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Abstract

We study the existence of equilibria with endogenously complete mar-
kets in a continuous-time, heterogenous agents economy driven by a multi-
dimensional diffusion process. Our main results show that if prices are real
analytic as functions of time and the state variables of the model then a suffi-
cient condition for market completeness is that the volatility of dividends be
nondegenerate. In contrast to previous research, our formulation does not
require that securities pay terminal dividends and thus allows for both finite
or infinite horizon economies. We illustrate our results by providing easily
applicable conditions for market completeness in two benchmark cases: that
where the state variables are given by a vector autoregressive process and
that where they are given by a vector of autonomous diffusion processes.
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1 Introduction

Ever since the seminal contributions of Kreps (1982), Duffie and Huang (1985)
and Duffie (1986) the standard way of constructing securities market equilibria
in continuous-time economies with heterogenous agents has consisted of three
steps. First, compute an Arrow-Debreu equilibrium.1 Second, define candidate
prices for the traded risky securities by using the consumption price process of
the Arrow-Debreu equilibrium as a pricing kernel and, third, verify that these
prices give rise to dynamically complete markets.

The last step in the above program is crucial in establishing the existence of
an equilibrium. Otherwise there is no way to guarantee that the consumption
allocation of the Arrow-Debreu equilibrium can be implemented by dynamic
trading in the given set of securities. Unfortunately, this last step is also the
most technically difficult since the candidate prices are given by conditional
expectations which cannot be computed explicitly in general.2 The only case
where the verification of market completeness is straightforward is when there
is a single state variable and a single stock in the economy.3 However, this
assumption is far from being satisfactory as it does not allow for a study of the
cross-sectional properties of equilibrium prices.

In representative agent economies endogenous market completeness does not
matter for the existence of an equilibrium but it is nonetheless important for
two reasons. First, the microeconomic justification for representative agent
economies relies on aggregation results which require complete markets, see
Constantinides (1982). Second, it is now quite common in the asset pricing
literature to start from a representative agent economy and then use the equi-
librium pricing kernel “outside the model” in order to price securities, such as
derivatives, which were not included in the original menu of traded assets.4 Such
a use of the equilibrium pricing kernel requires complete markets since only in
that case does the derived price give the minimal amount necessary to replicate
the given cash flows by trading in the set of primitive securities.

1Existence results for Arrow-Debreu equilibria in infinite dimensional economies can be
found in Duffie and Zame (1989), Karatzas, Lehoczky, and Shreve (1990), Mas Colell and
Zame (1991), Anderson and Raimondo (2008) and Section 2.5 below.

2Examples of equilibrium models where the prices can be computed in closed form include
those of Santos and Veronesi (2006), Cochrane, Longstaff, and Santa Clara (2008), Hugonnier
(2008) and Martin (2008).

3See Dumas (1989), Wang (1996), Chan and Kogan (2002) and Longstaff and Wang (2008)
among others for examples of papers which consider heterogenous agent economies driven by
a single state variable.

4Examples of papers which follow such an approach include Benzoni, Collin Dufresne, and
Goldstein (2006), Bhamra, Kuhn, and Strebulaev (2008) and most of the papers in the so-called
long run risk literature, see Bansal (2009) for a survey.
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Despite its importance, the question of endogenous market completeness has
not received much attention in the general equilibrium literature. In fact, most
of the papers which study multi-asset equilibrium models assume in one form
or another that markets are dynamically complete in equilibrium but do not
actually prove it.5 A notable exception is Anderson and Raimondo (2008) who
assume that

(i) The economy has a finite horizon and all traded securities pay strictly
positive dividends at the terminal time,

(ii) The state variables of the economy are given by a vector of independent
standard Brownian motions,

and prove that under these conditions the candidate prices generate dynamically
complete markets as soon as the volatility matrix of the terminal dividends is
nondegenerate. Being the first of its kind, the result of Anderson and Raimondo
(2008) is obviously very important. However, their assumptions are often too
strong to be applicable in practice. For example, assumption (i) requires that
all traded assets pay terminal dividends and hence does not allow for securi-
ties which pay only continuous dividends as is customary in the continuous-
time asset pricing literature.6 Furthermore, this assumption implies that the
menu of traded securities cannot include instantaneously risk free bonds. The
latter restriction is not in itself unnatural as one could for example use a long-
lived zero coupon bond in zero net supply in place of instantaneously risk free
bond and then change numéraire to obtain a truly riskless asset. However,
most continuous-time asset pricing models take instantaneously risk free bonds
as primitive securities and it is therefore important to find conditions ensur-
ing endogenous market completeness in such economies. Another obvious, but
nonetheless important, limitation of assumption (i) is that it does not allow for
infinite horizon economies.

While assumption (ii) is satisfied in the benchmark case where dividends are
modeled as correlated geometric Brownian motions, Anderson and Raimondo
(2008) themselves remark that it is nonetheless quite restrictive. First, this
assumption severely restricts the set of dynamics that can be considered by
imposing that all economic quantities of interest be functions of time and the

5See for examples Duffie and Huang (1985), Duffie (1986), Huang (1987), Duffie and Zame
(1989) and Dumas, Kurshev, and Uppal (2008) among others.

6The assumption of no terminal lump dividends is usually imposed in order to prevent
the equilibrium asset prices from being artificially discontinuous at the terminal time due a
misalignment between the agents’ preferences for intermediate and terminal consumption. See
Section 3.1 below for details.
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current value of the Brownian motion. In particular, this assumption does not
allow for mean reversion in the dynamics of the state variables and thus excludes
all of the standard equilibrium term structure models which assume that the
state variables follow mean reverting affine processes, see Vasicek (1977) and
Cox, Ingersoll, and Ross (1985) among others. Second, and more importantly,
this assumption does not make a distinction between state variables and sources
of risk and therefore does not allow to consider economies where there are
more state variables than independent sources of risk. Important examples of
such economies include those where agents have heterogenous beliefs about the
evolution of the state variables and, more generally, those where the growth rates
and/or volatilities of dividends act as state variables.

In this paper, we extend the result of Anderson and Raimondo (2008) by
removing both of their key assumptions. More precisely, we provide sufficient
conditions for endogenous market completeness in a continuous-time economy
populated by heterogenous agents and driven by an arbitrary multidimensional
diffusion process. In our formulation, the traded securities do not need to pay
terminal dividends. As a result, the horizon of the economy can be either finite or
infinite and we can include instantaneously risk free bonds in the menu of traded
assets as is customary in the continuous time asset pricing literature. Another
advantage of our formulation over that of Anderson and Raimondo (2008) is
that it makes a clear distinction between state variables and sources of risk and
thus allows for a much richer set of dynamics. The main results of this paper
show that, under suitable regularity conditions on the candidate prices, dynamic
market completeness can be deduced from the structure of dividends.

In order to highlight the intuition behind our results consider a finite horizon
economy and recall that market completeness hinges on the invertibility of the
endogenous volatility matrix of the traded risky securities. The starting point
of our analysis is an asymptotic expansion which allows us to compute the
volatility matrix of the candidate prices from the primitives of the economy
in a neighborhood of the terminal time. Using this expansion we can then
easily verify whether markets are dynamically complete in a neighborhood of
the terminal time and the question becomes that of finding conditions under
which we may propagate this nondegeneracy to the whole interval. As observed
by Anderson and Raimondo (2008), who seem to have been the first ones to
use it in this context, the notion of real analyticity is particularly well suited
to answer this question because a real analytic function which is non zero
in an open set is automatically non zero almost everywhere in its domain of
analyticity. Applying this result to the problem at hand shows that the volatility
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matrix of the candidate prices is non degenerate at all times provided that it is
nondegenerate in a neighborhood of the terminal time and that the candidate
prices are real analytic.

When the risky securities pay terminal dividends, the zero order term in
the asymptotic expansion of the price volatility is the volatility of the terminal
dividends and it follows that markets are complete as soon as this matrix is
nondegenerate. In that case our result coincides with that of Anderson and
Raimondo (2008) albeit with a slightly different market structure. When the
securities do not pay terminal dividends, the asymptotic expansion does not
include a zero order term. However, the first order term is proportional to the
volatility of the intermediate dividends and it follows that markets are complete
as soon as this matrix is nondegenerate. A striking feature of these results is
that they only depend on the structure of the dividends of the traded securities:
changing the agents’ preferences and/or initial endowments has no effect on the
existence of an equilibrium.

The requirement that the volatility matrix of the dividends be non degenerate
is sufficient to guarantee that markets are endogenously complete in equilibrium
but it is by no means necessary. In particular, if some of the traded risky assets
are fixed income securities, such as bonds or annuities, then this requirement
obviously fails but markets may nonetheless be dynamically complete in equilib-
rium. In order to obtain sufficient conditions for the existence of an equilibrium
in such cases it is necessary to expand the volatility of the candidate prices to
higher orders and we provide complete details for the second order expansion.
Since some of the securities now draw their value only from variations in the
equilibrium pricing kernel, the second order conditions we obtain depend on the
agents’ preferences and endowments but they are nonetheless quite simple to
verify from the primitives of the economy.

In order to apply our results to a given model it is necessary to prove that the
candidate prices are real analytic.7 While real analyticity in the space variable
can be established under rather mild smoothness conditions, real analyticity in
time is in general much harder to prove. Furthermore, the conditions that are
needed to insure it are often very technical and not really informative. For these
reasons we decided to not try and give general conditions and instead focus
on two benchmark cases: that where the state variables are given by a vector
autoregressive process, and that where they are given by a vector of arbitrary

7More precisely, we need to show that the candidate prices are not only separately real
analytic with respect to time and the state variables but also jointly real analytic. However,
we need not worry about this issue in general since separately real analytic functions are under
mild conditions jointly real analytic by application of the results of Siciak (1969).
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autonomous diffusion processes such as square root or CEV processes. In both
cases, we provide joint conditions on the utility functions and dividends under
which the prices are real analytic as functions of time and the state variables.
Furthermore, we show that if agents have heterogenous power utility functions,
as is often the case in the asset pricing literature, then market completeness can
be guaranteed by assuming that the dividends have a nondegenerate volatility
matrix and satisfy a mild growth conditions.

Our main results show that if the economy has a finite horizon and the
candidate prices are real analytic, then dynamic market completeness can be
deduced from the structure of dividends provided that the candidate prices are
real analytic. Unfortunately, and as explained above, proving that the candidate
prices are real analytic is in general difficult and it is therefore natural to
wonder whether this inherently technical requirement is crucial for endogenous
market completeness. We show that this is indeed the case by constructing
explicit examples of representative agent economies where the dividends have
a nondegenerate volatility matrix and markets are nonetheless incomplete in
equilibrium because the candidate prices are not real analytic.

When the economy has an infinite horizon there is no terminal time close
to which the volatility matrix of the candidate prices can be approximated. To
circumvent this difficulty we follow an alternative approach: we fix the vector of
Pareto weights which determines the consumption allocation and approximate
the volatility of the candidate prices as functions of the agents’s common rate
of time preference.8 In other words, we start from a given Pareto optimal
allocation and look for conditions under which the corresponding prices generate
dynamically complete markets. While it does not deliver market completeness
for a fixed set of initial endowments, this alternative approach is nevertheless
quite powerful. In particular, it allows us to show that if the volatility of the
intermediate dividends is nondegenerate then the candidate prices associated
to a Pareto optimal allocation generate dynamically complete markets for all
but countably many values of the agents’ common rate of time preference. An
important advantage of infinite horizon economies over finite horizon ones is
that in the former case we do need to assume any real analyticity. The reason
for this simplification is that, in an infinite horizon economy, the gradient of
the candidate prices is automatically real analytic as a function of the agent’s
common rate of time preference and this is all that is needed in order to deduce

8The assumption that agents have a common rate of time preference implies that prices
are time independent functions of the state variables and is quite common in infinite horizon
economies, see Wang (1996), Chan and Kogan (2002) and Dumas et al. (2008) among others.
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market completeness from the structure of dividends.
The rest of the paper is organized as follows. In Section 2 we present the

model, state our assumptions and recall some basic results about the existence
and characterization of Arrow-Debreu equilibria. Section 3 contains our main
sufficient conditions for endogenous market completeness in finite or infinite
horizon economies. In Section 4 we use our main results to obtain conditions
for market completeness in economies driven by either vector autoregressive pro-
cesses (Sections 4.1) or vectors of autonomous diffusions (Section 4.2). Section
4.3 presents some counterexamples which show that real analyticity is crucial
for market completeness. Section 5 concludes the paper. The proofs of all the
results are provided in the appendix.

2 The economy

2.1 Information structure

We consider a continuous-time economy on the time span [0, T ] for some horizon
T which can be either finite or infinite.

Uncertainty in the economy is represented by a filtered probability space
(Ω,F ,F, P ) supporting a d−dimensional standard Brownian motion Z. The
filtration F = (Ft)t∈[0,T ] is the usual augmentation of the filtration generated by
the Brownian motion, and we let F ≡ FT so that the true state of nature is
entirely determined by the path of the Brownian motion up to the terminal time
of the economy.

2.2 Securities markets

The financial market is perfect and consists in d+1 traded securities: one locally
riskless money market account in zero net supply, and d dividend–paying stocks
which are indexed by i.9 Stock i is in positive net supply of one unit10 and

9The market structure that we consider, with a locally riskless money market account and
d dividend–paying stocks is standard in continuous–time finance, see for example Duffie (2001,
Chapter 9) and the references therein. While our analysis can be easily adapted to treat the
market structure of Anderson and Raimondo (2008) where none of the securities is riskless we
choose to focus on the standard formulation for simplicity of exposition. The results for this
alternative market structure are similar to those we present and are available upon request.

10The assumption that all risky securities are in positive net supply is only imposed for
simplicity of exposition. Our results directly extend to the case where some risky securities are
in zero net supply as long as we modify the definition of the aggregate supply of the consumption
good to include only the dividends of those securities which are in positive net supply.
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represents a claim to a cumulative dividend process of the form11

Dit ≡
∫ t∧T

0
gi(τ,Xτ )dτ + 1{t≥T}Gi(XT ).

Here gi ≥ 0 represents a flow rate of dividends, Gi ≥ 0 represents a terminal
lump dividend, and X ∈ Rn is state variables which evolve according to

Xt = X0 +
∫ t

0
µX(τ,Xτ )dτ +

∫ t

0
σX(τ,Xτ )dZτ (1)

for some constant initial value X0 ∈ Rn and some given functions µ and σ with
values in Rn and Rn×d. The key conditions that we impose on the dividends and
state variables are summarized in the following:

Assumption A: The drift, volatility and dividends are such that

(a) n ≥ d and rank(σX(t, x)) ≥ d for all (t, x) ∈ [0, T ]× Rn,

(b) The stochastic differential equation (1) admits a unique strong solution
which takes values in some X ⊆ Rn and admits an absolutely continuous
transition density with respect to Lebesgue measure.

(c) The functions µX and σX are real analytic in (t, x) ∈ [0, T ]×X .12

(d) The function gi is real analytic in (t, x) ∈ [0, T ]×X and there exists a open
set V ⊆ X such that the function Gi belongs to C1(V).

The first part of the above assumption implies that the state variables are
locally equivalent to the underlying Brownian motions and thus guarantees that
the corresponding information structures coincide. If this assumption was not
satisfied, then the information carried by the state variables would be strictly
contained in that generated by the Brownian motions and, as a result, markets
could never be dynamically complete in equilibrium.

The existence of an absolutely continuous transition density is posited in
order to guarantee that statements about functions which hold almost every-
where in [0, T ] × X also hold almost surely when x is replaced by an arbitrary
realization of the state variables. Sufficient conditions for the validity of this

11If the economy has an infinite horizon then we naturally assume that stocks do not pay
terminal dividends and set Gi ≡ 0 for all i.

12A function F : [0, T ] × X → R is real analytic in (t, x) over a subset O ⊆ [0, T ] × X if for
every (t, x) ∈ O it can be represented as a convergent power series on some open ball of strictly
positive radius centered at (t, x). See Krantz and Parks (2002) for a thorough treatment of the
theory of real analytic functions of several variables.
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rather weak assumption can be found in numerous references including Stroock
and Varadhan (1979) and Nualart (2006) among others.

The assumption that the drift, volatility and intermediate dividends are real
analytic does not impose any serious economic restriction since most, if not all,
of the models in the literature satisfy these conditions. Importantly, we do not
require that the terminal dividends be real analytic or even differentiable on the
whole state space. As in Anderson and Raimondo (2008) this generality allows
us to include derivatives with non differentiable payoffs, such as options, in the
menu of traded risky securities.

In what follows we denote by P = (B,S) ∈ R1+d the endogenous equilibrium
prices of the riskless asset and the stocks. As shown below, there is no loss in
generality in assuming that these processes are strictly positive semimartingales
such that B is of finite variation and satisfies B0 ≡ 1.

2.3 Consumption, preferences and endowments

The consumption space is the set of pairs (c, C) where c is a nonnegative adapted
process which represents a flow rate of consumption, and C is a nonnegative
random variable which represents a terminal lumpsum consumption.

The economy is populated by A ≥ 1 agents indexed by a. The preferences
of agent a over lifetime consumption plans are represented by a time additive
expected utility index of the form13

Ua(c, C) ≡ E0

[∫ T

0
e−ρaτua(cτ )dτ + e−ρaT va(C)

]
.

