to 58 flights are heuristically
solved within 5 minutes.

In an unpublished report, Clarke (1997) enforces the satisfaction of maintenance
requirements within a given time slot but, in the computational experience, all the
flights were constrained to be operated either on time or with 30 minutes delay or
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canceled, restricting drastically the degrees of freedom of the algorithm and therefore
the overall complexity of the problem.

The literature however abounds in works on different aspects of the airline recovery
problem without considering maintenance constraints. We give here a non-exhaustive
review on some of the most important works.

Teodorvić and Gubernić (1984) are the pioneers of the Aircraft Recovery Problem
(ARP). Given that one or more aircraft are unavailable, the objective is to minimize
the total delay of the passengers by flight retiming and aircraft swaps. The algorithm
is based on a branch-and-bound framework where the relaxation is a network flow with
side constraints. Teodorvić and Stojković (1990) is a direct extension of the previous
work. The authors consider both aircraft shortage and airport curfews and try to
minimize the number of canceled flights, with a secondary objective of minimizing
the total passenger delay if the number of cancelations is equal. A heuristic based
on dynamic programming is proposed to solve the problem. No experiments are
reported.

Wei et al. (1997) address the crew recovery problem with a multi-commodity
integer network flow and also develop a heuristic branch-and-bound search algorithm.
The originality of this work lies in the business-like criteria the solution has to meet:
the recovered solution has to be as close to the actual schedule as possible, using an
upper bound on the number of modified pairings, the number of impacted flights etc.

In his thesis, Stojković (1998) introduces three approaches to solve the Day of
Operation Scheduling problem (DAYOPS ). The first method consists in regenerating
a new flight schedule allowing not to change any other part of the schedule (crew and
passengers). The second approach allows to modify aircraft routes, crew rotations and
the planned schedule. Optimization is done separately for aircraft, pilots and flight
attendants. The last approach is based on the Benders decomposition to separate the
initial integral multi-commodity flow formulation and solves the resulting problems
using the Dantzig-Wolfe formulation by branch-and-bound.

Yu et al. (2003) introduce a decision aid algorithm (CALEB) tested on data of
Continental Airlines. They test their algorithm on probably the worst day ever for
aviation, namely September 11th 2001. They show impressive results on how fast the
return to normal schedule is achieved when such a severe disruption happens. The
estimated savings for 9/11 are up to $29, 289, 000, almost half of them coming from
the avoided flight cancelations.

Rosenberger et al. (2003b) present an aircraft recovery model that reschedules
legs and reroutes aircraft in order to minimize the rerouting and cancelation costs.
They also develop a heuristic to choose which aircraft to reroute and discuss a model
that minimizes the crew and passenger disruption. Rosenberger et al. (2004) use the
recovery model of the previous article to test the recoverability of different scheduling
models (see section 2.1 for more details of the robust approach).

Kohl et al. (2007) give a survey of the previous works on airline scheduling and
schedule recovery approaches. They also develop a crew solver and describe a pro-
totype of a multiple resource decision support system (Descartes project), which
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includes independent algorithms to solve the aircraft recovery, the crew recovery and
the passenger recovery problems. The tests are run on data where small irregularities
in a database of 4000 events are generated randomly, at most 10% of the flights being
delayed from 15 to 120 minutes.

Rosenberger et al. (2003b) work on different aspects of the airline scheduling
problem, mainly in automated recovery policies. One of these projects is based on the
aircraft rerouting problem. They develop a model that reschedules legs and reroutes
aircraft in order to minimize the rerouting and cancelation costs. They also develop
a heuristic to choose which aircraft to reroute and discuss a model that minimizes
the crew and passenger disruption.

Yan and Young (1996), Yan and Yang (1996) and Yan and Tu (1997) are based
on the same underlying model which is a time-line network in which flights are repre-
sented by edges. The network has position arcs corresponding to a potential aircraft
shortage. The possibility of flight retiming is modeled by several arc copies. In Yan
and Lin (1997) an instance of 39 flights is solved. In Yan and Tu (1997) the authors
solve larger instances, up to 273 flights, within a small optimality gap and below 30
minutes of computation.

Jarrah et al. (1993) use two separate approaches to the ARP: cancelation and
retiming. The problem is modeled with a time-line network and three methods are
reported: the successive shortest path method for cancelations and two network flow
models for cancelations and retimings. The possibility of swapping aircraft is taken
into account. Instances with three airports with considerable air traffic are presented
with several disruption scenarios.

In Argüello et al. (1997) and Bard et al. (2001) the authors use a time-band model
to solve the ARP. In the first article the authors propose a fast heuristic based on
randomized neighborhood search. The second article presents a heuristic based on
an integral minimum cost flow on the time-band network. Furthermore, the method
proves to be effective for some medium-sized instances with up to 162 flights serviced
by 27 aircraft.

An extension to the network model of Argüello et al. (1997) is presented by Theng-
vall et al. (2000). The authors present a model in which they penalize in the objective
function the deviation from the original schedule and they allow human planners to
specify preferences related to the recovery operations. Computational results (using
either Pentium 100 or Pentium 200 processors) are presented for a daily schedule
recovery of two homogeneous fleets of 16 and 27 aircraft. Disruption scenarios are
simulated grounding one, two or three planes.

Thengvall et al. (2001) introduce a multi-commodity flow model based on a time-
band network with multiple arc types to solve the aircraft recovery problem after a
hub closure. The authors consider cancelations, delays, ferry flights and plane swaps,
but no maintenance requirements. Computational results for a fleet with 332 aircraft
divided into 12 fleets and 2921 flights are provided. Computational times remain
below 450 seconds for instances with up to 1434 flights on a machine with a Pentium
200 processor and 128Mb of RAM.
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The literature lacks papers dealing with integrated models combining aircraft
recovery and crew recovery or passenger rerouting problems. The only relevant article
we could find on integrated aircraft and passenger recovery is Bratu and Barnhart
(2006). The authors present an explicit approach, leading to mixed integer models
with an exponential number of constraints, where planned and recovery passenger
itineraries are explicitly modeled. To control the exponential size of the model, only
itineraries with up to two legs are considered and flight retiming is constrained only
within a restricted time window around the original departure time. The recovery
model is solved iteratively: first, the passenger recovery model is solved to optimality
using a commercial MIP solver. The aircraft routing is then performed to check
the feasibility of the solution. If no feasible aircraft routing exists for the found
solution, the passenger model is modified and solved again. The main drawback of
this approach is that routing decisions are taken after the passenger routing, which
implies that flight capacities are not correctly determined at the passenger recovery
stage. To overcome this issue, the authors introduce additional flow variables to
include aircraft types, increasing by another dimension the exponential behavior of
the model.

As a final comment to our literature overview on recovery algorithms, we note
that the largest solved instance reported (Thengvall et al., 2001) involves up to 1434
flights and 332 aircraft. The tests we perform on the ARP in section 3.2 show that
the difficulty of an instance does not directly depend on the number of flights and/or
aircraft. Instead, a possible way to characterize the complexity of a problem is the
ratio flights/planes. This ratio represents the average length of a recovery scheme,
which is directly associated with the combinatorial nature of the recovery problem. In
our study we solve instances with a flights/planes ratio up to 18.4, while the largest
instances of Thengvall et al. (2001) have a ratio of 4.3 and the biggest ratio reported
in the survey of Clausen et al. (forthcoming) equals 7.2.



20 CHAPTER 2. LITERATURE REVIEW



Chapter 3

Constraint-Specific Recovery
Networks

In this Chapter, we present the constraint-specific recovery network model used to
solve airline recovery problems. For a detailed review on existing recovery approaches,
see section 2.2, which highlights the complexity of the problems to be solved.

When a schedule is disrupted, recovery decisions are taken at the Operations
Control Center (OCC). The challenge is to determine a new route, called a recovery
scheme, for each aircraft, crew member or passenger within a certain makespan [0, T ]

called the recovery period ; the disruption is assumed to occur at time 0 and the
original schedule must be recovered within time T , which we assume to be fixed.

Each unit (that is, a plane, a crew or a passenger) is associated with an initial
state, which is the first ground location of the unit after the disruption, time t0 being
the earliest time at which the unit is ready for action at this location. A final state
is the required location of a unit at time T for the original schedule to be recovered.
Both initial and final states are supposed to be deterministically known for all units.
The recovery scheme is then defined as a succession of flights connecting the initial
to the final state for each aircraft, crew and passenger.

The options for OCC operators are to delay or cancel flights, swap planes, reas-
sign crew and reroute or cancel passenger itineraries. For canceled itineraries, the
airline must possibly book flight tickets with other companies. The recovery costs are
determined by the airline, which estimates the cancelation cost for a flight, the delay
cost (typically measured in dollars per minute) and other operational costs such as
plane and crew swapping costs.

The common weakness of multi-commodity flow models for disruption recovery
presented in the literature (see section 2.2) is that they are not appropriate to take into
account exact delays and unit-specific constraints (see Bard et al., 2001): on the one
hand, if the model aims at describing exactly the recovery problem at each point in
the network, then exponentially many constraints (or variables) are required. On the
other hand, approximating delays and/or constraints leads to sub-optimal methods.
Using lower bounds may lead to unfeasible solutions or to cost underestimations;

21
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using upper bounds may lead to discarding feasible solutions.
In this Chapter, we show how to deal with the combination of unit-specific and

structural constraints simultaneously. The former are constraints specific to each
unit, i.e. maintenance constraints for aircraft, contractual constraints for crews and
maximum delays for passengers. Unit-specific constraints are modeled by resources
that are consumed along the unit’s recovery scheme. The latter constraints ensure
that the combination of each unit’s recovery scheme is feasible. They ensure that the
schedule is recovered by the end of the recovery period and that no flight is flown
by two different aircraft in the ARP, that each operated flight is assigned the right
number of crews in the CRP and that aircraft capacities are not exceeded in the PRP.

The main advantage of the constraint-specific recovery network model is that
structural and unit-specific constraints are separated and checked independently.
Indeed, all unit-specific constraints are handled in each unit’s recovery network,
whereas the structural constraints are considered when combining the different re-
covery schemes. When embedded in a CG scheme, the recovery networks are used to
encode all feasible columns of a unit and to solve the pricing problem for generating
new promising recovery schemes. This has two advantages: first, we generate the
set of feasible columns for a given unit once and solve the pricing with a dynamic
programming algorithms which benefits from the pre-generated graph, as proven un-
feasible paths are removed at the generation phase. Furthermore, this allows for
computation of exact resource consumption for each unit at the pricing stage. The
structural constraints, which are imposed in the master formulation only, are therefore
independent of the pricing.

This Chapter is structured as follows: section 3.1 describes the constraint-specific
recovery model and the network generation algorithm and illustrations of constraint-
specific recovery networks for the ARP and the PRP. Sections 3.2 and 3.3 show
computational results for the ARP and the PRP, respectively. Section 3.4 discusses
some extensions of the constraint-specific recovery network model. Section 3.5 con-
cludes this Chapter. The notation used throughout this Chapter is listed in Appendix
3.6.

3.1 The constraint-specific recovery network model

In this section we present the constraint-specific recovery network, or recovery network
model, which can be seen as an extension of the time-band model by Bard et al. (2001).
For a summary of the used notation, see section 3.6.

Each unit (that is, a plane, a crew member or a passenger) is associated with a
specific recovery network, which is a set of nodes and arcs, such that each possible
recovery scheme of the unit corresponds to a path. For each unit p, let Fp be the
subset of flights and Sp the subset of final states that the unit is allowed to cover
within the entire sets of flights F and final states S.

In addition, each unit-specific constraint is modeled as a resource and an associated
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resource limit. For example, aircraft have limits on the consecutive flown hours, crew
members have limits on the duration of a duty and passengers have limits on the
delay of their itinerary. A resource is either consumed (e.g. by flights) or renewed
(e.g. by maintenances). Let r identify a resource and ur be the associated limit. The
vectors of all resources and limits are denoted by R and U, respectively.

Special resource limits are associated with each final state to ensure the feasibility
of the original schedule after time T .

A unit’s recovery network is based on a two-dimensional coordinate system (A, t).
The discrete horizontal A-axis represents the location a of each airport. The vertical
t-axis represents time and is discretized with time intervals of equal size. A node is
characterized by a pair {a, t} in the coordinate system. We distinguish three types
of nodes. The unique source node {a, t0} corresponds to the unit’s initial state. Sink
nodes {a, T } correspond to the possible final states that the unit is allowed to cover.
Finally, all the other nodes are transition nodes and are denoted {a, t}. An arc
({a, t},{a ′, t ′}) connects two nodes and represents an action of the unit.

We distinguish four types of arcs ({a, t},{a ′, t ′}) in the networks, corresponding to
four different actions: a flight arc represents a flight performed by the unit between
airports a and a ′; a renewing arc in which the unit performs a renewing operation
before the flight; a termination arc is a vertical arc connecting the source node or a
transition node {a, t} to a sink node {a, T }. A renewing termination arc is a termi-
nation arc for which a renewing operation is performed before the sink is reached.
Flight and renewing arcs are created only if activity and renewing slots are available
at the corresponding airport. Note that several arcs associated with the same flight
may exist, each defining a different departure time or action. Each arc incurs a cost
that is determined by the corresponding action and potential additional costs such as
delay costs or unit swapping costs.

This modeling scheme is sufficiently general and flexible to represent a great va-
riety of situations. We discuss in the rest of the section how to make this modeling
framework operational.

3.1.1 Recovery network generation and preprocessing algo-
rithms

The recovery network generation algorithm for each unit is a dynamic programming
algorithm where the nodes and arcs are created iteratively.

Each node is associated with a label hr, for each resource r, modeling one unit-
specific constraint and corresponding to the consumed resource when the node is
reached. As several different paths may reach the same node, we compute for each
node the upper and lower bounds h

r
and hr on the resource consumption. At each

node j = {a, t} of the network, we denote Hj and hr the vectors of upper and lower
bounds on resource consumption for all resources R. A node j is said to be feasible if
and only if Hj ≤ Uj. Accounting for bounds instead of real resource consumptions al-
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lows encoding at construction time of all feasible recovery schemes plus, possibly, some
unfeasible ones. We identify a node j with the associated labels by [{a, t}, {Hj, Hj, Uj}].

The source node is described by [{a, t0}, {H0, H0, U0}], where H0 is the determin-
istically known vector of initial resource consumptions. The sinks are described by
[{a, T }, {H,H,UT }], where UT is the vector of maximal allowed resource consumptions
at the sink.

A feasible recovery scheme is thus a path from the source node to a sink node
such that the maximal allowed resource consumption is never exceeded.

The generation algorithm is described by Algorithm 1 and can be described by
the following four steps:

1. initialize the node set S = [{a, t0}, {H0, H0, U0}];

2. for each non-explored node [{a, tj}, {Hj, Hj, Uj}], consider the four arc types for
flights in Fp departing from a and final states in Sp associated with a;

3. for all arcs check that the resource consumption at destination is respected,
create the destination node and add it to S if it does not exist, or update the
resource consumptions;

4. go to step 2.

The details of the functions used in Algorithm 1 are detailed in section 3.7.
The discretization of time guarantees a pseudo-polynomial number of nodes (Bard

et al., 2001). Additionally, we limit the feasible extensions of step 2: a flight has
a maximal allowed delay τ and a maximal waiting time before take-off ψ. The
parameters are used both for flight and renewing arcs. In addition, we consider the
resource consumption upper bound H and we introduce a parameter ρ which imposes
a minimal ratio of consumed resource for a renewing operation to be considered. We
add a parameter Γ , which sets the earliest time for termination arcs: at node {a, t},
we must have t ≥ Γ for the arc to be created.

The preprocessing phase follows the generation of the networks in order to remove
proven sub-optimal or unfeasible arcs and nodes. We compute, for each node, the
value hr

sink of a shortest path with respect to resource r from node [{a, t}, {Hj, Hj, Uj}]

to a sink. hr
sink corresponds to the minimal necessary resource potential to reach the

sink from node {a, t}. If for some resource r, hr
sink + hr

j > u
r
T , the maximal allowed

consumption at the sink is exceeded: there is no feasible path from the source to the
sink traversing the node. If none of the sinks is reachable, no feasible path traverses
the node, which can be removed.

Finally, all nodes (except the source) that have no predecessor and all nodes
(except the sinks) that have no successor are removed from the network. Each time
a node is removed, all ingoing and outgoing arcs are removed as well.

At the end of the preprocessing phase, each unit’s recovery network contains only
nodes belonging to at least one feasible path, i.e. at least one feasible recovery scheme
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Algorithm 1 Recovery Network Generation for the ARP.

Require: Set P of planes, sets Fp of coverable flights, initial states and set Sp of final
states

1: for p ∈ P do
2: INITIALIZATION: Create source node s = [{a, t0}, {H0, H0, U0}], set N = {s}

3: while N 6= ∅ do
4: Select the first node j = [{a, tj}, {Hj, Hj, Uj}] ∈ N
5: for f ∈ Fp where a is the departure of f do
6: if FeasibleForFlightArc(j, f) then
7: [{a ′, t ′}, {Hk, Hk, Uk}] = CreateFlight(j, f)

8: set N← N ∪ [{a ′, t ′}, {Hk, Hk, Uk}]

9: end if
10: if FeasibleForMaintArc(j, f) then
11: [{a ′, t ′}, {Hk, Hk, Uk}] = CreateMaintenance(j, f)

12: set N← N ∪ [{a ′, t ′}, {Hk, Hk, Uk}]

13: end if
14: end for
15: for s ∈ Sp where aj is the airport of s do
16: if FeasibleForTermArc(j, s) then
17: CreateTermination(j, s)

18: end if
19: if FeasibleForMaintTermArc(j, s) then
20: CreateMaintTermination(j, s)

21: end if
22: end for
23: Set N← N \ {j}

24: Sort N by increasing time
25: end while
26: end for

for the unit. Notice that some unfeasible paths may remain in the recovery networks,
as we used upper and lower bounds on resource consumption.

3.1.2 Illustration of ARP with maintenance planning

The ARP with explicit maintenance planning is becoming increasingly relevant for
applications: although an extension of an aircraft maintenance limit can be obtained
through written permission from the authorities, doing so is not a regular occurrence.
Indeed, any airline that continually asks for extensions could be subject to an audit
from the authorities. Airlines usually prefer to operate under the Joint Aviation
Requirement for Operations (JAR-OPS) rules to avoid additional audits at all costs.

In the ARP a unit is an aircraft and the unit-specific constraints are mainte-
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nance constraints. The resources enforcing maintenance are the maximal allowed
flight hours, modeled with label hFlH, the maximal number of take-offs and landings,
modeled as hToL, and the maximal absolute time elapsed between two maintenances,
denoted as hHrs. The renewing operations are clearly maintenances. For clarity, we
rename the renewing and renewing termination arcs as maintenance and maintenance
termination arcs.

The ARP aims at assigning a recovery scheme to each aircraft such that the
original schedule is recovered at T , i.e. that each final state is reached by an aircraft
able to carry out the initial schedule after T ; the global solution of the ARP is called
a recovery plan. The allowed decisions are delaying or canceling flights, swapping
aircraft and re-assigning maintenances; early departures are not allowed.

The following example illustrates the ARP. In Table 3.1 we have a schedule for
planes p1 and p2. We consider the number of take-offs and landings as the single
resource hToL, with an upper bound of uToL = 20 and the initial consumption hToL0 = 6

for p1 and hToL0 = 10 for p2, corresponding to the state of each plane when the
disruption occurs: plane 1 has already performed 6 take-offs and landings and p2 has
performed 10. At time t0 = 0905, when p1 lands in AMS, an unplanned maintenance
of two hours is enforced on p1 because of problems during the landing phase. This
leads to a disruption as the schedule cannot be implemented as planned: p1 cannot
take off to MIL at 1000, as it is not ready for take off before 1105.

The initial state for p1 is represented by source node [{AMS,0905}, {20, 20, 20}]
(hToL0 = 20 because maintenance is enforced). The source node of p2 is the node
[{AMS,1000}, {6, 6, 20}], as p2 is active until 0930 and requires, say, 30 minutes to
prepare for the next flight. We assume that we want to recover the disrupted sit-
uation by T = 1800. As both planes will undergo maintenance during the night,
resource consumption capacity limits at T are hToLT = UToL = 20. We define two sink
nodes [{BCN,1800}T , {0, 20, 20}] and [{GVA,1800}T , {0, 20, 20}]. Moreover, we assume
a homogeneous fleet, i.e. p2 can cover the flights initially scheduled for p1 and cover
both final states, and vice versa.

A possible recovery plan is given in Table 3.2, consisting in swapping the two
planes: flights F2, F3 and F4 are assigned to plane p2 and flight F6 to plane p1. The
resource consumption constraints at the final states are clearly satisfied, as p1 reaches
the final state [{BCN,1800}T , {0, 20, 20}] with hToL = 2 < 20 and plane p2 reaches final
state

[{GVA,1800}T , {0, 20, 20}] with hToL = 18 < 20.

To generate the recovery network of p2, we first create the source node

[{AMS, 1000}0, {12, 12, 20}]

and apply Algorithm 1, with the set of flights Fp2
= {F2, F3, F4, F6} (F1 and F5 are

already covered) and the set of sinks

Sp2
= {[{GVA, 1800}, {0, 20, 20}], [{BCN, 1800}, {0, 20, 20}]}.
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Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F6 AMS BCN 1120 1430

Table 3.1: The original schedule for two planes.

Plane 1 Flight ID Origin Destination Departure time Landing time
F1 GVA AMS 0830 0905 (1105)
F6 AMS BCN 1120 1430

Plane 2 Flight ID Origin Destination Departure time Landing time
F5 MIL AMS 0740 0930
F2 AMS MIL 1000 1130
F3 MIL BCN 1200 1340
F4 BCN GVA 1415 1550

Table 3.2: A recovered schedule for two planes.

Activity slots and minimum connection time are Oa = [0700, 1800] and mcta = 30

for all airports a; the only maintenance slot is Ma = [0900, 1800], with maintenance
duration dma = 60 minutes for a = AMS. The generated recovery network is shown
in Figure 3.1 (we remove flights delayed by more than τ = 240 minutes).

The recovery network enables us to identify the possible recovery schemes. Each
of them corresponds to a path from the source to a sink. In Figure 3.1 we identify
eight feasible paths from the source to a sink, i.e. eight different recovery schemes; the
path corresponding to the recovery scheme of plane p2 in Table 3.2 is the succession of
the nodes {AMS,1000}0, {MIL,1200}, {BCN,1410}, {GVA,1620} and {GVA,1830}T .
The succession of flight arcs corresponds to flights F2, F3 and F4, respectively.

In this example, there is no maintenance termination arc, as there is no mainte-
nance slot at GVA nor at BCN, the locations of the final states. Notice that there are
several arcs, both flight or maintenance, associated with the same flight at different
times.

3.1.3 Column Generation algorithm

In this section, we briefly describe a CG algorithm designed to exploit the constraint-
specific recovery networks. For a detailed description of CG algorithms see De-
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Figure 3.1: Recovery network of plane p2 with initial schedule of Table 3.1 and initial
state [BCN,0740,10].

saulniers et al. (2005), Lübbecke and Desrosiers (2005) or Vanderbeck (2005). Let Ω
be the set of all possible single-unit recovery schemes. The structural constraints are
modeled in the following Master Problem (MP):

min zMP =
∑
r∈Ω

crxr +
∑
f∈F

cfyf (3.1)

s.t.∑
r∈Ω

bf
rxr + yf = 1 ∀f ∈ F, (3.2)∑

r∈Ω

bs
rxr = 1 ∀s ∈ S, (3.3)∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P, (3.4)

xr ∈ {0, 1} ∀r ∈ Ω, (3.5)

yf ∈ {0, 1} ∀f ∈ F. (3.6)

Each recovery scheme r has a cost cr, which can be uniquely determined by unit-
dependent operational and delay costs and is associated with a binary variable xr

that is equal to 1 if it is considered in the solution, 0 otherwise. In the ARP, delay
costs are computed using estimations on the delay cost per time unit, which Cook
et al. (2004) estimate to be 72e per minute.
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A recovery scheme is described by the binary coefficients bf
r, b

s
r and bp

r , which
form a column of the constraint matrix. Those constants take value one if scheme
r covers flight f, ends with final state s and is associated with unit p, respectively.
Finally, a binary variable yf is associated with each flight and equals one if the flight
f is canceled with cost cf.

Constraints (3.2) ensure that each flight is either covered or canceled; constraints
(3.3) ensure that each final state is covered, i.e. the schedule is recovered at time
T . Finally, constraints (3.4) ensure that each unit is associated with at most one
recovery scheme. Constraints (3.5) and (3.6) ensure the integrality of the variables.

As the dimension of the set Ω is exponential, we consider a subset of recovery
schemes,Ω ′ ⊆ Ω and we solve the linear relaxation of the obtained restricted problem.
We then recourse to Column Generation either to prove the optimality of the linear
problem or to generate new profitable columns, i.e. recovery schemes, to enter the
formulation. If the optimal solution of the restricted master problem is not integral,
we recourse to an enumeration tree where, at each node, we take branching decisions.

Given the optimal solution of the linear restricted master problem, the Column
Generation algorithm solves a pricing problem to compute the recovery scheme r with
minimum reduced cost for each unit p. The reduced cost is computed considering the
dual variable λf associated with each flight f, the dual variable related to the final
states ηs and the non-positive dual variable µp of the unit p as follows:

c̃p
r = cp

r −
∑
f∈F

bf
rλf −

∑
s∈S

bs
rηs − µp ∀p ∈ P. (3.7)

If a column with c̃p
r < 0 exists, it is added to Ω ′; otherwise the LP optimality is

proved. We have to compute, for each unit p, the recovery scheme minimizing the
reduced cost given the dual multipliers λf, ηs and µp, i.e. find the feasible combination
of the vector (bf

r, b
s
r, b

p
r )

T minimizing c̃p
r .

The next section shows how the problem of minimizing the reduced cost is solved
as a Resource Constrained Elementary Shortest Path Problem (RCESPP) on each
unit’s recovery network.

3.1.4 Resource Constrained Elementary Shortest Path Prob-
lem (RCESPP)

A pricing problem needs to be solved for each unit independently to generate new
recovery schemes satisfying all unit-specific constraints. As a unit’s recovery network
contains all non-dominated feasible recovery schemes, we use the recovery networks
to solve each unit’s pricing problem. We now show that the pricing problem reduces
to a Resource Constrained Elementary Shortest Path Problem (RCESPP). As we are
solving the pricing for each unit p individually, we omit index p from the reduced
cost formulation in (3.7) for the remaining of this section.
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To solve the pricing problem for one unit p, we have to find the recovery scheme
minimizing the reduced cost. To do so, we compute a RCESPP in the updated
recovery network.

Let λf, ηs and µp be the dual multipliers of constraints (3.2), (3.3) and (3.4)
respectively. The non-negative variable µp is a constant for p fixed and it is not
considered in the optimization but only to compute the final reduced cost.

The dual variables λf for flight f and ηs for final state s can be taken into account
in the recovery network by adding them to the different arc types as follows:

• flight arcs: cost −λf;

• renewing arcs: cost −λf;

• termination arcs: −ηs;

• renewing termination: cost −ηs.

By consequence, negative cost arcs could be present, but as the recovery networks
are acyclic, any shortest path has finite reduced cost. A feasible recovery scheme is a
path from the source to a sink node where each flight is used at most once. Moreover,
all resource constraints have to be satisfied. This is a RCESPP problem, where the
resource constraints ensure the feasibility with respect to the unit-specific constraints,
the elementarity ensures the uniqueness of a flight in the recovery scheme and the
shortest path ensures the recovery scheme is actually the one minimizing the reduced
cost.

To solve the RCESPP, we use the algorithm proposed by Righini and Salani
(2006), which is an extension of the generalized permanent labelling algorithm first
introduced by Desrochers and Soumis (1988). The algorithm creates labels associated
with nodes; a label encodes a feasible path to reach the node it is associated with. If
several labels are active at a same node, it is possible to eliminate some of them that
are dominated, i.e. that cannot lead to an optimal path. If a label is not eliminated
by dominance, it is extended through all feasible arcs (j, k) to a new label at node k.
The optimal solution is encoded by the label with lowest cost at the sinks.

