### Files

Action | Filename | Description | Size | Access | License | Resource Version |
---|

### Abstract

Advances in sequencing technology are yielding DNA sequence data at an alarming rate – a rate reminiscent of Moore's law. Biologists' abilities to analyze this data, however, have not kept pace. On the other hand, the discrete and mechanical nature of the cell life-cycle has been tantalizing to computer scientists. Thus in the 1980s, pioneers of the field now called Computational Biology began to uncover a wealth of computer science problems, some confronting modern Biologists and some hidden in the annals of the biological literature. In particular, many interesting twists were introduced to classical string matching, sorting, and graph problems. One such problem, first posed in 1941 but rediscovered in the early 1980s, is that of sorting by inversions (also called reversals): given two permutations, find the minimum number of inversions required to transform one into the other, where an inversion inverts the order of a subpermutation. Indeed, many genomes have evolved mostly or only through inversions. Thus it becomes possible to trace evolutionary histories by inferring sequences of such inversions that led to today's genomes from a distant common ancestor. But unlike the classic edit distance problem where string editing was relatively simple, editing permutation in this way has proved to be more complex. In this dissertation, we extend the theory so as to make these edit distances more broadly applicable and faster to compute, and work towards more powerful tools that can accurately infer evolutionary histories. In particular, we present work that for the first time considers genomic distances between any pair of genomes, with no limitation on the number of occurrences of a gene. Next we show that there are conditions under which an ancestral genome (or one close to the true ancestor) can be reliably reconstructed. Finally we present new methodology that computes a minimum-length sequence of inversions to transform one permutation into another in, on average, O(n log n) steps, whereas the best worst-case algorithm to compute such a sequence uses O(n√n log n) steps.