In the above equation, the constant ρa ≥ 0 is the agent’s subjective rate of time
preferences and (ua, va) is a pair of von Neuman–Morgenstern utility functions
which satisfy the following assumption.14

Assumption B: The utility functions ua, va : (0,∞)→ R are increasing, strictly
concave, real analytic and satisfy the Inada conditions u′a(0) = v′a(0) = ∞ and
u′a(∞) = v′a(∞) = 0.

Agent a is initially endowed with a portfolio consisting of ηai units of stock
13If the economy has an infinite horizon, or if there are no terminal dividends then we assume

that agents have no utility for terminal consumption and set va ≡ 0 for all a.
14All of our analysis can be extended to allow for utility functions which depend on the state

of nature through the state variables of the model as in Anderson and Raimondo (2008). We
restrict ourselves to the state independent case for simplicity of exposition.
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i, and we assume that

A∑
a=1

ηai = 1

for each i so that the securities markets clear at the initial date.15 Initial short
positions in some of the stocks are allowed as long as the initial wealth of agent
a, which is defined by

wa ≡ η>a S0 =
d∑
i=1

ηaiSi0,

is strictly positive when computed at equilibrium prices.

2.4 Trading strategies and feasible plans

A trading strategy is an adapted process (α, π) ∈ R1+d where αt and πit denote,
respectively, the number of units of the riskless asset and the number of units of
stock i which are held in the portfolio at time t.

A trading strategy (α, π) is said to finance a consumption plan (c, C) at cost
w if the associated wealth process

Wt ≡ αtBt + π>t St,

is nonnegative and satisfies the dynamic budget constraint

Wt = w +
∫ t

0
ατdBτ +

∫ t

0
π>τ d(S +D)τ −

∫ t

0
cτdτ − 1{t≥T}C (2)

where D ∈ Rd denotes the vector of cumulative dividends.16 In what follows,
a consumption plan is said to be feasible for agent a if there exists a trading
strategy which finances it at cost wa = η>a S0, and we let Ca(B,S) denote the
corresponding set of budget feasible consumption plans.

15For simplicity of exposition, we do not include individual income processes on top of the
agents’ initial portfolios. However, all of our analysis can be easily extended to that case as
long as the individual income processes are modeled as functions of time and the state variables
of the model.

16The requirement that the wealth process satisfies equation (2) implicitly includes the
condition that the various integrals are well defined. The necessary integrability conditions
are well-known and can be found in standard textbooks such as Duffie (2001)
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2.5 Equilibrium

The concept of equilibrium that we use is similar to that of equilibrium of plans,
prices and expectations introduced by Radner (1972).

Definition 1: An equilibrium consists of a pair P = (B,S) of securities price
processes, a consumption allocation A = {(ca, Ca)}Aa=1 and a set of trading
strategies S = {(αa, πa)}Aa=1 such that:

(a) For each a the consumption plan (ca, Ca) maximizes Ua over Ca(B,S) and
is financed by (αa, πa).

(b) Markets clear in the sense that
∑A

a=1 αat = 0,
∑A

a=1 πat = 1, and

A∑
a=1

(
cat − η>a g(t,Xt)

)
=

A∑
a=1

(
Ca − η>a G(XT )

)
= 0 (3)

hold almost surely for all t ∈ [0, T ) where g ∈ Rd and G ∈ Rd denote the
vectors of intermediate and terminal dividends.

An equilibrium is said to have dynamically complete markets if, subject to a mild
integrability condition, any consumption plan can be financed by some trading
strategy at some finite initial cost.

The rest of the paper is devoted to finding conditions under which there
exists an equilibrium with dynamically complete markets. As explained in the
next section, the starting point of our analysis will be a static Arrow-Debreu
equilibrium which we define as follows:

Definition 2: An Arrow-Debreu equilibrium is a nonnegative consumption price
process m and a consumption allocation A = {(ca, Ca)}Aa=1 such that

(a) For each a the pair (ca, Ca) maximizes Ua over the set of consumption
plans which satisfy the static budget constraint

E0

[∫ T

0
mτ (cτ − η>a g(τ,Xτ ))dτ +mT (C − η>a G(XT ))

]
≤ 0.

(b) The consumption good market clears in the sense that equation (3) holds
almost surely for all t ∈ [0, T ).

Assumption C: The set of Arrow-Debreu equilibria is non empty.
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Various sets of sufficient conditions for the validity of the above assumption
can be found in the literature, see for example Duffie and Zame (1989), Karatzas
et al. (1990) and Mas Colell and Zame (1991) among others. In a recent
paper Malamud (2008) obtained simple necessary and sufficient conditions for
the existence of an Arrow-Debreu equilibrium in an economy populated with
constant relative risk aversion agents. A slight modification of his arguments
delivers the following general result:

Proposition 1: Assume that for each a there are strictly positive constants γa1
and γa2 such that

γa1 ≤ −
xu′′a(x)
u′a(x)

,−xv
′′
a(x)

v′a(x)
≤ γa2,

and

A∑
a=1

2∑
n=1

E0

[∫ T

0
e−ρaτg(τ,Xτ )1−γandτ + e−ρaTG(XT )1−γan

]
<∞,

where the functions g ≡ g>1 and G ≡ G>1 denote the aggregate dividend rate
and the aggregate terminal dividend. Then Assumption C holds.

The following well-known result (see Huang (1987) or Duffie (2001) among
others) provides an explicit characterization of the equilibrium consumption
price process as the marginal utility of a representative agent endowed with the
aggregate supply of the consumption good, and will be useful for our construction
of equilibrium prices in the next section.

Proposition 2: In an Arrow-Debreu equilibrium

mt = 1{t<T}
∂u

∂c
(t, λ, g(t,Xt)) + 1{t=T}

∂v

∂c

(
λ,G(XT )

)
for some vector λ ∈ S of strictly positive Pareto weights where the social welfare
functions are defined by

v(λ, c) ≡ max
α∈S

A∑
a=1

λae
−ρaT va(αac),

u(t, λ, c) ≡ max
α∈S

A∑
a=1

λae
−ρatua(αac),

and S denotes the unit simplex. In particular, the equilibrium consumption price
function m is real analytic in (t, x) ∈ (0, T )×X .17

17In the case where the traded security do not pay dividends, the statement can be
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As shown by the above result, the equilibrium consumption price process is
continuous on [0, T ) but has a predictable jump

∆(XT ) ≡ ∂v

∂c

(
λ,G(XT )

)
− ∂u

∂c
(T, λ, g(T,XT ))

at the terminal time. In the context of our model, this somehow unnatural
jump reflects the potential misalignment between the representative agents’
preferences for intermediate and terminal consumption on the one hand, and
between intermediate and terminal dividends on the other.18 It can be avoided
by assuming that either dividends and utilities are aligned in the sense that
g(T, x) = G(x) and ua(c) = va(c) for each a, or that the stocks do not pay
lumpsum dividends at the terminal date.

3 Endogenous completeness

In order to find conditions under which our economy admits an equilibrium
with dynamically complete markets, we will follow the path set by Kreps (1982),
Duffie and Huang (1985), Duffie (1986) and Huang (1987). Namely, we will start
from a given Arrow-Debreu equilibrium, then construct candidate prices for the
traded securities by using the consumption price process as a state price deflator,
and finally check whether these prices deliver complete markets.

3.1 Candidate price functions

Fix an arbitrary Arrow-Debreu equilibrium and let mt ≡ m(t,Xt) denote the
corresponding consumption price process. Appealing to Proposition 2 for the
required smoothness and applying Itô’s lemma we obtain

dmt = −mt−dRt +
∂m

∂x
(t,Xt)>σ(t,Xt)dZt (6)

where the finite variation process R is defined by

Rt = −
∫ t∧T

0

Dm(τ,Xτ )
m(τ,Xτ )

dτ + 1{t≥T} log
(

1− ∆(XT )
m(T,XT )

)
, (7)

strengthened to show that m is real analytic in (t, x) ∈ (0, T ]×X .
18Other examples of equilibrium models where prices have singular components include the

case of finite marginal utility at zero studied by Karatzas, Lehoczky, and Shreve (1991), the
liquidity constraints model of Detemple and Serrat (2003) and the portfolio insurance model
of Basak (1995) among others.
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and D ≡ ∂/∂t + L denotes the extended infinitesimal generator of the state
variables. Equation (6) shows that −dRt measures instantaneous expected
percentage changes in the marginal rates of substitution of the representative
agent along the equilibrium path, and so we will take B ≡ exp(R) as our
candidate for the equilibrium price of the riskless asset.

On the other hand, a natural candidate for the equilibrium price of the stocks
is given by the fundamental value of the dividends computed at the equilibrium
price of the consumption good, namely

St = 1{t<T}P (t,Xt) + 1{t=T}G(XT ) (8)

where P is the function defined by

P (t,Xt) ≡ Et

[∫ T

t

m(τ,Xτ )
m(t−, Xt)

g(τ,Xτ )dτ +
m(T,XT )
m(t−, Xt)

G(XT )

]
. (9)

As can be seen from equations (7), (8) and (9), the candidate price processes are
continuous on [0, T ) and have a jump at the terminal time which they inherit from
the discontinuity in the equilibrium price of the consumption good. However,
and as required to guarantee that prices are arbitrage–free, the relative jumps
on all traded securities are equal:

lim
t→T

BT
Bt

= lim
t→T

SiT
Sit

= Q(XT ) ≡ 1− ∆(XT )
m(T,XT )

.

If this was not the case then trivial arbitrages could be implemented by buying
a security with a larger relative jump and short–selling the same amount of
another with a smaller relative jump just prior to the terminal time.

In order to assert that the candidate price system P = (B,S) gives rise to an
equilibrium it is sufficient to prove that if the riskless asset and the stocks can be
traded at these prices then markets are dynamically complete. In a continuous-
time model such as ours, dynamic market completeness of a given price system
is closely related to the properties of the volatility matrix of risky securities.
More precisely, it can be shown that markets are dynamically complete if and
only if the volatility matrix of the stocks is almost everywhere invertible, see for
example Duffie (2001, Chapter 6) or Karatzas and Shreve (2001, Chapter 1).
Now assume that P is smooth enough for an application of Itô’s lemma. In that
case the volatility matrix of the candidate prices can be computed as

σP (t,Xt) ≡
∂P

∂x
(t,Xt)σX(t,Xt)

13



and we conclude that markets are dynamically complete if and only if the matrix
valued function σP is nondegenerate. The following proposition summarizes the
above discussion.

Proposition 3: Fix an Arrow-Debreu equilibrium (m,A) and let the price sys-
tem P = (B,S) be defined as above. If P ∈ C1,2((0, T )×X ) and

detσP (t, x) 6= 0 (10)

almost everywhere on (0, T )×X then there exists a set S of strategies such that
P, A and S form an equilibrium with dynamically complete markets.

The main obstacle one encounters when trying to apply the above result in
order to establish the existence of an equilibrium is that, unless d = 1 or the
candidate price function can be computed in closed form,19 it is in general very
difficult to check directly that equation (10) holds. To circumvent this difficulty,
we show in the next section that, under appropriate regularity conditions, it may
be sufficient to check that the volatility of the dividends, rather than that of the
price itself, is nondegenerate.

3.2 Real analyticity and market completeness

In this section we present conditions which are sufficient to guarantee that the
gradient of the candidate price function is invertible and, hence, that there exists
an equilibrium with dynamically complete markets. In order to highlight the
intuition behind our approach we start by considering the finite horizon case
before we turn to infinite horizon economies.

3.2.1 Finite horizon economies

Let T be a finite horizon and P be the pre–horizon price function defined by
equation (9). This function satisfies

lim
t→T

P (t, x) =
G(x)
Q(x)

≡ G(x)

and, assuming that it is once continuously differentiable with respect to the space
variable for all (t, x) ∈ (0, T ]× V, we obtain

∂P

∂x
(t, x) =

∂G
∂x

(x) + o(1).

19Examples of multi–asset equilibrium models where the candidate price function can be
computed in closed form include those of Santos and Veronesi (2006), Cochrane et al. (2008),
Hugonnier (2008) and Martin (2008) among others.
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This equation shows that sufficiently close to the terminal time, the volatility
of the candidate stock prices can be approximated by that of the vector G(Xt)
of “effective” terminal dividends. In particular, the corresponding determinants
are related by

detσP (t, x) = detσG(T, x) + o(1)

for all x ∈ V where

σG(t, x) ≡ ∂G
∂x

(x)σX(t, x),

denotes the volatility of the effective terminal dividends; and it follows that
equation (10) holds for almost every x ∈ V in a neighborhood of the terminal
time as soon as σG(T, x) is non degenerate for almost every x ∈ V.

Assuming that the above calculations can be justified, the question becomes
that of knowing whether there are conditions under which we may propagate
the validity of equation (10) from a open subset of (0, T )× X to the whole set.
As observed by Anderson and Raimondo (2008) who seem to have been the first
ones to use it in this context, the notion of real analyticity is particularly well
suited to answer this question because a real analytic function which is non zero
on an open set is automatically non zero almost everywhere in its domain of
analyticity. Applying this simple property to the problem at hand gives us our
first main result:

Theorem 1: Assume that the function P of equation (9) is real analytic in
(t, x) ∈ (0, T )×X and belongs to C1((0, T ]× V). If

detσG(T, x) 6= 0 (11)

holds for almost every x ∈ V then there exists an equilibrium with dynamically
complete markets.

The above theorem shows that if the price function is real analytic then
dynamic market completeness obtains as soon as the volatility of G is nonde-
generate. If one assumes, in addition, that there is no jump in the equilibrium
consumption price process at the terminal time, then this condition simplifies
further and only requires that the volatility matrix

σG(t, x) ≡ ∂G

∂x
(x)σX(t, x)

of the terminal dividends be nondegenerate. In that case, our condition is
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similar to that obtained by Anderson and Raimondo (2008) albeit with a slightly
different market structure.20 However, it is important to note that our result
allows for more state variables than there are underlying sources of risk and does
not require that these state variables be Brownian motions.

Most of the asset pricing literature focuses on equilibrium models in which
risky securities do not pay terminal dividends. For such models, Theorem 1 is
of no help since the sufficient conditions it provides require that all the risky
securities pay terminal dividends. Nevertheless, and as we now demonstrate,
the techniques used to establish Theorem 1 can be easily adapted to cover the
case of risky securities which only pay intermediate dividends.

Assume for simplicity that agents have no utility for terminal consumption,
and that the securities do not pay terminal dividends. In that case the equi-
librium consumption price process is continuous and, as a result, the candidate
price function is simply defined by

St = P (t,Xt) = Et

[∫ T

t

m(τ,Xτ )
m(t,Xt)

g(τ,Xτ )dτ

]
. (12)

Using this expression and assuming that the interchange of limit and expectation
can be justified, we obtain

−∂P
∂t

(T, x) = lim
t↑T

P (t, x)− P (T, x)
T − t

= lim
t↑T

Et

[
1

T − t

∫ T

t

m(τ,Xτ )
m(t, x)

g(τ,Xτ )ds

]
= g(T, x),

and it follows that

P (t, x) = (T − t)g(T, x) + o(T − t).

Assuming further that the relevant cross–derivative is continuous all the way
to the terminal time, and formally differentiating on both sides of the above
expression we obtain that the volatility of the candidate prices satisfies

σP (t, x) = (T − t)σg(T, x) + o(T − t).
20Anderson and Raimondo (2008) assume that in place of instantaneously riskfree bonds the

menu of traded securities includes a zero net supply security with terminal payoff G0 > 0 and
price P0. In that case a straightforward modification of our arguments shows that Theorem 1
remains valid provided that we replace P by P/P0 and G by G/G0.
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where

σg(t, x) ≡ ∂g

∂x
(t, x)σX(t, x)

is the volatility of the intermediate dividends. This equation shows that, in
a neighborhood of the terminal time, the volatility of the candidate prices is
proportional to that of the intermediate dividends. In particular, equation (10)
holds almost everywhere in a neighborhood of the terminal time as soon as the
matrix σg(T, x) is non degenerate for almost every x ∈ X , and assuming that the
candidate price function is real analytic then allows to conclude that markets
are complete. We summarize the above discussion as follows:

Theorem 2: Assume that the function P of equation (12) is real analytic in
(t, x) ∈ (0, T )×X and belongs to C2((0, T ]×X ). If

detσg(T, x) 6= 0 (13)

holds for almost every x ∈ X then there exists an equilibrium with dynamically
complete markets.

The results of the above theorems are quite intuitive. Indeed, these theorems
simply state that if the price function is real analytic in time then non degeneracy
of the volatility of either terminal or intermediate dividends is automatically
transmitted to the volatility matrix of the prices themselves. A striking feature
of these results is that they depend only on the dividends and not on the
other primitives of the economy: changing the agents’ preferences or initial
endowments has no effect on the existence of an equilibrium. If one can prove
real analyticity of the price function from first principles, then Theorems 1 and 2
provide an easy way of deciding whether a given model gives rise to equilibrium
with dynamically complete markets by simply checking if the dividends are
functionally independent. As we illustrate in Section 4 below, the most difficult
part in this line of attack is of course to find reasonably general conditions which
guarantee that the candidate price function is real analytic.

The conditions of Theorems 1 and 2 are sufficient to guarantee the existence
of an equilibrium with dynamically complete markets but they are by no means
necessary. In particular, if some of the risky assets are fixed income securities
which pay constant dividends, then equation (13) obviously fails but markets
may nonetheless be dynamically complete as illustrated by Example 1 below. In
order to find sufficient conditions for dynamic market completeness in such cases
one needs to perform a higher order expansion of the volatility of the candidate
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prices. While such an expansion can in principle be computed to an arbitrary
order, the derived expression become more and more complicated as the order
of the expansion increases. For the sake of readability, we therefore present the
details only for the second order expansion.