The same flight can be associated with different arcs in the network to model
delay decisions. Although the network is acyclic, the elementarity of the used flights
must be enforced, as it cannot be ensured by the only cost minimization objective of
a resource constrained shortest path. To enforce elementarity, we use the method of
Beasley and Christofides (1989), adding a dummy vector of binary resources, one for
each flight. To tackle the computational effort issued by the additional elementarity
constraint we exploited the Decremental State Space Relaxation (DSSR) technique
introduced by Righini and Salani (2008).

As most of the unfeasible paths in the recovery networks are removed in the pre-
processing phase, the number of labels generated by the pricing algorithm is reduced.
Furthermore, the available bounds on the minimal required resource consumption to
reach a sink from each node allow to detect unfeasible paths earlier.
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3.1.5 Implementation issues

The algorithm is implemented in C++ exploiting the Branch-Cut-Price framework
(BCP), an open source framework implementing a Branch&Cut&Price algorithm,
provided by the Computational Infrastructure for Operations Research (COIN-OR,
2008) project. Tests are run on a computer with a 2GHz processor and 2GB memory.

To control the number of non-dominated labels in the RCESPP algorithm, re-
source consumption is discretized as we do for time: resource consumptions falling
into the same interval are considered as equivalent.

We introduce a logarithmic resource discretization controlled by a parameter θ.
It corresponds to the number of logarithmic intervals resources are divided into, with
the length of the intervals being proportional to log(θ). The intervals for resource
h are denoted by Ihj , j = 1 · · · θ. The idea of the logarithmic discretization is that
resource-renewing operations are unlikely to occur for low resource consumptions. As
a consequence of resource discretization dominance criteria are applied by comparing
the interval indices j instead of the exact resource consumption; all pairs of labels
falling into the same interval are compared based on the remaining resources only,
so that more labels are dominated with respect to the exact dynamic programming
algorithm.

Notice that in a linear discretization, two labels might belong to the same or to
different intervals for increasing values of θ. In the logarithmic case however, this
does not occur: the example in Figure 3.2 illustrates this phenomenon for increasing
θ with linear interval lengths on the left and with logarithmic lengths on the right for
a resource h and resource limit Uh = 100. We see that the two labels corresponding
to resource consumption 49 and 51, represented by l, always fall in different intervals
in the logarithmic case for θ ≥ 2. In the linear case however, they are in the same
interval for odd θ and they are not for even θ, as long as the gap between the two
values is larger than 1

θ
. Figure 3.2 also shows the saturation effect in logarithmic

discretization when θ grows too large, i.e. intervals for big θ become infinitely small.

In the implemented algorithm, CG is done only at the root node of the search
tree: we solve the linear relaxation of the root node to optimality and obtain a valid
lower bound. An integral solution is then obtained by branching without generating
new columns. The obtained algorithm is therefore an optimization-based heuristic
with an a posteriori guarantee on the optimality gap.

Moreover, CG is known as a primal method: primal feasibility of the linear relax-
ation of the Restricted Master Problem (RLMP) is guaranteed, whereas the feasible
dual vector is searched by adding valid dual cuts in the dual space. Indeed each cut
corresponds to a feasible column in the primal space. It is known that for an efficient
implementation of CG methods (see for example Vanderbeck, 2003), one needs to
provide a relevant set of columns to obtain a good estimation of the dual vector and
to prove its optimality at the end of the generation.

As the dual vector estimation during the early iterations of the method is poor,
it is common practice to solve the pricing problem heuristically to produce quickly
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negative reduced cost columns. We derive three pricing heuristics from the exact
dynamic programming method using two relaxations. In the first relaxation we keep
the elementarity constraint during the construction of partial paths but we relax
it in dominance tests. This increases the possible number of dominated labels and
therefore accelerates the algorithm.

The second method consists in ordering the labels by increasing reduced costs and
bounding the number of active labels for each node by a constant. Therefore, thanks
to time discretization, the resulting heuristic is polynomial in time and space since
both the number of nodes and the number of labels are bounded by a polynomial
function.

We combine the two relaxations to obtain a third and fast heuristic applied first.
If this heuristic fails in finding new columns, we apply the heuristic with a fixed
number of labels for each node. The heuristic in which we relax the elementarity
dominance criteria is applied next. If none of the heuristic methods returns a column
with negative reduced cost, we resort to exact pricing.

Finally, we add to the master problem all the new columns with negative reduced
cost found in the heuristic phase to accelerate the convergence of CG; useless columns
are then removed from the LP by variable fixing based on reduced costs (Nemhauser
and Wolsey, 1988).

3.1.6 Illustration of PRP

In the PRP, all passengers must be brought to their final destination within a maxi-
mum delay limit that depends on the original itinerary length. Passengers can either
be rerouted on the available flight network or canceled, which implies the booking of
a ticket with another airline. In the proposed framework, each unit corresponds to a
single passenger or a group of passengers with the same itinerary and the unit-specific
constraints are the maximal allowed delay for a passenger and the maximal number
of flights to which a passenger can be allocated. In our case, recovery schemes with
more than η flights are discarded, where η is the parameter limiting the maximal
number of flights. The input of the PRP is the output of the ARP, i.e. a feasible
recovery plan; the objective is to operate the maximal number of passengers to their
final destination while minimizing the total delay and canceling costs. In the recovery
network, we create an additional cancelation termination arc from the source to the
sink to model the itinerary cancelation.

The structural constraints of the PRP are:

1. the number of assigned passengers cannot exceed the aircraft capacity;

2. each passenger must be assigned to exactly one recovery scheme.

Finally, since the network is acyclic, the pricing problem is a Resource Constrained
Shortest Path Problem (RCSPP), i.e. elementarity constraints do not need to be
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enforced as with the ARP. The DSSR technique we have adopted for pricing takes
advantage of this. In section 3.3 we report on computational results for the PRP.

The general concept of units allows the application of the modeling framework to
crew recovery too: a recovery scheme for a crew is also a succession of flights and
we can define a unique initial state and a final state for each crew corresponding to
its base. Swaps within crew teams might be allowed and then the subsets Sp are
used to model possible crew swaps at the end of the recovery period. Moreover, crew-
specific constraints can be modeled as resources: contract constraints are measured in
terms of maximal duty time without breaks, maximum time spent away from a base,
etc. Renewing operations are rest periods. The constraint-specific recovery network
model is therefore also applicable to the CRP. Indeed, a similar model using column
generation is presented by Stojković and Desrosiers (1998): the pricing problem is
solved on duty-based graphs, which are generated for each crew member individually.

3.2 Computational results for the ARP

The data used in the computational tests are obtained from Thomas Cook Airlines
(TC). TC is a medium-size airline relying on a heterogeneous fleet of 16 aircraft and
operating around 250 flights a week. In our instances, the number of flights varies
from 40 to 760 flights; instances with more than 250 flights are artificially built from
the real ones by duplicating schedules, assigning each copy to a different fleet.

The largest real instance in our tests has 242 flights and 16 aircraft, while the
largest generated instance has 760 flights and 100 aircraft. These instances are smaller
than the largest reported instance in literature which has 1434 flights and 332 air-
craft (Thengvall et al., 2001). However, our largest instance has a flights/planes
ratio of 18.4 compared to a ratio of 4.3 for Thengvall et al. (2001) and 7.2. for the
biggest ratio of an instance reported in the survey of Clausen et al. (forthcoming).
The flights/planes ratio reflects the complexity of the pricing problem: as the pricing
is solved using a dynamic programming algorithm, its complexity increases with in-
creasing number of flights. Therefore, the pricing problem for instances with a high
flights/planes ratio is computationally more difficult to solve and, as a large amount
of computation time of a CG algorithm is spend in the pricing, it also reflects the
complexity of the instance. A formal instance complexity study is out of the scope of
this thesis.

As no disruption is provided in the data, we use the TC schedule of May 2006
and simulate some disruption scenarios using the following experimental setup:

• size of the fleet concerned by the disruptions: 5, 10 and 16 aircraft;

• recovery period T : from 1 to 7 days;

• 0− 6 delayed planes;

• 0− 6 grounded planes;
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• airport closures: 0, 300, 500 minutes or 3 × 100 minutes.

The instances are divided into two classes: the first is composed of more than
20 instances using groundings, delays and a combination of both. The name of the
instance is related to its size: xD_yAC, where x is the number of days considered in
the recovery period, y is the number of aircraft. The second class is derived from a
hub-and-spoke situation (where the hub airport is Denver) with 10 aircraft and 36
flights for which we generate 12 different disruption scenarios, that consider either
delayed planes only, grounded planes only, a mixture of delayed and grounded planes
or airport closure(s). The name of each instance describes the simulated disruption:
we denote the number n of grounded planes by ngrd and the number m of delayed
planes by mdel. When the name of the instance is followed by _R, the initial resource
consumption is randomly generated using a uniform or a normal distribution on
[0,Ur].

The disruption scenarios are hand-made and are not validated by practitioners.
However, they are representative of different disruption levels, varying from small
delays up to severe perturbations involving airport closures.

Generation and preprocessing algorithms. The statistics of the recovery net-
work generation and preprocessing algorithms on 49 different instances with various
sets of parameters are as follows: the average computation time for both generation
and preprocessing of the networks is lower than 0.3 seconds. In the biggest network
we get 14,467 arcs and 3,634 nodes. The generation time is 1.344 seconds and the
preprocessing phase is done in 0.891 seconds.

In average over the 49 instances, the preprocessing reduced by 20.53% the total
number of arcs (20.22% for flight arcs and 21.96% for maintenance arcs) and by
23.64% the number of nodes. In the best case, it removes up to 63.64% of the arcs
and up to 66.40% of the nodes. The number of nodes and arcs is directly linked with
the computational effort of the pricing problem, since it is a dynamic programming
algorithm that explores each node and extends them through all outgoing arcs. These
results show that the use of recovery networks is useful in order to save computational
time, since around 20% of the computation time is saved at each call of the pricing
algorithm.

Interestingly, the more restrictive the time discretization parameters, the fewer
nodes (and arcs) are removed at the preprocessing phase. Indeed, when time dis-
cretization intervals increase, a larger number of paths traverse a same node with
respect to smaller intervals; it is therefore unlikely that none of these paths corre-
sponds to a feasible recovery scheme, explaining why less nodes are removed.

Solvable instances. Table 3.3 shows the size and the required computation time
for some representative instances. When a schedule can be carried out almost as ini-
tially planned, the algorithm solves the problem to optimality at the root node within
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1.0 second. Only bigger instances require branching, which drastically increases com-
putation time. We see that the number of flights is not crucial: it is more difficult
for the algorithm to solve instance 7D_16AC with only 242 flights than 2D_100AC with
760 flights. Comparing the flights/planes ratio, we see however that instance 7D_16AC
has a ratio of 15.1, whereas instance 2D_100AC has a ratio of only 7.6.

We report that with the standard settings of parameters, instance 7D_16AC fails
because of excessive memory requirements. The results presented for this instance
are obtained with more restrictive values for the delay and inactivity time parameters
(τ and ψ).

Instance 2D_10AC 3D_10AC 4D_10AC 5D_10AC 7D_16AC 2D_100AC

# planes 10 10 10 10 16 100
# flights 75 113 147 184 242 760

# delayed planes 2 2 2 1 0 10
# canceled flts 2 2 4 2 0 20
# delayed flts 5 7 1 6 11 40

total delay [min] 989 1146 20 1126 310 9690
max delay [min] 370 370 20 370 45 370

recovery cost 21745(*) 23695(*) 25930(*) 2425(*) 5600 557550(*)
tree size 1 1 1 1 2033 1

run time [s] 1.0 2.9 16.2 24.7 3603 62.9

Table 3.3: Results for some instances. Costs followed by (*) are proved to be optimal.

Impact of disruptions. To measure the impact of a disruption on a solution, we
use the Denver data (10 aircraft, 36 flights) with 12 different scenarios. The instances
3x100 and 1x300 simulate a closure of the hub airport, i.e. Denver. In the first
instance, Denver airport is closed during 3 periods of 100 minutes, with a gap of
100 minutes between each closure. The second instance simulates a longer closure of
300 minutes in a row. We also simulate a storm affecting several local airports. In
instance Storm1, four airports are closed for 300 minutes. In instance Storm2, the
same airports are closed for 500 minutes.

Table 3.4 shows the results for the different instances. The second line reports the
number of flights directly involved by the disruption without any forecast on disrup-
tion propagation; it represents the minimum number of flights on which the planner
must take a recovery decision. It is evident (see for example instance 6grd) that the
final number of affected flights is more important because of delay propagation: 18
flights are canceled or delayed while the minimum number is estimated to be 16.

We see from Table 3.4 that a grounded plane more often incurs flight cancelation
than a delayed plane. This follows intuition, as when a plane is grounded, the original
schedule must be recovered with one plane less than when a plane is simply delayed
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Instance 2del 2grd 4del 4grd 2del2grd 6del

# affected flights 1 4 3 8 5 5
# canceled flts 0 2 0 8 4 0
# delayed flts 1 4 7 2 7 13

total delay 10 920 230 380 490 640
max delayed flight 10 275 85 200 200 100

recovery cost 36100(*) 83200(*) 38300(*) 163800(*) 84900(*) 42400(*)
tree size 1 1 1 1 1 41
run time 0.7 0.5 0.6 0.3 0.5 1.6

Instance 6grd 3del3grd 3x100 1x300 St1 St2

# affected flights 16 9 11 7 3 6
# canceled flts 16 6 0 4 0 0
# delayed flts 2 12 11 11 6 6

total delay 380 950 675 2560 350 1550
max delayed flight 200 200 90 385 140 340

recovery cost 251800(*) 127500(*) 42750(*) 125600(*) 39500(*) 51500(*)
tree size 1 1 1 35 1 3
run time 0.2 0.4 0.3 0.8 0.5 0.5

Table 3.4: Results for different disruption scenarios. Affected flights correspond to
the number of flights affected directly by the disruption without any propagation.

and can still operate. In the instances combining grounded and delayed planes, the
effects of cancelations due to grounded planes and delays incurred by delayed planes
are combined. This is a direct consequence of the network density, meaning that, if
there are not enough available planes, the other planes’ schedules do not permit the
insertion of supplementary flights.

In general, we see that the bigger the number of directly affected flights, the
higher the delay or cancelation rates, except for the two Denver closure scenarios.
Even though instance 3x100 has more affected flights, the solution is better than for
1x300. The explanation is that the closure is split and covers more take-offs and
landings at Denver, but the slots between closures allow for planes to leave and start
rotations from Denver. Landing and take-off at other airports are then possible even
during the hub closure. In the 1x300 instance, planes located at Denver when the
closure occurs must wait the whole 300 minutes before taking off. We see from Table
3.4 that the closure of the hub airport has, as expected, dramatic impact due to
delay propagation. Surprisingly, for the storm instances, all the flights are covered,
inducing however huge delays.
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Sensitivity to parameters. The sensitivity tests with respect to the different pa-
rameters show that the approach is stable. Increasing time discretization significantly
decreases computational time both at generation and pricing phase. The resulting
loss of optimality is, however, rather small.

One sensitive parameter is the estimated delay cost per minute cd, which deter-
mines the trade-off between delays and flight cancelations. The lower the delay cost,
the more the algorithm tends to cover all the flights regardless of the produced delay.
Reversely, if the delay cost is high, the recovery plan avoids delays, canceling more
flights if necessary. Since our approach does not consider repositioning flights, a single
cancelation rarely occurs alone.

Finally, we test the logarithmic resource discretization against the linear one.
Solutions computed with the logarithmic resource discretization are better than those
obtained by the linear one for a number of intervals up to θ = 10. For θ > 10, solutions
obtained from the linear discretization are globally better, but the improvement is
not necessarily homogeneous as discussed in section 3.1.5.

0 50 100 0 50 100

... ...

 = 1

 = 2

 = 3

 = 4

 = 15

Figure 3.2: Linear (on the left) and logarithmic (on the right) discretization for
increasing number of intervals (θ = 1, 2, 3, 4, 15).

A low number of discretization intervals is favorable to control the memory usage,
making the logarithmic resource discretization more attractive.

Maintenance scheduling. We want to test the added value of maintenance plan-
ning. To this extent we compare different recovery approaches that can be imple-
mented at Operations Control Centers (OCCs). The first approach is to neglect
maintenance planning, focusing only on resource consumption limits. We consider
three possible resource extensions: 5%, 10% and 20% extension on Uh. We refer to
these approaches by NM+y% (for No Maintenance), where y is the allowed percentage
of consumption excess.

The second approach, which is probably closer to human planner behavior, is to
schedule a maintenance as soon as resource consumption gets critical. We refer to
it as the Greedy Maintenance (GM) algorithm. This approach is achieved by setting
parameter ρ to a high value (ρ is set to 0.9 in our tests, meaning maintenance can be
performed when at least 90% of the resource is consumed). Finally, the third approach
is Maintenance Optimization (MO), where the algorithm plans the maintenances in an
optimal way (ρ = 0).
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We compare the approaches on a set of 10 instances derived from instance 4D_10AC
with 147 flights, allowing maintenances at any time at half of the airports. The initial
resource consumption has been randomly generated. We show the results in Table
3.5.

Algorithm NM+5% NM+10% NM+20% GM MO

# canceled flts 52.7 46.7 33.2 2.2 2
# delayed flts 5 4.7 5.5 2.7 1.5
# uncovered final states 1.2 0.7 0.3 0.1 0.1
total delay [min] 851.3 635.7 712.5 89.6 52.3
max delay [min] 271.3 251.5 218.2 37.7 37.1
recovery costs 289462 272067 144388 15881 14683
optimality gap [%] 0.61 0.54 1.27 0.73 0

Table 3.5: Average results for recovery algorithms with different ways to handle
maintenance operations for 10 instances with randomly generated initial resource
consumptions.

Even when allowing up to 20% more resource consumption, we get a massive
cancelation rate and huge delays. However we mention that NM+20% finds a better
solution than MO for 1 of the 10 instances, where actually this 20% increase is sufficient
to perform the whole schedule without any maintenance. In this instance, the only
additional costs in the solution of MO are the maintenance costs; neither delay nor
flight cancelation is required. Remarkably, even with the 20% increase in resource
capacity, only 7 solutions out of the 10 instances are feasible, i.e. cover all the final
states.

The GM algorithm clearly outperforms the NM+5%, NM+10% and NM+20% algorithms,
reducing the average cost by one order of magnitude. However, GM computes solutions
whose cost is 7.5% higher than those given by MO. The main savings are made thanks
to delay reductions: GM finds the same solutions as MO for 3 out of the 10 instances,
but never finds a better one.

We see from these results that considering maintenances is not only necessary to
ensure the feasibility of the recovery scheme. Indeed, the solution may be significantly
improved (mainly by reducing delays) when maintenance operations are rescheduled.
The results show that NM+y% approaches, i.e. an extension of y% of the resource
consumption, is not efficient to solve the recovery problem: the computed solutions
are not necessarily feasible and, when they are, the costs are one order of magni-
tude higher. Furthermore, airlines must obtain the permission from the authorities
to extend resource consumption limits, which involves further negociations and an
exposure to a possible expensive audit.

Sensitivity analysis for T . We show in Table 3.6 the different solutions when
increasing the recovery period T . We solve instance 5D_10AC with one plane grounded
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up to time 2160 and compute a solution for increasing recovery periods, going from
720 minutes up to 6480 minutes. Table 3.6 shows the details of the solutions, where
additional costs are the aggregated delay and cancelation costs over the whole period,
assuming that the schedule is recovered at T . Figure 3.3 shows the Pareto frontier, i.e.
the additional costs against the length of the recovery period. Note that the solution
for T = 5760 and T = 6480 are the same as for T = 5040, except computation time
of 76.6 and 183.6 seconds, respectively, and are therefore not presented in Table 3.6.
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Figure 3.3: Pareto frontier: additional solution costs against recovery period length
T .

Recovery Period T 720 1440 2160 2880 3600 4320 5040
# canceled flts 1 3 5 6 5 5 5
# delayed flts 0 1 3 5 9 9 8
# uncovered sinks 1 1 1 0 0 0 0
total delay [min] 0 3 14 461 636 630 627
max delay [min] 0 3 8 153 153 153 153
additional costs 7000(#) 19555(#) 25415(#) 38910 33960 33900 33870
optimality gap 0% 0% 0% 0% 0.25% 0% 0%
tree size 1 1 1 1 7 9 3
run time [s] < 0.1 < 0.1 0.4 1.7 8.3 25.0 81.8

Table 3.6: Results for the same instance with different recovery periods T . Costs
followed by (#) correspond to unfeasible solutions.

For T ≤ 2160, the solutions are unfeasible, which is trivial: as one plane is
grounded until time 2160, at least one final state cannot be covered before time
2160.

If a feasible solution exists for a given T (here T > 2160), increasing T leads to a
stable solution, i.e. we generate the same recovery plan, even when a longer recovery
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period is considered. No additional recovery costs are incurred for a stable solution,
even when T is increased further. Notice that, because of computational complexity,
the delay bound is set to 800 minutes, ignoring therefore potential recovery schemes
with longer delays.

Finally, Table 3.6 and Figure 3.3 show the conflict between the two objectives
of minimizing T and the recovery costs simultaneously: minimizing T incurs higher
recovery costs.

Summary. The computational results show that the algorithm is efficient, solving
instances of reasonable size. A formal benchmark with respect to existing models in
the literature is, however, still to be performed. We see that the introduced parame-
ters are useful to accelerate computation without dramatically decreasing the quality
of the solution. The resulting recovery plans follow intuition, deleting as few flights
as possible by swapping or delaying planes. Furthermore, we show that scheduling
maintenances during the recovery period significantly improves the solution. Finally,
we see that the solution of the recovery algorithm depends on the initial schedule as
much as on the actual disruption.

3.3 Preliminary results for the PRP

In section 3.1.6, we illustrate the application of the framework to the PRP. In this
section, we provide some insight into the benefits of applying the proposed method
without discussing performances nor speed-up strategies.

As remarked by Kohl et al. (2007), conventional airline wisdom is to get back to
the original plan with little modifications, while minimizing additional costs and pas-
senger inconvenience. Therefore, it is common practice that all passenger itineraries
that are still feasible in the new schedule are assigned to their original scheduled
flights. Then, each disrupted passenger is reaccommodated, minimizing cancelation
and delay costs mainly. Kohl et al. (2007) also show that a thorough reoptimization
of all itineraries could improve the quality of the solution.

To validate the framework for the PRP we use eight out of ten A instances of the
ROADEF Challenge 20091, namely instances A01−A04 and A06−A09.

Instances A01−A10 are based on the same daily schedule with 35 airports and
85 planes; A01−A04 and A06−A09 are instances of same size, i.e. 608 flights, with
different number of passengers: A01−A04 have 1,943 OD pairs for 36,010 passengers
in total, whereas instances A06−A09 have 1,872 OD pairs and 46,619 passengers.
Each instance differs in the level of disruption and in the allowed recovery period.
Table 3.7 reports on the disruptions for each instance.

A cost checker evaluating the quality of the recovery plan is available according to
a specified cost structure. The cost structure is a combination of several objectives:

1http://challenge.roadef.org/2009/index.en.htm

http://challenge.roadef.org/2009/index.en.htm
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Instance A01 A02 A03 A04 A06 A07 A08 A09
# flights 608 608 608 608 608 608 608 608
total duration 1680 1680 1680 1680 1680 1680 1680 1680
recovery period 960 720 840 1080 960 720 840 1080
# delayed flts. 63 106 79 41 63 106 79 41
# canceled flts. 0 1 4 0 0 1 4 0
# resting planes 0 0 1 0 0 0 1 0
# mod. capacity slots 0 0 0 4 0 0 0 4

Table 3.7: Description of the A instance set of the ROADEF Challenge 2009.

operating costs for the fleet and passenger inconvenience costs for trip cancelation,
delay or downgrading, i.e. change to a lower cabin class on all or part of the trip. In
our implementation we neglect the passenger downgrading costs.

We use our implementation of the ARP limited to 10 minutes of computation
to obtain a feasible initial solution for the PRP. Table 3.8 reports on the number of
canceled flights and the total delay of the new schedule with respect to the original
one.

Instances # canceled flights total flight delay [min]
A01 0 1390
A02 2 900
A03 8 939
A04 14 7602
A06 0 1390
A07 2 900
A08 8 909
A09 14 7807

Table 3.8: Number of canceled flights and cumulated flight delays - ROADEF data
set.

Although a rigorous comparison goes beyond the scope of this illustration, we
implemented a flow-based algorithm called FlowPRP to estimate the potential ben-
efits. It is a two-stage process: first, all passengers whose itinerary is still feasible
in the new schedule are confirmed; then, for each disrupted passenger, alternative
itineraries are computed solving a minimum cost network flow problem on a flight
connection network where residual seat capacity is considered. Passengers are ac-
commodated sequentially, ordered by decreasing cancelation cost, i.e. starting from
business class. FlowPRP is modeling the strategy used by airlines for the PRP: only
disrupted passengers are rerouted, and they are rerouted on a individual iterative
basis.
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The same recovery scheme limitations are used for both PRP and FlowPRP, that is
η = 5 and the maximal allowed delay is 800 minutes in both cases.

Table 3.9 summarizes the results obtained for the 8 instances. Computations are
performed on a 2.53GHz processor with 3GB of memory.

The results show that, on average, using PRP leads to solutions with lower costs
and lower number of canceled passengers; to achieve this, the number of rerouted and
delayed passengers is increased. We also note that the more canceled flights in the
ARP solution, the more the differences in terms of costs between PRP and FlowPRP is
large. This is because the heuristic algorithm is close to optimal when operations are
close to normal; this happens for instance A01 mainly, where FlowPRP actually gives
a solution with lower costs than PRP. The difference in recovery costs for this instance
is, actually, due to passenger downgrading penalties only. The actual implementation
of the PRP algorithm focuses only on cancelation and delay reduction, neglecting
downgrading costs, which explains the higher costs for this particular instance.

On average, PRP reduces the number of canceled passengers by 54.9%, the recovery
costs by 51.7% and the total and average delays by 3.0% and 0.1%, respectively. The
reduction of total and average delays comes at the cost of a higher number of rerouted
passengers, which is multiplied by a factor 4.8. The average computation time for
PRP is of 3,102 seconds, against 1.0 second for FlowPRP.

These preliminary results for the PRP show that the constraint-specific network
model is flexible enough to solve the recovery problem for different types of units.
Although the actual PRP algorithm is a prototype, we solve instances with more
than 30,000 passengers within 1 hour. The large difference in CPU times between
PRP and FlowPRP is due mainly to the number of times the algorithm computes a
route for each passenger. In FlowPRP, the shortest path problem is solved only once
for each disrupted passenger. For PRP, it is solved several times for each passenger; in
the current implementation of PRP, the pricing problem requires more than 90% of the
total CPU time. However, the additional CPU time pays off, as it allows to explore
non-trivial solutions that are more cost-efficient than the greedy solutions obtained
by FlowPRP.

3.4 Extensions

In this section, we discuss possible extensions and the corresponding issues for differ-
ent aspects of the problem.

Exploiting the flexibility of the constraint-specific recovery networks. The
flexibility of the constraint-specific recovery network allows to easily impose user-
specific constraints: activity and renewing operation slots at the airports allow to
model airport disruptions such as airport closure; subsets Fp and Sp allow unit type
differentiation such as heterogeneous fleet or different crew types, a plane of one fleet
may not be allowed to cover a flight or a final state of another fleet and a particular
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crew may not have the required training to operate a specific flight. It also allows the
enforcement of a unit to perform its initial schedule, when Fp is the set of initially
scheduled flights for unit p and Sp contains only the final state initially allocated to
unit p.

Reserve units (e.g. reserve aircraft) are included in the model as additional units
p. Whether a reserve unit has a final state or not depends on the policy of the airline;
if none is required, we define a dummy final state that is reachable from any airport
and coverable by each unit that is allowed to become reserve.