Under appropriate regularity conditions, it can be shown that a second order
expansion of the gradient of the price function is given by

σP (t, x) = (T − t)σg(T, x) +
1
2

(T − t)2H(x) + o(T − t)2

where we have set

H(x) =
∂

∂x

(
D(mg)(T, x)
m(T, x)

)
σX(T, x)− 2

∂σg
∂t

(T, x)

and D ≡ ∂/∂t + L denotes the extended infinitesimal generator of the state
variables. Combining this expansion with well-known results from linear algebra
(see the appendix for details) and appealing to the same property of real analytic
functions as before leads to a second order sufficient condition for the existence
of an equilibrium with dynamically complete markets. In order to state this
condition let Bi denote the matrix obtained from σg by replacing its i−th row
with the corresponding row of H, namely

Bi(x) = σg(T, x) + eie>i (H(x)− σg(T, x)) , (14)

where ei is the i−th vector in the orthonormal basis of Rd.

Proposition 4: Assume that the function P of equation (12) is real analytic in
(t, x) ∈ (0, T )×X and belongs to C3((0, T ]×X ). If

d∑
i=1

detBi(x) 6= 0 (15)

holds for almost every x ∈ X then there exists an equilibrium with dynamically
complete markets.

In contrast to that of Theorem 2 the sufficient condition of Proposition 4
depends not only on the dividends but also on the agents’ preferences and
endowments through the equilibrium price of the consumption good. This is
intuitive since some of the risky securities now draw their value solely from
variations in the equilibrium consumption price process and the latter is jointly
determined by dividends, preferences and endowments. Nevertheless, and as we
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illustrate in the following example, the fact that the sum of determinants in
equation (15) does not vanish can often be verified by direct calculation.

Example 1: Assume that the uncertainty is generated by a two dimensional
Brownian motion Z and consider a finite horizon economy populated by identical
agents with constant relative risk aversion γ > 0, rate of time preference ρ ≥ 0
and initial portfolio η = 1/A.

Assume that the economy is driven by two state variables which evolve
according to

dX1t =
(
X2t − ‖σ1‖2/2

)
dt+ σ>1 dZt,

dX2t = κ (θ −X2t) dt+ σ>2 dZt,

for some (κ, θ, σ1, σ2) ∈ R × R × R2 × R2 such that σ1 and σ2 are linearly
independent; and that the intermediate dividends are given by

g1(t,Xt) ≡ 1,

g2(t,Xt) ≡ exp(X1t).

The interpretation of this market structure is as follows. The first risky security
is an annuity which pays one unit of consumption per unit of time while the
second risky security is a stock. The dividends of this stock follow a geometric
Brownian motion with constant volatility σ1 and a stochastic drift which is
imperfectly correlated to the dividend and assumed to follow a mean reverting
Ornstein–Uhlenbeck process with constant coefficients κ, θ and σ2.

Using standard results it can be shown that the primitives of this economy
satisfy the conditions of Proposition 1 and it follows that an Arrow-Debreu
equilibrium exists. However, the conditions of Theorem 2 cannot be applied to
assert the existence of an equilibrium with dynamically complete markets since
all the derivatives of the function g1 are zero. To circumvent this difficulty we
will use the result of Proposition 4.

Since agents have homogenous power utility functions, time preference rates
and endowments, we know that the equilibrium consumption price process takes
the form

m(t,Xt) = e−ρtAγ−1 (1 + exp(X1t))
−γ .

and a straightforward calculation shows that the sum of determinants in equation
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(15) is explicitly given by

2∑
i=1

detBi(x) =
γe2x1

1 + ex1
det(σ1, σ2) 6= 0.

Furthermore, it can be checked that the primitives of the model satisfy the
conditions of Proposition 6 below and it follows that there exists an equilibrium
with dynamically complete markets.

3.2.2 Infinite horizon economies

Set va = G ≡ 0 for all a and consider an infinite horizon economy. The
following assumption guarantees that the candidate prices are time independent
functions of the state variables and is quite common in the continuous-time
general equilibrium literature, see Wang (1996), Chan and Kogan (2002) and
Dumas et al. (2008) among others.21

Assumption D: All agents have the same subjective rate of time preference and
the functions µ, σ and g are time independent.

Since the model now has an infinite horizon, there is no terminal time
close to which the volatility of candidate prices can be approximated. As a
result, we cannot use the approach of the preceding section to obtain conditions
which guarantee market completeness for a given set of initial endowments. To
circumvent this difficulty we will follow an alternative approach: we will fix
the vector of Pareto weights which determines the consumption allocation and
approximate the candidate prices as functions of the agents’s common rate of
time preference.

In order to implement this approach, fix an arbitrary vector λ ∈ S of Pareto
weights and denote by ρ ≥ 0 the agents’ common rate of time preference. Using
Assumption D together with the result of Proposition 2 it can be shown that
the equilibrium consumption price process is given by

m(t,Xt, ρ, λ) ≡ e−ρtm(Xt, λ)

for some function m which depends only on the state variables and the vector
Pareto weights. Given this consumption price process, the candidate stock prices

21The results of this section can be easily extended to allow for heterogenous discount rates
and time dependent dividends at the cost of increased notational burden.
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are defined by

St = P (Xt, ρ, λ)

≡ Et
∫ ∞
t

e−ρ(τ−t)
m(Xτ , λ)
m(Xt, λ)

g(Xτ )dτ =
∫ ∞

0
e−ρτ

π(τ,Xt, λ)
m(Xt, λ)

dτ

where we have set

π(τ, x, λ) ≡ E[m(Xτ , λ)g(Xτ )|X0 = x], (16)

and the last equality follows from the Markov property of the state variables and
Fubini’s theorem. Since the agents’ common rate of time preference only appears
in the discount factor, we have that the function P and all its space derivatives
are automatically real analytic in ρ as soon as they are well-defined. In order to
guarantee that this is indeed the case we following regularity condition:

Assumption E: The function π belongs to C2(R+×X ) and there exist a constant
K > 0 and a continuous function Π ≥ 0 such that

πi(τ, x, λ) +
∣∣∣∣∂πi∂xj

(τ, x, λ)
∣∣∣∣+
∣∣∣∣ ∂2πi
∂xj∂xk

(τ, x, λ)
∣∣∣∣ ≤ eτKΠ(x) (17)

for all (τ, x) ∈ (0,∞)×X and 1 ≤ i, j, k ≤ d.

As a result of the above assumption we have that the candidate price function
is well-defined and twice continuously differentiable in with respect to the state
variables for all ρ > K. Furthermore, it can be shown that the gradient of the
candidate price function is real analytic in ρ and satisfies

∂P

∂x
(x, ρ, λ) = (1/ρ)

∂g

∂x
(x) + o(1/ρ).

This equation shows that for large values of ρ the volatility of the candidate
prices is approximately proportional to that of the intermediate dividends. In
particular, the corresponding determinants are related by

detσP (x, ρ, λ) = (1/ρ)d detσg(x) + o (1/ρ)d ,

and it follows that the volatility of the candidate prices is invertible almost
everywhere in a neighborhood of 1/ρ = 0 as soon as the volatility of the
intermediate dividends is almost everywhere nondegenerate. Since the gradient
of the candidate price function is real analytic in ρ we can then propagate this
property from a neighborhood of infinity to almost every value of ρ > K and thus
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obtain dynamic market completeness for almost every rate of time preference.
The following result constitutes the exact counterpart of Theorem 2 for the

case of infinite horizon economies and summarizes the above discussion.

Theorem 3: Consider an infinite horizon economy and fix a vector of Pareto
weights λ ∈ S such that Assumption E holds true. If

detσg(x) 6= 0 (18)

holds for almost every x ∈ X then the consumption allocation associated with
λ ∈ S gives rise to an equilibrium with dynamically complete markets for all but
countably many ρ > K.

The above result shows that, in an infinite horizon economy, a Pareto optimal
allocation gives rise to dynamically complete markets for almost every rate of
time preference as soon as the the volatility matrix of the dividends is nonde-
generate. As in the finite horizon case, this first order condition is only sufficient
and higher order conditions can be obtained by expanding the volatility of the
candidate prices further. In particular, it can be shown that the second order
expansion is given by

σP (x, ρ, λ) = (1/ρ)σg(x) + (1/ρ)2F (x, λ) + o(1/ρ)2

where we have set

F (x, λ) ≡ ∂

∂x

(
L(mg)(x, λ)

m(x, λ)

)
σX(x)

Combining this expression with well–known results from linear algebra and
appealing to the same property of real analytic functions as before then leads
to a second order sufficient conditions for the existence of an equilibrium with
complete markets. In order to state this condition let Ci : X ×S → Rd×d denote
the matrix valued function defined by

Ci(x, λ) ≡ σg(x) + eie>i (F (x, λ)− σg(x)) (19)

where ei is the i−th vector in the orthonormal basis of Rd.

Proposition 5: Consider an infinite horizon economy and fix a vector of Pareto
weights λ ∈ S such that Assumption E holds true. If

d∑
i=1

detCi(x, λ) 6= 0 (20)
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holds for almost every x ∈ X then the consumption allocation associated with
λ ∈ S gives rise to an equilibrium with dynamically complete markets for all but
countably many ρ > K.

In order to illustrate the application of the above results we now consider an
example taken from Dumas et al. (2008).

Example 2: Assume that the uncertainty is generated by a two dimensional
Brownian motion Z and consider an infinite horizon economy driven by a four
dimensional vector of state variables which evolves according to

dX1t = X1tX2tdt+X1tσ1dZ1t,

dX2t = κ(θ −X2t)dt+ σ2dZ1t,

dX3t = κ(θ −X3t)dt+ σ31dZ1t + σ32dZ2t,

dX4t = X4t((X3t −X2t)/σ1)dZ1t,

for some constants (κ, θ, ψ, σ1, σ2, σ3) ∈ R×R×R×R×R×R2 such that σ32 6= 0,
σ1 6= 0. The economy is populated with two agents whose utility functions given
by

u1(c) ≡ c1−γ

1− γ
,

u2(x, c) ≡ x4u1(c) =
x4c

1−γ

1− γ

for some strictly positive constant γ ∈ N which represents the agents’ common
relative risk aversion coefficient22 and we assume that the aggregate endowment
is given by

g(Xt) ≡ X1t.

The interpretation of this model is based on the assumption that agents have
heterogenous beliefs about the evolution of the economy. The first agent believes
that the growth rate of the aggregate endowment process is X2 while the second
one believes that it is X3. The remaining state variable represents the density of
the beliefs of agent 2 with respect to those of agent 1 and appears multiplicatively
in the definition of the utility function of agent 2 in order to allow us to compute
the expected utilities of both agents under the same probability measure.

22The assumption of an integer coefficient of relative risk aversion is imposed in order to
guarantee that the finite horizon price function π of equation (16) can be computed in closed
form, see Dumas et al. (2008, Section 3) for details.
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Since there are two independent sources of risk in the model we know that one
riskless asset and at least two risky securities are needed in order to implement
the Arrow-Debreu equilibrium by continuous trading. Dumas et al. (2008)
consider the case where these two securities are given by an annuity in zero
net supply and a claim to the aggregate endowment but they do not actually
prove that this menu of securities delivers complete markets. We now fill this gap
by showing that in their model dynamic market completeness can be obtained
by direct application of the results of this section.

By slightly extending the results of Proposition 2 to allow for state dependent
utility functions we obtain that in the above economy equilibrium price of the
consumption good takes the form

m(t,Xt, ρ, λ) = e−ρtm(Xt, λ) = e−ρt
1
λ2

(
a+Xb

4t

X1t

)γ
where the constant λi ∈ (0, 1) represents the weight of agent i in the definition
of the social welfare function and we have set b ≡ 1/γ, a ≡ (λ2/λ1)b > 0. Using
this expression in conjunction with the definition of the dividends we obtain that
the sum of determinants in equation (20) is explicitly given by

2∑
i=1

detCi(x, λ) =
ab(b− 1)(x2 − x3) + σ2

1(a+ xb4)
σ1b(a+ xb4)2

x1x
b
4σ32.

Since the function on the right hand side of the above expression is real analytic
in x ∈ X and not identically zero we know that its zero set has measure zero.
Furthermore, a detailed inspection of the closed form results of Dumas et al.
(2008, Equations (36) and (37)) show that all the conditions of Assumption E
are satisfied23 and the existence of an equilibrium with dynamically complete
markets now follows from Proposition 5.

The above results show that in infinite horizon economies dynamic market
completeness can be deduced from the structure of dividends under suitable
regularity conditions. A notable difference between finite and infinite horizon
economies it that for the latter we do not need to assume any real analyticity. The
reason behind this simplification is that, with an infinite horizon and identical
rates of time preference, the gradient of the price function is automatically real
analytic in ρ as soon as it is well-defined and this is all we need to propagate the
non degeneracy of the dividends to the prices. In contrast, in the finite horizon

23The precise definition of the lower bound on the agents’ common rate of time preference
can be found in Dumas et al. (2008, Lemma 6), we omit the details
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case we have to assume that the price function is real analytic in (t, x) and, as
we illustrate in Section 4 below, the conditions needed to guarantee that this
assumption holds for a given model can be quite complicated.

4 Applications

Given the results of the previous section, proving the existence of an equilibrium
with complete markets reduces to finding conditions under which the candidate
prices are real analytic for the finite horizon case, and satisfy Assumption E for
the infinite horizon case.

In this section we provide conditions under which these properties hold
for two concrete classes of models: those where the state variables follow a
vector autoregressive process and those where each of the state variable is an
autonomous diffusion process. At the end of the section we also discuss whether
real analyticity is crucial for market completeness. In particular, we show that
as soon as one relaxes this requirement it is possible to construct examples of
models which satisfy all the other conditions but nonetheless fail to generate
dynamically complete markets.

4.1 Vector autoregressive processes

Assume that the vector of state variables evolves according to a continuous-time
vector autoregressive process of the form

dXt = (b(t)−A(t)Xt) dt+ σX(t)dZt (21)

where Z ∈ Rd is a Brownian motion and b ∈ Rn, A ∈ Rn×n and σX ∈ Rn×d are
real analytic functions of time such that the matrix

ΣX(t) ≡ σX(t)σX(t)>

has rank at least d for all t ∈ [0, T ]. This class of models includes as a special
case the model studied by Anderson and Raimondo (2008) where the state
variables coincide with the underlying Brownian motions but it is significantly
more flexible as it allows for arbitrary mean reverting Gaussian processes with
deterministic coefficients.

Consider first a finite horizon economy, and let p(τ, x, τ + θ, y) denote the
transition density of the state variables from x to y over a time interval of length θ
starting at time τ . With this notation we have that the candidate price function
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defined in equation (9) can be written as a double integral:

m(t−, x)P (t, x) =
∫

Rd
p(t, x, T, y)m(T, y)G(y)dy

+
∫ T

t

∫
Rd

p(t, x, τ, y)m(τ, y)g(τ, y)dydτ.

In order to obtain the existence of an equilibrium with dynamically complete
markets we need to find conditions under which the above integrals are real
analytic as functions of time and the state variables. While real analyticity with
respect to the state variables can be obtained under rather weak integrability
conditions, real analyticity in time is much more difficult to establish. Using
Assumption A in conjunction with the result of Proposition 2 and the fact that
p is a Gaussian transition density we have that the integrands are all real analytic
in time but this is not sufficient to show that the integrals themselves are real
analytic in time. To obtain this property we also need to know that the radius
of time analyticity of the integrands is uniformly bounded from below. This is
the purpose of the following:

Definition 3: A function f belongs to the class K if it is real analytic in (t, x) ∈
(0, T )× Rn and such that

sup
τ∈O
|f(τ, x)| ≤ eK‖x‖αK (22)

for some nonnegative constants K and α < 2 and some complex neighborhood of
the time interval [0, T ].

Theorem 4: Consider a finite horizon economy where the state variables evolve
according to equation (21). Assume that n = d and that the function

f(t, x) ≡ m(t, x)g(t, x) +m(T, x)G(x) (23)

belongs to the class K of Definition 3. Then there exists an equilibrium with
dynamically complete markets under either of the following conditions:

(a) Equation (11) holds for almost every x ∈ Rd,

(b) There are no terminal dividends and either of equations (13) and (15) holds
for almost every x ∈ Rd.

The above result shows that if the state variables of the economy follow a
vector autoregressive process then an upper bound on discounted dividends are
sufficient to guarantee the existence of an equilibrium with dynamically complete
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markets. The form of the upper bound is quite intuitive given the decay of the
Gaussian transition density associated with the state variables. What is special
about this upper bound is that it must hold not only for real values of t but also
for complex ones in a neighborhood of the time interval [0, T ].

A significant restriction imposed by Theorem 4 is that it requires the number
of state variables (n) to equal the number of sources of risk (d). The reason
behind this restriction is that, when there are more state variables than sources
of risk (n > d), the degeneracy of the instantaneous variance–covariance matrix
ΣX(t) causes the price integral to blow up for complex values of the time
argument. This does not mean, however, that there is no way to analytically
continue the candidate price function in the complex domain but we have not
been able to do so with the techniques of this paper.

When b ≡ 0d, A ≡ 0d×d and σ ≡ Id×d the state variables coincide with the
underlying Brownian motions and the model collapses to that of Anderson and
Raimondo (2008) albeit with a slightly different market structure. In that case
Theorem 4 shows that the conditions imposed by these authors are in general not
sufficient for the validity of their main result since they only require that their
marginal utility bounds (see their equation (2) p. 851) hold for real values of t
and not for complex ones. The only case where their arguments apply without
any additional assumption is when dividends are time independent and agents
have identical rates of time preference. Indeed, in that case we have that

f(t, x) = e−ρtn(x)g(x) + e−ρTn(x)G(x)

for some nonnegative function n and it follows that the bound automatically
hold for complex values of t if they hold for real ones.

In order to verify the upper bound in Theorem 4 it is necessary to impose
conditions on the utility functions and the dividends which jointly determine the
equilibrium consumption price. This is easily done when intermediate dividends
are time independent and agents have identical rates of time preference since in
that case it suffices to assume that (22) holds at a single point in time. In the case
where time preference rates are heterogenous and/or intermediate dividends are
time dependent, sufficient conditions for general utility functions become very
technical. For this reason we formulate precise conditions only for the benchmark
case of constant relative risk aversion.

Proposition 6: Consider a finite horizon economy where the state variables
evolve according to equation (21). Assume that n = d and that

(a) Agent a has subjective rate of time preference ρa ≥ 0 and his utility
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functions are given by

ua(c) = va(c) ≡
c1−γa − 1

1− γa

for some strictly positive relative risk aversion coefficient γa.

(b) The dividends of stock i are given by

Gi(x) = νi(x), (24)

gi(t, x) = eδitκi(x), (25)

for some constant δi and some real analytic functions (νi, κi) such that

e−Ji‖x‖
α
Ji ≤ νi(x), κi(x) ≤ eKi‖x‖αKi

for some strictly positive constants Ji, Ki and α < 2.

Then there exists an equilibrium with dynamically complete markets as soon as
either of conditions (a) or (b) in Theorem 6 is satisfied.

We now close this section by providing conditions for the existence of an
equilibrium with dynamically complete markets in an infinite horizon economy
where the state variables follow a vector autoregressive process. In that case the
required conditions are much weaker as we no longer need to establish any real
analyticity. In particular, we can now treat the case of economies where there
are more state variables than there are sources of risk.

In order to accommodate an infinite horizon, and to guarantee that the
distribution of the state variables is nondegenerate despite the fact that there
can be more state variables than sources of risk we impose the following:

Assumption F: The coefficients b, A and σX are constant and such that

(a) The variance–covariance matrix of the state variables

Ω(τ) ≡ E
[
(Xτ − E[Xτ ]) (Xτ − E[Xτ ])>

]
is positive definite for all τ > 0.

(b) Either all the eigenvalues of A have strictly positive real parts or A is
diagonalizable and all its eigenvalues have nonnegative real parts.

Theorem 5: Consider an infinite horizon economy where the state variables
evolve according to equation (21) and suppose that Assumption D and Assump-
tion F hold true. If
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(a) There exists a strictly positive constant C such that

m(x, λ)g(x) ≤ eC‖x‖C (26)

for all x ∈ Rn,

(b) Either of equations (18) and (20) hold for all x ∈ Rn

then there exists a nonnegative constant ρ0 such that the consumption allocation
associated with λ ∈ S gives rise to an equilibrium with dynamically complete
markets for all but countably many ρ > ρ0.

In order to apply the above results it suffices to find joint conditions on
utility functions and dividends under which equation (26) holds. When agents
have power utility functions with heterogenous risk aversion coefficients such
conditions can be deduced from those of Proposition 6. Indeed, if the time
independent dividends satisfy

e−Ji‖x‖Ji ≤ gi(x) ≤ eKi‖x‖Ki

for some strictly positive constants Ji, Ki then the arguments used in the proof
of Proposition 6 show that equation (26) holds for some strictly positive constant
C and it follows that an equilibrium exists for almost all sufficiently large value
of the agents’ common rate of time preference.

The lower bound ρ0 can be computed explicitly in a number of cases. In
particular, if all the eigenvalues of the matrix A have strictly positive real parts
then the state variables are stationary and it follows that ρ0 = 0. On the other
hand, if A ≡ 0n×n then the state variables are correlated Brownian motions with
drift and the lower bound is given by

ρ0 = Cb>1d +
1
2
C21d>ΣX1d.

In the general case where some of the eigenvalues of the matrix A 6= 0n×n
are allowed to have vanishing real parts the nonnegative constant ρ0 can still
be computed in closed form but its expression is complicated and not very
informative so we omit it.

In order to apply the result of Theorem 5 we have to check that the variance–
covariance matrix of the state variables over an interval of strictly positive length
is non degenerate. Since the state variables are Gaussian processes this matrix
can in general be computed explicitly (see for example Karatzas and Shreve
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(1998, Chapter 5.6)) and so checking the validity of Assumption F basically
reduces to the computation of a determinant as the following example illustrates.

Example 3: Consider an infinite horizon economy similar to that of Example
1 but driven by three state variables which evolve according to

dX1t =
(
X3t − ‖σ1‖2/2

)
dt+ σ>1 dZt, (27)

dX2t =
(
X3t − ‖σ2‖2/2

)
dt+ σ>2 dZt, (28)

dX3t = κ (θ −X3t) dt+ σ>3 dZt (29)

where Z ∈ R2 is a Brownian motion and (κ, θ, σ1, σ2, σ3) ∈ R×R×R2×R2×R2

are constants such that ‖σ3‖ 6= 0. The financial market consists in a locally
riskless asset and two stocks whose dividends are given by

gi(Xt) ≡ exp(Xit), i = 1, 2.

This example generalizes the multi–asset models of Cochrane et al. (2008) and
Martin (2008) by allowing the growth rates of the individual dividends to be
driven by a common, imperfectly correlated, stochastic factor which can be
interpreted as a proxy for business cycles in the economy.

As can be seen from equations (27), (28) and (29) the matrix A associated
with this example is diagonalizable and has eigenvalues (0, 0, κ) so we have that
part (b) of Assumption F holds as soon as κ is nonnegative. On the other hand,
standard results on linear Gaussian processes (see Karatzas and Shreve (1998,
Chapter 5.6)) show that the determinant of the variance–covariance matrix is
given by

det Ω(τ) = F (τ)‖σ3‖2
(

det(σ1, σ3)− det(σ2, σ3) + κdet(σ1, σ2)
)

for some function F : R+ → R which depends only on κ and whose only zero is
located at the origin. In particular, part (a) of Assumption F holds true provided
that σ2 6= σ1, det(σ1, σ3) 6= 0 and, since the dividends satisfy condition (a) of
Theorem 5, we have that the existence of a complete markets equilibrium rests
entirely on condition (b).

If the instantaneous volatilities of the first two state variables are linearly
independent then the volatility matrix of the dividends

σg(x) =
∂g

∂x
(x)σ =

(
ex1σ>1
ex2σ>2

)
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is invertible for almost all x ∈ R3 and the existence of a complete markets
equilibrium now follows from the first order condition of Theorem 5. Surprisingly,
the condition that the dividend volatilities be linearly independent is sufficient
but not necessary for the existence of an equilibrium with complete markets. To
see this assume that σ2 = ασ1 for some α and recall that, since agents have
homogenous power utility functions, the equilibrium consumption price is given
by

m(t, x) = e−ρtAγ−1 (ex1 + ex2)−γ .

A straightforward, albeit tedious, computation shows that the sum of determi-
nants in equation (20) is explicitly given by

2∑
i=1

Ci(x) = ex1+x2(1− α)(1− γ) det(σ1, σ3)

and it follows from the second order condition of Theorem 5 that an equilibrium
with dynamically complete markets exists as soon as α 6= 1, γ 6= 1, det(σ1, σ3) 6=
0. Each of these parametric restrictions is necessary for the existence of a
complete markets equilibrium. Indeed, if α = 1 then the stocks pay the same
dividends at all times and so markets can never be complete with respect to the
underlying filtration. Similarly, if det(σ1, σ3) = 0 then the three state variables
are effectively driven by the one dimensional Brownian motion Zt = σ>1 Zt/‖σ1‖
and so there is no way for markets to be complete with respect to the filtration
generated by the two dimensional Brownian motion Z. Finally, assume that
γ = 1 so that the representative agent has logarithmic utility. In that case it can
be shown that the equilibrium stock prices do not depend on the state variable
X3 which drives the common growth rate of the dividends24 and it follows that
markets are incomplete since the dividends are perfectly correlated.

4.2 Autonomous diffusion processes

For a second application we consider the case where each of the state variables is
an autonomous diffusion process. More precisely, we now assume that for each
i the associated coordinate of the vector of state variables evolves according to
the one dimensional stochastic differential equation

dXit = µi(Xit)dt+ σi(Xit)dZit. (30)
24This follows from the fact that, since the dividends depend symmetrically on X3, the

dynamics of the discounted dividends m(t, x)gi(x) = e−ρtgi(x)/g(x) are independent of X3.
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for some continuously differentiable drift and volatility functions µi, σi where Zi
is a one dimensional Brownian motion. To simplify the analysis we will further
assume that the state space of the i−th coordinate is given by Xi ≡ (`i,∞) for
some constant `i ≥ −∞, and that Xi does not reach the boundaries of its spate
space in finite time.25

Since each coordinate is autonomous and driven by a different Brownian
motion we have that the state variables are mutually independent and it follows
that the transition density of the vector is given by

p(t, x, y) =
d∏
i=1

qi(t, xi, yi), ∀(t, x, y) ∈ (0, T ]×X 2,

where qi is the transition density of the i−th coordinate and X ≡
∏d
i=1Xi. The

main difference between this model and that of the previous example is that in
general we do not have an explicit expression for the transition densities of the
various state variables. To circumvent this difficulty we will assume that the
unknown transition densities satisfy the following a priori bounds:

Assumption G: For each i there are strictly positive constants (αi, Ci) and
locally bounded functions (Ki, Li) such that

qi(t, x, y) ≤ Ki(x)Li(y)t−αie−Ci(Mi(x)−Mi(y))
2/t (31)

for all (t, x, y) ∈ [0, T ]×X 2
i where

Mi(x) =
∫ x

ci

dz

σi(z)
.

and c is an arbitrary point in X .

The upper bound in equation (31) implicitly determines the growth condition
that the discounted dividends should satisfy for the price integrals to be well-
defined but it is not sufficient to guarantee that the price function is real analytic
in time. To achieve this we need not only that the integrals be well-defined
but also that the integrands be real analytic in time and that their radius of
analyticity be uniformly bounded from below.

As far as the transition densities are concerned, these properties follow from
Assumption G since it can be shown that if equation (31) holds for real values of

25The assumption that ri ≡ sup{x ∈ R : x ∈ Xi} = ∞ can be relaxed but it is in general
harmless as most of the models in the literature use state variables whose coordinates take
values in either the positive real line or the whole real line.
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t then it automatically holds for complex ones, see Davies (1997, Lemma 2) and
Appendix D.2. The situation with the discounted dividends is more complicated
since there is no guarantee that the bound holds for complex values of t if it
holds for real ones. As in the previous section, we will circumvent this difficulty
by imposing an upper bound in a complex neighborhood of [0, T ].

Definition 4: A function f : [0, T ]×X → R belongs to the class M if it is real
analytic in (t, x) ∈ (0, T )×X and such that

∫
sup
τ∈O
|f(τ, y)|

d∏
i=1

Li(yi) e−εMi(yi)
2
dy <∞

for any ε > 0 and some complex neighborhood O ⊇ [0, T ].

Theorem 6: Consider a finite horizon economy such that Assumption G holds
and assume that the function

f(t, x) ≡ m(t, x)g(t, x) +m(T, x)G(x) (32)

belongs to the class M. Then there exists an equilibrium with dynamically
complete markets if either of the following conditions holds:

(a) Equation (11) holds for almost every x ∈ Rd and G ∈ C2(X ),

(b) There are no terminal dividends and either of equations (13) and (15) holds
for almost every x ∈ Rd.

The conditions of Assumption G and Theorem 6 might seem very technical
but they are in fact quite easy to verify for concrete models and can be shown
to hold for most of the diffusions processes that are routinely used in the asset
pricing literature. In particular, the following examples show that these condi-
tions hold for Cox-Ingersol-Ross (CIR) processes and for a wide class of constant
elasticity of variance (CEV) processes.

Example 4 (CIR processes): Assume that each of the d state variables evolves
according to the square root dynamics

dXit = (ai − biXit)dt+ σi
√
|Xit|dZit (33)

for some constants ai > 0, bi and σi such that νi ≡ (2ai/σ2
i ) − 1 > 0. This last

condition guarantees that the unique solution to equation (33) never reaches zero
and can be relaxed at the costs of increased notational burden.
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The following result shows that Assumption G is satisfied and gives a simple
criterion for a given function to belong the class M which appears in the
statement of Theorem 6.

Lemma 1: Assumption G holds and a sufficient condition for a real analytic
function to belong to the class M is that

sup
τ∈O
|f(τ, x)| ≤ eK‖x‖δK

for some strictly positive constants K and δ < 1 and some complex neighborhood
of the time interval [0, T ].

In order to obtain the existence of an equilibrium with complete markets
for this economy we need to find conditions on the dividends, utility functions
and time preference rates under which the function of equation (32) satisfies
the bound of Lemma 1 in some complex neighborhood of [0, T ]. As explained
in Section 4.1 this is easily done if agents have identical time preference rates
and dividends are time independent since in that case the function depends
exponentially on time. In the general case where agents have heterogenous
time preference rates and/or dividends are time dependent the situation is more
complicated. Nevertheless, we have a simple criterion for finite horizon economies
where agents have power utility functions with heterogenous risk aversions and
time preference rates.

Proposition 7: Consider a finite horizon economy where the state variables
evolve according to equation (33) and assume that

(a) Agent a has subjective rate of time preference ρa ≥ 0 and his utility
functions are given by

ua(c) = va(c) ≡
c1−γa − 1

1− γa

for some strictly positive relative risk aversion coefficient γa.

(b) The dividends of stock i are given by equations (24) and (25) for some
constant δi ∈ R and some functions (νi, κi) such that

e−Ji‖x‖
δ
Ji ≤ νi(x), κi(x) ≤ eKi‖x‖δKi

for some strictly positive constants Ji, Ki and δ < 1.

Then there exists an equilibrium with dynamically complete markets as soon as
either of conditions (a) or (b) in Theorem 6 is satisfied.
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For a second example of application of the result of Theorem 6 we now turn
to constant elasticity of variance (CEV) processes.

Example 5 (CEV processes): Assume that each of the d state variables of the
model evolves according to the constant elasticity of variance dynamics

dXit = µiXitdt+ ξi|Xit|1+βidZit (34)

for some constants µi, ξi and βi > 0. This last condition guarantees that the
unique solution to the above equation never reaches the origin and hence is never
absorbed.

In order to show that Assumption G is satisfied in this example consider the
nonnegative process defined by

Yit ≡
(
ξiβiX

βi
it

)−2
. (35)

Applying Itô’s lemma to the right hand side and using equation (34) shows that
this process evolves according to the square root dynamics of equation (33) with
the constants ai = 2 + 1/βi, bi = 2µiβi and σi = −2. Combining this simple
observation with the arguments used in the proof of Lemma 1 gives:

Lemma 2: Assumption G holds and a sufficient condition for a real analytic
function to belong to the class M is that

sup
τ∈O
|f(τ, x)| ≤ 1 +K‖x‖α (36)

for some strictly positive constants K and α < α ≡ 2(1 + mini βi) and some
complex neighborhood of the time interval [0, T ].

In order to obtain the existence of a complete markets equilibrium we need
to find conditions on the dividends, utility functions and time preference rates
under which the function f of equation (32) satisfies the bound of Lemma 2 in
some complex neighborhood of the interval [0, T ]. As in the previous examples,
there are basically two cases where such conditions can be easily formulated: the
case of homogenous time preference rates and time independent dividends, and
the case of power utility agents with heterogenous time preference rates and risk
aversion coefficients. For the latter we have to following analog to Propositions
6 and 7

Proposition 8: Consider a finite horizon economy where the state variables
evolve according to equation (34) and assume that
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(a) Agent a has subjective rate of time preference ρa ≥ 0 and his utility
functions are given by

ua(c) = va(c) ≡
c1−γa − 1

1− γa

for some strictly positive relative risk aversion coefficient γa.

(b) The dividends of stock i are given by equations (24) and (25) for some
constant δi ∈ R and some functions (νi, κi) such that

Ji‖x‖−α ≤ νi(x), κi(x) ≤ Ki‖x‖α

for some strictly positive constants Ji, Ki and α < α.

Then there exists an equilibrium with dynamically complete markets as soon as
either of conditions (a) or (b) in Theorem 6 is satisfied.

4.3 Counterexamples

The three previous examples clearly illustrate that the most difficult part in
applying the result of Section 3.2.1 consists in verifying that the candidate price
function is real analytic in time. Given this observation it is natural to wonder
whether this somehow technical condition is absolutely necessary if one wants to
deduce market completeness from the structure of dividends. We show in this
section that this is indeed the case by presenting counterexamples which show
that, unless this condition is verified, the candidate prices may fail to generate
dynamically complete markets even though all the other conditions of Theorem
1 are satisfied. In order to highlight the intuition behind our construction we
start with an explicit example of a single stock economy before we move on to
economies with multiple stocks.