A disruption making a unit unavailable for some time or even the whole recovery
period is modeled using the initial state. Unpredicted resource renewing requirements
are modeled by setting the concerned resources to their upper limits.

Exact Branch&Price algorithm. In order to get an efficient Branch&Price algo-
rithm, we have to devise a branching strategy such that the structure of the pricing
problem is not affected. Indeed, branching on variables xr imposes, on the node where
we set xr = 0 that route r is not generated by the pricing algorithm. However, as
xr > 0 in the optimal solution of the restricted problem, it is likely that the column
with minimal reduced cost is route r. The pricing reduces to generate the second-best

(or kth-best in general) column, which is computationally too hard.
To overcome this, we first seek flights covered by different planes and we branch on

the flight-plane association. When no flight is covered by different planes we search
for flights covered fractionally by several recovery schemes belonging to the same
plane. We then branch on flight sequences following the scheme presented in Ryan
and Foster (1981).

Repositioning flights. Consider a given set of repositioning flights is easy for
the model, as a repositioning flight is similar to any other flight, except it has zero
cancelation and delay costs. However, an open issue is to determine the set of reposi-
tioning flights to add to the formulation. Indeed, the difficulty is that, if all possible
repositioning flights are considered, the number of flights considered in the problem
explodes. However, considering a subset of repositioning flights may exclude the nec-
essary and/or improving repositioning flights. The problem of generating the set of
repositioning flights is actually a new problem, as in the literature, the repositioning
flights, when considered, are supposed to be provided.

Integration of multiple unit-types. The constraint-specific recovery network is
convenient to model ARP, PRP and CRP problems independently. An additional
advantage is that it also allows to combine the different unit types within a same
model as the unit-specific constraints are considered independently from the structural
constraints.

For example, consider the combination of ARP and PRP. The set of flights to
cover is F and does not depend on the unit type; for all the other notations that
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are unit-specific, we add an index a for the aircraft units and i for the passenger
(itinerary) units. The combined ARP-PRP is then the following problem:

min zMP =
∑
r∈Ωa

ca
r x

a
r +
∑
r∈Ωa

ci
rx

i
r +
∑
f∈F

cfyf (3.8)
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∑
q∈Ωi

bi,s
r x

i
q = 1 ∀s ∈ Si, (3.13)

∑
q∈Ωi

bi,p
r x

i
q ≤ 1 ∀p ∈ Pi, (3.14)

xa
r ∈ {0, 1} ∀r ∈ Ωa, (3.15)

xi
q ∈ {0, 1} ∀q ∈ Ωi, (3.16)

yf ∈ {0, 1} ∀f ∈ F. (3.17)

Note that the capacity of a flight f is (
∑

r∈Ωa b
a,f
r x

a
r )Cf, ensuring that a flight

has capacity 0 if the flight is canceled and hence no passenger itinerary using flight
f is feasible. The above formulation however misses one type of constraints, namely
that the connection time for passengers is sufficient. To ensure that these connection
times are satisfied, we define ba,f,t

r which corresponds to the departure time of flight
f in the aircraft route r ∈ Ωa. Similarly bi,p,f,t

q is the departure time of flight f for
itinerary q ∈ Ωi of unit p ∈ Pi. Note that these values are deterministically known
for each route r if ba,f

r = 1 and q if bi,f
q = 1; by convention, we set

ba,f,t
r = 0 if ba,f

r = 0,
bi,p,f,t

q =∞ if bi,f
q = 0.

The connection constraints are then as follows:

∑
r∈Ωa

ba,f,t
r xa

r ≤
∑
q∈Ωi

bi,p,f,t
q xi

q ∀p ∈ Pi, f ∈ F. (3.18)

Constraints (3.18) ensure that no passenger itinerary taken in the solution uses a
flight departing later than bi,p,f,t

q . As this holds for all the flights of each itinerary, we
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have that all connections of the solution are satisfied. Moreover, if flight f is canceled,
then only columns with bi,p,f,t

q =∞, i.e. passenger itineraries that do not use flight f
and the constraints are valid. Conversely, if f departs at a time > 0 and no passenger
itinerary uses that flight, then the constraints for each p ∈ Pi are ba,f,t

r ≤ T < ∞,
which is always true.

The difficulty of the above formulation is to determine the implications for each
unit’s pricing problem. Actually, for the aircraft units, the pricing only has to con-
sider additional prices to be collected when a flight is added to the column: if flight
f is taken, then the reduced cost of the column also contains the dual price of con-
straint (3.12) and the dual price of constraints (3.18), ∀p ∈ P ′i are multiplied by the
coefficient ba,f,t

r . For passenger p ∈ Pi, we have to additionally collect the dual price
of constraint (3.18) corresponding to p.

Model (3.8)-(3.18) solves the combined ARP-PRP problem using the same CG
algorithm as described in section 3.1.3. Only the pricing has to be updated, but it
still is a RCESPP problem. Finally, note that the resulting model has

2× (| F | + | Pa | + | Pi |)+ | F | × | Pi |

constraints (supposing | Pa |=| Sa | and | Pi |=| Si |), i.e. a polynomial number of
constraints.

3.5 Conclusions and future work

In this Chapter, we present a general modeling approach to solve airline recovery
problems. The general model considers unit-specific constraints using resource con-
sumption, whereas the use of a CG algorithm ensures the feasibility according to
the structural constraints of the problem, i.e. that the combination of each unit’s
recovery scheme is globally feasible; this approach overcomes the main drawbacks of
usual multi-commodity approaches, that struggle to consider exact unit-specific con-
straints. We illustrate the efficiency of the approach by solving successfully with real
data the ARP with maintenance planning and illustrate briefly its application to the
PRP. Furthermore, as units can be either aircraft, crew members or passengers, the
formulation is appropriate for the different aspects of the airline recovery problem.

The constraint-specific recovery network model is also applicable to connection
networks, for which nodes correspond to flights and the time dimension is represented
implicitly in the arcs: the departure of a flight is only determined by the path reaching
its corresponding node. It is more difficult to determine departure and arrival times
using activity periods as we do in the recovery network model. Moreover, the concept
of renewing arcs and the computation of resource consumptions for the arcs seem less
intuitive in a connection network.

In terms of instance complexity analysis, we see that considering the number of
flights and aircraft only is not necessarily the best approach. We consider in this
Chapter the ratio flights/planes, i.e. the average number of flights per plane. A
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deeper theoretical analysis to efficiently compare the complexity of instances would
allow for a better understanding of the problem and also lead to a more efficient
performance measure for the existing approaches.

Remaining work on the ARP with maintenance is to extend tests on data from
a larger airline with a heterogeneous fleet and to implement the full Branch&Price
algorithm. Although repositioning flights are easy to integrate into the model when
they are provided, the problem of generating repositioning flights remains: generating
many repositioning flights increases the instance complexity; considering a limited
number of them decreases the chances of a good repositioning flight to be generated.
Deeper work on repositioning flights is therefore certainly a research direction.

Finally, using the constraint-specific recovery networks to model the recovery prob-
lem for different types of units allows to derive an integrated algorithm with a poly-
nomial number of constraints. This model however still has to be implemented and
tested for computational efficiency.

3.6 Appendix A: Notation

We list here the used notation throughout this Chapter:

• 0, T , the begin and end time of the recovery period, in minutes;

• t0, time, in minutes, for an initial state (first time on ground after time 0);

• tT , time, in minutes, for a final state (latest time on ground before T);

• (aj, tj), node in the time-space network, located at airport aj ∈ A and time t;

• j, index of node (aj, tj);

• U, the vector of maximal allowed resource consumptions; upper bound for a
single resource r = 1, . . . , | U | is ur; the units depend on the type of resources,
they are typically minutes (e.g. for flown hours, time since last maintenance,
etc.) or in integers (e.g. number of take-offs or landings);

• Hj, the resource consumption vector at node j with | Hj |=| U | for each node j;
consumption of resource r = 1, · · · | U | is denoted hr

j and has same unit than
ur;

• at each node j of the constraint-specific networks, upper and lower bounds on
resource consumption:

– h
r

j , the maximal consumed resource r = 1, . . . , | U | when reach node j,

– hr
j , the minimal consumed resource r = 1, . . . , | U | when reach node j,
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– hr
sink,j, the minimal required amount of resource r = 1, . . . , | U | to reach

the sink from node j;

• A, the set of airports and for each airport a ∈ A:

– mcta, the minimal connection time, in minutes, for a unit between two
flights,

– Oa, the set of activity slots, which are time intervals when take-off and
landing operations can take place,

– Ma, the set of resource-renewing operation slots, which are time intervals
when resource-renewing operations can take place and for each operation
m ∈Ma:

∗ Rm, the set of indices r ∈ {1, . . . , | U |} of resources renewed by action
m,

∗ dm
a , the duration, in minutes, of resource renewing action;

• P, the set of units and for each unit p ∈ P:

– [{a, t0}, {H0, H0, U0}], the initial state specified by initial time-location and
initial resource consumptions;

• S, the set of final states, where Sp ⊆ S is the set of final states coverable by unit
p ∈ P and for each [{a, T }, {HT , HT , UT }] ∈ Sp:

– Ur
T , the maximal allowed resource consumption of resource r = 1, . . . , | U |

at the sink node;

• F, the set of flights, where Fp ⊆ F is the set of flights that can be assigned to
unit p ∈ P and for each f ∈ F:

– sdtf, the scheduled departure time in minutes,

– df, the duration in minutes,

– cf, the cancelation cost of the flight ($),

– edtf, the earliest departure time in minutes.

In addition, we define:

• cd: the delay cost per time unit ($/minute);

• ∆: the length of a time discretization interval (minutes);

• τ: the maximal allowed delay for a flight (minutes);

• ψ: the maximal allowed waiting time before a take-off (minutes);
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• Γ : the maximal length of a termination or a renewing termination arc (minutes);

• ρ: the minimal percentage of a resource to be consumed to perform renewing
operation;

• θ: the number of resource intervals for logarithmic resource discretization;

• η: the maximal number of flights of a disrupted passenger’s recovery scheme.

3.7 Appendix B: Details of the test functions

• CreateFlight([{aj, tj}, {Hj, Hj, Uj}], f) Given depart node {aj, tj}, computes the
destination node {ak, tk} and the flight arc ({aj, tj}; {ak, tk})f, where ak is desti-
nation airport and tk is the earliest departure time at airport ak. To compute
this, first compute edtf, the earliest departure time for the flight f accord-
ing to the activity slots and the scheduled departure time sdtf, then tk =

edtf +df +mctak
. Labels Hk and Hk of node {ak, tk} are updated according to

Hj, Hj and the consumed resources during flight f.

• CreateMaintenance([{{aj, tj}, Hj, Hj, Uj}], f) Similar to CreateFlight(j, f), it
computes the maintenance time and the cost of the maintenance arc.

• CreateTermination([{aj, tj}, {Hj, Hj, Uj}], s) Given depart node {aj, tj} and a
sink node s, it creates the termination arc ({aj, tj}; {aj, T }).

• CreateMaintTermination([{aj, tj}, {Hj, Hj, Uj}], s) Given depart node {aj, tj} and
a sink node s, it creates the maintenance termination arc ({aj, tj}; s). By con-
vention, the first available maintenance slot is used.

• FeasibleForFlightArc([{aj, tj}, {Hj, Hj, Uj}], f) The flight arc can only be cre-
ated if flight is actually departing from airport aj and if feasible departure and
landing times are available at airports aj and ak. The following constraints are
checked:

– ∃ etdf ≥ max{sdtf, tj} such that

1. ∃ oaj
∈ Oaj

such that etdf ∈ oaj

2. ∃ oak
∈ Oak

, such that etdf + df ∈ oak

– delay ≤ τ (P)

– edtf − tj ≤ ψ (P)
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where τ and ψ are representing the maximal delay bound and the maximal
waiting bound, respectively.

• FeasibleForMaintArc([{aj, tj}, {Hj, Hj, Uj}], f) The maintenance arc can only
be created if there is a maintenance slot available at airport aj. tM is the
starting time of the maintenance if feasible, i.e. if we find a feasible departure
time for take-off in aj and landing in ak. The following constraints are checked:

– ∃ tM ≥ tj,maj
∈Maj

such that tM ∈ maj

– ∃ etdf ≥ max{sdtf, t
M + dmaj

} such that

1. ∃ oaj
∈ Oaj

such that etdf ∈ oaj

2. ∃ oak
∈ Oak

, such that etdf + df ∈ oak

– delay ≤ τ (P)

– edtf − tj − dmaj
≤ ψ (P)

– Hj ≥ ρUj

where τ and ψ are the same as in FeasibleForFlightArc(j, f) and ρ is the pa-
rameter of minimal resource consumption ratio before considering maintenance.

• FeasibleForTermArc([{aj, tj}, {Hj, Hj, Uj}], s) A termination arc can be created
between {aj, tj} and the sink node s if the airports are matching, if there is at
least a feasible path reaching the sink with respect to resource consumption
(Hj ≤ UT for all resources) and if the required time tT is not yet reached. A
parameter Γ is used to bound the grounding time needed to reach the sink from
{aj, tj}.

– tT − tj ≤ Γ (P)

where Γ is the grounding time bound.

• FeasibleForMaintTermArc([{aj, tj}, {Hj, Hj, Uj}], s) Similarly a maintenance ter-
mination arc can be created between {aj, tj} and the sink node s if there is a
maintenance slot available.

– ∃ tM ≥ tj, maj
∈Maj

s.t. t ∈ maj

– tM + dmaj
≤ tT

– tj ≤ tT
– tT − tj ≤ Γ (P)

– Hj ≥ ρUj
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where Γ is the grounding time bound and ρ the resource consumption propor-
tion.
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Chapter 4

UFO: Uncertainty Feature
Optimization

Nowadays, Operations Research tools are widely used to optimize real world problems.
The major difficulty the modelers are faced with is the noisy nature of the data
most of the problems are subject to. As shown by Birge and Louveaux (1997),
Herroelen and Leus (2005) and Sahinidis (2004), a deterministic approach, i.e. an
approach neglecting the uncertain nature of the data, leads to unstable solutions:
either feasibility is lost or the solution’s performance is poor when data are revealed.
The ability of a solution to remain feasible with respect to data changes is called
the robustness of the solution. In the case the solution is not robust, we define the
recoverability of the solution as the average performance of the solution including both
original costs and the costs incurred when modifying the solution to retrieve feasibility,
which are called the recovery costs; by convention, we assume that a solution that
cannot be recovered has infinite recovery costs. The operations of repairing a solution
are computed by a recovery algorithm.

We distinguish two classes of methods to solve noisy problems: reactive and proac-
tive methods. The former are also called on-line algorithms. They re-compute so-
lutions whenever data change. The latter compute an a priori solution before data
are deterministically revealed, which requires predictions on the future data outcome
modeled by an uncertainty set, denoted by U. Proactive methods are sub-divided into
two sub-classes: expected-mean and worst-case methods. On the one hand, expected-
mean methods seek the solution performing best in average over an explicit set U pro-
vided with a probabilistic distribution. On the other hand, worst-case based methods
seek the most conservative solution, i.e. the one performing best in the worst possible
scenario. For both methods, an appropriate model of U is the key to the solution’s
quality; unfortunately, this is a difficult task and, as we show in this Chapter, an
erroneous estimation of U might have significant consequences in terms of solution
quality.

The concept of Uncertainty Feature Optimization (UFO) is different from on-line,
expected-mean and worst-case approaches: it aims at finding a proactive solution

53
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without the explicit characterization of an uncertainty set. The fact that the problem
is subject to noisy data is considered implicitly using Uncertainty Features (UF), which
are structural properties of the solution improving its robustness or recoverability.
The structural properties are problem-specific and, in case recoverability is considered,
also depend on the chosen recovery strategy. As uncertainty features do not provide
any a priori information on the quality of the solution, a reasonable way to validate
an UF’s efficiency is to evaluate the outcomes by simulation, as we do in this Chapter.

The initial motivation for UFO comes from the airline scheduling problem, see
Kohl et al. (2007) for a general survey. Airline scheduling requires a proactive method,
because of the early publication deadlines of the schedule. In addition, because of
many unpredictable influencing factors, modeling an explicit uncertainty set is a dif-
ficult task. Several contributions in the literature attempt to model an uncertainty
set, see for example Lan et al. (2006), Shebalov and Klabjan (2006) or Policella
(2004). The main conclusions of the works adopting robust approaches are that the
obtained solutions exhibit a particular property such as the number of plane cross-
ings (Klabjan et al., 2002, Bian et al., 2005), a reduced length of plane rotations
(Rosenberger et al., 2004) or increased idle time (Al-Fawzana and Haouari, 2005).
Remarkably, models aiming at an increase of the solution’s recoverability draw the
same conclusion: the stochastic model with recourse of Yen and Birge (2006) ad-
dresses the crew scheduling problem. Their solutions exhibit pairings with a reduced
number of plane changes.

The UFO framework is meant to directly optimize such problem-specific struc-
tural properties, modeling them as UFs. It therefore generalizes methods optimizing
structural properties.

Furthermore, we prove that UFO is a generalization of existing methods such
as stochastic or robust optimization. As the UFO framework does not require the
explicit characterization of an uncertainty set, the consequence is a gain of stability
of the solution with respect erroneous models of the uncertainty. Finally, we present
the validation of the framework by simulation on the Multi-Dimensional Knapsack
Problem (MDKP), illustrating the stability of the UF solutions and how to combine
different UFs and also how to combine UFs with the robust optimization of Bertsimas
and Sim (2004).

The structure of the Chapter is as follows: section 4.1 describes the existing meth-
ods for optimization under uncertainty and discusses their benefits and drawbacks.
Section 4.2 presents the Uncertainty Feature Optimization (UFO) framework and
section 4.3 demonstrates how to derive existing proactive methods from the UFO
framework. In section 4.4, we show practical examples of UFO: we present simula-
tion results on the Multi-Dimensional Knapsack Problem (MDKP). We discuss the
application of UFO to airline scheduling in section 4.5. Finally, section 4.6 concludes
the Chapter with some future research issues.
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4.1 Optimization under uncertainty

For general surveys on optimization under uncertainty we refer to Herroelen and Leus
(2005), Sahinidis (2004) and references therein.

In the literature, we identify three classes of approaches to address problems sub-
ject to noisy data: reactive, stochastic and worst-case (or robust).

Reactive Algorithms. Reactive algorithms are also known as on-line algorithms.
The concept of an on-line algorithm is based on the wait-and-see strategy. There is,
in general, no baseline solution computed a priori: the solution is built iteratively
according to some decision policy, which is based on the revealed data. Decisions
are (potentially) taken each time new information is gathered. The clear benefit is
that the policy eventually provides, if it exists, a globally feasible solution. There
are however several drawbacks. The first is the lack of stability of the solution, since
it depends on the data realization, which is not compatible with the knowledge of a
baseline schedule. Additionally, the method suffers from the real time requirements,
as the decision process must be determined in real time, which excludes sophisticated
decision processes for large-scale problems.

Finally, it is difficult to derive a measure of performance for such algorithms: the
most accepted one is the competitivity ratio. It is an a posteriori measure comparing
the obtained solution against the optimal solution with known data. This comparison
does, however, not take into account that data is unknown a priori and the ratio may
be too pessimistic. In real world applications, on-line algorithms have acceptable
competitivity ratios, but one can usually find scenarios for which the ratio is high.
For a survey on reactive algorithms, we refer to Albers (2003).

Stochastic Programming. Stochastic optimization is a widely studied field and
a standard approach to deal with uncertainty, see Birge and Louveaux (1997). The
main objective is to optimize the expected value of the objective over the whole set of
uncertain data, i.e. the uncertainty setU: this implies the knowledge of a probabilistic
measure on U. The clear benefit of the approach is that the obtained solution is the
one that performs best in average: if the solution process is carried out many times,
then the average cost tends to the expected cost. The drawback is the requirement
of an explicit uncertainty set provided with a probabilistic measure. In addition,
the approach must evaluate a solution on the whole set U to determine its expected
cost, which is, in general, computationally hard. Finally, the computed expected cost
is only an estimator on the possible solution’s outcome: one cannot guarantee that
the real cost matches the expected cost on a small number of scenarios in U. The
expected cost is a good indicator only when the obtained solution is implemented
many times under the same conditions, as then, the average cost converges almost
surely to the expected cost.

Stochastic optimization with recourse or multi-stage stochastic optimization (Kall
and Wallace, 1994, Birge and Louveaux, 1997, Herroelen and Leus, 2005), considers a
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recourse strategy in addition to the first-stage decision. It defines the reaction to take
when information on a scenario is revealed. The major advantage of this approach is
that two levels of information are considered, namely the a priori knowledge and the
possible data outcomes along time: the solution therefore also provides the action to
take in case of significant information gain. The benefit is that the two decisional
levels lead to the best expected solution, including recourse costs, which is a much
better approximation on the real costs than the only expected cost (without the
recourse costs). The drawbacks are the needs of the probabilistic uncertainty set and
the additional computational complexity: the recourse problem has to be solved for
each realization in U in order to get a single solution’s expected recourse cost, and all
solutions must be considered to determine the one minimizing the total expected cost
(the sum of first level and recourse costs). For large scale problems where individual
evaluation for each scenario is not realistic, the method requires either a closed form
for the recourse costs or a formulation of the recourse problem as an underlying
problem. In the case of a discrete uncertainty set for which the recourse problem can
be expressed as a set of m linear functions, we get a problem with at least n ×m
constraints, where n is the number of decisional stages at which recourse has to
be taken. In such cases, sampling techniques are necessary tools to deal with the
dimension of the deterministic equivalent of the stochastic formulation, resulting in
approximate approaches (Linderoth et al., 2006).

Worst-Case Based Approaches. The class of worst-case based approaches is
mainly composed of methods leading to robust solutions, i.e. solutions that are
feasible even in the worst possible scenario. Many contributions deal with robust
optimization; Soyster (1973) was the first to introduce a formal approach of robust-
ness. Ben-Tal and Nemirovski (2001) and Bertsimas and Sim (2004) give a more
formal framework for different classes of problems. The main advantage of a robust
solution is that if the uncertainty set is exhaustive and a robust solution exists, then
the methodology provides a valid upper bound on the real costs. Moreover, as it
is a worst-case based method, it does not require a probability distribution on the
uncertainty set (although its characterization is still necessary). The considered un-
certainty set plays a crucial role, since it determines the level of protection of the
solution. But this is a major drawback: if all the possible scenarios, no matter how
unlikely, are considered, the solution might be way too conservative, leading to a
solution with high costs for most of the possible outcomes; neglecting part of the
possible outcomes leaves the possibility for the solution to become unfeasible. In this
case, the cost of the solution is no longer an upper bound. Therefore, the question
arises whether the additional costs on the considered outcomes are worth it. The
trade-off between conservatism and performance is addressed by Bertsimas and Sim
(2004): the solution is ensured to be feasible for a bounded worst-case, as opposed to
the unbounded worst-case; the authors show some bounds on the probability of the
solution to be unfeasible given a worst-case bound, but do not specify how to set the
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bounds on the worst-case.
This leads to another type of worst-case based approach, namely the risk man-

agement methods, see Kall and Mayer (2005). For these methods, a probabilistic
measure on the uncertainty set is required and the optimal solution is the one that
has the best trade-off between expected cost and probability to be unfeasible. The
probability to be unfeasible is modeled using quantile functions, which return bounds
on variables ensuring that the probability of these variables to have values lower or
equal to that bound is a chosen constant. The optimal solution is the one with lowest
expected cost given a specific value of the probability bound, which is called the pro-
tection level of the solution. The benefit of the approach is that it finds the solution
with lowest expected cost and provides a probabilistic measure of infeasibility. The
method suffers, however, from the requirement of a probabilistic uncertainty set, as
does stochastic programming. Moreover, the obtained problem is computationally
hard, such that only particular problems are solvable. Note that risk management
also fits into the class of stochastic methods.

Chance constraint programming (Charnes and Cooper, 1963) aims at satisfying
constraints with a fixed protection level : the probability of a chance constraint to
be unfeasible is lower than a parametrized constant. It is therefore considered as a
special case of risk management.

Lately, Fischetti and Monaci (2008) introduce the concept of light robustness,
which can be seen as an extension of Bertsimas and Sim (2004). The aim of a light
robust solution is to minimize the constraint violation within a determined maximal
deviation from the deterministic optimal solution. The quality of a solution is defined
as the worst violation in the basic Light Robustness (LR) and the deviation from the
average violation in the Heuristic Light Robustness (HLR) approach. In this work,
the authors fix a maximal optimality deviation from the deterministic optimum within
which the LR or HLR measures of robustness have to be optimized. The study limits
to integer linear problems with the uncertainty set defined by Bertsimas and Sim
(2004).

In both the (light) robust and the risk management methods, the user invests
some additional costs in order to gain feasibility within a determined set of outcomes.
Bertsimas and Sim (2004) call it the price of robustness.

We learn from the literature that all existing methods have some drawbacks:
deriving an uncertainty set is a difficult problem; erroneous uncertainty sets may sig-
nificantly impact the solution’s performance in reality; only few a priori information
is known about the real outcome. Additionally, stochastic programming approaches
lead to computationally hard problems (Birge and Louveaux, 1997) and robust solu-
tions might be too conservative.

The Uncertainty Feature Optimization (UFO) framework does not need the esti-
mation of the uncertainty set which is the main drawback of other a priori approaches.
This reduces effort of modeling the uncertainty set U, makes the approach more stable
against errors in the noise’s nature estimation and does not significantly increase the
complexity of the original problem. The inconvenience, as for any a priori method, is
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that no a priori guarantee about future outcome is possible: only simulation allows
to test the performance of a UFO solution. Moreover, the problem of determining
the UFs is problem-specific.

4.2 UFO framework

The main idea of Uncertainty Feature Optimization (UFO) is to save the modeling
effort of an uncertainty set U by considering the uncertainty implicitly with Uncer-
tainty Features (UF). An UF is a structural property of the solution that is believed
to ameliorate the solution’s robustness (capacity to remain feasible) or recoverability
(reduction of recovery costs when solution is unfeasible). Some examples of UFs for
the Multi-Dimensional Knapsack Problem (MDKP) are presented in section 4.4.

Without loss of generality, we suppose that the UF has to be maximized in order
to increase the solution’s robustness or recoverability.

Consider the general deterministic optimization problem (P):

zP = min f(x) (4.1)

s.t.

α(x) ≤ b (4.2)

x ∈ X ⊆ Rn. (4.3)

X ⊆ Rn corresponds to bounds and/or integrality constraints on single variables.
Additionally, we suppose that (P) is prone to noise in the data, whose nature is
unknown and is neglected in formulation (P). Indeed, the optimal solution of (P)

might be unfeasible when exposed to the realization of the data.
An Uncertainty Feature (UF) is a function µ : Rn → R that maps x into a scalar

µ(x). Let M be the number of considered uncertainty features.
We reformulate (P) as a multi-objective optimization problem by adding the un-

certainty features µ1(x), . . . , µM(x). Objective (4.1) becomes:

[zP, z1, . . . , zM] = [min f(x),maxµ1(x), . . . ,maxµM(x)]. (4.4)

The obtained problem is then transformed into the following problem (P ′):

zP ′ =[maxµ1(x), . . . ,maxµM(x)] (4.5)

s.t.

α(x) ≤ b (4.6)

f(x) ≤ (1+ ρ)f∗ (4.7)

x ∈ X, (4.8)

where f∗ is the optimal solution value of the deterministic problem (P) and ρ is a
scalar of the same sign than f∗ and is called the budget ratio. We call constraint (4.7)
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the budget constraint. It limits the optimality gap with respect to the deterministic
optimal solution f∗.

Note that the choice of a relative budget only applies when f∗ 6= 0; when f∗ = 0,
constraint (4.7) restricts to the set of optimal solutions; to extend the search space in
such cases, (1+ ρ)f∗ in (4.7) is replaced by a constant, i.e. using an absolute budget.

The feasibility of solution x according to (P) remains: any feasible solution of
(P ′) is also feasible for (P). The noisy data the problem is prone to are implicitly
considered when maximizing the UFs, since the UF is chosen such that solutions with
a high UF value are performing better in the noisy environment.

Specific UFs are derived for each application. Examples for the Multi-Dimensional
Knapsack Problem are provided in section 4.4, for UFs specific to airline scheduling
see section 6.3.

We solve the multi-objective optimization problem (4.4) using the relaxation of the
initial objective in a budget constraint. Other possibilities of solving such a problem
are the exploration of the Pareto frontier or to optimize a weighted combination of
the different objectives. Although the choice seems arbitrary at this point, we show
in the next section that the budget constraint is particularly convenient: first of all,
it is an intuitive approach for practitioners as it allows for a clear understanding of
the additional costs and it allows us to derive existing a priori methods as particular
cases of the UFO framework.

(P ′) is still a multi-objective problem: only the initial objective is relaxed with the
budget constraint. In our case however, we are provided with a qualitative measure for
each uncertainty feature, namely the estimated correlation between the UFs and the
initial objective f(x). We suggest to normalize the UFs according to their respective
correlation with f(x) and to solve a weighted combination of the different UFs.

We assume that an increase of µ(x) implies a better performance of the solution x
under noisy data: there is a significant (negative) correlation between µ(x) and f(x)

which is a guideline to identify potential efficient UFs. When using several UFs, then
(P ′) is still a multi-objective optimization problem.

The methodology to find UFs is to consider a specific problem’s structure, the
practitioner’s knowledge and, if any, the recovery policy to determine intuitive UFs
and then use trial and error simulations to measure this correlation.

4.3 UFO as a generalization

In this section we show that stochastic and robust optimization formulations can be
derived from the UFO framework using appropriate uncertainty features. We assume,
for this section, that the uncertainty set U is provided.
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4.3.1 Stochastic programming

The usual expected-mean minimization problem is formulated as follows:

zStoc = min EU{f(x)} (4.9)

s.t.

α(x) ≤ b (4.10)

x ∈ X. (4.11)

We consider the following uncertainty feature:

µStoc(x) = −EU{f(x)},

where EU{f(x)} is the expected value of f(x) over the uncertainty set U. Applying
the UFO framework, we get the following problem:

zUFO = min EU{f(x)} (4.12)

s.t.

α(x) ≤ b (4.13)

f(x) ≤ (1+ ρ)f∗ (4.14)

x ∈ X. (4.15)

When ρ = 0 and a feasible solution exists, the solution space reduces to the determin-
istic optimal solutions only and the value z∗UFO is the expected cost of the deterministic
solution. When ρ → ∞, (4.9)-(4.11) and (4.12)-(4.15) are equivalent. Parameter ρ
plays an important role in the outcome of the problem: it captures the additional
weight given to the deterministic scenario with respect to the other possible scenar-
ios in U. A low value of ρ implicitly increases the weight given to the deterministic
scenario, whereas when ρ→∞, its weight tends to its probability to occur in U.

Suppose that we are provided with a recovery (or recourse) strategy: for each
solution x, let g(x, ξ) be the recovery (fixed recourse) costs for solution x when
the observed data outcome is ξ ∈ U. The corresponding Deterministic Equivalent
Program (D.E.P.) (Birge and Louveaux, 1997) formulation of a two-stage stochastic
program with fixed recourse is:

zRec = min f(x) + EU{g(x, ξ)} (4.16)

s.t.

α(x) ≤ b (4.17)

x ∈ X. (4.18)

We define the following UF:

µRec(x) = − [f(x) + EU{g(x, ξ)}] .
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Applying the UFO framework, we obtain formulation (4.16)-(4.18) with the ad-
ditional budget constraint f(x) ≤ (1+ ρ)f∗. Again in presence of a feasible solution,
ρ = 0 means only deterministic optimal solutions are considered, whereas ρ → ∞
finds the solution of the D.E.P. (Birge and Louveaux, 1997).

4.3.2 Robust optimization

Consider a general linear program with m constraints and n variables
x = {xj | j = 1, . . . , n}, a constraint matrix A = {aij | i = 1, . . . ,m, j = 1, . . . n},
cost coefficients c = {cj | j = 1, . . . , n} and upper and lower bound vectors l and u.

In the problem, only coefficients aij are uncertain; the uncertainty set U is char-
acterized by the sets Ji containing the indices of the uncertain coefficients for each
row i = 1, . . . ,m. Each coefficient satisfies aij ∈ [aij − âij, aij + âij].

Given a solution x, the worst coefficient realization at row i is given by

βi(x, Γi) = max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

âij|xj| + (Γi − bΓic)âiti
|xti

|

}
, (4.19)

where Γi limits the number of simultaneously varying coefficients: bΓic coefficients can
take any value in [aij − âij, aij + âij], and one coefficient takes value in
[aij − (Γi − bΓic)âij, aij + (Γi − bΓic)âij].

With this notation, the robust optimization problem of Bertsimas and Sim (2004)
is the following problem1:

z∗ROB = min cTx (4.20)

s.t. ∑
j=1,...,n

aijxj + βi(x, Γi) ≤ bi ∀i = 1, . . . ,m, (4.21)

l ≤ x ≤ u. (4.22)

We define the complementary function of βi(x, Γi) as

βi(x, Γi) = min
{Si∪{ti}|Si⊆Ji,|Si|=b|Ji|−Γic,ti∈Ji\Si}

{∑
j∈Si

âij|xj| + (|Ji| − Γi − b|Ji| − Γic)âiti
|xti

|

}
,

which, given a solution x, corresponds to the value of the |Ji| − Γi coefficients that
contribute least to the total deviation

∑
j=1,...,n âij|xj|.

To illustrate the two functions, consider the example with a unique constraint
(m = 1), 3 variables (n = 3) and J1 = {1, 2, 3}, i.e. all coefficients are changing. Now,

1Bertsimas and Sim (2004) use a maximization problem; we transform it to a minimization
problem to match our framework and replace the yj variables, −yi ≤ xj ≤ yj by |xj|, ∀j = 1, . . . , n
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suppose Γ1 = 1.4, x = (2, 3, 1)T and that â1j = (2, 0.5, 1.2)T . The worst scenario for
the current solution and Γ1 is β(x, 1.4) = 4.6 (using S1 = {1} and t1 = {2}) and the best
scenario when |J1| − Γ1 = 1.6 coefficients take value aij + âij is β(x, 1.4) = 2.1 (using
S1 = {3} and t1 = {2}). We see that β(x, 1.4) + β(x, 1.4) = 6.7 = β(x, 3) = β(x, 0).
This example illustrates the following complementarity theorem.

Theorem (Complementarity)
Let

βi(x, Γi) = max
{Si∪{ti}|Si⊆Ji,|Si|=bΓic,ti∈Ji\Si}

{∑
j∈Si

âij|xj| + (Γi − bΓic)âiti
|xti

|

}
,

and

βi(x, Γi) = min
{Si∪{ti}|Si⊆Ji,|Si|=b|Ji|−Γic,ti∈Ji\Si}

{∑
j∈Si

âij|xj| + (|Ji| − Γi − b|Ji| − Γic)âiti
|xti

|

}
.

Then the following relation holds:

βi(x, |Ji|) = βi(x, Γi) + βi(x, Γi).

Proof :

For a fixed vector x and a fixed constraint i ∈ {1, . . . ,m}, let S∗i ∪ {t∗i } be the
optimal set maximizing βi(x, Γi) and S

∗
i ∪ {t

∗
i } the optimal set minimizing βi(x, Γi).

We assume, w.l.o.g. that the |Ji| changing coefficients are ordered with respect to
increasing âij|xj|. Then, the b|Ji| − Γic first ones are in S

∗
i and, similarly, the bΓic last

ones are in S∗i and S
∗
i ∩ S∗i = ∅.

When Γi is integer, then S
∗
i ∪ S∗i = Ji and the theorem is trivially proved. We

therefore assume that Γi is non-integer. In this case, S
∗
i ∩ S∗i = ∅ implies that both

indices of the coefficients considered only as fractionally varying are the same, i.e. t
∗
i =

t∗i ; the fractionally varying coefficient in both cases is the one at position b|Ji|−Γic+1.
Additionally, as Γi is non-integer, the following holds:

b|Ji| − Γic = |Ji| − bΓic− 1.

Let us sum all terms of S
∗
i and S∗i using the previous equality and the fact that
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t
∗
i = t∗i and S

∗
i ∩ S∗i = ∅ :

βi(x, Γi) + βi(x, Γi) =

∑
j∈S

∗
i

âij|xj|

+ (|Ji| − Γi − b|Ji| − Γic)âit
∗
i
|xt

∗
i
|

+

∑
j∈S∗

i

âij|xj|

+ (Γi − bΓic)âit∗i
|xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij|xj|

+ (|Ji| − Γi − b|Ji| − Γic+ Γi − bΓic)âit∗i
|xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij|xj|

+ (|Ji| − Γi − (|Ji| − bΓic− 1) + Γi − bΓic)âit∗i
|xt∗i

|

=

 ∑
j∈Ji,j6=t∗i

âij|xj|

+ âit∗i
|xt∗i

|

=
∑
j∈Ji

âij|xj|

= βi(x, |Ji|).

2

In the next two paragraphs we address two different cases when using formulation
(4.20)-(4.22). First, we consider the problem of finding a robust solution with given
values of the parameters Γi and we show that a tighter formulation can be obtained
using the UFO framework. Next, we determine values of the parameters Γi such that
a robust solution exists and we show that, using the UFO framework, we are able to
derive an algorithm to determine lower bounds for Γi, i = 1, . . . ,m that guarantee
the existence of a robust solution.

Equivalent UFO formulation. We suppose for now that the parameters Γi are
given and fixed and that a robust solution satisfying (4.20)-(4.22) exists. We first
focus on the feasibility of the solution for all possible scenarios in U, we apply the
framework to this feasibility problem and show that an appropriate choice of UF and
ρ lead to an equivalent formulation to (4.16)-(4.18).

Let (F) be the following feasibility problem:

(F) z∗F = minx∈X {g(x)}

= minx∈X {maxi=1,...,m [gi(x)]}

= minx∈X

{
maxi=1,...,m

(∑n
j=1 aijxj + βi(x, |Ji|) − bi

)}
,

where g(x) is the value of the most violated constraint in the worst scenario when
all the |Ji| coefficients of row i vary. We refer to the case when Γi = |Ji|, i = 1, . . . ,m as
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the unbounded worst-case. the set of feasible solutions X describes the set of solutions
defined by (4.21)-(4.22). A solution with g(x) ≤ 0 is a solution that is feasible on the
whole uncertainty set U.

If z∗F ≤ 0, i.e. at least one robust solution exists, we set the budget constraint as
g(x) ≤ 0 and UFO leads to the robust solution that has lowest cost, which is what
is sought. If z∗F < 0, it does not make sense to restrict the search space to a subset
of the set of all robust solutions, i.e. by setting the budget constraint to be strictly
negative, and we still adopt the budget constraint g(x) ≤ 0.

We assume that z∗F > 0, i.e. no robust solution exists on U and we denote the
optimal solution of (F) by x∗. We apply the UFO framework using µ(x) = −cTx,
i.e. the original cost function with negative sign as UF. As required, µ and g are
inversely correlated because of the price of robustness (Bertsimas and Sim, 2004).
Additionally, maximizing µ increases the performance of the solution: the cost is
decreased. We then apply the budget constraint on each function gi(x) individually,
i.e. adding constraints

gi(x) ≤ (1+ ρi)z
∗
F ∀i = 1, . . . ,m,

where (1+ ρi)z
∗
F depends on the value of βi(x

∗, Γi):

(1+ ρi)z
∗
F =

{
min{k|βk(x∗,Γk)>0}

{
βk(x, Γk)

}
if βi(x

∗, Γi) > 0,

0 if βi(x
∗, Γi) = 0.

(4.23)

Note that there is at least one i such that βi(x
∗, Γi) > 0: indeed, if βi(x

∗, Γi) = 0

∀i, we obtain from the complementarity theorem:

gi(x
∗) =

n∑
j=1

aijxj + βi(x, |Ji|) − bi =

n∑
j=1

aijxj + βi(x, Γi) − bi.

Now, as we supposed a solution to (4.20)-(4.22) exists, there is at least one solution
such that

∑n
j=1 aijxj + βi(x

∗, Γi) − bi ≤ 0, which contradicts the optimality of x∗ as
z∗F > 0.

If non-zero, (1 + ρi)z
∗
F corresponds to the smallest constraint violation of the

unbounded worst-case with respect to the bounded one, i.e. the additional |Ji| −

Γi simultaneously varying coefficients. Concretely, adding these budget constraints
extends the solution space for all constraints that do not satisfy the bounded worst-
case, i.e. they restrict the worst-case by limiting the number of simultaneously varying
coefficients.
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We obtain the UFO formulation (F’):

z∗F ′ = min cTx (4.24)

s.t. ∑
j=1,...,n

aijxj + βi(x, |Ji|) − (1+ ρi)z
∗
F ≤ bi ∀i = 1, . . . ,m, (4.25)

x ∈ X. (4.26)

For all i such that βi(x
∗, Γi) = 0, it is clear that βi(x, |Ji|) ≥ βi(x, Γi) as Γi ≤ |Ji|;

therefore, due to (4.23), solutions satisfying constraint (4.25) always satisfy con-
straints (4.21). Furthermore, for constraints i such that βi(x

∗, Γi) > 0, using the
theorem, we get:

βi(x, |Ji|) − min
{k|βk(x∗,Γk)>0}

βk(x, Γk) ≥ βi(x, |Ji|) − βi(x, Γi) = βi(x, Γi).

(F ′) is a tighter formulation than problem (4.20)-(4.22) since it is robust for a
larger uncertainty set.

Determining parameters Γi. The approach of Bertsimas and Sim (2004) assumes
values Γi as given parameters. It is however not easy to determine values that provide
a sufficient protection level while guaranteeing the existence of a solution. Using UFO
allows to derive an algorithm to determine, in a finite number of iterations, a lower
bound on values of Γi such that a bounded robust solution exists or leads to the proof
that the solution set X defined by constraints (4.21)-(4.22) is empty.

At each iteration k of the algorithm, we consider the problem

z
(k)∗

F = ming(x)

s.t.

g(x) ≤ (1+ ρ(k−1))z
(k−1)∗

F

x ∈ X.

We denote the optimal solution at iteration k by x∗
k (or (xj)

∗
k for a single variable).

For the algorithm, we use a different definition for 1+ ρ(k−1) than previously: we
replace min by max to get the following definition:

1+ ρ(k−1) =


maxi=1,...,m

{
β

(k−1)
i (x,Γ

(k−1)
i )

}
z

(k−1)∗
F

if z
(k−1)∗

F > 0,

0 otherwise.

The value of (1+ ρ(k)) is then determined using the following parameters:
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Γ
(0)
i = |Ji|;

Γ
(k)
i = sup

{
0 ≤ Γ ≤ Γ (k−1)

i | βi(x
∗
k, Γ) ≥ z

(k)∗

F

}
, k 6= 0.

We then iterate over k.

Theorem (Convergence)

Consider the iterative process defined above and consider the following algorithm:

1) set Γ
(0)
i = |Ji|;

2) Solve the problem finding the value of z
(k)∗

F ;

3) IF z
(k)∗

F ≤ 0 STOP:

there exists a robust solution for the given sets of Γ
(k)
i , i = 1, . . . ,m;

4) at iteration k, let i∗ ∈ {1, . . . ,m} be the index of a function gi(x
∗
k)

with value z
(k)∗

F , then:

find Γ
(k)
i∗ = sup{0 ≤ Γ ≤ Γ (k−1)

i∗ | β(x∗
k, Γ) ≥ z

(k)∗

F };
5) IF no such Γ exists STOP: the set X = ∅;

ELSE set k = k+ 1 and go back to 2).
The proposed algorithm converges in a finite number of iterations.

Proof :
From the complementarity theorem, we get that βi(x, Γ) is a decreasing function

for increasing Γ (using the theorem with βi(x
∗
k, Γ) being an increasing function for

increasing Γ). Moreover, βi(x, |Ji|) = βi(x, 0), as by definition βi(x, 0) = 0.
We assume that the algorithm did not converge after iteration k − 1, i.e. that

z
(k−1)∗

F > 0 and i∗ ∈ {1, . . . ,m} is an index such that gi∗(x
∗
k) = z

(k)∗

F and at least

Γ
(k−1)
i∗ > 0.

If no solution exists for

βi∗(x
∗
k, Γ) ≥ z

(k)∗

F , 0 ≤ Γ ≤ Γ (k−1)
i∗ ,

this holds in particular for the largest possible value of the left-hand-side, obtained
with Γ = 0 as βi∗(x

∗
k, Γ) decreases for increasing Γ . Therefore, βi∗(x

∗
k, 0) < z

(k)∗

F ,
which implies that

βi∗(x
∗
k, |Ji∗ |) < z

(k)∗

F =

n∑
j=1

ai∗j(xj)
∗
k + βi∗(x

∗
k, |Ji∗ |) − bi∗.

Reordering the previous result, we obtain
n∑

j=1

ai∗j(xj)
∗
k > bi∗,
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which contradicts x ∈ X, since X is defined by constraints Ax ≤ b and we proved
that X = ∅.

Let us now prove that the sequence is not stationary by contradiction: We assume
that Γ

(k)
i = Γ

(k−1)
i for all i: in particular, this is also true for i∗. As Γ

(k)
i∗ is obtained

by Γ
(k)
i∗ = sup{0 ≤ Γ ≤ Γ (k−1)

i∗ | β(x∗
k, Γ) ≥ z

(k)∗

F }, then the following holds:

βi∗(x
∗
k, Γ

(k)
i∗ ) = βi∗(x

∗
k, Γ

(k−1)
i∗ ) ≥ gi∗(x

∗
k),

and by reordering the previous inequality:

n∑
j=1

ai∗j(xj)
∗
k + βi∗(x

∗
k, |Ji∗ |) − βi∗(x

∗
k, Γ

(k)
i∗ ) ≤ bi∗.

Using the complementarity problem, this leads to

n∑
j=1

ai∗j(xj)
∗
k + βi∗(x

∗
k, Γ

(k)
i∗ ) ≤ bi∗,

i.e. the solution is robust for Γ
(k)
i simultaneously changing coefficients and z

(k)∗

F ≤ 0

and the iterative process converged.
For a non stationary solution, Γ

(k)
i < Γ

(k−1)
i for at least i = i∗. Moreover, we know

that a solution of Γ
(k)
i∗ exists, otherwise we would have proved that X = ∅.

Finally, at iteration k+ 1, all functions satisfy fi(x) ≤ βi∗(x
∗
k, Γ

(k)
i∗ ), for all x ∈ X,

the inequality being strict at least for i = i∗. The values of z
(k)∗

F are therefore strictly
decreasing as well, for increasing k.

We proved that the method eventually converges either to a solution with z
(k)∗

F ≤ 0,
or we obtain Γ

(k)
i = 0 for all i = 1, . . . ,m, meaning no solution for Ax ≤ b exists.

2

In the special case where Γ
(k)
i are restricted to integers, the method converges in

at most n×m iterations.

When used to derive the approach of Bertsimas and Sim (2004), the UFO frame-
work has similarities with the light robustness of Fischetti and Monaci (2008): both
methods adopt a budget constraint. However, the objective of light robustness is
based on an uncertainty characterization: it aims at finding the solution with lowest
constraint violation in the worst-case. UFO is a generalization of the approach, as
the LR and HLR violation methods proposed in the paper can be formulated as UFs.
The main difference is that Fischetti and Monaci (2008) start from the original cost
minimization problem, aiming at minimizing the constraint violation and characterize
the worst violation, i.e. the worst scenario, according to the optimal solution of the
deterministic problem. We believe that this is not correct in general, as the charac-
terization of the worst scenario depends on a solution and should be evaluated for
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each of them independently, as it is the case in Bertsimas and Sim (2004): the worst
scenario is characterized by the function βi(x, Γi), which clearly depends on solution
x; with this notation, Fischetti and Monaci (2008) characterize the worst scenario as
βi(x

∗, Γi) for each solution x ∈ X, x∗ being the optimal solution of the deterministic
problem; their worst scenario is constant with respect to changing solutions x. The
methodology leads to a heuristic way to compute maximal values of Γi such that, if
it exists, a bounded worst-case robust solution exists.

4.4 Illustration on the Multi-Dimensional Knap-

sack Problem (MDKP)

In this section, we show the complete process of applying the UFO framework to
a commonly used benchmark problem: the Multi-Dimensional Knapsack Problem
(MDPK). We first briefly describe the problem and its equivalent UFO formulation
using different UFs. We then describe the performed simulations, which compare the
deterministic optimal solution, robust solution using the formulation of Bertsimas
and Sim (2004) and four different UFs; we also test solutions obtained when using
different UFs (including the robust formulation) simultaneously. The tests are set up
to highlight the effects of erroneous uncertainty estimation and the consequences of
additional budget. We finally perform a validation of the different UFs according to
the obtained results, i.e. we show that some UFs are indeed improving the solutions.

4.4.1 UFO applied to the MDKP

We apply the UFO framework to the MDKP, which is commonly used as a benchmark
problem for stochastic and robust optimization. The problem is formulated as:

z∗MDKP = maxpTx

s.t.
n∑

j=1

wijxj ≤ bi ∀i = 1, . . . ,m,

xj ∈ Z+ ∀j = 1, . . . , n.

The xj variable corresponds to the number of times object j is taken in the solution,
pj ≥ 0 is its profit and wij, i = 1, . . . ,m are the different weights of object j. The
optimal solution of (MDKP) is denoted by x∗ = {x∗j }

n
j=1 and has value z∗; we also

refer to x∗ as the deterministic solution of the problem.

For the robust model of Bertsimas and Sim (2004), we suppose that all coefficients
wij may vary within [wij − ŵij, wij + ŵij], i.e. the set varying coefficients is Ji =

{1, . . . , n}, ∀i = 1, . . . ,m.
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We apply the UFO framework with a general UF µ(x) and obtain the following
problem (MDKP’):

z∗MDKP ′ = maxµ(x)

s.t.
n∑

j=1

wijxj ≤ bi ∀i = 1, . . . ,m,

pTx ≥ (1− ρ)z∗

xj ∈ Z+ ∀j = 1, . . . , n.

MDKP is a maximization problem and consequently the budget constraint re-
quires a greater or equal sign. Additionally, z∗ is multiplied by (1 − ρ), i.e. the
budget constraint limits the maximal loss of revenue with respect to the determinis-
tic solution.

We derive four different UFs for the problem:

µMTK(x) = 1− maxj=1,...,n{
xj

maxk=1,...,n{x∗
k}

} the Maximal Taken object;

µDIV(x) =
∑

j=1,...,n(
min{xj,1}

n
) the Diversification of the

taken objects;

µIR(x) = 1− maxi,j=1,...,n{
wijxj

bi
} the maximal Impact Ratio of

a taken object;

µ2SUM(x) = 1− maxi,j6=k{
wijxj+wikxk

bi
} the maximal weight of two ob-

jects in a same constraint.

The UFs’ definitions ensure that they all have unconstrained optimal (i.e. maxi-
mal) values at 1.0.

The derived UFs follow intuition: taking many times the same object j is risky, as
if any of its coefficients wij increases, the solution becomes more likely to be unfeasi-
ble. The negative sign of µMTK ensures that the maximal taken object is minimized.
Having a diversified solution, which is what µDIV(x) focuses on, is another potentially
improving property: we do not expect that all coefficients increase simultaneously
and the increase of some coefficients might be compensated by the decrease of some
others. Finally, the µIR and µ2SUM capture an aversion to selecting objects that use a
large amount of the knapsack’s volume.

We benchmark the UFO solutions against the deterministic optimum and the
solution of the robust model of Bertsimas and Sim (2004); we compare feasibility
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and optimality gaps for the a priori solution only. A full comparison to stochastic
optimization and stochastic optimization with recourse goes beyond the scope of this
Chapter: these methods are not directly applicable as they depend on the cost given
to an unfeasible solution and the recourse strategy, which are arbitrary choices. Note
that when an unfeasible solution has infinite cost (i.e. value −∞), then the stochastic
solutions are restricted solutions that are always feasible and with the lowest expected
cost. However, as in our case, the cost is constant, it corresponds to the robust solution
with lowest cost, which is the solution obtained by the robust model of Bertsimas and
Sim (2004).

Notation. For simplicity, we refer to each UF using its name only; for example MTK
is used instead of µMTK; DET is the solution of the deterministic problem (MDKP); ROB
refers to the robust MDKP derived from the robust formulation of Bertsimas and Sim
(2004), with a normalized objective such that its optimal value is 1.

We call a model the combination of one or more UFs, including potentially ROB,
and a budget ratio ρ. For example MTK 0.1 is the solution of (MDKP’) with µMTK(x)

and a budget ratio ρ = 0.1; IR DIV 0.2 is the solution of (MDKP’) when using as ob-

jective function the arithmetic mean of the already normalized UFs, i.e. µIR(x)+µDIV(x)
2

.
When ρ = 1, the budget constraint is trivially satisfied, as all revenues are positive.
In such cases, the value of ρ = 1 is not displayed in a model’s name.

Note that when the model contains ROB, then the budget ratio is always set to
ρ = 1 to avoid conflicts between the budget constraint and the objective.

4.4.2 Simulation description

The simulations are performed using a tool developed in Java and using the COIN-OR
CBC2 library, called Multi-dimensional Knapsack Problem Package (MDKPP)3. We
generate a total of 150 instances and solve each instance with a total of 56 models,
as described by Table (4.1).

We generate 50 instances for three different numbers of constraints (m ∈ {1, 5, 10})
with the following generation parameters:

• number of constraints: m ∈ {1, 5, 10};

• number of objects: n = 50;

• right hand side: bi = 4000ri, i = 1, . . . ,m and ri ∼ U[0.8, 1.2];

• profit: pj = 100rj, j = 1, . . . , 50 and rj ∼ U[0.8, 1.2];

2http://www.coin-or.org
3MDKPP is a package which includes an instance generator, a solver and a simulator for the

MDKP. It is available for download at http://transp-or2.epfl.ch/eggenberg

http://www.coin-or.org
http://transp-or2.epfl.ch/eggenberg
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• matrix coefficients: wij = rij × 0.25pj, i = 1, . . . ,m, j = 1, . . . , 50 and
rij ∼ U[0.8, 1.2].

The parameters we use for the instance generation are based on the simulations of
Pisinger (1995), who shows that profit-weight correlation is computationally harder
because of a higher degeneration of the optimal solution. The magnitude of the
average values p, b and ŵij are matching the values in Bertsimas and Sim (2004);
note that in this study, the authors solve problems with n = 200, but only for a single
constraint; we choose n = 50 to reduce complexity, as we solve problems with up to
m = 10 constraints.

Furthermore, when using ROB, the values of the parameters Γi are influencing a
solution’s performance. We use three different set of values, as described below:

• ROB50: Γi = 50 = |Ji|, i = 1, . . . ,m;

• ROB10: Γi = 10, i = 1, . . . ,m;

• ROBU10: Γi ∼ U[0, 10], i = 1, . . . ,m.

ROB50 considers 50 simultaneously varying coefficients and corresponds to the
unbounded worst-case when all coefficients are varying simultaneously. ROB10 and
ROBU10 are restricted to 10 simultaneously varying coefficients and a random number
between 0 and 10 simultaneously varying coefficients, respectively. With ROB10, we
test the effect on underestimating the number of varying coefficients by limiting it
according to intuition: the optimal solution of (MDKP) rarely uses more than 10
objects, taking Γi = 10 is therefore supposed to be sufficient to guarantee robust-
ness. The random number of varying coefficients of ROBU10 corresponds to a random
protection level for the different constraints.The combined model ROB10 2SUM is the
robust solution restricted to 10 simultaneously varying coefficients and maximizing
the following objective function:

pTx + µ2SUM(x)

2z∗
.