4.3.1 A single stock economy

Assume that the uncertainty is generated by a one dimensional Brownian motion
and consider a finite horizon economy populated by a representative agent with
initial portfolio η = 1, time preference rate ρ ≥ 0 and logarithmic utility.

Since there is a representative agent we know that this economy admits
a unique equilibrium independently of whether markets are complete or not.
Furthermore, exploiting the assumption of logarithmic utility we obtain that in
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this equilibrium the stock price is

St = 1{t<T}P (t,Xt) + 1{t=T}G(XT )

where the pre–horizon price function is defined by

P (t,Xt) = g(t,Xt)
(

(1/ρ) + e−ρ(T−t) (1− 1/ρ)
)
.

This expression shows that in this example dynamic market completeness is
entirely determined by the intermediate dividends. In particular, if we assume
that there exists a set of strictly positive measure R ⊆ (0, T ) such that

∂g

∂x
(t, x) = 0 (37)

for almost every (t, x) ∈ R × X then the stock volatility vanishes on R and
it follows that markets are incomplete in equilibrium even though the effective
terminal dividend

G(x) = P (T, x) = g(T, x)

may be chosen in such a way as to satisfy the nondegeneracy condition of
Theorem 1.26 The reason why the result of Theorem 1 does not apply here is that
if equation (37) holds on a set of strictly positive measure then the equilibrium
price function fails to be real analytic in time over the whole interval (0, T )
and so we cannot propagate the nondegeneracy of the stock volatility from a
neighborhood of the terminal time to the whole interval.

4.3.2 Multiple stocks economies

Consider a finite horizon economy where the uncertainty is generated by a
d−dimensional Brownian motion, and assume that the economy is populated
by a single agent with time preference rate ρ ≥ 0 and utility function u.

Let further (g,G) denote the dividends of the stocks and assume that the
dividends of the first stock are uniformly bounded above and away from zero.
The following proposition will allow us to extend the construction of the previous
example to economies with multiple risky securities.

26A simple example of a smooth function which satisfies the condition of Theorem 1 as well
as equation (37) on a set of strictly positive measure is Γ(t, x) = α + β exp(−x2/(t − γT )+)
for some strictly positive constants α, β and γ < 1. In that case the set over which the price
function fails to be real analytic in time is simply given by R = (0, γT ].
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Proposition 9: Consider an economy as above and let F1 ∈ C1,2((0, T ) × X )
be a nonnegative function. Then there exist nonnegative intermediate dividend
functions g2, . . . , gd and a nonnegative constant K such that the equilibrium price
of the first stock satisfies S1t = F1(t,Xt) +K for all t ∈ [0, T ).

In the equilibrium which is described by the above proposition, dynamic
market completeness depends to a large extend on the choice of the exogenous
function F1. In particular, let R ⊆ [0, T ] be a open set of strictly positive
measure and assume that we choose the function F1 in such a way that

∂F1

∂x
(t, x) = 0d

for almost every (t, x) ∈ R × X . In that case, the volatility matrix of the
equilibrium stock price process is automatically degenerate on the set R and
it follows that markets are incomplete even though the “effective” terminal
dividends,

G(x) = lim
t→T

P (t, x) = (F1(T, x) +K)
G(x)
G1(x)

,

can be chosen in such a way as to satisfy the nondegeneracy condition of Theorem
1. As in the previous example, the reason why the result of Theorem 1 does not
apply here is that, given our choice for the function F1, the equilibrium price
function fails to be real analytic over the whole time interval. This clearly
shows that real analyticity cannot be dispensed with if one is to deduce market
completeness from the properties of the dividends.

Remark 1: The result of Proposition 9 bears some close connection with the
literature on so-called viable diffusion price processes, see Bick (1993), He and
Leland (1993) and Wang (1993) among others. In particular, it complements
this literature by showing that in an economy with multiple stocks fixing the
dividends of one stock does not impose any constraint on its equilibrium price
except for a lower bound.

5 Conclusion

This paper provides sufficient condition for the existence of an equilibrium with
endogenously complete markets in a continuous-time, heterogenous agents econ-
omy driven by an arbitrary diffusion process. In contrast to Anderson and
Raimondo (2008), our formulation does not require the traded securities to pay
terminal dividends. As a result, the horizon of the economy can be either finite
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or infinite and we can include instantaneously risk free bonds in the menu of
traded assets as is customary in continuous-time asset pricing. Furthermore,
our formulation makes a distinction between state variables and sources of risk
and thus allows for a much richer set of dynamics.

Our main results show that if the candidate prices are real analytic as
functions of time then market completeness can be deduced from the properties
of the dividends. More precisely, we prove that a sufficient condition for market
completeness is that the volatility matrix of the dividends be nondegenerate.
This intuitive condition is sufficient for endogenous completeness but it is far
from being necessary. In particular, if some of the traded assets are fixed income
securities then this condition fails but markets may nonetheless be complete. We
show how higher order conditions can be derived to deal with such cases and
provide an explicit example of an economy with endogenously complete markets
where one of the securities is an annuity.

In order to apply our main results it is necessary to prove that the candidate
prices are real analytic functions of time and the state variables of the model.
While we show that this can be done in some benchmark cases, the proof is in
general quite difficult. It is therefore natural to wonder whether real analyticity
is absolutely crucial if one is to deduce market completeness from the structure
of dividends. We show that this is indeed the case by constructing examples
of economies where the dividends have a nondegenerate volatility and markets
nonetheless fail to be dynamically complete because the candidate prices are not
real analytic.
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A Technical results

This appendix gathers some technical results that are needed for the proofs of our main
results.

Lemma A.1: If F : R+ ×X → R is real analytic in (t, x) ∈ R+ ×X then

I(t, x) = det
∂F

∂x
(t, x)σX(t, x)

is also real analytic in (t, x) ∈ R+ ×X .

Proof. This follows from Krantz and Parks (2002, Proposition 2.2.3) and the fact the
determinant of a matrix is a multilinear function of its entries. QED.

Lemma A.2: Assume that F : R+ × X → R is continuous and real analytic in t ∈ R+

and F (·, x) 6≡ 0 for Lebesque-almost every x ∈ X . Then there exists a countable set
O ⊂ R+ such that

F (t, x) 6= 0

for each fixed t ∈ R+\O and almost every x ∈ X .

Proof. Suppose to the contrary that there exists a bounded uncountable 27 set O and
a family {At : t ∈ O} of Lebesque-measurable subsets of X of positive measure such
that

{(t, x) : x ∈ At} ⊆ ZF ≡ {(t, x) ∈ R+ ×X : F (t, x) = 0}

for each fixed t ∈ O. By application of Lemma A.3 below this implies that there exists a
countably infinite sequence {tk}∞k=1 ⊆ O such that the set A∞ = ∩∞k=1Ayk has strictly
positive Lebesgue measure. By construction, F (tk, x) = 0 for all k and all x ∈ A∞.
By the uniqueness theorem for analytic functions of one variable, F (t, x) ≡ 0 for any
x ∈ A∞ which is a contradiction. QED.

Lemma A.3: Let Σ ⊆ R be a n uncountable set and {Aσ : σ ∈ Σ} denote a family of
Lebesque-measurable subsets of X such that Aσ has strictly positive Lebesgue measure for
every σ ∈ Σ. Then there exists a countably infinite set Φ ⊆ Σ such that A∗ ≡ ∩σ∈ΦAσ
has strictly positive Lebesgue measure.

Proof. Let ν denote Lebesgue measure on Rn. Since {1Aσ : σ ∈ Σ} is a non empty
subset of L1(X , ν) it follows from well-known results in functional analysis that there
exists a non trivial subset Ac of X and a sequence {Aσk}∞k=1 of elements of {Aσ : σ ∈ Σ}
such that

lim
k→∞

∫
X

∣∣1Aσk (x)− 1Ac(x)
∣∣dx = lim

k→∞
ν(Aσk 4Ac) = 0

where 4 denotes the set theoretic symmetric difference. Let now Φ = {φn}∞n=1 be a
subsequence of {σk}∞k=1 such that

ν(Aφn 4Ac) ≤ 2−(n+1)ν(Ac)

27If O is unbounded and uncountable then there exist n ∈ N such that O ∩ [−n, n] is
uncountable (since otherwise O itself would be countable) and we may simply replace O by
O ∩ [−n, n].
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for all n ≥ 1 and set A∗ ≡ ∩σ∈ΦAσ = ∩∞n=1Aφn . With this notation

ν(A∗) ≥ ν(A∗ ∩Ac)

≥ ν(Ac)− ν(A∗ 4Ac)

≥ ν(Ac)−
∞∑
n=1

ν(Aφn 4Ac)

≥ ν(Ac)−
∞∑
n=1

2−(n+1)ν(Ac) =
ν(Ac)

2

and the desired result now follows from the fact that the set Ac has strictly positive
measure by construction. QED.

The following result guarantees that the solution to a parabolic partial differential
equation with real analytic coefficients is real analytic in the space variable and will be
instrumental in showing that the candidate prices are real analytic as functions of the
state variables.

Theorem A.1: Assume that the functions di, f , Vij are real analytic in (t, x) for all
(i, j) and that V (t, x) ∈ Rn×n is positive definite and nondegenerate for any (t, x). Then
any solution to the partial differential equation

−∂F
∂t

= f(t, x) +
n∑
i=1

di(t, x)
∂F

∂xi
+

n∑
i,j=1

Vij(t, x)
∂2F

∂xi∂xj

is real analytic in x and its analyticity radius is uniformly bounded from below when t
varies in a compact set.

Proof. See Eidelman (1969, Theorem 6.2, p. 221) QED.

The final result in this section gives conditions under which a separately real analytic
function is jointly real analytic and will be necessary to establish the real analyticity of
the candidate price function in the applications of Section 4

Theorem A.2: Assume that F (t, x) is real analytic in t ∈ (0, T ) for each fixed x ∈ X
and real analytic in x ∈ X for each fixed t ∈ (0, T ). If

(a) The radius of time analyticity is uniformly bounded from below when x varies on
compact subsets of X ,

(b) The radius of space analyticity is uniformly bounded from below when t varies on
compact subsets of (0, T ),

then F is jointly real analytic in (t, x) ∈ (0, T )×X .

Proof. This follows from the results of Siciak (1969). QED.

B Proofs for Section 2.5

Proof of Proposition 1. The result follows from Malamud (2008, Theorem 3.1) and
Malamud and Trubowitz (2006, Theorem 3.1) after some straightforward modifications.
We omit the details. QED.

Proof of Proposition 2. The result follows from Huang (1987, Propositions 3.1 and
3.2) and the analytic implicit function theorem (see Krantz and Parks (2002, Section
2.3)). We omit the details. QED.
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C Proofs for Section 3: Endogenous completeness

C.1 Candidate price functions

Proof of Proposition 3. The proposition follows from standard continuous-time as-
set pricing results, see for example Duffie (2001, Theorem 6.I). QED.

C.2 Finite horizon economies

Proof of Theorem 1. By definition of the candidate price function we have

lim
t→T

P (t, x) = G(x).

Combining this with the assumption that P ∈ C0,1((0, T ]× V) then gives

lim
t→T

σP (t, x) = lim
t→T

∂P

∂x
(t, x)σX(t, x) = σG(T, x)

and therefore

I(t, x) ≡ detσP (t, x) = detσG(T, x) + o(1)

for all x ∈ V. Together with the above expansion the assumption of the statement
implies that I is not identically zero. On the other hand, since P is real analytic in
(t, x) ∈ (0, T ) × X we know from Lemma A.1 that I also is real analytic in (t, x) ∈
(0, T ) × X . Combining these properties with the result of Lemma A.2 shows that we
have I(t, x) 6= 0 for almost every (t, x) ∈ (0, T ) × X and the desired result now follows
from Proposition 3. QED.

Proof of Theorem 2. The assumptions of the statement and the definition of the
candidate prices jointly imply that the function P is a classical solution to the partial
differential equation given by

−∂P
∂t

(t, x) = g(t, x) +
L(mP )(t, x)
m(t, x)

+ P (t, x)
∂ logm
∂t

(t, x) (38)

for all (t, x) ∈ (0, T )×X and has terminal value equal to zero.
Using the smoothness of the coefficients in conjunction with Proposition 2 and the

assumption that P ∈ C2((0, T ]×X ) we obtain

lim
t→T

P (t, x)
∂ logm
∂t

(t, x) = lim
t→T

L(mP )(t, x)
m(t, x)

= 0d

and it now follows from equation (38) that

lim
t→T

∂P

∂t
(t, x) = −g(T, x). (39)

Since P ∈ C2((0, T ]×X ) by assumption this further implies that

lim
t→T

∂σP
∂t

(t, x) = lim
t→T

(
∂2P

∂t∂x
σX +

∂P

∂x

∂σX
∂t

)
(t, x)

= lim
t→T

∂2P

∂t∂x
(t, x)σX(t, x) = −σg(T, x)
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and therefore

σP (t, x) = (T − t)σg(T, x) + o(T − t)

where we have used the fact the candidate price function converges to zero at the terminal
time. Combining the above expansion with an argument similar to that used in the proof
of Theorem 1 then shows that

I(t, x) ≡ detσP (t, x) 6= 0

for almost every (t, x) ∈ (0, T )×X as soon as the intermediate dividends satisfy equation
(13) and the desired result now follows from Proposition 3. QED.

Proof of Proposition 4. Since P ∈ C3((0, T ]×X ) we have that the candidate price
function satisfies equation (38) and differentiating with respect to time on both sides of
the partial differential equation we obtain

−∂
2P

∂t2
(t, x) =

∂g

∂t
(t, x) +

∂

∂t

L(mP )(t, x)
m(t, x)

(40)

+
∂P

∂t
(t, x)

∂ logm
∂t

(t, x) + P (t, x)
∂2 logm
∂t2

(t, x).

Using the assumed regularity of the coefficients in conjunction with Proposition 2,
equation (39) and the assumption that P ∈ C3((0, T ]×X ) we obtain

lim
t→T

∂

∂t

L(mP )(t, x)
m(t, x)

= −L(mg)(T, x)
m(T, x)

. (41)

On the other hand, it follows from equation (39) and the continuity of the candidate
price function that we have

lim
t→T

(
∂P

∂t

∂ logm
∂t

+ P
∂2 logm
∂t2

)
(t, x) = −g(T, x)

∂ logm
∂t

(T, x),

and combining this with equations (40) and (41) we conclude that

lim
t→T

∂2P

∂t2
(t, x) = −∂g

∂t
(T, x) +

L(mg)(T, x)
m(T, x)

+ g(T, x)
∂ logm
∂t

(T, x)

=
D(mg)(T, x)
m(T, x)

− 2
∂g

∂t
(T, x) ≡ H(x).

Since P ∈ C3((0, T ]×X ) by assumption this further implies that

lim
t→T

∂2σP
∂t2

(t, x) = lim
t→T

(
∂3P

∂t2∂x
σX + 2

∂2P

∂t∂x

∂σX
∂t

+
∂P

∂x

∂σX
∂t

)
(t, x)

=
∂H

∂x
(x)σX(T, x)− 2

∂g

∂x
(T, x)

∂σX
∂t

(T, x) = H(x)

and therefore

Φ(t, x) ≡ σP (t, x)− (T − t)σg(T, x)− 1
2

(T − t)2H(x) = o(T − t)2

where we have used the fact the candidate price function converges to zero at the terminal
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time. Now consider the matrix valued functions defined by

A(x) = σg(T, x), K(t, x) =
Φ(t, x)

(T − t)2
, B(t, x) = K(t, x) +

1
2
H(x).

With these notations we have that

σP (t, x) = (T − t)A(x) + (T − t)2B(t, x)

and therefore

I(t, x) ≡ detσP (t, x) = (T − t)d det (A(x) + (T − t)B(t, x)) . (42)

Well-known results from linear algebra show that for any two matrices M1 and M2 the
determinant of the sum M1 +M2 is given by

det(M1 +M2) =
d∑
k=0

∑
1≤i1<···<ik≤d

det(Ci1,...,ik)

where the matrix Ci1,...,ik is obtained from M1 by replacing its rows with numbers
i1, . . . , ik with the corresponding rows of M2. Applying this formula to equation (42)
we obtain

I(t, x) =
d∑
k=0

(T − t)k+d
∑

1≤i1<···<ik≤d

det(Ci1,...,ik(t, x))

= (T − t)d detA(x) +
d∑
k=1

(T − t)k+d
∑

1≤i1<···<ik≤d

det(Ci1,...,ik(t, x))

where Ci1,...,ik(t, x) is obtained from A(x) by replacing its rows with numbers i1, . . . , ik
with the corresponding rows of the matrix B(t, x). Expanding the second term on the
right hand side and using the fact that

detCi(t, x) =
1
2

detBi(x)

for all 1 ≤ i ≤ d where the function Bi is defined as in equation (14), we obtain that
the determinant of the price gradient satisfies

I(t, x) = (T − t)d
(

detA(x) +
1
2

(T − t)
d∑
i=1

detBi(x)

)
+ o(T − t)1+d.

Finally, combining this expansion with an argument similar to that used in the proofs
of Theorem 1 and 2 shows that I(t, x) 6= 0 for almost every (t, x) ∈ (0, T )×X as soon as
equation (15) is satisfied and the desired result now follows from Proposition 3. QED.