For each instance, we set the standard deviation matrix Ŵ used by the robust models
ROB50, ROB10 and ROBU10 to be ŵij = 0.1wij, as done in Bertsimas and Sim (2004).
The uncertainty set U is therefore modeled by matrix Ŵ.
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Model DET ROB50 ROB10 ROBU10 MTK DIV IR 2SUM

DET X

ROB50 X X X X X

ROB10 X X X X X

ROBU10 X X X X X

MTK R R R

DIV R R R

IR R

2SUM R

Table 4.1: Summary of the 56 different models solved for each instance; X means the
model is uniquely solved with budget ratio ρ = 1.0; R means the model is solved with
budget ratio ρ ∈ {0.05, 0.1, 0.15, 0.2, 0.25}.

For the simulation, we generate, for each instance, a certain number of scenarios.
Each of them corresponds to a realization of the coefficient matrix, which is denoted
W̃. We then test, for each model, if the computed solution is feasible with the new
coefficients W̃, i.e. if W̃x ≤ b when x is the solution of a given model. If the solution
is unfeasible, we count a failure; if it is feasible, we compute the optimality gap with
respect to the (deterministic) optimal solution z̃∗ of the scenario, i.e. the solution of
problem (MDKP) where W = W̃.

We use 11 different methods to generate W̃ as reported below:

• DŴ r: w̃ij = wij + rŵij, r ∈ {0.75, 1.0} (1 scenario per instance),

• UW r: w̃ij = wij + s, s ∼ U[−rwij, rwij], r ∈ {0.2, 0.25, 0.3} (10 scenarios per
instance),

• GW r: w̃ij = s, s ∼ N(ŵij, r), r ∈ {0.2, 0.25, 0.3} (10 scenarios per instance),

• RU r: w̃ij = s, s ∼ U[(1 − r)25, (1 + r)25], r ∈ {0.1, 0.15} (10 scenarios per
instance),

• RG w̃ij = s, s ∼ N(25, 0.1) (10 scenarios per instance).

The names of the simulations come from the uncertainty set characterization (W,
Ŵ or purely random) and the used generation type: “D” for deterministic, “U” for
uniform and “G” for Gaussian.

For notational simplicity and brevity, we do not detail the individual simulations,
but we aggregate results for a particular simulation type: DŴ refers to simulations
DŴ 1.0 and DŴ 0.75, UW for UW r, r ∈ {0.2, 0.25, 0.3}, GW for GW r, r ∈ {0.2, 0.25, 0.3}

and RUG for RU r, r ∈ {0.1, 0.15} and RG 0.1.
The DŴ scenarios are deterministic; in this case, Ŵ is exactly or slightly overes-

timating the coefficient’s variability for r = 1 and r = 0.75, respectively. In UW, we
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randomly generate the coefficients in [wij − rwij, wij + rwij] with r ∈ {0.2, 0.25, 0.3};
in this case, Ŵ describes correctly the nature of the noise, but underestimates its
magnitude; these simulations are meant to show the effect of an underestimation of
the noise, which is, actually, what the bounded robust models do.

For GW and RUG, Ŵ is an erroneous characterization of the uncertain coefficients; in
those cases, we simulate the fact that the uncertainty characterization Ŵ is incorrect
both in magnitude and distribution. The aim of these simulations is to show the sen-
sitivity of the different models with respect to erroneous noise characterization. Note
that, as ROB50 is the unbounded robust model, we expect all scenarios to be feasible
as long as w̃ij ∈ [wij − ŵij, wij + ŵij], i.e. for simulations DŴ; for the bounded robust
models ROB10 and ROBU10, feasibility cannot be guaranteed on any of the simulations,
nor can it for any robust model, bounded or not, for any other simulations.

In total, we generate 13,800 scenarios, 4600 for each set of instances with 1, 5 and
10 constraints, respectively.

4.4.3 Simulation results

This section summarizes the simulation results; the complete results are available for
download on the web4.

Global Results. Tables 4.2, 4.3 and 4.4 report results for representative models for
all 150 instances, with a total of 4600 generated scenarios for 1, 5 and 10 constraints,
respectively. The tables show, for each model, the UF value (when relevant), the
number of scenarios for which the solution is unfeasible, the percentage of unfeasible
scenarios, the average optimality gap of feasible scenarios compared to the scenario’s
optimum z̃∗, the maximal observed optimality gap and the average computation time
on the 50 solved instances.

4http://transp-or2.epfl.ch/eggenberg

http://transp-or2.epfl.ch/eggenberg
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Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

UF Value - - - - 0.9820 1.0 0.9784
# unfeasible scenarios 2346 1095 1082 1119 1883 1322 34
infeasibility Percentage 51.00 23.80 23.52 24.33 40.93 28.74 0.74
Average gap [%] 12.62 22.37 22.53 21.93 23.42 30.05 44.50
Maximal gap [%] 99.5 99.55 99.55 99.55 99.60 99.62 99.63
Average CPU time [s] 0.1 0.7 8.5 6.0 0.1 0.1 0.5

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9569 0.9785 0.9799 0.7895
# unfeasible scenarios 43 81 106 78
infeasibility Percentage 0.93 1.76 2.30 1.86
Average gap [%] 44.04 42.48 42.03 35.18
Maximal gap [%] 99.64 99.63 99.62 99.59
Average CPU time [s] 13.2 16.2 0.8 22.1

Table 4.2: Simulation results for selected models for instances with m = 1 constraint
with 4600 scenarios.

Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

Average UF Value - - - - 0.9670 1.0 0.9774
# unfeasible scenarios 4151 1823 1648 1969 2146 1158 4
infeasibility Percentage 90.24 39.63 35.83 42.80 46.65 25.17 0.09
Average gap [%] 1.08 9.27 10.21 8.64 12.77 22.91 33.96
Maximal gap [%] 38.05 52.21 52.55 50.42 56.34 60.2 62.95
Average CPU time [s] 0.1 2.1 24.8 14.7 0.1 0.1 1.4

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9554 0.9776 0.9721 0.7772
# unfeasible scenarios 2 6 8 54
infeasibility Percentage 0.04 0.13 0.17 1.17
Average gap [%] 34.11 32.26 32.14 24.01
Maximal gap [%] 62.77 61.18 61.13 56.44
Average CPU time [s] 238.9 241.0 1.1 72.8

Table 4.3: Simulation results for selected models for instances withm = 5 constraints
with 4600 scenarios.
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Model DET ROB50 ROB10 ROBU10 MTK 0.25 DIV 0.25 IR 0.25

Average UF Value - - - - 0.9580 1.0 0.9770
# unfeasible scenarios 4469 2061 1640 2285 2598 1192 0
infeasibility Percentage 97.15 44.80 35.65 46.67 56.48 25.91 0.00
Average gap [%] 0.21 6.80 8.70 6.02 8.22 20.71 32.07
Maximal gap [%] 19.04 32.51 33.05 28.79 36.63 44.95 48.54
Average CPU time [s] 0.3 9.1 98.3 75.0 0.2 0.1 6.5

Model 2SUM 0.25 DIV 2SUM 0.25 MTK IR 0.25 ROB50 MTK

UF Value 0.9550 0.9774 0.9674 0.7716
# unfeasible scenarios 0 3 2 57
infeasibility Percentage 0.00 0.07 0.04 1.24
Average gap [%] 32.22 29.7 29.64 21.62
Maximal gap [%] 48.09 49.54 49.53 40.66
Average CPU time [s] 519.9 598.6 3.3 165.3

Table 4.4: Simulation results for selected models for instances withm = 10 constraints
with 4600 scenarios.

Looking at Tables 4.2, 4.3 and 4.4, we clearly see that some of the UFs are
outperforming even the unbounded robust solution ROB50 in terms of feasibility. In-
terestingly, we observe that the deterministic solution DET is increasingly bad with
an increasing number of constraints, which is actually also the case for the robust
models, but not necessarily the UF models. This shows that the more the problem
is constrained, the more sensitive it becomes to perturbations. In the case of the
MDKP this is intuitive: with more constraints, a same object is more likely to have
one of its coefficients increased.

Similarly to the deterministic solutions, the robust solutions tend to take many
times a same object. Instead of taking the object with highest marginal benefit, it
grabs the one with lowest variability in Ŵ. In that case, if Ŵ is a poor approximation,
there is a higher likelihood that at least one of the coefficients exceeds the upper bound
characterized by Ŵ.

We also observe that the optimality gaps are significantly smaller for models with
high failure rates; the reason is that for such models, only scenarios being close to
the original instance are feasible, meaning that the optimal solution is similar to the
model’s solution. Looking at the average computation times, we see that the models
using 2SUM are the most time consuming, which comes from the quadratic number
of variables required to linearize the UF. The robust models are the second most
time-consuming in average.

Sensitivity to noise changes. Let us consider the results for the different sim-
ulations for some of the models, especially the robust ones. Table 4.5 shows the
percentages of failures for a selection of models for 1, 5 and 10 constraints.
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Looking at Table 4.5, we see that, as expected, the unbounded robust model
ROB50 achieves 100% feasibility for the simulations DŴ, but this is not true for the
bounded robust methods ROB10 and ROBU10. Interestingly, the UF solutions increase
in performance for increasing number of constraints in the DŴ simulations. Now, in
the case Ŵ is an erroneous estimation, we see that the performance of the robust
models is dramatically decreased. Remarkably, it appears that ROB10 is increasingly
better than ROB50 in terms of feasibility: in the 10 constraint case with simulations
GW, model ROB50 is clearly the worst, with more than 80% of unfeasible scenarios.
This illustrates an important fact, namely that focusing uniquely on robustness when
using an erroneous uncertainty characterization might actually be worse than using a
bounded worst-case approach. In other words, the absolute robustness (the solutions
seeking robustness at all costs) should be used as objective if and only the used
uncertainty characterization is reliable.

Table 4.5 shows two additional properties of UFO. The first is that the UFO
solutions are able to compete with the robust models even when the robust model
disposes of the perfect information, but they are clearly able to outperform the robust
models when these use an erroneous uncertainty characterization. However, the ro-
bust solutions, when disposing of an accurate uncertainty characterization, are much
better in terms of optimality gaps than the UF models (ROB50 has an optimality gap
of 1.2% in DŴ with 5 constraints instances, whereas, for example, IR 0.25 has an
optimality gap of 20.72%). Additionally, when combining the robust solution with an
UF, we significantly reduce the sensitivity of the solution to the erroneous uncertainty
characterization, although the performance of the solution is decreased in the perfect
information cases DŴ.

Sensitivity to the budget ratio. We report on the influence of the budget ratio
on a solution’s performance. Figure 4.1 shows the evolutions of the percentage of
unfeasible solutions and the UF value for increasing budget ratios, using the values
of the 13,800 scenarios. Figure 4.2 shows the evolution of the optimality gap with
respect to the deterministic optimum of each scenario for increasing budget ratio ρ.
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Figure 4.1: Evolution of the percentage of unfeasible scenarios and the UF value for
increasing values of the budget ratio ρ on the entire set of 13,800 scenarios.
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Figure 4.2: Evolution of the optimality gap between the models’ solution and the
deterministic optimum z̃∗ of each scenario for increasing values of the budget ratio ρ
on the entire set of 13,800 scenarios.

Figure 4.1 clearly shows the increasing performance of the UF models for increas-
ing budget ρ; however, we also see that the optimality gap increases as shown in
Figure 4.2. Interestingly, the budget ratio and the optimality gap increase at similar
rates, which allows to consider the budget ratio as a rough estimator on the average
loss of revenue.

Another remarkable fact is that, because of the high degeneration of the near-
optimal solutions, the model DIV reaches the optimum 1.0 even with a small budget of
0.1. This means that all the solutions with higher budget ratio are actually equivalent.
However, the failure in feasibility percentage still decreases. There are two possible
explanations for this: either the model DIV is not an efficient UF, or the cost-reduction
is, in itself, an UF that increases the robustness of the solution. We show in the next
paragraph that DIV is improving the robustness of the solution, which means that
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sub-optimality is, in itself, increasing robustness; this observation corresponds to the
price of robustness as observed by Bertsimas and Sim (2004).

4.4.4 UF validation

Our results show that there is an evident gain in terms of feasibility for some of
our UFs. Figure 4.3 shows the histograms of feasible and unfeasible solutions for
the different UFs independently for the 10 constraint scenarios: we discretize the
UF value interval [0, 1] into 100 intervals and display, for each interval, the number
of scenarios for solutions with UF value within the interval. The histograms show
the total number of feasibility tests performed in our experiments, that is a total
of 257,600 observations. The unfeasible solutions are displayed in black and the
feasible ones in white. For visual evidence, we discard the last 5 intervals; Table 4.6
summarizes, for each UF, the cumulated number of unfeasible and feasible scenarios
observed in the discarded interval, i.e. in UF values within [0.96, 1.0]. Note that no
solution has UF value greater than 0.95 for the 2Sum model.

Model MTK DIV IR

Feasible unfeasible Feasible unfeasible Feasible unfeasible
# observations 27,643 6,653 86,672 26,948 108,737 26,319

Table 4.6: Cumulated number of feasible and unfeasible observations for the UF
intervals [0.95, 1.0] for the four UFs.
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Figure 4.3: Histogram showing the distribution of feasible and unfeasible solutions
for the four used UFs.

First, note the large infeasibility peak for MTK for UF value 0. Actually, model
DET has always UF value 0 and it might also occur that a solution has a negative
value if the most taken object in that model has higher value than the deterministic
model (in this case, the UF value is mapped into the interval [0, 0.01). Next note
that both number of feasible and number of unfeasible solutions grow for large UF
values, which is because we are optimizing these values with the models. Clearly, the
UFs are inter-correlated, as the largest number of observations always occur for the
highest UF values. Note that in the DIV histogram, this is not evident. The reason
is that we discarded the solutions with value 1.0, i.e. for which all objects are used,
and the total number of observations with value 1.0 is over 100,000, i.e. almost 40%
of the observations.

Looking at the histograms in Figure 4.3, our intuition is that the feasibility rate
significantly increases for all UFs but the DIV one. In Table 4.7 we compare the
feasibility rates for the cumulative number of observations in UF interval [0, 0.80]

and compare it with the value in interval (0.80, 1.0].
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Model MTK DIV IR 2SUM

≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0] ≤ 0.8 (0.8, 1.0]

# observations 60,216 194,609 100,004 157,596 51,612 205,988 63,756 193,844
feasibility [%] 45.74 72.06 54.95 71.16 47.10 69.32 43.99 59.70

Table 4.7: Cumulative feasibility rates for the different UFs and the number of ob-
servations.

The cumulative feasibility rates show that there is indeed a correlation between the
robustness of the solution and the four proposed UFs. However, it appears that some
of the UFs, mainly DIV and MTK, are not efficient when used alone. Their combination
with another UF or even the robust formulation often increases the performance
of each model individually, sometimes in an impressive way, as, for example, the
combination of ROB50 and MTK 0.25. The individual models are feasible in 64% and
60% of the scenarios, respectively, and when combined, model ROB50 MTK is feasible
in 98% of the scenarios.

4.5 Extensions

As discussed earlier in this Chapter, UFs are problem-dependent and do require
simulation to evaluate their performance. Therefore, it is rather unlikely that a
generalized UF generator depending on the mathematical structure of the problem
exists. However, we can classify different types of UFs for a given model.

Consider a linear problem of the form:

z∗ = min cTx

s.t.

Ax ≤ b

x ∈ X.

The UFO reformulation of the above problem is as follows:

z ′ = maxµ(x)

s.t.

Ax ≤ b

cTx ≤ (1+ ρ)z∗

x ∈ X.

For the UFO reformulation to remain a linear program, we require µ(x) to be a
linear function.

We distinguish three different types of UFs with respect to the above problem:
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1. column-based UFs,

2. row-based UFs,

3. matrix-based UFs.

Column-based UFs depend on a single column, i.e. on a single variable. Such
UFs are useful when we can associate a robustness or recoverability value ωj to each
variable xj. The UF is then simply the sum of the terms ωjxj, which is still linear
and maintains the structure of the initial problem. In the MDKP problem, the safety
level of an object is a column-based UF, provided the safety levels are independent
for the different objects: the DIV UF is column-based, as each object contributes
independently to the UF. Coefficient ωj is set such that ωjxj takes value 1 when
xj > 0 and zero otherwise.

Row-based UFs depend on one or several rows, i.e. the value of the UF depends
on the combination of the variables in the solution. Therefore, a row-based UF is
an extension of the column-based case for which the coefficients ωj are correlated,
which implies that the UF can no longer be expressed as a direct sum. Such UFs can
however be modeled using an additional number of constraints which is linear in the
size of the problem. MTK is an example of a row-based UF: µMTK(x) does not depend
on a single variable, but considers the variable with highest value, which cannot be
expressed as a linear sum. Actually, the UF is formulated using n (the number of
variables) additional constraints of the form

µMTK(x) ≥ xj ∀j = 1, . . . , n.

Finally, matrix-based UFs depend both on a subset of variables and on values in
different rows of the matrix. In other words, the robustness or recoverability of a
single variable xj depends both on the values of the other variables and the values
aijxj. The difficulty is to express such metrics linearly, which typically involves a
polynomial or even an exponential number of additional constraints.

2SUM is a matrix-based UF for which we require m × n × (n − 1) additional
constraints to evaluate the value of the UF for any solution. They are of the form
(here wij = aij)

µ2SUM(x) ≥ aijxj + aikxk ∀j = 1, . . . , n,

∀k ∈ {1, . . . , n} \ {j},

∀i = 1, . . . ,m.

IR is another example of matrix-based UF which requires and additional m × n
constraints.
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4.6 Conclusions and future work

In this Chapter, we address the problem of optimization of problems prone to noisy
data. Unlike most of the existing methods, the Uncertainty Feature Optimization
framework does not require the explicit characterization of an uncertainty set, i.e.
the possible outcomes of the data: it considers the uncertainty implicitly. An UF is
any feature expected to improve the solution’s performance in reality and it is left to
the user to decide the complexity and computational effort to invest in the estimation
of the future outcome. Additionally, we demonstrate how to combine different UFs,
resulting in a general multi-optimization problem.

We show that existing methods such as stochastic optimization or robust opti-
mization are special cases of UFs, supposing that an uncertainty set is provided. The
proof of the generalization for the robust approach of Bertsimas and Sim (2004) leads
to an algorithm computing upper bounds on the method’s parameters to guarantee
a robust solution exists; to our knowledge, the only approach providing such bounds
is given by the heuristic method of Fischetti and Monaci (2008).

Computational results on the Multi Dimensional Knapsack Problem (MDKP)
show that the UFO approach is competitive against the robust approach in this
particular case. The results show that the UFO approach is more stable with respect
to variations in the noise’s nature, unlike the robust approach of Bertsimas and Sim
(2004): the exact knowledge of the uncertainty set is beneficial, but when the it is
erroneously approximated, it might annihilate the method’s efficiency. Therefore,
methods using uncertainty sets should be applied only when the used uncertainty
characterization is sufficiently reliable. Additionally, as illustrated by our results, the
only knowledge of the noise’s nature is not sufficient for the robust approach: the
parameters of the method clearly influence the performance of a robust solution.

We also observe that the budget ratio used in the UFO framework is a rough
estimate of the average solution’s optimality gap compared to each scenario’s opti-
mum. Moreover, the obtained results are consistent with the principle of the price of
robustness of Bertsimas and Sim (2004), i.e. that feasibility comes at a certain cost.

Furthermore, we demonstrate how to combine different UFs (and even the robust
model) using a normalization procedure; the results show that the solutions solutions
obtained by the combination of different UFs or the robust model of Bertsimas and
Sim (2004) are globally better than the solutions of the individual ones. When com-
bining an UF with robust optimization, we observe that the sensitivity issues related
to erroneous uncertainty characterization is reduced.

Finally, we show, for the MDKP, that the UFs are indeed correlated with the
solution’s robustness, i.e. solution with higher UF values are more robust.
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Chapter 5

Robust airline schedules

As discussed in section 1.1, in the US, costs associated with delays are huge and profit
margins are small. It seems intuitive to focus on reducing delays, even if this implies
some loss of expected revenue. This trade-off is known as the cost of robustness
(Bertsimas and Sim, 2004): in the case of airline scheduling, this means a loss of
expected revenue to decrease the delay costs. Achieving robust airline schedules is an
active field in research.

The definition of robustness in the literature is, however, not unique: most often
it stands for some stability metric of the solution, i.e. the ability of a solution to
remain feasible with respect to varying data. It may also refer to recoverability, where
solutions are easier to recover if an instance is unfeasible. Furthermore, even when
the term is used with the same meaning, it is not clear how to determine whether
one solution is more robust than another.

We identify four key points on which robustness depends:

1. metrics;

2. models;

3. data;

4. evaluation.

Indeed, robustness is usually defined as a metric, which leads to many different
types of robustness. Furthermore, even for a same metric, the way it is modeled is
also an important factor. A key point when determining the robustness is the way the
solution is evaluated, which depends on the performance metrics. Finally, the data
used both for calibration of the model and its evaluation are also a relevant factor.

In this Chapter, we study the interactions between the four points defining robust-
ness. We provide a case study on data from a real airline to show these interactions
using different models to solve the Maintenance Routing Problem (MRP). We show
that different metrics indeed lead to solutions with different properties. Furthermore,
using both a priori and a posteriori evaluation of the solution, we show that some

85
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performance metrics are positively and some others negatively correlated and that
none of the solutions is globally better than the others. Finally, we compare different
models on a same metric, that is slack allocation. The former model is based on his-
torical data to allocate slack where highest delays are expected and the latter simply
maximizes slack. We show that using historical data can improve the solution to a
larger extent than the myopic method.

This Chapter is structured as follows: in section 5.1, we examine the way robust-
ness is defined and evaluated in airline scheduling. Section 5.2 describes different
models used to compute robust solutions to the MRP. In section 5.3, we present a
detailed case study for a real airline. Section 5.4 concludes this Chapter and proposes
future research directions.

5.1 Evaluating robustness of airline schedules

The airline scheduling problem has been widely studied in the past decades. As the
whole problem of airline scheduling is globally considered as intractable for large air-
lines, the scheduling approach is sequentially divided into different stages, each stage
taking as input the solution(s) of the previous stages. The stages are the route choice
problem, the fleet assignment problem, the maintenance routing problem (MRP), the
crew pairing and finally the crew rostering problems. For general surveys on airline
scheduling, see Weide (2009), Kohl et al. (2007) or Clausen et al. (forthcoming).

In the literature, there are two distinct approaches to evaluate the performance
of robust schedules. The former method uses a qualitative estimation of robustness,
looking at structural properties of the solution. The solution is, however, not tested
on real/simulated scenarios. In the latter approach, the schedule is evaluated on a set
of scenarios on which a recovery scheme is applied. A posteriori evaluation is based
on observed metrics, whereas a priori evaluation relies on predictive metrics.

As discussed by Kohl et al. (2007), a recovery scheme must satisfy three objectives,
namely (a) deliver the service to the passengers, (b) minimize the costs associated
to the recovery and (c) recover the initial schedule as soon as possible. A robust
schedule should have increased slack to absorb delays, exploit probabilities of flight
delays and increase overlaps that potentially reduce recovery costs.

We divide the section according to the type of performance metrics used to eval-
uate the quality of a solution, starting with the a priori ones.

A priori evaluation. Ageeva (2000) considers the robust MRP, where robustness
is defined as the number of overlaps of different aircraft routes. The robustness is
purely a priori and schedules are compared on a priori values only.

Ehrgott and Ryan (2000) address the tour of duty problem for crews of Air New
Zealand. Robustness is modeled by penalizing crew changing aircraft in a tour of
duty. The authors only use this metric to evaluate the performance of the schedule.
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Shebalov and Klabjan (2006) define robustness by move-up crews, i.e. by the
number of possible crew swaps, which is a similar robustness metric to the number
of overlaps for the MRP presented by Ageeva (2000).

Smith and Johnson (2006) use a similar definition of robustness, using the station
purity to solve the robust fleet assignment problem. Station purity corresponds to
plane on ground constraints at airport stations. The obtained solutions are compared
with respect to estimated profits and maintenance costs.

Yen and Birge (2006) solve the crew pairing problem using a stochastic scheme
with recourse. The performance limits on the obtained expected costs, including
first-stage and recourse costs, on a limited number of scenarios. The authors show
that the model achieves a significant gain on the value of expected cost, but do not
recourse to simulation to test a posteriori performance.

A posteriori evaluation. For a posteriori evaluation, the schedule has to be
adapted with respect to a certain disruption, which usually involves a recovery scheme.
We therefore also review some studies on pure recovery to highlight the used a pos-
teriori performance metrics.

Rosenberger et al. (2003a) present a stochastic model for the daily airlines’ opera-
tions, resulting in the SimAir simulator which is used to evaluate different automated
recovery policies. The used performance metrics are 15 and 60 minute on-time per-
formance and the percentage of passenger misconnections (i.e. disrupted passengers).
Rosenberger et al. (2004) extend the previous work by studying the robustness of
fleet-assignments when using a short-cycle cancelation recovery algorithm. The sim-
ulations using SimAir restrict to aircraft routings only; a robust Fleet Assignment
Model (FAM) with hub-isolation and increased number of short cycles is proposed.
The authors conclude that the resulting FAM are more robust than standard revenue
maximization approaches, with respect to the metrics discussed in Rosenberger et al.
(2003a) and also the number of aircraft swaps and the number of times the recovery
scheme is called.

In his thesis, Bratu (2003) first discusses the different on-time performance met-
rics in the US. The conclusion is that the 15-minutes on-time performance metric
for aircraft is not a good predictor for passenger delay statistics. The author then
presents the Passenger Delay Calculator, which reallocates passengers on a recovered
schedule. Canceled passengers are assigned a fixed cost corresponding to the mean
delay observed from historical data, multiplied by the average delay cost per minute.

Kang (2004) introduces the concept of degradable airline schedules, which con-
sist of several independent sub-schedules or layers ; the layer a flight belongs to is
determined by its revenue through partitioning models. Performance is evaluated
both a priori and a posteriori, using the MEANS simulator to generate disruptions.
Performance is then estimated with respect to number of canceled flights, average
flight delay, number of disrupted passengers, number of canceled passengers, average
passenger delay and on-time probability for both aircraft and passenger.
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Listes and Dekker (2005) present a stochastic scenario aggregation-based approach
for robust fleet assignment. The authors discuss the validation of a solution, conclud-
ing that simulated a posteriori statistics are more relevant than a priori expectations
on the scenarios used for optimization. Used performance metrics are load factor,
spill percentage, total revenues, total operational costs and total profit. The recov-
ery strategy is to re-assign the fleet in the best possible way using some additional
side constraints such as initial plane location. The authors show that more robust
solutions have indeed higher costs, but also higher profit.

Schaefer et al. (2005) address the crew scheduling problem under uncertainty and
introduce two models to derive robust schedules. The first approach uses a penalty
method, penalizing pairings with attributes close to the legal bounds, such as rest
times, sit times or flight time. The second aims at minimizing estimation of the
expected cost of a pairing. The expected cost is estimated using historical data
over 50 to 500 days. The computational results compare the flight-time credit, an
evaluation of the difference between a duty’s total cost and the total block time. The
results show that the real crew cost is about 90% higher than the deterministically
planned cost; the expected cost minimization schedule reduces by a few percent the
differences.

Bratu and Barnhart (2006) present an embedded aircraft and crew recovery al-
gorithm. The efficiency of a recovery scheme is evaluated according to 15-minutes
on-time performance, percentage of flights delayed by more than 45 minutes, percent-
age of delayed flights, number of canceled flights and average flight delay. Passenger
statistics are total passenger delay, number of disrupted passengers, number of can-
celed passengers and other passenger delay statistics such as average delay of disrupted
passengers and average non-disrupted passenger delay. The results show that some
of these metrics are inversely correlated. Note that passenger delay statistics are
computed using the Passenger Delay Calculator of Bratu (2003).

Lan et al. (2006) present two different flight retiming models minimizing delay
propagation and the potential number of passenger disruptions, respectively. Both
models are based on a delay distribution obtained from historical data. The models
use the estimated expected delays to create the robust schedules. Evaluation of the
different MRP solutions is performed with respect to propagated delay and 15, 60 and
120-minutes on-time performance. For the passenger models, comparison is performed
with respect to the number of disrupted passengers and the total passenger delay
(delay statistics are computed using the Passenger Delay Calculator of Bratu, 2003).
The delay propagation minimization model reduces propagated delay by 44% and the
number of disrupted passengers by 11%. The misconnection model reduces the total
passenger delay by up to 20%, the number of disrupted passengers being reduced by
about 40%.