C.3 Infinite horizon economies

In order to establish Theorem 3 we will rely on the following lemma.
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Lemma C.1: Under the assumptions of Theorem 3 we have

lim
ρ→∞

ρ
∂P

∂x
(x, ρ, λ) =

∂g

∂x
(x),

lim
ρ→∞

(
ρ2 ∂P

∂x
(x, ρ, λ)− ρ∂g

∂x
(x)
)

=
∂

∂x

L(mg)(x, λ)
m(x, λ)

for all x ∈ X .

Proof. By definition, the derivative of the function Qi = mPi with respect to the state
variable xj is given by

∂Qi
∂xj

(x, ρ, λ) = lim
ε→0

(Qi(x+ εej , ρ, λ)−Qi(x, ρ, λ)) /ε

= lim
ε→0

∫ ∞
0

e−ρτ (1/ε) (πi(τ, x+ εej , λ)− πi(τ, x, λ)) dτ.

Fix an arbitrary ε > 0 and denote by F1 the integrand on the right hand side of the
above expression. Using the bound of Assumption E in conjunction with the continuity
of the function Π we obtain that for each fixed x ∈ X there exists a finite constant Cx,λ
such that

|F1(ε, τ, x, ρ, λ)| ≤ e(K−ρ)τCx,λ

for all ε ≤ ε. Since ρ > K by assumption, it now follows from the dominated convergence
theorem that

∂Qi
∂xj

(x, ρ, λ) =
∫ ∞

0

e−ρτ
∂πi
∂xj

(τ, x, λ)dτ,

and therefore

∂Pi
∂xj

(x, ρ, λ) =
1

m(x, λ)
∂Qi
∂xj

(x, ρ, λ)− P (x, ρ, λ)
∂ log m
∂x

(x, λ)

=
∫ ∞

0

e−ρτ
∂pi
∂xj

(τ, x, λ)dτ

where we have set pi ≡ πi/m and the last equality follows from the definition of the
price function and the chain rule. As a result, the first limit that we have to compute is
given by

Aij(x, λ) ≡ lim
ρ→∞

ρ
∂Pi
∂xj

(x, ρ, λ) = lim
ρ→∞

∫ ∞
0

e−θ
∂pi
∂xj

(θ/ρ, x, λ)dθ

where the second equality follows from the change of variable θ = ρτ . Letting F2 denote
the integrand on the right hand side and relying once again on the bound of Assumption
E we deduce that for each fixed x ∈ X there exists a finite constant Dx,λ such that

|F2(θ, x, ρ, λ)| ≤ e(K/ρ−1)θDx,λ.

Since ρ > K by assumption, we may now apply the dominated convergence theorem in
the definition of Aij to obtain

Aij(x, λ) = lim
ε→0

∂pi
∂xj

(ε, x, λ) =
∂pi
∂xj

(0, x, λ) =
∂gi
∂xj

(x)
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where the second equality follows the definition of pi and the fact that the function π
belongs to C1(R+ ×X ).

Using the above result in conjunction with the change of variable θ = ρτ we obtain
that the second limit we have to compute is given by

Bij(x, λ) = lim
ρ→∞

∫ ∞
0

e−θρ

(
∂pi
∂xj

(θ/ρ, x, λ)− ∂pi
∂xj

(0, x, λ)
)
dθ

Fix a strictly positive constant ε, let ρ0 > K be arbitrary and denote by F3 the integrand
on the right hand side of the above expression. Using the bound of Assumption E we
obtain that for each fixed x ∈ X there exists a finite constant Ex,λ such that

1{θ>ερ}|F3(θ, x, ρ, λ)| ≤ 1{θ>ερ}θe(K/ρ0−1)θEx,λ

for all ρ ≥ ρ0. On the other hand, the definition of the derivative imply that for each
fixed x ∈ X there exists a finite constant δx,λ such that

1{θ≤ερ}|F3(θ, x, ρ, λ)| ≤ 1{θ≤ερ}θe−θδx,λ

∣∣∣∣ ∂2pi
∂t∂xj

(0, x, λ)
∣∣∣∣ .

Combining the two previous bounds we obtain that for each fixed x ∈ X there are finite
constants Ex,λ and ∆x,λ such that

|F3(θ, x, ρ, λ)| ≤ θe−θ
(

∆x,λ + θe(K/ρ0)θEx,λ

)
for all ρ ≥ ρ0 > K and we may now apply the dominated convergence theorem in the
definition of Bij to obtain

Bij(x, λ) =
∂2pi
∂t∂xj

(0, x, λ).

Since the function π belongs to C2(R+ × X ) by assumption we know that it solves the
partial differential equation

∂π

∂t
(τ, x, λ) = Lπ(τ, x, λ)

with terminal condition mg. Using this property in conjunction with arguments similar
to those we used in the finite horizon case we get

lim
τ→0

∂pi
∂t

(τ, x, λ) =
L(mg)(x, λ)

m(x, λ)

and the desired result follows from the fact that π ∈ C2(R+ ×X ). QED.

Proof of Theorem 3. By direct application of the result of Lemma C.1 we have that
the volatility of the candidate prices satisfies

σP (x, ρ, λ) = (1/ρ)σg(x) + o(1/ρ)

and it follows that

I(x, ρ, λ) ≡ detσP (x, ρ, λ) = (1/ρ)d detσg(x) + o(1/ρ)d.

Now assume that equation (18) holds so that the function I is not identically zero. Since
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∂P/∂x is real analytic in ρ by Assumption E we know that I is also real analytic in
ρ. Combining these properties with Lemma A.2 shows that there exists a countable set
R ⊆ (K,∞) outside of which I(x, ρ, λ) 6= 0 for almost every x ∈ X and the desired
result now follows from Proposition 3. QED.

Proof of Proposition 5. By direct application of the result of Lemma C.1 we have
that the volatility of the candidate prices satisfies

σP (x, ρ, λ) = (1/ρ)σg(x) + (1/ρ)2F (x, λ) + o(1/ρ)2.

Using this expression in conjunction with an argument similar to that we used in the
proof of Proposition 4 then shows that we have

I(x, ρ, λ) ≡ detσP (x, ρ, λ)

= (1/ρ)d
(

detσg(x) +
1
2

(1/ρ)
d∑
i=1

detCi(x, λ)

)
+ o(1/ρ)1+d.

where the functions Ci are defined as in equation (19). Finally, combining this expansion
with an argument similar to that used in the proofs of Theorem 3 shows that there exists
a countable set R ⊆ (K,∞) outside of which I(x, ρ, λ) 6= 0 for almost every x ∈ X and
the result now follows from Proposition 3. QED.

D Proofs for Section 4: Applications

D.1 Vector autoregressive processes

In order to simplify the exposition we will assume throughout this section that G =
va ≡ 0 for every a and provide a detailed proof of Theorem 4 only under condition (b).
The case where some of the risky securities pay terminal dividends is entirely analogous
and even simpler since it only requires a first order expansion of the volatility of the
candidate prices.

Lemma D.1: The transition density p(t, x, τ, y) of the state variables is real analytic in
(t, τ) ∈ [0, T ]2 \ {t = τ} and there exists a complex neighborhood P ⊇ [0, T ] with the
following properties

(a) For every constant φ > 0 there exist a constant H > 0 and a locally bounded
function L such that

|p(z, x, z + θ, y)| ≤ L(x)e−H‖y−x‖
2

(43)

for all (z, θ, x, y) ∈ P × C×X 2 such that z + θ ∈ P and <(θ) > φ.

(b) There exist a constant C > 0 and a locally bounded function J such that

|p(z, x, z + θ, y)| ≤ |θ|−d/2J(x)e−
C
θ ‖y−x‖

2
(44)

for all (z, θ, x, y) ∈ P × R+ ×X 2 such that z + θ ∈ P.

Proof. By the analytic implicit function theorem (see Lunardi (1995, Theorem 8.3.9))
we have that the unique solution to

dΦ(t) = −A(t)Φ(t)
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with initial condition Id is analytic in a neighborhood of [0, T ]. Furthermore, the inverse
of this unique solution solves

d(Φ−1(t)) = Φ−1(t)A(t)

with initial condition Id and hence is analytic as well.
Using the above notation in conjunction with well-known results on linear SDEs

(see Karatzas and Shreve (1998, Chapter 5.6.)) we obtain that the unique solution to
equation (21) is a Gaussian process with mean

µ(t, x, τ) ≡ E[Xτ |Xt = x] = Φ(τ)Φ−1(t)x+
∫ τ

t

Φ(τ)Φ−1(s)b(s)ds,

and variance–covariance matrix

Ω(t, τ) ≡ E[XτX
>
τ |Xt]− E[Xτ |Xt]E[Xτ |Xt]>

=
∫ τ

t

(
Φ(τ)Φ−1(s)σX(s)

) (
Φ(τ)Φ−1(s)σX(s)

)>
ds.

In particular, the transition density of the state variables is given by

p(t, x, τ, y) = φ (y, µ(t, x, τ),Ω(t, τ)) (45)

where

φ(y,m,B) ≡ (2π)−d/2|det(B)|−1/2e−(y−m)>B−1(y−m)

denotes the d−dimensional Gaussian probability distribution function. Since the func-
tions b, σX , Φ and Φ−1 are analytic we have that the functions µ and Ω are also analytic
and it now follows from equation (45) that the transition density is real analytic in
(t, τ) ∈ [0, T ]2.

Since the horizon is finite and the matrix σX(t) is by assumption nondegenerate for
all t ∈ [0, T ] we know that there are strictly positive constants ε and δ such that

δId ≥ ΣX(t) ≡ σX(t)σX(t)> ≥ εId

for all t ∈ [0, T ] where for two symmetric matrices A ≥ B means that A − B is
nonnegative definite. Now consider the function defined by

Ω̂(t, τ) ≡ Ω(t, τ)
τ − t

.

Since the function Ω is analytic in a neighborhood of [0, T ]2 we know that the function
Ω̂ is jointly real analytic for t 6= τ . On the other hand, since

lim
t→τ

Ω̂(t, τ) = ΣX(τ)

we have that the singularity at τ = t is removable and it follows that the function Ω̂ is
real analytic in (t, τ) ∈ [0, T ]2, see Shabat (1992, Theorem 3 p.92 and Hartog’s Theorem
p.28). Furthermore, the function Ω̂ satisfies

δId ≥ Ω̂(t, τ) ≥ εId
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for all (t, τ) ∈ [0, T ]2 and there exists a neighborhood P ⊇ [0, T ] such that∥∥∥Ω̂(t, τ)− Ω̂(<t,<τ)
∥∥∥ < 1

2
ε

for all (t, τ) ∈ P2 where the notation ‖M‖ denotes the Euclidean norm of the matrix
M . Using these properties we readily obtain that∥∥∥Ω̂(t, τ)

∥∥∥ ≥ ∥∥∥Ω̂(<t,<τ)
∥∥∥− ∥∥∥Ω̂(t, τ)− Ω̂(<t,<τ)

∥∥∥
≥ h>

‖h‖
Ω̂(<t,<τ)

h

‖h‖
− 1

2
ε ≥ 1

2
ε

for any h ∈ Rd and it follows that∥∥∥Ω̂−1(t, τ)
∥∥∥ ≤ ε1 ≡

2
ε

(46)

for all (t, τ) ∈ P2. Using similar arguments and setting ξ(t, τ) ≡ µ(t, x, τ)−Φ(τ)Φ−1(t)x
it can be shown that the vector valued function

η(t, x, τ) ≡ x− µ(t, x, τ)
τ − t

=
(Id − Φ(τ)Φ−1(t))

τ − t
x− ξ(t, τ)

τ − t

is real analytic in (t, τ) ∈ [0, T ]2 and, since real analytic functions are locally bounded,
it follows that there exists a constant C0 > 0 such that

‖η(t, x, τ)‖ ≤ C0 (1 + ‖x‖) (47)

for all (t, τ, x) ∈ O2 ×X .
After these lengthy preparations we now turn to the proof of assertions (a) and (b).

Using the expression of the transition density in conjunction with equation (46) and the
fact that

1

|det(Ω(τ, t))|1/2
=
∣∣det(Ω−1(τ, t))

∣∣1/2 ≤ ∥∥Ω−1(t, τ)
∥∥d/2

=
∥∥∥(τ − t)−1Ω̂−1(t, τ)

∥∥∥d/2 ≤ εd/21 |τ − t|−d/2

we deduce that

|p(t, x, τ, y)| ≤ Cp|τ − t|−d/2e−A1+2A2+A3 (48)

for all (t, τ, x, y) ∈ P2 ×X 2 and some constant Cp > 0 where

A1 = (y − x)><
(
Ω−1(t, τ)

)
(y − x),

A2 =
∣∣∣(y − x)><

(
Ω̂−1(t, τ)η(t, x, τ)

)∣∣∣ ,
A3 =

∣∣∣<((τ − t)η(t, x, τ)>Ω̂−1(t, τ)η(t, x, τ)
)∣∣∣ .
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Using equations (46) and (47) we obtain that

A2 ≤ ‖y − x‖
∥∥∥Ω̂−1(t, τ)η(t, x, τ)

∥∥∥
≤ ‖y − x‖

∥∥∥Ω̂−1(t, τ)
∥∥∥ ‖η(t, x, τ)‖ ≤ C2 (1 + ‖x‖) ‖y − x‖ (49)

A3 ≤ |τ − t|
∣∣∣η(t, x, τ)>Ω̂−1(t, τ)η(t, x, τ)

∣∣∣
≤ |τ − t|

∥∥∥Ω̂−1(t, τ)
∥∥∥ ‖η(t, x, τ)‖2 ≤ C3 (1 + ‖x‖)2 (50)

for all (t, τ, x, y) ∈ P2×X 2 and some nonnegative constants Ci where the last inequality
follows from the boundedness of P. Now let φ > 0 be a fixed constant. Since Ω̂−1(t, τ) ≥
ε2 and =(Ω̂−1(t, τ)) = 0 for some constant ε2 > 0 and all real (t, τ) we can assume by
shrinking the neighborhood if necessary that

<
(

Ω̂−1(τ, t)
)
≥ 1

2
ε2 Id, (51)

and ∥∥∥=(τ − t)=(Ω̂−1(t, τ))
∥∥∥ ≤ φ

4
ε2,

for all (t, τ) ∈ P2. Using these estimates we deduce that there exists a strictly positive
constant C1 ≡ C1(φ) such that

A1 =
(y − x)>(<(τ − t)<(Ω̂−1(t, τ)) + =(τ − t)=(Ω̂−1(t, τ)))(y − x)

|τ − t|2

≥ 4(y − x)><(τ − t)<(Ω̂−1(t, τ))(y − x)− φε2‖y − x‖2

4|τ − t|2

≥ 2φε2‖y − x‖2 − φε2‖y − x‖2

4|τ − t|2
≥ C1‖y − x‖2 (52)

for all (t, τ, x, y) ∈ P2×X 2 such that <(τ− t) ≥ φ where the last inequality follows from
the boundedness of P. Combining equations (49), (50) and (52) with the elementary
inequality

a2 + b2 ≥ ab, ∀(a, b) ∈ R+ × R+, (53)

we finally obtain that

A3 + 2A2 −A1 ≤ −
C1

2
‖y − x‖2 +

(
C3 + 8

C2
2

C1

)
(1 + ‖x‖)2

for all (t, τ, x, y) ∈ P2 × X 2 such that <(τ − t) ≥ φ and assertion (a) now follows from
equation (48) and the boundedness of the set P.

In order to complete the proof fix an arbitrary pair (t, τ) ∈ P2 such that θ ≡ τ − t ∈
R+. In this case, equation (51) implies that

A1 =
1
θ

(y − x)><(Ω̂−1(t, τ))(y − x) ≥ ε2

2θ
‖y − x‖2

for all (x, y) ∈ X 2 and assertion (b) now follows from equations (48), (49), (50) and the
elementary inequality (53). We omit the details. QED.
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Lemma D.2: The candidate price function P : [0, T ]×X → Rd+ is well-defined and real
analytic in t ∈ (0, T ).

Proof. Fix an arbitrary t0 ∈ (0, T ). By Proposition 2 we know that the function m > 0
is real analytic with respect to t ∈ [0, T ] and so it suffices to prove that for each i the
function

Qi(z, x) ≡ m(z, x)Pi(z, x)

=
∫ T−z

0

∫
X
p(z, x, z + θ, y)(mgi)(z + θ, y)dydθ

is well-defined and analytic in a complex neighborhood P0 ⊃ t0. To this end we
decompose the above integral as Qi1 +Qi2 where

Qi1(z, x) ≡
∫ T−t0

0

∫
X
p(z, x, z + θ, y)(mgi)(z + θ, y)dydθ,

Qi2(z, x) ≡
∫ T−z

T−t0

∫
X
p(z, x, z + θ, y)(mgi)(z + θ, y)dydθ.

Let P0 = P∩B where P ⊇ [0, T ] is the complex neighborhood whose existence is asserted
in Lemma D.1 and B is a disk of radius ε < t0 ∨ (T − t0) centered at the point t0. Using
equation (43) in conjunction with the definition of the constant ε and the assumption
that f ∈ K we obtain that the integrand in the definition of Qi2 satisfies

|p(z, x, z + θ, y)(mgi)(z + θ, y)| ≤ KL(x)eK‖y‖
α−H‖y−x‖2 (54)

for some locally bounded function L and some strictly positive constants K, H and
α < 2. Since the right hand side of the above inequality is integrable with respect to y
we have that Qi2(z, x) is well defined for all z ∈ P0. On the other hand, using equation
(54) in conjunction with Fubini’s theorem and the fact that both p and mgi are real
analytic in time we obtain that∫

Γ

Qi2(γ, x)dγ = 0

for any closed contour Γ ⊆ P0 and analyticity of Qi2 with respect to z ∈ P0 now follows
from Morera’s theorem (see Shabat (1992, Theorem 2 p.85)).

By shrinking the set B if necessary we can assume that z + θ ∈ P for all (z, θ) ∈
P0 × R+ such that θ ≤ T − t0. Using this property in conjunction with equation (44)
and the assumption that f ∈ K we obtain that

|p(z, x, z + θ, y)(mgi)(z + θ, y)| ≤ KJ(x)|θ|−d/2eK‖y‖
α− C
|θ|‖y−x‖

2

(55)

for some locally bounded function L and some strictly positive constants C, K and
α < 2. Since the right hand side of the above inequality is integrable with respect to y
we have that Qi1(z, x) is well defined for all z ∈ P0. On the other hand, using equation
(55) in conjunction with Fubini’s theorem and the fact that both p and mgi are real
analytic in time we obtain that∫

Γ

Qi1(γ, x)dγ =
∫ T−t0

0

∫
X

∫
Γ

p(γ, x, γ + θ, y)(mgi)(γ + θ, y)dγdydθ = 0

for any closed contour Γ ⊆ P0 and analyticity of Qi1 with respect to z ∈ P0 now follows
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from Morera’s theorem. QED.

Lemma D.3: The candidate price function P : [0, T ]×X → Rd+ is real analytic in x ∈ X
and belongs to C3((0, T ]×X ).

Proof. By Proposition 2 we know that m > 0 is real analytic in x ∈ X and so it
suffices to prove the result for the function Q ≡ mP .

In order to deal with the function Qi fix two open sets X1 ⊂ X2 ⊆ X , assume that
x ∈ X1 and let

hi(z, x) ≡ N(x)(mgi)(z, x)

where N : X → [0, 1] is an arbitrary smooth function which is equal to 1 on the set X1

and to zero outside of the set X2. Using this notation we may decompose the function
Qi as

Qi(z, x) = Hi(z, x) + Fi(z, x)

where

Hi(t, x) ≡
∫ T−t

0

∫
X2

p(t, x, t+ θ, y)hi(t+ θ, y)dydθ,

Fi(t, x) ≡
∫ T−t

0

∫
X c1

p(t, x, t+ θ, y) (mgi − hi) (t+ θ, y)dydθ,

and X c1 ≡ X\X1. Using the assumption that f ∈ K in conjunction with arguments
similar to those in the proof of Lemma D.1 it can be shown that∣∣∣∣ ∂kp(t, x, τ, y)

∂k1x1 · · · ∂kdxd
(mgi − hi)(τ, y)

∣∣∣∣ ≤ Ck2 (Ck3 + ‖x‖+ ‖y‖)k e−
Ck2
2T ‖y−x‖

2
(56)

for all (t, τ, y) ∈ [0, T ]2×X c1 and some strictly positive constants Ck2, Ck3 which depend
on the choice of x ∈ X1. Since the right hand side of the above estimate is integrable
with respect to (t, y) it follows from standard results on the differentiation of integrals
that Fi is smooth and satisfies

∂kFi(t, x)
∂k1x1 · · · ∂kdxd

=
∫ T−t

0

∫
X

∂kp(t, x, t+ θ, y)
∂k1x1 · · · ∂kdxd

(mgi − hi)(t+ θ, y)dydθ

for all (t, x) ∈ [0, T ] × X1. Furthermore, since the bound in equation (56) is uniform
with respect to the time argument we may apply the dominated convergence theorem
in the above expression to obtain

lim
t→T

∂kFi(t, x)
∂k1x1 · · · ∂kdxd

= 0. (57)

Summarizing the above results we have thus far proved that the function Fi belongs to
C0,∞((0, T ]×X1). Combining this result with that of Lemma D.2 and the fact that the
process

Fi(t,Xt) +
∫ t

0

(mgi − hi)(τ,Xτ )dτ = Et

[∫ T

0

(mgi − hi)(τ,Xτ )dτ

]

55



is a martingale we obtain that the function Fi is a classical solution to the partial
differential equation

−∂Fi
∂t

(t, x) = (mgi − hi)(t, x) + LFi(t, x). (58)

Now consider the function Hi. Since the integrand hi is smooth and compactly sup-
ported, it follows from standard Feynman-Kac arguments Oksendal (2007, Theorem
8.2.1) that the function Hi is smooth and solves the partial differential equation28

−∂Hi

∂t
(t, x) = hi(t, x) + LHi(t, x). (59)

Furthermore, using the fact that the derivatives of hi are all uniformly bounded in
conjunction with a straightforward change of variables we obtain

∂kHi(t, x)
∂k1x1 · · · ∂kdxd

=∫ T−t

0

∫
X
e−
‖z‖2

2
∂khi

∂k1x1 · · · ∂kdxd

(
τ,Ω(t, τ)1/2z + µ(t, x, τ)

)
dzdθ

and it now follows from the dominated convergence theorem that

lim
t→T

∂kHi(t, x)
∂k1x1 · · · ∂kdxd

= 0. (60)

Adding equations (58) and (59), we get that the function Qi is a solution to the partial
differential equation

−∂Qi
∂t

(t, x) = (mgi)(t, x) + LQi(t, x), (61)

and since all the coefficients in this partial differential equation equation are real analytic
it now follows from Theorem A.1 that the function Qi is real analytic in x ∈ X and
that its radius of complex analyticity is uniformly bounded from below when t varies in
compact subsets of (0, T ).

On the other hand, adding equations (57) and (60) we obtain that all the space
derivatives of the function Qi converge to zero as t→ T and the proof will be complete
once we show that the derivatives

∂Qi
∂t

,
∂2Qi
∂t2

,
∂2Qi
∂t∂xj

,
∂3Qi
∂t3

,
∂3Qi
∂t2∂xj

and
∂3Qi

∂t∂xj∂xk

are all continuous at the terminal time. The continuity of ∂Qi/∂t follows from equation
(61), Assumption A and the fact that Qi ∈ C0,∞((0, T ]×X ) by application of the first
part of the proof. On the other hand, differentiating both sides of equation (61) with
respect to the space variables gives

− ∂k+1Qi

∂t · ∂xk11 · · · ∂x
kd
d

(t, x) =
∂k(mgi + LQi)
∂xk11 · · · ∂x

kd
d

(t, x)

for all k ∈ N and it follows that Qi ∈ C1,∞((0, T ]×X ) since we know from Assumption

28It can also be easily checked that the function Hi is a weak solution to this PDE and is
therefore a strong solution by hypoellipticity. See Shikamura (1992, Theorem 2.1 p.99)

56



A, Proposition 2 and the first part of the proof that the right hand side is continuous
at the terminal time. Similarly, differentiating both sides of equation (61) with respect
to time we obtain

−∂
2Qi
∂t2

(t, x) =
∂(mgi)
∂t

(t, x) + L∂Qi
∂t

(t, x) + L̂Qi(t, x) (62)

where

L̂ ≡ (b′(t)−A′(t)x)
∂

∂x
+

n∑
i,j=1

1
2

(Σ′X(t))ij
∂2

∂xi∂xj

and the continuity of the second order time derivative follows from Assumption A,
Proposition 2 and the fact that Qi ∈ C1,∞((0, T ] × X ). The continuity of the third
order time derivative can be established similarly by differentiating equation (62) first
with respect to x and then with respect to time. We omit the details. QED.

Proof of Theorem 4. Combining Lemma D.2, Lemma D.3, Theorem A.1 and Theo-
rem A.2 we obtain that the candidate price function is real analytic in (t, x) ∈ [0, T ]×X
and belongs to C3((0, T ] × X ). The desired result now follows from Theorem 2 and
Proposition 4. QED.

In order to establish Propositions 6, 7 and 8 we will rely on the following more
general result:

Proposition 10: Consider a finite horizon economy, let ξ : X → R+ be a given function
and assume that

(a) Agent a has subjective rate of time preference ρa ≥ 0 and his utility functions are
given by

ua(c) = va(c) ≡ c1−γa − 1
1− γa

for some strictly positive relative risk aversion coefficient γa.

(b) The dividends of stock i are given by equations (24) and (25) for some constant
δi ∈ R and some functions (νi, κi) such that

e−Jiξ(x)Ji ≤ νi(x), κi(x) ≤ eKiξ(x)Ki (63)

for some strictly positive constants (Ji,Ki).

Then there exists a complex neighborhood O ⊃ [0, T ] with the property that the function
f of equation (23) can be analytically continued to O for all x ∈ X and satisfies the
bound

|f(τ, x)| ≤ eξ(x)LL

for all (τ, x) ∈ O × X and some strictly positive constant L.

Proof. Assume without loss of generality that G ≡ 0, let ba ≡ 1/γa and consider the
function

φ(x, z, u) ≡
A∑
a=1

e−ρabazu−baca0 − g(z, x).
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With this notation we have that the state price density solves φ(x, z,m(z, x)) = 0 and
we want to apply the analytic implicit function theorem to obtain analyticity of m(z, x)
with respect to z ∈ O for some complex neighborhood O ⊃ [0, T ] which is independent
of the choice of x ∈ X .

For real values of t ∈ [0, T ] we have that

max
1≤a≤A

(
e−ρabazu−baca0

)
≥

A∑
a=1

e−ρabaz(ca0/A)u−ba ≥ e−ρibizu−bi(ci0/A)

for any index 1 ≤ i ≤ A and it follows that there exists a strictly positive constant C1

such that

(1/C1)
A∑
a=1

g(t, x)−γa ≤ m(t, x) ≤ C1

A∑
a=1

g(t, x)−γa . (64)

By Theorem 1.1 of Chang, He, and Pradhu (2003) we know that the radius of time
analyticity of the function m depends only on two quantities: a lower bound on |∂φ/∂u|
at the point (x, t,m(t, x)) and an upper bound on |φ(x, z, u)| for (x, z, u) in a complex
neighborhood of the point (x, t,m(t, x)).29

By compactness, when g(t, x) varies in fixed bounded interval the claim follows
from the analytic implicit function theorem. Now we have to consider two regimes: that
where g(t, x) is large and that where it is small. Assume first that g(t, x) > K4 for some
sufficiently large constant K4, let γmin ≡ minaγa and consider the function `(z, x) ≡
m(z, x)g(z, x)γmin . By equation (64) we have that there strictly positive constants C2

and C3 such that

C2 + C2

A∑
γa>γmin

g(t, x)γmin−γa ≤ m(t, x) ≤ C3 + C3

A∑
γa>γmin

g(t, x)γmin−γa

and it follows that `(z, x) varies in a bounded interval as long as the aggregate dividend
is bounded away from zero. On the other hand, a direct calculation shows that `(z, x)
solves ψ(x, z, `(z, x)) = 0 where

ψ(z, x, u) ≡
A∑
a=1

e−ρabazg(z, x)
γmin
γa
−1u−baca0 − 1.

In particular, we have that

∂ψ(z, x, u)
∂u

≥ −bie−ρibizu−bici0

where i = arg mina γa denotes the agent with the smallest risk aversion and it follows
that the derivative is uniformly bounded away from zero as u = `(z, x) is bounded away
from zero. Since

|g(z, x)| ≥ |<g(z, x)| ≥ K5|g(<z, x)| ≥ K4K5

for some strictly positive constant K5 we can make g(z, x) arbitrary large by increasing
the constant K4. Sending g(z, x) to infinity and using the identity ψ(z, x, `(z, x)) = 0

29Even though the conditions of Chang et al. (2003) only require a bound on |φ(x, t, u)|
for real values of t a close inspection of their proof shows that one in fact needs a bound on
|φ(x, z, u)| for complex values of z.
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in conjunction with the fact that `(z, x) stays uniformly bounded we obtain

lim
g(z,x)→∞

A∑
γa>γmin

e−ρabazg(z, x)
γmin
γa
−1u−baca0 = 0

and therefore

lim
g(z,x)→∞

`(z, x) = e−ρizcγmin
i0

where the convergence is uniform in x ∈ X such that g(t, x) ≥ K4 for all t ∈ [0, T ]
and some sufficiently large K4. Hence, |ψ(z, x, u)| can be made arbitrarily small when
|u− `(t, x)|+ |z − t| < ε uniformly in x for some sufficiently small ε and it follows that
the radius of time analyticity of `(z, x), which is equal to that of m(z, x), is uniformly
bounded from below when the aggregate dividend is large.

In the regime where the aggregate dividend is small the desired result follows from
a similar argument using the function s(z, y) ≡ m(z, x)g(z, x)γmax with γmax ≡ maxa γa.
We omit the details.

To complete the proof, let O ⊇ [0, T ] denote the domain of complex analyticity of
m(z, x). Using the definition of the state price density in conjunction with the triangle
inequality we obtain that

|g(z, x)| ≤ K6

A∑
a=1

|m(z, x)|−ba

for some strictly positive constant K6 and it follows that there exists an index a ≡ a(x)
and a strictly positive constant K7 such that

|m(z, x)|−ba(x) ≥ |g(z, x)|
AK6

≥ |<g(z, x)|
AK6

≥ K7

n∑
i=1

κi(x).

Combining this estimate with the lower bound of equation (63) we obtain that there
exists a strictly positive constant K8 such that |m(z, x)| ≤ K8e

ξ(x)K8 for all (z, x) ∈
O×X and the desired result now follows from the upper bound of equation (63). QED.

Proof of Proposition 6. The desired result follows from Proposition 10 after setting
ξ(x) = ‖x‖α for some α ∈ (0, 2). QED.

Proof of Theorem 5. To facilitate the presentation of the proof we distinguish two
cases: that where the matrix A is diagonalizable and has eigenvalues with nonnegative
real parts; and that where all its eigenvalues have strictly positive real parts.

Case 1. The desired result will follow from those of Theorem 3 and Proposition 5
once we show that the function

πi(τ, x) ≡ E[m(Xτ )gi(Xτ )|X0 = x] =
∫

Rn
p(0, x, τ, y)(mgi)(y)dy

is twice continuously differentiable with respect to the state variables and satisfies the
conditions of Assumption E. The smoothness of πi follows from arguments similar to
those we used in the proof of Lemma D.3 so all we have to prove is that πi and its first
two derivatives satisfy the bounds in equation (17).
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By assumption we have that A = BDB−1 for some diagonal matrix D whose
elements have nonnegative real part and it follows that the norm of

‖Φ(τ)‖ = ‖Be−DτB−1‖ ≤ K0

for all τ > 0 and some strictly positive constant K0. Using this property it is not hard
to see that we have

‖Ω(τ)1/2‖ ≤ K1

√
τ , (65)

‖µ(0, x, τ)‖ ≤ K1(τ + ‖x‖), (66)

for all τ > 0 and some strictly positive constant K1 where

Ω(τ) =
∫ τ

0

(Φ(τ)Φ(s)−1σX)(Φ(τ)Φ(s)−1σX)>ds

is the variance–covariance matrix of the state variables over an interval of length τ . On
the other hand, the assumption of the statement imply that we have

|(mgi)(y)| ≤ CeC‖y‖

for some strictly positive constant C and using this inequality in conjunction with equa-
tion (65), equation (66), the definition of the transition density and a straightforward
change of variables we obtain

|πi(τ, x)| = 1
(2π)n/2

∫
Rn
e−‖z‖

2/2(mgi)
(

Ω(τ)1/2z + µ(0, x, τ)
)
dz

≤ 1
(2π)n/2

∫
Rn
e−‖z‖

2/2CeC(Ω(τ)1/2z+µ(0,x,τ))dz

≤ 1
(2π)n/2

∫
Rn
e−‖z‖

2/2CeK2(‖x‖+√τ‖z‖+τ)dz

≤ CeK2(‖x‖+τ)
n∏
k=1

1
(2π)n/2

∫
Rn
e−‖z‖

2/2
(
e
√
τK2‖z‖ + e−

√
τK2‖z‖

)
dz

= 2nCeK2‖x‖+K2(1+K2/2)τ ≤ K3e
K2‖x‖+K3τ ,

for all x ∈ X and some strictly positive constants K2, K3. This shows that πi satisfies
the bound of Assumption E and it now only remains to show that its first two space
derivatives satisfy a similar bound.

Fix an arbitrary x ∈ X , set fi ≡ mgi and let f̃i denote a smooth, compactly
supported function which agrees with the function fi in a neighborhood of x. Using this
notation we decompose the function πi as πi = π̃i + π̂i where

π̃i(τ, x) ≡
∫

Rn
p(0, x, τ, y)f̃i(y)dy, (67)

π̂i(τ, x) ≡ (πi − π̃i)(τ, x) =
∫

Rn
p(0, x, τ, y)(fi − f̃i)(y)d.

Since f̃i is smooth and compactly supported we know that f̃i as well as all of its
derivatives are uniformly bounded and combining this property with the same change
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of variable as above we obtain that∣∣∣∣ ∂kπ̃i(τ, x)
∂k1x1 · · · ∂knxn

∣∣∣∣ ≤ Ck ∫
Rn
e−
‖z‖2

2

∣∣∣∣∣ ∂kf̃i
∂k1x1 · · · ∂knxn

(
Ω(τ)1/2z + µ(0, x, τ)

)∣∣∣∣∣ dz
≤ C ′k‖Φ(τ)‖k ≤ C ′′k

for all τ > 0 and some strictly positive constants Ck, C ′k where the last inequality follows
from the uniform boundedness of ‖Φ‖.