AhmadBeygi et al. (2008) consider a flight retiming model minimizing the propa-
gated delay while ensuring that both routings and connections remain as in the orig-
inal schedule. Simulations are performed using synthetic scenarios generated with
the same probability distribution than the one used for the optimization model. The
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solutions are evaluated according to the value of the objective function of their mod-
els: single-layer or multi-layer models, which both account for delay propagation.
The authors first evaluate performance on the deterministic scenario and then using
simulated instances for which flight delays are generated and flights are pushed-back
accordingly. Results show that propagated delay can be substantially reduced, the
maximum delay propagation being at 50.9% in average for the generic scenarios.

Burke et al. (forthcoming) differentiate the flexibility and the stability (or relia-
bility) of a schedule, the former being defined by the number of available recovery
options, the latter according to the probability of a flight to be on-time. The authors
show that reliability and flexibility, as they define them, are negatively correlated,
i.e. more recovery options imply lower on-time probability for flights. Results are
obtained by a specific simulator developed by KLM.

Summary. Clearly, the literature does not agree on the definition of robustness. We
believe that robustness is an a priori concept whose efficiency should be evaluated with
both a priori and a posteriori metrics. We see that several models focus on specific
metrics and that some of them might be negatively correlated. Hence, as pointed out
by Burke et al. (forthcoming), there are multiple non-dominated solutions, i.e. no
absolute robust solution exists.

The focus of this Chapter is to study robustness for the MRP using both a priori
and a posteriori metrics. To do so, we adopt an approach similar to AhmadBeygi
et al. (2008), i.e. we compare schedules obtained by different models with respect to
both a priori and a posteriori aircraft and passenger statistics.

5.2 Models for the Maintenance Routing Problem

(MRP)

In order to highlight the interactions between metric, model, evaluation and data, we
use different models to solve the Maintenance Routing Problem (MRP). See Barnhart
et al. (1998b) or Lan et al. (2006) for additional details and reviews of the MRP.

We use seven different models that we define in this section:

• RAMR’ maximizes slack for minimal delay propagation using rerouting only;

• RFSR’ minimizes deviation from initial schedule for minimal delay propagation
using retiming only;

• RAMR’-RFSR’ iteratively solves RAMR’ then RFSR’;

• IT RR maximizes total slack using rerouting only;

• MIT RR maximizes minimum slack using rerouting only;



90 CHAPTER 5. ROBUST AIRLINE SCHEDULES

• IT RT maximizes total slack using retiming only;

• IT RT maximizes minimum slack using retiming only.

IT RR, MIT RR, IT RT and IT RT are based on the same underlying UFO model
presented in Chapter 4. The approach is non-historical driven, in the sense that it
solves a myopic deterministic problem that does not use any historical data. We
describe the models in section 5.2.3.

RAMR’, RFSR’ and RAMR’-RFSR’ use historical data to estimate expected delays
for each flight. These are used to evaluate delay propagation of a string, which is a
feasible route for an aircraft (Barnhart et al., 1998b). These models minimize the
propagated delay, which therefore is our initial robustness metric.

A string is actually similar to a route r ∈ Ω as defined in Chapter 3. In the
remaining of this Chapter, we consider strings and routes as equivalent, with a pref-
erence to strings, as most of our models are string-based; we therefore denote a string
by s and S is the set of all feasible strings.

The historical data are used to determine, for each string, the following values (all
are in minutes):

• PDTi planned departure time of flight i;

• PATi planned arrival time of flight i;

• ADTi actual departure time of flight i;

• AATi actual arrival time of flight i;

• MTT minimum turn time required to turn an aircraft;

• PTTij planned turn time between flight leg i and j in the string;

• TDDi total departure delay of flight i;

• TADi total arrival delay of flight i;

• slackij the slack between flights i and j in the string;

• pdij propagated delay from flight leg i to flight leg j in the string;

• IDDi independent departure delay of flight i;

• IADi independent arrival delay of flight i.
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These constants satisfy the following set of relationships:

PTTij = PDTj −MTT,

TDDi = max{ADT − PDT, 0},

TADi = max{AAT − PAT, 0},

slackij = PTTij −MTT,

pdij = max{TADi − slackij, 0},

IDDj = TDDj − pdij,

IADj = TADj − pdij.

Given the independent arrival delay (IAD) of each flight, we compute the propa-
gated delay between each pair of successive flights for any string, assuming that the
first flight of the string has zero departure delay (see Lan et al., 2006 for details). As
ds is the vector of IAD of all flight legs in string s, we denote the total propagated
delay of string s by fs(d

s); it is computed using vector ds as in Lan et al. (2006).
Given a sample of N days, we compute the vector ds

n of IAD for string s for each
day n ∈ N. We use the following functions to determine the propagated delay pds of
string s:

H1 : pds =
1

|N|

∑
n∈N

fs(d
s
n),

H2 : pds = fs(
1

|N|

∑
n∈N

ds
n).

H1 corresponds to the arithmetic mean of the observed propagated delays over the
N days; H2 corresponds to the propagation of the average delays. In other words, for
H1, we determine the propagated delay of string s on each day n (using the procedure
of Lan et al., 2006), whereas for H2, we compute it only once, using, for each flight of
a string, its average delay over the N days.

Finally, we list here the notation used throughout this section:

• S set of feasible strings, indexed by s;

• F set of flight legs, indexed by i or j;

• P the set of planes, indexed by p;

• F0 set containing the first flight of each string;

• A set of aircraft connections between two flights (i, j);

• I set of passenger connections between two flights denoted (i, j);
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• N number of days in historical data;

• M+ set of initial states, indexed by m;

• M− set of final states, indexed by m;

• Sm+ set of strings starting with initial state m ∈M+;

• Sm− set of strings ending with final state m ∈M−;

• pds a proxy of total propagated delay of string s (in minutes);

• tadn
i total arrival delay of flight i on day n ∈ N;

• pdn
ij propagated delay from flight i to flight j on day n ∈ N for (i, j) ∈ A (in

minutes);

• dn
i independent arrival delay of flight i on day n ∈ N (in minutes);

• bi
s 1 if string s covers flight i ∈ F, 0 otherwise;

• bm
s 1 if string s reaches the final state m ∈M−, 0 otherwise;

• bp
s 1 if string s is assigned to plane p ∈ P, 0 otherwise;

• C maximum absolute deviation between original and actual departure times of
the entire schedule, in minutes;

• cs absolute deviation (in minutes) between original and actual departure times
for each flight in string s, i.e. flights such that bf

s = 1;

• δs the total idle time in string s (in minutes);

• δmins the minimal idle time in string s (in minutes).

5.2.1 Robust Airline Maintenance Routing (RAMR)

The Robust Airline Maintenance Routing (RAMR) model is an aircraft-centric model
minimizing propagated delay by rerouting aircraft; see Lan et al. (2006). The model
is based on strings, which are feasible routes satisfying the initial and final location
requirements of the aircraft operating the string.

For each aircraft, we define the initial state and final state as the start and end
points of a string, respectively. Both initial and final states are uniquely defined by
an airport, a time and aircraft. Note that each aircraft has a unique initial state, but
may have several candidate final states as plane swaps are allowed.
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Note that Lan et al. (2006) define the sets M+ and M− as maintenance stations
to model maintenance requirements. Our data does not contain maintenance infor-
mations. We therefore have that M+ is the set of initial and M− the set of final
states.

In the string-based model, the binary decision variables are xs, taking value 1 if
string s is chosen in the optimal solution and 0 otherwise. Using this notation, the
modified version of the RAMR model of Lan et al. (2006) is the following mixed-
integer program:

z∗RAMR = max
∑
s∈S

(xs × pds) (5.1)

s.t.∑
s∈S

bi
sxs = 1 ∀i ∈ F, (5.2)∑

s∈S+
m

xs = 1 ∀m ∈M+, (5.3)

∑
s∈S−

m

xs = 1 ∀m ∈M−, (5.4)

xs ∈ {0, 1} ∀s ∈ S. (5.5)

Objective (5.1) minimizes the total propagated delay using either H1 or H2 to
derive pds. Constraints (5.2) ensure that each flight is covered by exactly one string,
(5.3) ensures all the initial states are assigned to exactly one string and (5.4) ensures
that each final state is covered by exactly one string.

Actually, formulation (5.1)-(5.5) typically contains a large set of optimal values.
We derive model RAMR’, which selects, among all optimal solutions of RAMR, the
one with the largest total slack:



94 CHAPTER 5. ROBUST AIRLINE SCHEDULES

z∗RAMR ′ = max
∑
s∈S

(
xs ×

∑
i,j∈S

slacks
ij

)
(5.6)

s.t.∑
s∈S

bi
sxs = 1 ∀i ∈ F, (5.7)∑

s∈S+
m

xs = 1 ∀m ∈M+, (5.8)

∑
s∈S−

m

xs = 1 ∀m ∈M−, (5.9)

∑
s∈S

(xs × pds) ≤ z∗RAMR, (5.10)

xs ∈ {0, 1} ∀s ∈ S. (5.11)

Constraints (5.7)-(5.9) and (5.2)-(5.4) are identical and the additional constraint
(5.10) ensures that the solution of RAMR’ is an optimal solution of RAMR. Solving
RAMR’ requires to solve RAMR first to get the value z∗RAMR.

5.2.2 Robust Flight Schedule Retiming (RFSR)

Due to the lack of passenger data at hand, we cannot efficiently apply the connec-
tion based flight schedule retiming model of Lan et al. (2006), which minimizes the
expected number of disrupted passengers. Instead, we formulate the Robust Flight
Schedule Retiming (RFSR) model that minimizes the average total propagated delay.
This model is equivalent to the one of AhmadBeygi et al. (2008); we do, however, not
construct propagation trees as done in the original model.

In RFSR, the variables xi correspond to the deviation of the departure time of
flight i with respect to its original departure time; li and ui are the lower and upper
bounds of xi, respectively. These bounds limit the maximum retiming for a single
flight and we have li ≤ 0 ≤ ui, a negative value of xi meaning that the flight takes
off earlier than originally planned. Decision variables yij ensure that the new slack
between flights i and j is consistent with the values of variables xi and xj. Finally,
note that unlike the string-based model where the propagated delay is cumulative
along a string, the delay propagation is considered for each connection independently;
we denote pdn

ij the delay propagation observed on day n for the flight connection
(i, j) ∈ A.

RFSR is then given by the following linear program:
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z∗RFSR =min
∑

(i,j)∈A

1

|N|

∑
n∈N

pdn
ij (5.12)

s.t.

tadn
i ≥ dn

i ∀i ∈ F0,∀n ∈ N, (5.13)

tadn
j ≥ pdn

ij + dn
j ∀(i, j) ∈ A,∀n ∈ N, (5.14)

tadn
i ≥ 0 ∀i ∈ F,∀n ∈ N, (5.15)

yij = slackij − xi + xj ∀(i, j) ∈ A ∪ I, (5.16)

yij ≥ 0 ∀(i, j) ∈ A ∪ I, (5.17)

pdn
ij ≥ tadn

i − yij ∀(i, j) ∈ A,∀n ∈ N, (5.18)

pdn
ij ≥ 0 ∀(i, j) ∈ A,∀n ∈ N, (5.19)

li ≤ xi ≤ ui ∀i ∈ F. (5.20)

The objective (5.12) is to minimize the total average propagated delay. Con-
straints (5.13)-(5.15) are used to determine the total arrival delay of flight i for each
day n (the first flight of each string has zero propagated delay by assumption).

Constraints (5.16) evaluate the new slack yij of each aircraft connection (i, j) ∈ A
and each passenger connection (i, j) ∈ I, excluding minimum turnaround and mini-
mum connection times respectively. Constraints (5.17) ensure the non-negativity of
all slacks: for the passenger connections, this implies no existing passenger connec-
tion is lost because of retiming, whereas for aircraft connections, this enforces the
feasibility of the plane routings with respect to minimum turnaround times.

Finally, constraints (5.18) and (5.19) determine the delay propagating from flight
i to flight j on day n, which has to be minimized. Note that delay propagation is only
considered for aircraft connections, i.e. the delay propagation along strings; passenger
connections between flights of different strings do not generate propagated delay.

RFSR directly determines the average delay propagation: we do not require to
determine the values using H1 or H2. As RFSR is minimizing the average propagated
delay over the N days, it is similar to H1 regarding the way historical information is
used.

RFSR is equivalent to the model of AhmadBeygi et al. (2008), which is proved to
find integer solutions of x. This formulation also contains a large set of optimal solu-
tions; we derive model RFSR’, which selects, among all optimal solutions of RFSR,
the one that minimizes the changes with respect to the original schedule:
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z∗RFSR ′ = min
∑
i∈F

|xi| (5.21)

s.t. ∑
(i,j)∈A

1

|N|

∑
n∈N

pdn
ij ≤ z∗RFSR (5.22)

tadn
i ≥ dn

i ∀i ∈ F0,∀n ∈ N, (5.23)

tadn
j ≥ pdn

ij + dn
j ∀(i, j) ∈ A,∀n ∈ N, (5.24)

tadn
i ≥ 0 ∀i ∈ F,∀n ∈ N, (5.25)

yij = slackij − xi + xj ∀(i, j) ∈ A ∪ I, (5.26)

yij ≥ 0 ∀(i, j) ∈ A ∪ I, (5.27)

pdn
ij ≥ tadn

i − slack ′ij ∀(i, j) ∈ A,∀n ∈ N, (5.28)

pdn
ij ≥ 0 ∀(i, j) ∈ A,∀n ∈ N, (5.29)

li ≤ xi ≤ ui ∀i ∈ F. (5.30)

Objective (5.21) ensures that the total deviation from the original schedule is
minimized while constraint (5.22) ensures the optimality of the solution according to
RFSR, which has to be solved first to determine z∗RFSR. Constraints (5.23)-(5.30) are
the same than (5.13)-(5.20).

Finally, we derive a model minimizing the propagation of average delays which
corresponds to the use of historical data as in H2: we use the average delay (estimated
over the N days) to derive pdij, the propagated average delay from flight i to flight
j. The formulation is as follows:
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z∗RFSRH2 = min
∑

(i,j)∈A

pdij (5.31)

s.t.

tadi ≥
1

|N|

∑
n∈N

dn
i ∀i ∈ F0, (5.32)

tadj ≥ pdij +
1

|N|

∑
n∈N

dn
j ∀(i, j) ∈ A, (5.33)

tadi ≥ 0 ∀i ∈ F, (5.34)

yij = slackij − xi + xj ∀(i, j) ∈ A ∪ I, (5.35)

yij ≥ 0 ∀(i, j) ∈ A ∪ I, (5.36)

pdij ≥ tadi − yij ∀(i, j) ∈ A, (5.37)

pdij ≥ 0 ∀(i, j) ∈ A, (5.38)

li ≤ xi ≤ ui ∀i ∈ F. (5.39)

5.2.3 IT and MIT models

The non-historical driven models we use are derived from the models presented in
Eggenberg and Salani (2009); see Chapter 6 for more details. These models are
based on the concept of Uncertainty Feature Optimization (UFO), which is detailed
in Chapter 4.

Eggenberg and Salani (2009) apply the UFO framework to the MRP, showing that
increasing the total slack (model IT) or the sum of minimal slack of each route (model
MIT) improves the schedules’ robustness and reduce the recovery costs if recovery
is required. The idle time as defined by Eggenberg and Salani (2009) is the slack
time between two successive flights without the minimum turnaround time, i.e. it is
equivalent to the slack as defined for the RAMR and RFSR models.

The model maximizing the number of plane crossings (model CROSS) in Eggenberg
and Salani (2009) decreases slack and is not as efficient as IT and MIT. Moreover, as we
do not have enough passenger data, we also discard the proposed PCON model, which
maximizes the connecting passengers’ slack. We therefore consider only adapted
versions of the models IT and MIT.

The original models of Eggenberg and Salani (2009) aim at maximizing an Un-
certainty Feature (UF) while keeping the total (absolute) deviation between original
planed departure times and the new departure times bounded by a constant C (in
minutes); in the case no retiming is allowed, we obviously set C = 0.

A final state m ∈M− models the fleet positioning requirements at the end of the
scheduling window and is uniquely defined by a location (airport), a latest ready time
(in opposition to landing time) and a plane type.
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The decision variables of the problem are xs ∈ {0, 1}, s ∈ S, being 1 if string s is
selected in the solution and 0 otherwise. The UFs IT and MIT are the following linear
functions:

µIT(x) =
∑
s∈S

δsxs,

µMIT(x) =
∑
s∈S

δmins xs.

The UFO formulation of the plane routing problems is then following mixed-
integer program, where µ(x) is either µIT(x) or µMIT(x):

zUFO = maxµ(x) (5.40)

s.t.∑
s∈S

bi
sxs = 1 ∀i ∈ F, (5.41)∑

s∈S

bm
s xs = 1 ∀m ∈M−, (5.42)∑

s∈S

bp
sxs ≤ 1 ∀p ∈ P, (5.43)∑

s∈S

csxs ≤ C (5.44)

xs ∈ {0, 1} ∀s ∈ S. (5.45)

The formulation (5.40)-(5.45) slightly differs from the formulation in Eggenberg
and Salani (2009), which allows for flight cancelation and also considers airport ca-
pacities; equivalence between the models is achieved when all flight cancelation costs
and all airport capacities are infinite. Constraints (5.41) and (5.42) ensure that each
flight and each final state are covered by exactly one route, respectively. Constraints
(5.43) ensure that each plane is affected to at most one route. Constraint (5.44) limits
the maximum deviation between original and new schedule.

To solve problem (5.40)-(5.45) we use the column generation algorithm described
in Eggenberg and Salani (2009), using the constraint-specific recovery networks de-
scribed in Chapter 3. A recovery network is a graph containing all feasible routes for
a particular aircraft. The pricing problem of the column generation algorithm corre-
sponds to a Resource Constrained Elementary Shortest Path Problem (RCESPP) on
the recovery networks, which are generated using a dynamic programming algorithm.

Note that a constraint-specific recovery network for a specific plane contains only
flights the plane is allowed to cover. To forbid plane swaps, we restrict the set
of coverable flights of each aircraft to its originally scheduled flights, allowing for
retiming only. This is used for models IT RT and MIT RT. Conversely, for IT RR
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and MIT RR, we allow for rerouting only and forbid retiming. In this case, we set
C = 0 and the set of coverable flights of each aircraft is the entire set of flights F.

5.3 Case study from a real airline

We compare the different models defined in section 5.2 using data from an airline
operating in the US, central America and Europe as well. We are provided with 2
months of data. The first month, February 2008, is used for delay estimation and the
second, March 2008, for validation.

Unfortunately, the passenger data cover only a few weeks of operations; our choice
of not considering passenger-centric models is closely related to the data at hand,
as they do not allow to derive statistically relevant information. Furthermore, we
believe that using the same data for estimation of the probabilities and evaluation of
a solution leads to an unfair comparison. We therefore use only non-passenger-centric
models, but use the passenger statistics to evaluate the models.

We use the data of the month of March 2008 for computation and evaluation of
the different models. As the schedule is not cyclic, we solve each day of operation
independently using the different models. We then compare the original schedule
and the new schedules generated by the different models using the real observed
independent arrival delays (IAD).

Our strongest assumption with respect to the airline’s real operations is that the
minimum turnaround time is uniquely fleet dependent, as in most of the literature.
This is, however, not the case in the airline’s data: minimal turnaround time depends
on the airport and on both the preceding flight and the one following the grounding,
respectively.

In the data, however, we observe that the airline is almost systematically underes-
timating block time of the flights. Moreover, when critical, the observed ground times
are systematically lower than the planned turnaround time. It is around 30 minutes
in average, independently of fleet, location and previous and following flights.

Interestingly, increased turnaround time is observed precisely between the most
delayed flights. Figure 5.1 shows the distribution of the difference between scheduled
and real block-time. The majority of the observed values in Figure 5.1 are negative,
i.e. the planned block time is lower than the observed block-time. Proportionally,
about 60% of the flights have underestimated block time. The average underestima-
tion over almost 7,000 flights is 6.48 minutes, i.e. the total delay incurred by block
time underestimation only is almost 45,000 minutes. For the minimum turnaround
times, we consider connections for which we observe propagated delay, i.e. when
the connection is tight. Figure (5.1) shows that the difference between observed and
planned minimum turnaround times is positive, i.e. minimum turnaround is over-
estimated. This is the case in almost 70% of the tight connections. The total amount
of over-estimated minutes is more than 4100 minutes for less than 1050 flights.

These observations motivate the hypothesis that the airline increases turnaround



100 CHAPTER 5. ROBUST AIRLINE SCHEDULES

(Planned Block Time) − (Actual Block Time)

F
re

q
u
en

cy

−60 −40 −20 0 20 40

0
5
0
0

1
0
0
0

1
5
0
0

Block Time Difference Distribution

(Planned Min Turn Time) − (Actual Min Turn Time)

F
re

q
u
en

cy

−40 −20 0 20

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Minimum Turn Time Difference Distribution

Figure 5.1: Distribution of the difference between planned and observed block-times
(left) and minimum turnaround times (right).

time in order to absorb delays, i.e. to make their schedule more robust.
We seek a reasonable value of the real turnaround time: Figure 5.2 shows the

observed turnaround time for tight connections, i.e. where propagated delay is ob-
served, without differentiating fleet; looking at the average value, we conclude that a
30 minutes minimum turnaround time is a reasonable value.
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Figure 5.2: Distribution of the observed turnaround time for connections that experi-
ence delay propagation; the average turnaround time is approximatively 30 minutes.

We use the 30 minutes as minimum turnaround time for both our models and the
simulations: when evaluating a schedule with observed delays, all planes require 30
minutes turnaround time between two flights for all schedules. When delays occur,
the departure of a flight is the maximum between the scheduled departure and the
real arrival time plus 30 minutes.

Finally, in our experiments, we assume that the minimum passenger connection
time is 30 minutes. For passengers, we differentiate lost passengers from disrupted
passengers: the former are passengers who have a connection of less than 30 minutes
in the original schedule, without delay. Lost passengers might occur in retiming
models when passenger connections are not explicitly considered. In that case, we
assume that the passengers are not able to buy a ticket in the first place. They are
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therefore not considered when computing delay statistics. The latter are passengers
who have an original connection time larger than 30 minutes but miss a connection
because of delays. When computing passenger delay statistics, we try to reroute
the disrupted passengers according to a first-come-first-served (FCFS) strategy based
on the algorithms in Bratu (2003) and Bratu and Barnhart (2005): we assume a
maximum delay of 12 hours for passengers, overnight stay is not allowed, and only
itineraries of at most two flights are rerouted; all passengers that could not be rerouted
are called canceled passengers. Canceled passengers are not considered for delay
estimation, unlike done by Bratu (2003) and Bratu and Barnhart (2005), who assign
a constant delay to them.

We therefore differentiate three types of passengers:

• lost passengers : passengers with a connection time of less than 30 minutes in the
schedule, without delays; these passengers are removed from the formulation,
generating a loss of revenue;

• disrupted passengers : passengers with a connection time of more than 30 min-
utes in the original schedule, but whose connection is missed because of delays;
disrupted passengers are rerouted using the FCFS algorithm;

• canceled passengers : passengers that miss their connection because of delays,
i.e. disrupted passengers, who could not be rerouted to their final destination
using the FCFS algorithm; canceled passengers do not generate delay in the
total passenger delay statistics.

Figure 5.3 shows the evolution of observed propagated delay and the corresponding
computed total passenger delay for March, 2008. We see two main peaks of delays
between the 7th and 14th day and a smaller one with respect to propagated delay
on day 23. Propagated and total passenger delays are closely related, although not
identical, which is non-trivial. There are two explanations for this. Firstly, the total
passenger delay is multiplied by the number of passengers: there is a multiplicative
effect between propagated and passenger delays. Furthermore, as there are slacks, a
flight might be delayed even though it generates no delay propagation: the passengers
on this flight generate a non-zero delay although delay propagation is zero. This
shows that although passenger and propagated delays are not independent, they are
not perfectly correlated either.

For the results, we use the data from March, 1st, 2009 to March, 25th, 2009. We
compare the solutions obtained by the following models:

• Original the original airline’s schedule, using over-estimated turnaround times
to avoid delay propagation,

• RAMR’ H1 model minimizing propagated delay in a first stage and maximizing
slack in a second stage, with rerouting only,
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Figure 5.3: Observed propagated delay (on the left) and total passenger delay (right)
for the original schedule over 25 days of operations in March, 2008.

• RAMR’ H2 model minimizing propagated delay in a first stage and maximizing
slack in a second stage, with rerouting only,

• RFSR’ H1 model minimizing propagated delay in a first stage and minimizing
the total deviation from the original schedule in a second stage, with retiming
only,

• RFSR’ H2 model minimizing propagated delay in a first stage and minimizing
the total deviation from the original schedule in a second stage, with retiming
only,

• RAMR’-RFSR’ H1 model for which we first solve RAMR’ H1 and then, we solve
RFSR’ H1 using the routing solution obtained by RAMR’ H1, using both rerouting
and retiming,

• RAMR’-RFSR’ H2 model for which we first solve RAMR’ H2 and then, we solve
RFSR’ H2 using the routing solution obtained by RAMR’ H2, using both rerouting
and retiming,

• IT RR model maximizing total slack allowing for rerouting only,

• IT RT model maximizing total slack allowing for retiming only,

• MIT RR model maximizing the sum of minimum slacks for each route, allowing
for rerouting only,

• MIT RT model maximizing the sum of minimum slacks for each route, allowing
for retiming only.

Note that for models using RFSR’, we use −15 ≤ xi ≤ 15, i.e. retiming of a single
flight is limited to a time window starting 15 minutes before and ending 15 minutes
after its original departure time.

We hereafter compare the results according to the four different points robustness
depends on.
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5.3.1 A priori and a posteriori results

A priori metrics. First of all, we compare the different models according to the
following a priori statistics:

• total slack,

• total retiming,

• average lost connections,

• average lost passengers,

• maximum lost connections,

• maximum lost passengers.

The total slack is the a priori robustness metric, the other metrics allow to quantify
the price of robustness (Bertsimas and Sim, 2004), i.e. the loss of revenue to gain
robustness.

The aggregated a priori metric over the 25 days of operations for the different
models are reported in Table 5.1. All statistics are a daily average and lost connec-
tions/passengers are such that the connection time is lower than 30 minutes.

A posteriori metrics. To compare the performance of the different models, we
evaluate all the schedules on 25 real days of operation. We compare the average value
on the 25 days of the following metrics:

• propagated delay,

• total arrival delay,

• number of disrupted passengers,

• number of canceled passengers,

• total passenger delay (including delays after rerouting the disrupted passengers),

• non-disrupted passenger delay,

• disrupted passenger delay.

Table 5.2 displays the average statistics for these metrics. We recall that disrupted
passengers are those whose original connection time was larger than 30 minutes,
but the real connection time is lower than 30 minutes because of delays; canceled
passengers are disrupted passengers that could not be rerouted within 10 hours of
delay.
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5.3.2 Sensitivity to metrics

We compare the different models with respect to their objective and the initial robust-
ness metric we focus on,that is propagated delay. Models RAMR’ and RFSR’ minimize
propagated delay as a primary objective. IT and RAMR’ maximize slack (as a sec-
ondary objective for RAMR’), models MIT maximize the minimal slack and models
RFSR’ minimize the deviation from the original schedule as a secondary objective.
The performance metrics are total slack and propagated delay.

We see from Table 5.1 that the different objectives lead to different values for
the total slack, meaning that the slack is distributed differently depending on the
initial objective. Note that all models increase the slack with respect to the original
schedule.

Looking at Table 5.2, we see that the models with lowest propagated delay are
the ones minimizing propagated delay, mainly RFSR’ H1 and RAMR’-RFSR’ H1.

This shows that the best results are indeed obtained with the specific metric, i.e.
the models minimizing propagated delay. However, as we discuss in the following
sections, the optimized metric is not the only relevant factor.

5.3.3 Sensitivity to models

The different models are divided in three classes: rerouting-only (IT RR, MIT RR,
RAMR’ H1 and RAMR’ H2), retiming-only (IT RT, MIT RT, RFSR’ H1 and RFSR’ H2) and
both rerouting and retiming ( RAMR’-RFSR’ H1 and RAMR’-RFSR’ H2).

Table 5.1 shows that the rerouting-only models have, as expected, 0 retiming and
therefore the lost connections and passengers are equal to Original. Remarkably,
Original has non-zero lost connections; this is because some connections have less
than 30 minutes connection time even in the original schedule.

A priori, the retiming models IT RT and IT RT are increasing the number of lost
connections and therefore also the lost passengers; the reason is that these models do
not consider passenger connections explicitly as does RFSR’. Thanks to the explicit
consideration of all connections, even those with less than 30 minutes connection in
the original schedule, models RFSR’ allow to reduce the number of lost passengers.

Clearly, for rerouting-only, RAMR’ H1 leads to solutions with higher slack than
IT RR and MIT RR. This illustrates that, although both models maximize slack, the
way it is modeled induces significant differences in the final solution. For the retiming-
only models, IT RT and MIT RT find solutions with higher slack than RFSR’ H1 and
RFSR’ H2. The main reasons are that (a) model RFSR’ does not explicitly maximize
slack, but minimizes the total deviation from the original schedule and (b) RFSR’

explicitly considers the passenger connections, which reduces the solution space com-
pared to the solution space of IT RT and MIT RT. The highest slacks are obtained with
models RAMR’-RFSR’ H1 and RAMR’-RFSR’ H2, for which both rerouting and retiming
are considered, i.e. the feasible solution space is the largest.

The retiming models maximizing slack lead to solutions with higher slack than
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rerouting-only models. This is because the retiming allows to extend the operation
period up to 30 minutes in our case (the first flight departs 15 minutes earlier, the last
15 minutes later) and hence retiming allows an additional 30 minutes slack per string.
This potential for additional slack is, however, not exploited by models RFSR’ H1 and
RFSR’ H2, as the objective is not maximal slack.

In terms of performance with respect to delay propagation, we observe the
rerouting-only models lead to solutions with higher propagated delay than the re-
timing models. The reason is that, thanks to the retiming, the slack can be more
specifically allocated where it is required than for rerouting-only models. However,
we see that some rerouting-only models achieve lower delay propagation than some
retiming models. This is mainly the case for models using historical data according
to H2; we discuss this issue in section 5.3.5.

5.3.4 Evaluation on different performance metrics

In this section, we compare the performance of the solutions according to other ro-
bustness metrics than propagated delay to show the correlation between the original
robustness metric and the others. We use two types of performance metrics: aircraft-
based metrics and passenger-based metrics.

As discussed in the previous section, the original robustness metric we use is
the propagated delay, for which the best results are obtained by the specific models
minimizing the expected propagated delay. Furthermore, looking at the other aircraft
statistics (15 and 60 min on-time and arrival delay), we observe a positive correlation
in performance: a good solution in terms of delay propagation is also good according
to the other aircraft-based metrics. Indeed, solutions with low propagated delay
also have high on-time performance and low arrival delay. Model RAMR’-RFSR’ H1

is the best according to the aircraft-based metrics. However, the correlation is not
perfect: for example, model Original is the worst for almost all metrics, especially
for propagated delay, but RAMR’-RFSR’ H2 has actually a lower 60-minutes on-time
performance, although it has 15.7% less propagated delay.

A traditional performance metric for airlines is the 15-minutes on-time perfor-
mance. We observe that the retiming models increase it more substantially than
the rerouting-only models, especially with models RFSR’ H1 and RAMR’-RFSR’ H1.
Indeed, with model RAMR’-RFSR’ H1, the 15 min on-time performance is increased
by 2%: as discussed in Lan et al. (2006), an increase of 1.6% of the Department of
Transportation (DOT) on-time arrival rate (i.e. the 15 min on-time performance) is
sufficient for any top 5 airline to gain at least one rank in the DOT ranking. For the
60-minutes on-time performance, however, differences are smaller, all models leading
to solutions between 97.05% and 97.42%.

The conclusion, when restricting to the aircraft metrics, is that retiming is more ef-
ficient than rerouting only. Furthermore, we see that using historical data to minimize
propagated delay with model H1 always achieves better results than the equivalent
non-historical driven models: the reduction of propagated delay for the rerouting-only
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is 6.4% and 8.9% for the retiming models.

We now extend the performance comparison to passenger statistics. We exclude
model MIT RT from the comparison, as it has a significantly higher number of lost
passengers compared to the other models. For the other models however, the total
number of passengers is similar: the largest difference in number of lost passengers
0.62 on a daily average over the 25 days of operations.

Remarkably, the best model according to aircraft statistics, i.e. RAMR’-RFSR’ H1,
is the one with the highest number of disrupted and canceled passengers: compared
to IT RT, there are 125.4% more disrupted passenger and 32.3% more canceled pass-
sengers. In absolute numbers, in average, there are 7.16 more canceled passengers.
However, IT RT has, in average, 0.62 less passengers than RAMR’-RFSR’ H1. Assum-
ing that all the lost passengers in IT RT are canceled in RAMR’-RFSR’ H1, then the
additional number of canceled passengers is 6.54, which corresponds to an increase of
29.5%.

The total passenger delay is the smallest for RAMR’-RFSR’ H1, which is due to the
fact that canceled passengers do not account any delay. This illustrates the concept
of negatively correlated performance metrics: by increasing the number of canceled
passengers, we are able to reduce the total passenger delay. Similarly, the best solution
according to delay propagation, on-time performance and total arrival delay is also
the best according to total passenger delay, but the worst according to number of
disrupted and number of canceled passengers.

This illustrates how the way a solution’s performance is evaluated changes its
ranking and that the concept of best solution is relative to the choice of the metric.
Additionally, weighting the different performance metrics to obtain a single weighted
performance metric seems non-intuitive, as it implies either to interpret aircraft statis-
tics in terms of passengers or in the reverse way. This suggests that the absolute
performance is either an arbitrary choice of certain (weighted or not) metrics, or that
there exists a set of non-dominated solutions.

5.3.5 Sensitivity to data

In this section, we focus on the differences in the way historical data are used for a
same model. We therefore mainly compare solutions using the average propagated
delay H1 against models using the propagation of average delays H2.

As we see from Tables 5.1 and 5.2, there are significant differences for models
RAMR’, RFSR’ and RAMR’-RFSR’ depending on the used historical model.

Indeed, for the different models, using historical data according to H1 leads so-
lutions with lower propagated delay than those obtained using H2. When historical
data are a good representation of the real delay, this reflects a well known principle
in stochastic optimization called the Value of Stochastic Solution (VSS): the solution
minimizing the average cost on the sum of a set of scenarios, as used in H1, has lower
value than the sum of the average values, as in H2 (Birge and Louveaux, 1997).
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We see that using historical data in an appropriate way allows to reduce delay
propagation and the correlated metrics (on-time performance, arrival delay) compared
to non-historical driven methods. Clearly, this is not the case for H2: RAMR’ H2 has
higher propagated delay than the non-historical equivalent, IT RR. This also holds for
the retiming models, comparing RFSR’ H2 and IT RT.

The easiest and most intuitive approach is to compute average delays for all flights
and minimizing delay propagation accordingly; this is exactly what is done in H2.
However, the resulting solutions are not as good as solutions obtained with H1. Un-
fortunately, models using the data as H1 are computationally much harder in general.
Indeed, model (5.12)-(5.20), using data as in H1, requires (| N | −1) × (| F0 | +3 |

A | + | F |) additional constraints than model (5.21)-(5.30), which uses model H2;
the increase in the number of variables is also of the order of | N |. The complexity
depends on the sample size, which is crucial, as a too small sample of historical data
does not guarantee a statistically relevant representation of the real delays.

The differences in the way historical data is used to evaluate the expected prop-
agated delay explains why model RAMR’-RFSR’ H1 has such a higher number of dis-
rupted and canceled passengers. Indeed, it is the model that captures best the delay
propagation and protects accordingly. In particular, as the delay propagation is per-
formed using model H1, a unique occurrence of a huge delay on one flight accounts
as much as many occurrences of small delays (or more). The model protects against
such cases adding slack at more specific places than non-historical or H2 models. The
consequence is that more flights are retimed, as show the total retiming statistics in
Table 5.1. Furthermore, the retiming is limited because passenger connections are
explicitly considered, which implies that most of them are tight, i.e. yij = 0 for more
passenger connections (i, j) ∈ I. Therefore, when delays occur, passenger connections
are more likely to be unfeasible in model RAMR’-RFSR’ H1, explaining the increased
number of disrupted passengers.

The interesting question is where the differences between the models occur. We
therefore consider the daily values of the total propagated delay and the number of
disrupted passengers which are shown in Figures 5.4 and 5.5 respectively.

On Figure 5.4, all rerouting models using historical data (even RAMR’ H1 and
RAMR’ H2 which are not displayed in Figure 5.4) have the highest total propagated
delay on March 15th and 16th. On these two days, some flights have much higher
delay than expected from historical data: these flights are considered as reliable and
used for tighter connections which did not exist in the original routing. On days
15 and 16, however, these reliable flights are delayed, which explains the high delay
propagation with respect to the non-rerouting models. This is a typical example of
the impact of an erroneous delay estimation on the routing decision. Interestingly,
for both RAMR’ H1 and RAMR’ H2, the daily propagated delay is close to the daily
propagated delay observed for IT RT, except on these few days. The consequence of
these few days on the average is, however, significant, as it is because of them that
the average propagated delay of RAMR’ H1 and RAMR’ H2 (538.16 and 550.36 minutes,
respectively) are higher than the average propagated delay of IR RT (535.44 minutes).
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Figure 5.4: Daily total propagated delay for different models for 25 days of operations
in March, 2008.

Consider now Figure 5.5, depicting the number of disrupted passengers for each
day for some selected models. First, note that the curves do no exhibit peaks as
clearly as in Figure 5.4, which illustrates that the number of disrupted passengers
is not perfectly correlated with the total propagated delay. Additionally, the best
models in terms of delay propagation, i.e. RAMR’ H1 and RAMR’-RFSR’ H1, are the
models reaching the highest numbers of disrupted passengers, which are observed on
day 24. Interestingly, this is a day with low delay propagation. Model IT RT has,
in general, fewer disrupted passengers, although it has higher delay propagation. As
discussed previously, this is because a high focus on delay propagation implies tighter
passenger connections, which increases the probability of missed connections. This
is highlighted by the average values of Table 5.2: RAMR’ H1 and RAMR’-RFSR’ H1 are
indeed the models with lowest average propagated delay, but also the solutions with
highest number of disrupted passengers.

5.4 Conclusions and extensions

In this Chapter, we focus on the definition of robustness and show that it depends
on four key factors: metrics, models, evaluation and data. We use a case study on
a real airline to illustrate the importance of the different factors. We focus on the
robust maintenance routing problem aiming at minimal delay propagation as an a
priori robustness metric.
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Figure 5.5: Daily number of disrupted passengers delay for different models on the
25 days of operations in March, 2008.

We see that if we use different metrics such as maximizing slack, we obtain sig-
nificantly different solutions. We also observe that models with the same objective
but different decision variables lead to different solutions. In particular, we remark
that, on average, retiming models perform better than rerouting models, as they al-
low for more slack and, therefore, more delay absorption. However, we observe that
no solution is globally the best when evaluating the solution on different performance
metrics. Indeed, some of the used aircraft-based performance metrics are negatively
correlated with some passenger-based performance metrics, as for example the average
propagated delay and the number of disrupted passengers.

Finally, we illustrate how models using historical data are sensitive to the way
the data is exploited. However, such models have the best potential when the data
is representative of the real uncertainty and the historical data is exploited in an
appropriate way.

Interestingly, in our simulations, we observe that models using historical informa-
tion with model H2 are not better than non-historical based methods. Unfortunately,
models using historical data more adequately, i.e. with model H2, are more complex
and therefore limit the size of the solvable problems.

The main conclusion of this Chapter is that it is crucial for airlines to understand
the relations between their scheduling objectives and the performance metrics they
want to improve: if the airline aims at improving a specific performance metric,
then historical-driven approaches are certainly better, provided that the historical
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data provide a reliable estimator, the data are well exploited and the model remains
solvable. In the other cases, non-historical approaches are certainly the better choice.

This work should be extended by performing a more extensive study on different
airlines with different schedules. Indeed, the data we use for our simulations comes
from a unique airline which has a specific structure and a low number of connect-
ing passenger, which may not be representative for large US carriers. Furthermore,
one should consider testing historical models using simultaneously aircraft, crew and
passenger data to see whether it is possible to exploit additional information, both
in terms of computational complexity and solution quality, or if using implicit ap-
proaches as UFO (Eggenberg et al., 2009) is a better compromise.
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Chapter 6

Recoverable airline schedules

As discussed in Chapters 1 and 4, the major drawback of deterministically optimized
operation plans is that they are sensitive to perturbations: small disruptions prop-
agate through the whole schedule, making even small disruptions to have a huge
impact. As we show in Chapter 4, sub-optimal solutions with respect to a determin-
istic approach are possibly improving the solution’s robustness or recoverability.

In this Chapter we present an application of the Uncertainty Feature Optimization
(UFO) framework introduced in Chapter 4 to the aircraft routing problem, which is
composed of two phases: the planning phase and the recovery phase in case disrup-
tions occur.

At the planning phase, we solve the Maintenance Routing Problem (MRP), which
aims at finding a feasible route for each aircraft. The input of the MRP is a set of
flights with given desired departure time and aircraft type for each flight. The output
is a set of routes, one for each aircraft, covering all the flights and satisfying the fleet
assignment and maintenance requirements. Each route must comply with the mainte-
nance requirements of the plane covering the route. The objective is to minimize the
loss of revenue. For the MRP, this is a function of the deviation between desired and
scheduled departure times, lost connections because of retiming and lost capacity on
flights because of plane type changes. All passengers who miss a connection because
of the retiming are lost as well: as the connection no longer exists in the schedule, no
ticket using it can be sold and the revenue of those tickets is lost.

On the day of operation, the problem of recovering the planned schedule from a
disrupted state is the Aircraft Recovery Problem (ARP), as described in Chapters 1
and 3. The input of the ARP is the original schedule computed by the MRP and the
current disrupted state, i.e. the location of each aircraft according to the actual delays
and its availability and maintenance requirements. The output is a new schedule for
the recovery period, complying with all the technical constraints the MRP is subject
to.

The possible recovery decisions consist in delaying or canceling flights, swapping
planes and using repositioning flights (flights that were not initially scheduled). Each
of these operations generates additional costs, including operational costs and passen-
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ger’s inconvenience. Unlike the MRP, early departures are not allowed in the ARP.
The recovery costs for the ARP are mainly delay and cancelation costs. When solving
the ARP independently from the passenger or crew recovery problem, the cost struc-
ture is often adapted in order to capture implicitly the effects of a recovery decision
in the ARP on the crew or passenger recovery. For example, the flight cancelation
or delay costs are proportional to the potentially disrupted crew/passengers, or ad-
ditional costs are added for a flight’s capacity reduction when swapping planes with
different capacities.

The differences between MRP and ARP are therefore mainly the cost structures
and the retiming decisions.

The originality of the proposed algorithms is the absence of any explicit predic-
tive model of possible disruptions for the scheduling problem. Uncertainty Features
(UF) capture implicitly the uncertainty the problem is subject to. An additional
budget constraint ensures that the obtained solution is not too far from the original
deterministic optimum and the computational complexity is similar to the original
deterministic problem.

We apply the UFO framework of Chapter 4 to a real world problem and we present
computational results for different MRP models. The instances we use are the public
instances of the ROADEF Challenge 2009.

The structure of the Chapter is as follows: section 6.1 summarizes the main
conclusions of studies on robust or recoverable airline scheduling. Section 6.2 describes
the used algorithms for both the airline scheduling and recovery problems. Section
6.3 describes in detail the used uncertainty features and the algorithmic implications.
Section 6.4 presents the results of the simulations and finally, section 6.5 concludes
this Chapter with some future research directions.

6.1 Existing robustness metrics

We summarize here the main contributions with respect to proactive airline scheduling
that consider uncertainty. For a deeper review for airline scheduling in general see
Chapter 2 and Chapter 5 for details on how robustness is measured and evaluated by
airlines.

In the literature, only few metrics are used to estimate a schedule’s robustness or
recoverability. The concept of plane crossings, i.e. routes of different aircraft that visit
the same airport within a given time interval, is the most common for recoverability for
MRP. Indeed, as the most common recovery procedure is to swap planes, an increase
of plane crossings increases the number of possible swaps and hence the efficiency
of the recovery. Ageeva (2000) defines an equivalent metric with the overlaps of
schedules and Burke et al. (forthcoming) call it swapping opportunities. A similar
metric for the crew scheduling problem is the concept move-up crews introduced by
Shebalov and Klabjan (2006). Finally, Smith and Johnson (2006) and Gao et al.
(2009) use the concept of station purity, limiting the number of fleet types allowed
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to serve a same airport, which increase the number of swapping opportunities, as the
compatibility of crew and fleet types is ensured.

Another common metric is to increase slack, as do Ehrgott and Ryan (2000) for
the crew scheduling problem, Lan et al. (2006) also use slack as robustness metric.
However, the authors protect against propagated delay, i.e. delay propagated from
one flight to another. This model is in fact a specific way to allocate slack where it
is most likely that planes are delayed and hence reduce delay propagation. This is a
similar concept to the cascading delay effect discussed by Yen and Birge (2006).

Finally, some other metrics are used, such as maximizing the number of short
cycles or encourage hub isolation (Rosenberger et al., 2004).

Interestingly, using a stochastic scenario-based optimization scheme, Yen and
Birge (2006) observe that in the schedules with lowest expected cost, crews tend
to stay on the same aircraft. Therefore, having aircraft routes that match the crew
pairing constraints have a potential to improve the robustness of the crew pairings.

6.2 Models and Algorithms

The global structure of both MRP and ARP algorithms is a Column Generation
scheme based on the constraint-specific networks presented in Eggenberg et al. (2010,
to appear). As the two problems are similar, we use the same notation for both of
them. Note that despite the structural similarities of the models, the MRP and ARP
have different objectives, which are modeled by an appropriate cost structure. Addi-
tionally, the unit-specific constraints are modeled by a set of resources, as described
in Eggenberg et al. (2010, to appear).

We denote F the set of flights to be covered and P the set of available planes. S
denotes the set of final states. Each of them corresponds to the expected location at
the end of the scheduling/recovery period and is characterized by an aircraft type, a
location, a latest arrival time and maximal allowed resource consumption. T is the
length of the considered period, which corresponds to the scheduling period for the
MRP and the recovery period for the ARP. A route r is defined by the covered flights
in the route, the final state and the plane. Let Ω be the set of all feasible routes r, xr

the binary variable being 1 if route r is chosen in the solution and 0 otherwise, and
cr the cost of route r. Variables yf capture flight cancelation and are 1 if flight f is
canceled, incurring cost cf, and 0 otherwise; note that for the MRP, flight cancelation
is not allowed and cf =∞.

We define the time-space intervals ` = (a, t) to account for airport capacities. t is
the index of a discretized time period (starting from index 0) of length ∆ (typically
∆ = 60 minutes), a ∈ A is the airport. We denote L the set of all such intervals, of
cardinality | A | ×

⌈
T
∆

⌉
. For each interval ` ∈ L, the maximum number of departures

is denoted by qDep` and the maximum number of arrivals by qArr` .

We also introduce the following set of binary coefficients:
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• bf
r 1 if route r covers flight f ∈ F, 0 otherwise;

• bs
r 1 if route r reaches the final state s ∈ S, 0 otherwise;

• bp
r 1 if route r is assigned to plane p ∈ P, 0 otherwise;

• bDep,`r 1 if there is a flight in route r departing within time-space interval ` ∈ L,
0 otherwise;

• bArr,`r 1 if there is a flight in route r arriving within time-space interval ` ∈ L, 0
otherwise.

With this notation, the Master Problem (MP) of both the MRP and the ARP is
the following integer linear program:

min zMP =
∑
r∈Ω

crxr +
∑
f∈F

cfyf (6.1)

s.t.∑
r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (6.2)∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (6.3)∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P (6.4)∑

r∈Ω

bDep,`r xr ≤ qDep` ∀` ∈ L (6.5)∑
r∈Ω

bArr,`r xr ≤ qArr` ∀` ∈ L (6.6)

xr ∈ {0, 1} ∀r ∈ Ω (6.7)

yf ∈ {0, 1} ∀f ∈ F. (6.8)

Objective (6.1) minimizes total costs. Constraints (6.2) ensure that each flight
is covered by exactly one route r ∈ Ω or canceled. Constraints (6.3) ensure that
each final state is reached by a plane and constraints (6.4) ensure that each aircraft
is assigned to at most one route. Finally, constraints (6.5) and (6.6) ensure that the
departure and arrival capacities of the airports are satisfied and constraints (6.7) en-
sure the integrality of the variables. Constraints (6.2)-(6.7) are the global constraints
described in Eggenberg et al. (2010, to appear).
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The Column Generation process combines solving the linear relaxation of (MP)
and branching to find an integer solution. The pricing problem aims at finding new
feasible columns improving the current (partial) solution of the linear relaxation. It
is solved as a Resource-Constrained Elementary Shortest Path Problem (RCESPP)
on the constraint-specific networks. We use the dynamic programming algorithm de-
scribed by Righini and Salani (2006), which is a bidirectional label setting algorithm.
The algorithm creates labels, corresponding to partial paths, at each node of the
constraint-specific network; dominated labels, that are proved to lead to sub-optimal
paths, are discarded.

The main difference between the MRP and the ARP algorithms is the specification
of the constraint-specific networks and its cost structure. For the MRP, all flights are
potentially feasible for an aircraft, unless the aircraft is technically not able to cover
them. However, using a different aircraft than desired for a given flight may incur a
loss of revenue. Such costs, in addition to retiming costs, are captured independently
for each aircraft in its associated constraint-specific network and determine the costs
of a route. In the ARP, the cost of a route is the sum of delay costs; the feasible
flights and feasible final states are usually restricted to those originally assigned to
aircraft of the same fleet type.

6.2.1 UFO reformulation of the MRP

In the classical deterministic MRP formulation (6.1)-(6.8), the objective is to minimize
the loss of profit given a desired target schedule. We assume here that the cost of
a modified departure is linear, i.e. that each time unit (typically a minute) between
desired and real flight departure incurs a constant loss of profit. Furthermore, as
cf =∞, we can remove variables yf from the formulation, as in any optimal solution,
we have yf = 0, ∀f ∈ F.

The initial objective of the MRP is to find a feasible solution for the plane routing
as close as possible to the input schedule; the cost cr of route r ∈ Ω is the total
number of minutes the flights of route r deviate from their desired departure times,
which has to be minimized.

We now apply the UFO framework of Chapter 4 to the deterministic MRP for-
mulation (6.1)-(6.8). Consider an UF denoted by µ(x) where x is the vector of all
variables xr ∈ Ω; µ(x) is a measure of the potential robustness/recoverability of
solution x. For concrete examples of UFs µ(x) see section 6.3.

The initial MRP objective (6.1) is reformulated as the following multi-objective
optimization problem (MOP):

zMOP = [min
∑
r∈Ω

crxr,maxµ(x)].

In the framework described by Eggenberg et al. (2009) and in Chapter 4, the
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initial objective
∑

r∈Ω crxr is relaxed as the following budget constraint:∑
r∈Ω

crxr ≤ (1+ ρ)z∗MRP,

where ρ is the budget ratio. However, the optimal solution for the MRP is z∗MRP =

0, i.e. all flights are scheduled as desired and the relative budget constraint does not
allow for any change in the schedule. We therefore use an absolute budget, with a
constant C. We get the following formulation:

max zUFO =µ(x) (6.9)

s.t.∑
r∈Ω

bf
rxr = 1 ∀f ∈ F (6.10)∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (6.11)∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P (6.12)∑

r∈Ω

bDep,`r xr ≤ qDep` ∀` ∈ L (6.13)∑
r∈Ω

bArr,`r xr ≤ qArr` ∀` ∈ L (6.14)∑
r∈Ω

crxr ≤ C (6.15)

xr ∈ {0, 1} ∀r ∈ Ω. (6.16)

The budget C is an upper bound on the total deviation (in time units) between
the original and the new schedule.

It is important to note that deviation from the desired schedule in the master
formulation is an aggregate measure. It is however possible to include disaggregate
bounds for each flight’s maximal deviation thanks to the constraint-specific networks:
when generating the networks, feasibility tests are made independently for each flight.
Setting bounds on maximal deviation enables to control a single flight’s deviation
without any additional constraint in the master problem nor any modification of the
pricing problem.

Note that the additional budget constraint (6.15) changes the definition of the
reduced cost of a column: the cost cr is multiplied by the dual multiplier of the budget
constraint in the reduced cost formulation. The structure of the pricing problem
highly depends on the chosen UF µ(x), which we present, along with the implications
for the pricing problem, in the next section.
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6.3 Uncertainty Features for the MRP

The UFs are designed based on what practitioners do in reality: increasing idle time,
which allows for delay absorption, increasing the number of plane crossings, which
allows for more plane swaps in the ARP and increasing the connecting passenger’s
connection time. We postulate that solutions with higher values for these properties
are featuring more robustness and recoverability.

We consider idle time to be each additional time slot between two activities of
a same plane, being either flights or maintenances. The time before the first activ-
ity starts and the time after the last activity ends is not considered as idle; plane
turnaround and transit times between two flights are not considered as idle time
either.

A plane crossing corresponds to a time period during which two planes are at the
same location. When n planes are located at the same airport and the same time
period, we count n− 1 plane crossings.

Finally, for all connecting passengers, we have a minimal requested connection
time; any additional time is considered as idle connection time.

We hereafter define the UFs corresponding to idle time, plane crossings and pas-
senger connection time and detail the algorithmic issues related to the optimization
of these UFs.

6.3.1 The IT and MIT models

The idle time of a solution is

µIT (x) =
∑
r∈Ω

δrxr,

where δr is the total idle time on route r.
Using µIT leads to a linear UFO formulation and the structure of the pricing

problem is unchanged: it remains a RCESPP where the total idle time corresponds
to the cost δr of the column.
µIT accounts for the total idle time. An alternative is to maximize the minimal

idle time in order to get smaller but more uniformly distributed buffer time windows,
i.e. use

ζ = − min
r∈Ω

δminr xr,

where δminr is the minimal idle time in route r. This UF is however no longer linear
but can be reformulated as

max − ζ

s.t.

ζ ≥ δminr xr ∀r ∈ Ω
s.t.(6.10) − (6.16).
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However, there is an exponential number of variables and constraints (at least
| Ω |), which is not affordable for Column Generation.

Therefore we maximize the sum of the minimal idle times of each route with the
following UF:

µMIT (x) =
∑
r∈Ω

δminr xr.

The resulting UFO formulation is the same as for µIT , except we use δminr instead
of δr. For the pricing the structure remains a RCESPP. The algorithm must however
consider adapted label domination criteria. Unlike the total idle time, which is a cu-
mulative metric during the label extension phase, the minimal idle time is decreasing
in a non-homogeneous way. In order to compare labels and discard suboptimal ones,
the partial reduced cost must contain a partial value of the minimal idle time that
is comparable for different labels. This is the case when the minimal idle time is
computed up to the end of the last activity.

6.3.2 The CROSS model

The third UF captures the number of plane crossings, allowing for more swapping
possibilities to facilitate recovery. It is not associated to a single route.

To address this issue, we introduce the concept of meeting points : we create a
constraint for each airport for a discretized number of time intervals. We denote such
a meeting point by the pair m = (a, t), corresponding to the meeting point at airport
a and time interval t; the number ∆ of time intervals is a fixed parameter and M is
the set of all meeting points, i.e. M = {(a, t) | a ∈ A, t = 0, · · · , ∆}. The number
| M | of meeting point constraints is pseudo-polynomial (number of airports times
number of time intervals). Note that this technique is similar to the departure and
arrival capacity constraints.

We denote by bm
r the binary coefficient being 1 if route r visits meeting point

m ∈M and 0 otherwise. We then include the following set of constraints:

∑
r∈Ω

bm
r xr − ym ≥ 0 ∀m ∈M. (6.17)

The UF corresponding to the plane crossing maximization is

µCROSS(x) =
∑
m∈M

(ym − 1),

and we have to maximize µCROSS(x) subject to the constraints (6.10)-(6.16) and with
the additional crossing count constraints (6.17).

With this formulation, Column Generation is still possible. The reduced cost now
contains the term

−
∑
m∈M

bm
r λm,
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where λm, m ∈M are the dual multipliers of constraints (6.17). When generating a
column, the visited meeting points are contributing to the reduced cost, which has to
be taken into account for label domination in the RCESPP algorithm.

6.3.3 The PCON model

IT, MIT and CROSS are all aircraft-based metrics. Another possibility is to use
passenger-centric UFs based, for instance, on idle connection time for passenger
itineraries with multiple flights.

Let I be the set of all existing passenger connections in the schedule; each of them
is defined by a pair of flights (fi, fj) ∈ I. We define the idle connection time δij of
(fi, fj) ∈ I as the time between the landing time of flight f1 and the departure of
f2 minus the minimum passenger connection time (typically 30 minutes), denoted
MPC. We assume a constant value for MPC, as assumed by most airlines and in the
literature (e.g. Lan et al., 2006).

PCON is the UF maximizing the passenger idle time:

µPCON =
∑

(fi,fj)∈I

δij.

Given a route r, t
dep
r (fj) is the landing time of flight fj, which is 0 if fj is not

covered by route r and the exact departure time of fj if route r covers it. Similarly,

tland
r (fi) is the landing time of flight fi if it is covered by route r, 0 otherwise. As

the covering of all flights is imposed by constraints (6.10), we always have one route

r in the solution with non-zero values of tland
r (fi) or t

dep
r (fj).

In addition to constraints (6.10)-(6.16), we have to impose non-negativity on each
connection time as follows:

δij − (
∑
r∈Ω

t
dep
r (fj) −

∑
r ′∈Ω

tland
r ′ (fi) − MPC) ≤ 0 ∀(fi, fj) ∈ I, (6.18)

δij ≥ 0 ∀(fi, fj) ∈ I. (6.19)

When maximizing µPCON, the model with constraints (6.10)-(6.16) and (6.18)-
(6.19) ensures that the total passenger connection time is maximized, while satisfying
the minimum passenger connection time for all connections I.

From the algorithmic point of view, the structure of the pricing problem is un-
changed up to the consideration of additional prices to be collected in the RCESPP

algorithm; when taking discretized times for tland
r (fi) and t

dep
r (fj), the collection is

similar to the price collection of take-off and landing slots.
Remark that it is also possible to maximize the minimal passenger connection time

instead of the total passenger connection time. The corresponding model is the same
as the PCON model, where δij in equations (6.18) and (6.19) is replace by a unique
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variable δ which is to be maximized. Unfortunately, when implemented and applied,
the model never finds a solution different from the original schedule. We therefore do
not report on this metric here.

6.3.4 Implementation

The four MRP algorithms, IT, MIT, CROSS and PCON corresponding to the presented
UFs and the recovery algorithm solving the ARP are implemented using the same
Column Generation heuristic: column generation is performed only at the root node.
The branching scheme is meant to derive an integer solution from the columns ob-
tained at the root node. Furthermore, to speed up computation, we derive three
heuristic pricing levels depending on the number of columns found:

1. the number of labels to be extended at each node is limited and domination
criteria are heuristic, i.e. labels might be erroneously discarded;

2. same than level 1, but we increase the number of labels extended at each node;

3. the number of labels to extend is unlimited.

When one heuristic level fails to find any column, we proceed to the next level.
Eggenberg et al. (2010, to appear) show that this leads to a fast heuristic that gen-
erates good quality solutions in terms of optimality deviation.

Moreover, when the flight retiming window is smaller than twice its duration for
each flight, this procedure leads to the optimal solution of the pricing.

The algorithms are written in C++ using the COIN-OR BCP framework1, each
algorithm containing around 12,000 lines of code in addition to the COIN-OR BCP
framework.

6.3.5 Simulation Methodology

To validate the above models, we generate different schedules from the same original
schedule with each model using different budget values for C. We then apply a same
disruption to each schedule and then run the same recovery algorithm to recover the
disrupted schedule.

As some models do not consider passenger connections, it may occur that some
of them are no longer feasible after retiming flights. In such cases, we assume that
no ticket using such a connection can be sold, i.e. the passengers are lost and the
tickets have to be refunded. The consequence is a loss of revenue, which is the cost
of making the schedule more robust/recoverable.

In order to compare the efficiency of different schedules for a same disruption
scenario, we have to take into account that delays do not propagate in the same way
in different schedules. We therefore adopt a similar approach than Lan et al. (2006):

1http://www.coin-or.org

http://www.coin-or.org
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given the original schedule and a disruption characterization, we identify, for each
flight, which part of the delay is generated by the flight itself and which part is due
to previously delayed flights. The former is called independent delay, the latter is
the propagated delay. The independent part of the delay is single-flight dependent
and is, therefore, part of the disruption characterization. The propagated delay is a
consequence of the schedule, which is a consequence of the disruption.

When evaluating different schedules on a same disruption, the independent delays
are constant. However, the propagated delays must be re-computed for each different
schedule according to the independent delays. When a disruption is applied on a
given schedule, we therefore update delay propagation for each flight, the final value
of a flight’s delay being the sum of its independent and propagated delays.

This preprocessing phase is used to determine the initial position of each aircraft
at the beginning of the recovery period for any schedule independently. The recovery
algorithm then handles operations during the whole recovery period.

6.4 Computational Results

For the computational results, we use public data provided for the ROADEF Chal-
lenge 20092. We use the A instance set, i.e. the set of instances used for the Challenge
qualification phase.

The ROADEF Challenge 2009 is a competition stimulating researchers to develop
efficient recovery algorithms to solve instances of a large European airline. Each
instance is composed of an original schedule and a (single) disruption scenario. The
original schedule is composed of the existing legs, the routes of each aircraft (including
maintenances, that cannot be rescheduled) and the passenger’s itineraries. Aircraft
are divided into different fleets; by convention, we do not allow fleet assignment,
i.e. only aircraft of a same fleet can be swapped. Additionally, there are airport
arrival and departure capacities, which are given as upper bounds for each one-hour
interval of a typical day. Disruption scenarios are characterized by an operational
period prior to the start of the recovery period, for which observed flight delays and
flight cancelations are reported. Additionally, mandatory rest periods for aircraft and
modified airport capacities at given time slots are also provided.

The recovery algorithm computes new routes for the aircraft and the passengers in
order to minimize recovery costs; only flights departing after the start of the recovery
period can be rescheduled, all other flights are fixed; the same holds for passenger
itineraries. External cost-checker and checker for feasibility are provided, allowing to
externally evaluate the solutions according to the real cost-metric.

The qualifying instances A01-A10 are based on the same schedule with 35 airports
and 85 planes; Table 6.1 details the different instances.

Instances A01-A04 and A06-A09 are single-day schedules, whereas A05 and A10

2http://challenge.roadef.org/2009/index.en.htm

http://challenge.roadef.org/2009/index.en.htm
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are a two days schedule; we refer to them as the 1-day and 2-days instances, respec-
tively.

As discussed in section 6.3.5, a preprocessing phase is required to apply a disrup-
tion scenario to a modified schedule. First, we assume that the passenger demand is
inelastic and fixed, i.e. all passengers are still willing to fly at the same fare in the
modified schedule. However, for each solution, we remove from the formulation all
the passengers missing a connection, i.e. with less than 30 minutes connection time,
because of flight retiming. These lost passengers correspond to the loss of revenue
sacrificed to increase the schedule’s robustness and recoverability; the average number
of lost passengers and the corresponding loss of revenue are shown for each model.

We then update the delay propagation pattern by identifying independent and
propagated delays as discussed in section 6.3.5. By convention, all flights departing
within the recovery period have zero delay and can be rescheduled by the recovery
algorithm. We use the same approach for canceled flights. Finally, airport capacities,
forced aircraft rest period start and length of the recovery period do not have to be
updated.

In some cases, the delays of the fixed flights force take-off or landing in another
airport’s capacity slot, which may imply a capacity violation. These violations are
only because of the delays of fixed flights we cannot reschedule with the recovery
algorithm, as they depart outside the recovery period. We therefore accept this
particular type of airport violation outside the recovery period.

We provide two types of information for the tests. The first is a set of a priori
statistics of the schedule evaluated before applying the disruption scenario and the
recovery algorithm; the results are reported in section 6.4.1. The second set of infor-
mations provides a posteriori statistics, i.e. after applying the disruption and solving
the recovery problem; results are reported in section 6.4.2.

6.4.1 A priori results

For the presentation of the results, we separate the 1-day instances from the 2-days
ones.

The original schedules (as provided in the data set) are labeled Or; the schedules
obtained by the UFO models are labeled IT, MIT, CROSS and PCON. The UF solutions
are followed by a number specifying C in (6.15), corresponding to the total allowed
deviation from the original schedule of the new departure times, in minutes. There-
fore, for example, instance A01 CROSS 1000 corresponds to the solution of instance
A01 solved with UF CROSS and a budget C = 1000 minutes.

For each instance, we generate one schedule for five different budgets, namely C =

1, 000, 2,500, 5,000, 10,000 and 20,000 minutes respectively; the maximal deviation
of a single flight is set to 60 minutes. The complete results are reported in section
6.6.

Table 6.2 summarizes the average a priori statistics on the 1-day instances and
Table 6.3 for the 2-day instances. Displayed information is used budget (in minutes),
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the value of the different UFs for each solution, the statistics of lost passengers (ab-
solute, relative and corresponding relative loss of revenue with respect to the original
schedule) and CPU times.

Model Or IT 10000 MIT 10000 CROSS 10000 PCON 1000

Used Budget [min] 0 10000 10000 8515 1000
# Modified Flts 0 252 407 424 31

IT [min] 77865 85068 80160 76925 78220
MIT [min] 490 408 1965 140 475
CROSS 6100 6176 6085 6184 6105

PCON [min] 258143 276113 268178 257348 263173
# Lost Pax 0 298 414 671 0
Pax Lost [%] 0.00 0.36 0.50 0.82 0.00

Revenue Loss [%] 0.00 1.30 1.79 2.90 0.00
CPU Time [s] < 1 10828 5412 6291 41292

Table 6.3: Average a priori statistics for different models for instances A05 and A10.

First note that Table 6.2 does not report results for PCON 10000 and for models
IT 20000 and CROSS 20000. For model PCON, the algorithm is not able to find a
solution different from Or; for the other models, there is no difference between a
budget C = 10, 000 and C = 20, 000. This is because we have a disaggregate bound
on retiming for each flight which is independent of C. When C is large enough, the
total retiming is limited by the disaggregate bounds before reaching the aggregate
bound C, which is the case for models IT 20000 and CROSS 20000.

The CPU time for the original solution is simply the time to evaluate the different
UF values, as no optimization is done. Model PCON is clearly the hardest model to
solve, because of the additional constraints for the connections.

Table 6.3 shows that the computational effort for the 2-day instances is increased
up to a factor between 13 and 55 with respect to the 1-day instances. The number
of aircraft, however, is unchanged, namely 85, and the number of flights is multiplied
only by a factor 2. This shows the combinatorial complexity of the problem. More-
over, the UF values are much higher than for the 1-day, explaining why the relative
increase of the UFs is lower.

A remarkable point is the number of lost passengers and associated loss of revenue.
Indeed, all models except PCON do not consider connections at all. However, for the
1-day instances, the maximal loss of passengers is 1.31% for a single instance and
1.10% on average. The loss of revenues are slightly higher than the number of lost
passengers. The reason is that the misconnected passengers are those with tight
connections, which often corresponds to the profile of business passengers, who also
pay higher fares. The loss of revenue due to retiming is always lower than 4.3%
(3.65% in average) of the original revenue, but note that this is an upper bound:
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indeed, we do not consider the possibility of attracting additional customers with the
connections created in the new schedule.

We also see from Table 6.2 that the models are able to significantly increase
the values of their corresponding UF. We also see that increasing the budget leads to
solutions with higher values for the UFs. The increase is not necessarily homogeneous:
the value of CROSS is higher for model CROSS 5000 than CROSS 10000, which is because
we are using heuristics.

Interestingly, IT, MIT and PCON are correlated, as solutions with higher values of
one of these UFs also have higher value for the others. This is however not always the
case, which shows that the UFs are not equivalent. Surprisingly, solutions computed
with CROSS tend to decrease the value of IT, MIT and PCON but the converse is not
observed.

6.4.2 Recovery statistics

For instances A05 and A10, the recovery algorithm is not able to prove optimality
because of the size of the problem, even if we extend the computation time to 1 hour.
As the obtained recovery statistics are not significant, we do not reported here.

The detailed results after applying the recovery algorithm for the 1-day instances
are listed in section 6.7. We report, for each 1-day scenario, the recovery costs as
computed by the cost checker provided for the ROADEF Challenge 2009, the total
number of canceled flights (including the forced cancelations from the operational
period), the number of canceled passengers, which does not include the lost passengers
from the scheduling phase (these are removed from the formulation).

The recovery algorithm is exploiting the non-trivial recovery cost structure as ex-
pected. The relation between recovery costs and a posteriori statistics such as number
of canceled flights, total delay or number of canceled passengers is not homogeneous.
Indeed, these values are not strictly decreasing for decreasing recovery costs, i.e. so-
lutions with an additional number of canceled flights are not necessarily incurring
more recovery costs.

The reduction of recovery costs is not uniform for a same model with increasing
values of budget C. This is not surprising, as the budget allows for better a priori
solutions, but does not guarantee the solution to be appropriate a posteriori for any
given scenario. However, some models generate solutions with an impressive recovery
cost reduction: model MIT 20000 reduces the recovery costs by 68.5% in average over
the 8 instances. In absolute numbers, the highest savings are obtained with model
MIT 20000 for instance A09, saving up to 1.32 Millione, which corresponds to a
saving of 70.6% compared to the recovery costs for the original schedule. The highest
relative saving is 93.0%, again achieved by MIT 20000 for instance A08. CROSS 1000

is the model that has the most often higher recovery costs than Or, namely in 4 out
of 8 instances. PCON 2500 is actually the only model with higher total recovery costs
than Or when summing the recovery costs of all scenarios.

CROSS 1000 and Or both have the highest recovery costs for 2 out of 8 instances.
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In the remaining 4 instances, it is always a different model that has highest recovery
costs. The highest increase in recovery costs occurs at instance A07 with model
MIT 5000, with an increase of 239,777e, i.e. 37.9% more than Or.

Although we observe significant differences among the different solutions, there is
no homogeneous relation between any UF and the recovery statistics: in general, so-
lutions with higher slack have indeed lower recovery costs, but, for example, MIT 2500

has lower recovery costs than MIT 5000.

As the different disruption scenarios are not equally probable, average results
are not representative. We therefore analyze the performance profile (Dolan and
Moré, 2002) of the different models. They represent, for each model s and each
instance p, the probability (i.e. the proportion of instances)

P(rs,p ≤ τ : 1 ≤ s ≤ ns)

of the model’s solution to be withing a factor τ of the best found solution in the same
instance. rs,p is the value of the solution obtained with model s on instance p divided
by the best found solution for instance p and ns is the number of instances solved
with model s (in our case, ns = 8 for each model).

When τ = 1, the value of P(rs,p ≤ τ : 1 ≤ s ≤ ns) is the probability of model s to
lead to the best solution. Eventually, when τ grows larger, all models s will have a
probability P(rs,p ≤ τ : 1 ≤ s ≤ ns) = 1, as all models are able to solve the solution
and therefore have a finite value.

Figure 6.1 shows the performance profile with respect to the recovery costs for
Or, IT 10000, MIT 20000, CROSS 5000 and PCON 5000, which correspond to the best
solutions for each model. Figure 6.2 shows more in details the evolution of the per-
formance profiles shown in Figure 6.1 for a ratio τ ≤ 3.5.
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Figure 6.1: Performance profile for Or, IT 10000, MIT 20000, CROSS 5000 and
PCON 5000.
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Figure 6.2: Details for the evolution of the performance curves in Figure 6.1 for
τ ≤ 3.5.

The best model is clearly MIT 20000, as its probability to be the best model is
0.75. Moreover, it has probability 1 to have recovery costs at most 1.1 times the
lowest found solution. Interestingly, for all other models displayed in Figures 6.1
and 6.2, there is at least one instance for which the recovery costs are more than 12
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times higher than the recovery costs of MIT 20000. We observe also that the second-
best model is IT 10000, as is has probability 0.75 to have recovery costs within 1.6
times the lowest found recovery costs. The original solution is the one with lowest
probability of being within 3.4 times the best found solution. It also has the highest
ratio rs,p = 14.27 for instance A08.

For the models not displayed in Figures 6.1 and 6.1, only MIT 10000 is competing
with MIT 20000, having probability 0.875 to be within a factor τ = 1.2 of the best
solution; it is also the only solution with ratio τ < 10 for instance A08. All other
models are below the performance profile of IT 10000 for τ ≤ 2. The highest ratio is
τ = 14.60, obtained with CROSS 1000 for instance A08.

Next, we have to answer the question whether the proposed UFs are significantly
correlated or not with the different recovery statistics. Table 6.4 shows the correlation
between the UFs and the different recovery metrics and Table 6.5 shows the signifi-
cance test for the correlations. The statistical test is a bilateral significance test with
confidence level α = 0.01 and 166 degrees of liberty (there are 168 observed solutions
in total: 8 scenarios, each being evaluated on 21 different solutions). The correlation
is significant if the t-value of the test satisfies | tmin > 2.606.

UF IT MIT CROSS PCON

Recovery Costs -0.371 -0.480 0.052 -0.269
Total Delay -0.614 -0.393 0.154 -0.562
Pax Delay -0.550 -0.404 -0.005 -0.269

Canceled Flights -0.004 -0.194 0.152 -0.026
Rerouted Pax -0.267 -0.412 0.016 -0.166
Canceled Pax -0.631 -0.403 0.037 -0.634

Table 6.4: Values of the correlation between UF values and recovery statistics.

t-values IT MIT CROSS PCON

Recovery Costs -5.147 -7.046 0.666 -3.596
Total Delay -10.014 -5.510 2.009 -8.753
Pax Delay -8.475 -5.683 -0.067 -3.596

Canceled Flights -0.055 -2.541 1.988 -0.337
Rerouted Pax -3.569 -5.822 0.210 -2.170
Canceled Pax -10.481 -5.669 0.483 -10.558

Table 6.5: Significance test for the correlation with confidence level α = 0.01; the
correlation is significant if | t |≥ 2.606.

Table 6.4 shows that IT, MIT and PCON have a large negative correlation with
all the recovery statistics but the number of canceled flights; CROSS has only low
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correlation with the metrics. The significance tests in Table 6.5 show that CROSS is
not significantly correlated with any of the recovery statistics. Moreover, none of the
UFs is significantly correlated with the number of canceled flights.

Interestingly, PCON is not significantly correlated with the number of rerouted pas-
sengers. This is somewhat surprising, as the model maximizes the slack for passenger
connections and should, therefore, have a higher number of passengers making the
connection. A possible explanation is that in (6.18)-(6.19), we consider the set I of all
possible connections. In the data, however, some connections have large connection
time (around 6-8 hours) whereas some are tight (30 minutes to 1-2 hours). In the
model, however, connection time is considered for both large and tight connections in
the same way. An alternative is to restrict I to the set of tight connections, allowing
for focusing on the risky connections only. This also simplifies the PCON model, as the
number of constraints in (6.18)-(6.19) depends on | I |.

6.4.3 Synthesis

We solve instances with more than 1200 flights and 85 aircraft within reasonable
computation times. The obtained solutions show that there is a negative correlation
between recoverability and IT, MIT and PCON. The correlation is not significant for
CROSS, which contradicts the practitioners intuition.

There are two explanations for this. First of all, the results show a reduction of idle
time to gain plane crossings, which imply a diminution of the schedule’s recoverability.
On the other hand, although the recovery algorithm allows for plane swaps, it is the
case only for planes of the same fleet. Moreover, CROSS does not differentiate fleets
and assumes it to be homogeneous. To distinguish fleets, we need the meeting point
constraints for each fleet type, increasing by another factor the size of the model.
This explains why CROSS is not effective in our results. However, this does not imply
that this UF should be discarded, but only that the combination of the CROSS model
and our recovery algorithm does not lead to significant increase of recoverability.

The trade-off between loss of revenue at the scheduling phase and savings at the
recovery phase is impressive: with MIT 20000, a loss of less than 143,000e of booking
revenue (3.57%) enables to save over 3.82 Mioe in terms of recovery costs on the 8
1-day instances.

6.5 Conclusion

In this Chapter, we present an application of the UFO framework (see Chapter 4 and
Eggenberg et al., 2009) to the airline scheduling problem. We present a quantitative
simulation to evaluate a solution’s performance on real instances, using an external
evaluation tool.

The obtained results show that although our models do not consider any explicit
uncertainty characterization, the solutions are able to significantly improve the orig-
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inal solution’s recoverability. We prove that an increased idle time improves recover-
ability of a schedule. In the best case, the total recovery costs over 8 1-day instances
can be reduced by more than 3.82 Mioe which corresponds to a saving of 68.5% with
respect to the recovery costs of the original schedule. Additionally, the loss in terms
of revenue are small when the models do not consider missed connections: the loss
in terms of passenger revenue is always lower than 4.3% of the initial revenue, i.e.
less than 22,100e; however, these losses do not consider the possibility of additional
bookings on the new connections created in the schedule, nor the possibility that
retiming affects demands and fares.

This study opens different research directions. From the computational part, the
developed algorithms have still potential for improvements: replace the heuristic by
the exact version of the algorithm, improve convergence speed with smart branching
decisions, etc. The recovery algorithm would also benefit from an efficient generator of
repositioning flights. Furthermore, we assume fixed an inelastic demand with respect
to the retiming of the flights, which is not true in general. A more accurate study
on passenger demand with respect to retiming, lost connections and newly created
connections would definitely help for the approach to be closer to the real problem.

In terms of application, other UFs, the combination of different UFs and the
combination of the solutions with different recovery algorithms should be tested in
order to better understand

• the relations between UFs and recoverability;

• the relation between UFs and different recovery algorithms;

• the correlation between the different UFs;

• the efficiency of UFs for different airlines.

Finally, the simulations should be extended such as to consider crews and crew recov-
ery, as this is a crucial part in airline operations; this would allow to test crew-based
UFs.
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6.6 Appendix A: complete proactive statistics

Tables 6.6-6.13 report the a priori statistics for the 1-day instances (A01-A04 and
A06-A09) and Tables 6.14 and 6.15 for the 2-day instances A05 and A10.

6.7 Appendix B: complete recovery statistics

Tables 6.16-6.23 report the recovery statistics for the 1-day instances (A01-A04 and
A06-A09).
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Chapter 7

Conclusion

This thesis addresses various aspects of robust airline scheduling and recovery. In
Chapter 3 we study the airline recovery problem, adopting a wait-and-see strategy to
repair disrupted schedules. The intuitive extension is to adopt a preventive approach
in order to make the recovery less difficult and less costly. The proposed method is
the UFO framework described in Chapter 4. Finally, we show applications of the
UFO framework to airline scheduling. In Chapter 5 we show that schedules obtained
by UFO are indeed more robust than the original schedule. Finally, in Chapter 6,
we show that UFO schedules are indeed more recoverable, in the sense that when
recovery is required, the incurred recovery costs are significantly lower.

On the way from the pure “wait-and-see” to the “plan for recoverability” methods,
we successively consider different types of problems such as solving large-scale integer
programs, deriving tractable methods for optimization under uncertainty, evaluating
the performance of different solutions and so on.

More precisely, in Chapter 3 we develop a general model, the constraint-specific
recovery networks, which dissociates structural from unit-specific constraints. This
leads to a flexible model that can be adapted to different types of units. Moreover,
it allows to express problems involving different types of units (such as aircraft and
passengers) with a single model that has a polynomial number of constraints. Finally,
the resulting recovery algorithms are able to solve large-scale problems in reasonable
computational time. We illustrate the model with the aircraft and the passenger
recovery problems. For the aircraft recovery problem, the model allows for planning
maintenances during the recovery, which none of the existing methods in the literature
does. Results show that planning maintenances allows to improve the solutions.

In Chapter 4, we introduce Uncertainty Feature Optimization, which is a general
framework to solve problem prone to noisy data. We show that it is generalizing other
existing methods for optimization under uncertainty. As the framework considers the
uncertainty implicitly, we save the effort of modeling the noisy data and protect
against erroneous uncertainty sets. Additionally, we evaluate a solution according to
a deterministic UF, which is in general easier than estimating expected values, worst-
case values or other probabilistic measures that require the evaluation of the solution
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on the whole uncertainty set. We then design a simulation experiment to compare
solutions of robust optimization with solutions obtained by different UFs. The results
show that robust optimization is very sensitive to changes in the noise’s nature, which
is not the case of UFO solutions. Furthermore, solutions from the robust optimization
enhanced with UFO are more stable than the original robust solution.

Next, in Chapter 5, we address the question of how to measure robustness of airline
schedules, which is non-trivial. Indeed, some performance metrics are negatively cor-
related, as for example propagated delay and number of disrupted passengers. Hence,
the concept of “most robust” solution is not defined, as it depends on the considered
performance metric. We then compare solutions of different robust models for the
maintenance routing problem, including UFO solutions and models using an explicit
uncertainty characterization. The performance of UFO solutions is remarkable when
considering all the performance metrics, especially for the model maximizing slack by
retiming flights, which achieves better performance than the original schedule for all
performance metrics. The models using historical data achieve the best performance
when focusing on single metrics such as delay propagation, on-time performance and
total arrival delay.

Finally, in Chapter 6 we test the recoverability of the UFO solutions using the
recovery algorithm that we submitted to the ROADEF Challenge 2009. It is an
extension of the recovery algorithm introduced in Chapter 3 that complies with all
the constraints of a specific airline. The external cost evaluator allows us to compare
solutions according to a reliable cost metric. The results of some of the used models
on single-day instances of a large European airline show that the recovery costs are
impressively lowered: the highest observed savings on a single day reach 93%. In
absolute numbers, the highest savings are 1,32 Mioe.

Each of the chapters opens several challenging research questions. A common
extension to all the models introduced here is the application to crew scheduling and
crew recovery problems. Unfortunately, we do not have access to crew data, which
explains why the models are not adapted to crews. Including crews into the different
models is certainly one important step towards solving (and evaluating) more realistic
models of the airline scheduling problem. However, it is also a difficult task and rises
many modeling and computational challenges. Another general task is to compare
more models on different data sets. Indeed, each airline has a different organization
and specific rules that may change the performance profiles of our methods.

The presented models and methodologies show promising results for the airline
scheduling and airline recovery problems. There are many other fields for which
this thesis might be relevant and for which the methodology might apply: railroad
scheduling, maritime transportation and general scheduling problems are only a few
examples. In particular, the UFO framework is a general approach applicable to any
problem with uncertainty, which is the case of most optimization problems in the real
world. It especially appeals to large-scale problems for which more specific methods
are not applicable.
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A collaboration with École Polytechnique Fédérale de Lausanne (EPFL), Switzer-
land and APM technologies, sponsored by the Swiss Federal Office for Professional
Education and Technology (OPET) (June 2006 to May 2008).

Teaching

. Teaching assistant for EPFL undergraduate courses
Three courses in optimization and operations research.
. Supervision of student projects
One master projects of a student in mathematics and three semester projects of
students in communication systems.

Reviewer

Applied Mathematical Modelling.

http://people.epfl.ch/niklaus.eggenberg


Education

2006 University degree obtained from École Polytechnique Fédérale de
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