Finally, consider the functioon π̂i. Fix an ε > 0. Since the matrix Ω(τ) is nondegen-
erate for all strictly positive τ > 0 and is monotone increasing in τ we have that there
exists a strictly positive constant K4 such that Ω(τ) > K4In for all τ > ε and it follows
that |det Ω(τ)| ≥ Kn

4 . Combining this inequality with an induction argument it is now
easily seen that∣∣∣∣ ∂kp(0, x, τ, y)

∂k1x1 · · · ∂knxn

∣∣∣∣ ≤ τkK5

(
‖x‖k + ‖y‖k

)
e−(y−µ(0,x,τ))>Ω(τ)−1(y−µ(0,x,τ))

for some strictly positive constant K5 and it now follows from the assumption of the
statement that∣∣∣∣ ∂kπ̂i(τ, x)

∂k1x1 · · · ∂knxn

∣∣∣∣
≤ τkK(x)

∫
Rn

(
1 + ‖y‖k

)
e−(y−µ(0,x,τ))>Ω(τ)−1(y−µ(0,x,τ))eC‖y‖dy.

for some nonnegative function K. Using the same change of variable as above in
conjunction with equation (65), equation (66) and the fact that power functions grow
slower than exponentials we obtain that∣∣∣∣ ∂kπ̂i(τ, x)

∂k1x1 · · · ∂knxn

∣∣∣∣ ≤ τkK(x)
∫

Rn
e−(y−µ(0,x,τ))>Ω(τ)−1(y−µ(0,x,τ))eK6‖y‖dy

≤ eK8τL(x)
∫

Rn
e−‖z‖

2/2e
√
τK7‖z‖dz

≤ eK9τL(x)

for some strictly positive constants (Ki)9
i=6 and some nonnegative function L where the

last inequality follows from an argument similar to that which led to equation (67).
This shows that the first two space derivatives of the function π̂i satisfy the bound of
Assumption E and completes the proof for Case 1.

Case 2. When all the eigenvalues of the matrix A have strictly positive real parts
the proof proceeds in exactly the same way except that the norms of the functions Ω(τ)
and µ(0, x, τ) are now uniformly bounded with respect to the time argument instead of
having linear growth. We omit the details. QED.

D.2 Autonomous diffusion processes

In order to simplify the exposition we will assume throughout this appendix that G =
va ≡ 0 for every a and provide a detailed proof under condition (b). The case where some
of the risky securities pay terminal dividends is entirely analogous and even simpler.
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Fix an arbitrary point c in the interior of the state space and denote by

si(x) ≡
∫ x

ci

exp

(
−2
∫ ξ

ci

µi(θ)
σ2
i (θ)

dθ

)
dξ

the scale function associated with the i−th coordinate of the vector of state variables.
Then the process

Yit ≡ si(Xit) = Yi0 +
∫ t

0

1
ai(Yiτ )

dZiτ (68)

with

1
ai(y)

≡ s′i(s−1
i (y))σi(s−1(y))

is a nonnegative local martingale and a straightforward change of variables implies the
following:

Lemma D.4: (a) Assumption G holds if and only if the transition density q̃i of the
process Yi satisfies

q̃i(t, x, y) ≤ Ii(x)Ji(y)t−αie−(C̃i/t)(Ai(y)−Ai(x))2 (69)

for all (t, x, y) ∈ [0, T ] × R2
+, some strictly positive constants (αi, C̃i) and some

locally bounded functions (Ii, Ji) where we have set

Ai(y) ≡
∫ y

0

ai(z)dz.

(b) A real analytic function f : [0, T ]× X → R belongs to the class M if and only if
the function

f̃(τ, y) ≡ f
(
τ, s−1

1 (y1), . . . , s−1
d (yd)

)
satisfies the inequality∫

Rd+
sup
τ∈O
|f̃(τ, y)|

d∏
i=1

Ji(yi)e−εAi(yi)dy <∞

for any ε > 0 and some complex neighborhood of the time interval (0, T ).

Relying on the above lemma we will from now assume that the state variable Xi ≡ Yi
evolves according to equation (68) instead of equation (30) and that its transition density
qi ≡ q̃i satisfies equation (69). Based on these assumptions we redefineM as the class of
those real analytic functions f̃ which satisfy the conditions of the second part of Lemma
D.4. Note that since the coefficient in equation (30) are all real analytic the functions
ai which determine the volatility of the new state variables are also real analytic.

The following lemma shows that the bound of equation (69) also holds for complex
values of the time argument and will be crucial in order to prove that the candidate
prices are real analytic in time.

Lemma D.5: The transition density qi is real analytic in (t, x, y) ∈ R+ × X 2
i and the

following assertions hold:
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(a) For every real τ > 0 there exists a complex neighborhood P ⊃ τ such that

|qi(z, x, y)| ≤ BiIi(x)Ji(y)τ−αie−(Ci/τ)(Ai(y)−Ai(x))2 (70)

for all (z, x, y) ∈ P × X 2
i and some strictly positive constants (Bi, Ci).

(b) For each k ∈ N there exist a strictly positive constant Cik > 0 such that∣∣∣∣∂kqi∂tk
(t, x, y)

∣∣∣∣ ≤ CikIi(x)Ji(y)t−(αi+k)e−(Bi/t)(Ai(y)−Ai(x))2

for all (t, x, y) ∈ [0, T ]×X 2
i where the strictly positive constant Bi is the same as

in assertion (a).

Proof. The function qi(t, x, y) solves both the forward and the backward Kolmogorov
equation and thus is real analytic in (y, x) ∈ X 2

i \ {x = y} by application of Theorem
A.1. On the other hand, since Xi is a local martingale we know that qi(t, x, y) is the
heat kernel associated with the differential operator

Li ≡
1

2a2
i (y)

∂2

∂x2
i

and the remaining claims thus follow from Davies (1997, Theorem 3 and 4) after suitable
modifications. QED.

Lemma D.6: The candidate price function P : [0, T ]×X → Rd+ is well-defined and real
analytic in t ∈ (0, T ).

Proof. By Proposition 2 we know that the function m > 0 is real analytic in t ∈ [0, T ]
and so it suffices to prove the result for the function Q ≡ mP . Since the state variables
are mutually independent we have that

Qi(z, x) ≡
∫ T−z

0

∫
X
p(θ, x, y)(mgi)(z + θ, y)dydθ.

where

p(t, x, y) ≡
d∏
i=1

qi(t, xi, yi) (71)

is the transition density of the vector of state variables. Now fix an arbitrary t0 ∈ (0, T ).
We need to show that the above integral is well-defined and analytic with respect to z
in a complex neighborhood P0 ⊃ t0. To this end, we decompose the above integral as
Qi1 +Qi2 where

Qi1(z, x) ≡
∫ T−t0

0

∫
X
p(θ, x, y)(mgi)(z + θ, y)dydθ,

Qi2(z, x) ≡
∫ T−z

T−t0

∫
X
p(θ, x, y)(mgi)(z + θ, y)dydθ.

Let τ ≡ T − t0 and P0 = T − P ⊃ t0 where P is the complex neighborhood whose
existence is asserted in Lemma D.5. Using the upper bound in (70) together with the
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elementary inequality

(a− b)2 − a2

2
+ b2 ≥ 0, ∀(a, b) ∈ R× R, (72)

we deduce that the integrand in the definition of Qi2 satisfies

|p(θ, x, y)(mgi)(z + θ, y)| ≤ f̂(y)
d∏
i=1

Ii(xi)Ji(yi)τ−αie−
Bi
τ (Ai(yi)−Ai(xi))2

≤ f̂(y)K(x)
d∏
i=1

Ji(yi)e−
Bi
2τ Ai(yi)

2
(73)

for some locally bounded function K where

f̂(y) ≡ sup
z∈O
|f(z, y)|

and O is the complex neighborhood of (0, T ) whose existence is postulated in Definition
4. Since f ∈ M we have that the right hand side of equation (73) with respect to y
and it follows that Qi2(z, x) is well-defined for all z ∈ P0. On the other hand, using
equation (73) in conjunction with Fubini’s theorem and the fact that both p and mgi
are real analytic we obtain that∫

Γ

Qi2(γ, x)dγ = 0

for any closed contour Γ ⊆ P0 and analyticity of Qi2 with respect to z ∈ P0 now follows
from Morera’s theorem (see Shabat (1992, Theorem 2 p.85)).

In order to deal with the function Qi1 fix two small open sets X1 ⊂ X2 ⊆ X , assume
that x ∈ X1 and let

hi(z, x) ≡ N(x)(mgi)(z, x)

where N : X → [0, 1] is an arbitrary smooth function which is equal to 1 on the set X1

and to zero outside of the set X2. Using this notation we may decompose the function
Qi1 as

Qi1(z, x) = Hi1(z, x) + Fi1(z, x)

where

Hi1(z, x) ≡
∫ T−t0

0

∫
X2

p(θ, x, y)hi(z + θ, y)dydθ,

Fi1(z, x) ≡
∫ T−t0

0

∫
X c1

p(θ, x, y) (mgi − hi) (z + θ, y)dydθ,

and X c1 ≡ X\X1. Consider first the function Fi1. Since we are integrating over X c1 we
know that ‖y − x‖ ≥ ε for some strictly positive constant ε and it now follows from the
continuity of the functions Ai that

W (x, y) ≡
d∑
i=1

Bi (Ai(yi)−Ai(xi))2 ≥ δ
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for all y ∈ X c1 for some strictly positive constant δ ≡ δ(x). Using this estimate in
conjunction with the fact that power functions grow slower than exponentials we obtain
that

θ−
Pn
i=1 αie−

1
θW (x,y) ≤ Ce δ

2θ−
1
θW (x,y) ≤ Ce− 1

2TW (x,y) (74)

for all (θ, x, y) ∈ [0, T ] × X1 × X c1 and some constant C > 0. Combining this estimate
with the elementary inequality (72) and the bound of Assumption G we deduce that

|p(θ, x, y) (mgi − hi) (z + θ, y)| ≤ 2f̂(y)
d∏
i=1

Ii(xi)Ji(yi)θ−αie−
1
θW (x,y)

≤ 2Cf̂(y)
d∏
i=1

Ii(xi)Ji(yi)e−
1

2TW (x,y)

≤ C ′f̂(y)
d∏
i=1

Ji(yi)e−
Bi
4T Ai(yi)

2
(75)

for all (z, θ, x, y) ∈ P0×[0, T ]×X1×X c1 and some strictly positive constant C ′ ≡ C ′(x) >
0. Since f ∈M by assumption we know that the right hand side of the above inequality
is integrable with respect to y and it follows that Fi1 is well-defined on P0. On the other
hand, using equation (75) in conjunction with Fubini’s theorem and the fact that the
functions p, mgi and hi are all real analytic in time we obtain that∫

Γ

Fi1(γ, x)dγ = 0

for any closed contour Γ ⊆ P0 and analyticity of the function Fi1 with respect to z ∈ P0

now follows from Morera’s theorem.
In order to complete the proof it remains to show that Hi1 is well-defined and

analytic with respect to z ∈ P0. Since we are integrating over a compact set we know
that |hi| ≤ f̂ is uniformly bounded. This implies that

|p(θ, x, y)hi(z + θ, y)| ≤ Ci(x) p(θ, x, y) (76)

for all (z, θ, x, y) ∈ P0 × [0, T ]× X1 × X2 and locally bounded Ci(x) > 0. In particular,
we have

|Hi1(z, x)| ≤ Ci(x)(T − t0)

for all (z, x) ∈ P0 × X1 and it follows that the function Hi1 is well-defined on P0. On
the other hand, using equation (76) in conjunction with Fubini’s theorem the fact that
both p and mgi are real analytic we obtain that∫

Γ

Hi1(γ, x)dγ = 0

for any closed contour Γ ⊆ P0 and the desired analyticity follows once again from
Morera’s theorem. QED.

Lemma D.7: Let a < b and assume that h ∈ C2[a, b]. Then

sup
x∈[a,b]

|h′(x)| ≤ K

(
sup
x∈[a,b]

|h(x)|+ sup
x∈[a,b]

|h′′(x)|

)
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for some strictly positive constant K ≡ K(a, b).

Proof. Let x < (b− a)/2 and fix y ≥ (b− a)/2 such that x+ y ∈ [a, b]. By application
of Taylor’s formula we know that

h(x+ y) = h(x) + yf ′(x) +
1
2
|y|2h′′(ξ)

for some constant ξ ≡ ξ(x, y) ∈ [a, b]. Using this expression in conjunction with the
triangle inequality we deduce that

|h′(x)| ≤ |y|
2
|h′′(ξ)|+ 1

|y|

(
|h(x)|+ |h(x+ y)|

)
≤ |y|

2
sup
x∈[a,b]

|h′′(x)|+ 2
|y|

sup
x∈[a,b]

|h(x)|

≤ |b− a|
2

sup
x∈[a,b]

|h′′(x)|+ 4
|b− a|

sup
x∈[a,b]

|h(x)|

for all x < (b − a)/2. A similar argument with y ≤ (a − b)/2 shows that the same
inequality holds for all x > (b − a)/2 and the desired result now follows by taking the
supremum with respect to x on the left hand side. QED.

Lemma D.8: Fix two open sets X1 ⊂ X2 ⊂ X such that

dist(∂X1, ∂X2) > 0

and let X c2 ≡ X\X2. Then for every fixed k ∈ N there exists a strictly positive constant
Ck > 0 such that

sup
x∈X1

∣∣∣∣∣ ∂kp

∂xk11 · · · ∂x
kd
d

(t, x, y)

∣∣∣∣∣ ≤ Ck
d∏
i=1

Ji(yi)e−
Bi
4T Ai(yi)

2

for all (t, y) ∈ [0, T ]×X c2 and multi-indices (k1, . . . , kd) of length at most k.

Proof. Using equation (71) we obtain

∂kp(t, x, y)
∂xk11 · · · ∂x

kd
d

=
d∏
i=1

∂kiqi

∂xkii
(t, xi, yi)

and so it suffices to prove the result for the i−th coordinate. Since the sets in which x
and y vary are separated we know that ‖x − y‖ ≥ ε for some strictly positive ε and it
follows from the continuity of the function Ai that

Bi (Ai(yi)−Ai(xi))2 ≥ δ

for all (x, y) ∈ X1 × X c2 and some strictly positive constant δ. Using this estimate in
conjunction with inequalities (69), (72) and (74) we obtain

|qi(t, xi, yi)| ≤ Ii(xi)Ji(yi)t−αie−
Bi
t (Ai(yi)−Ai(xi))2

≤ Ii(xi)Ji(yi)e−
Bi
4t Ai(yi)

2+
Bi
2t Ai(xi)

2

≤ Ki0Ji(yi)e−
Bi
4T Ai(yi)

2
(77)
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for all (t, x, y) ∈ [0, T ] × X1 × X c2 where the last inequality follows from the local
boundedness of the functions Ii and Ai.

This shows that the statement holds for k = 0. In order to prove that it also
holds for k > 0 recall that the transition density is a smooth solution to the backward
Kolmogorov equation

∂2qi
∂x2

i

(t, xi, yi) = 2ai(xi)2Li(qi(t, xi, yi)) = 2ai(xi)2 ∂qi
∂t

(t, xi, yi). (78)

for all x 6= y and t > 0 and, hence, is real analytic in x and y for x 6= y by application of
Using this property Eidelman (1969, Theorem 6.2 p.221). Using (78) in conjunction with
the second part of Lemma D.5 and an argument similar to that which led to equation
(77) we obtain that∣∣∣∣∂2qi

∂x2
i

(t, xi, yi)
∣∣∣∣ ≤ 2ai(xi)2Ci1Ii(xi)Ji(yi)t−(1+αi)e−

Bi
t Ai(xi,yi)

2

≤ Ci2Ji(yi)e−
Bi
4T Ai(yi)

2
.

for all (t, x, y) ∈ [0, T ]×X1 ×X c2
This shows that the statement holds for k = 2 and, since we know from the first

part that it holds for k = 0, we may apply Lemma D.7 to conclude that it also holds for
k = 1. Differentiating both side of the partial differential equation equation (78) with
respect to time we get

∂3qi
∂t∂x2

i

(t, xi, yi) = 2ai(xi)2 ∂
2qi
∂t2

(t, xi, yi). (79)

and the same argument as above shows that∣∣∣∣ ∂2qi
∂t∂xi

(t, xi, yi)
∣∣∣∣+
∣∣∣∣ ∂3qi
∂t∂x2

i

(t, xi, yi)
∣∣∣∣ ≤ CJi(yi)e−Bi4T Ai(yi)

2
. (80)

for all (t, x, y) ∈ [0, T ]× X1 × X c2 and some strictly positive constant C. Now, differen-
tiating equation (78) with respect to xi gives

∂3qi
∂x3

i

(t, xi, yi) = 4a′i(xi)ai(xi)
∂qi
∂t

(t, xi, yi) + 2ai(xi)2 ∂2qi
∂t∂xi

(t, xi, yi).

and combining this identity with equation (80) and the real analyticity of the function
ai we conclude that the statement holds for k = 3. The rest of the proof is done in
a similar way by repeatedly differentiating equation (79) with respect to t and xi and
then applying Lemma D.7. We omit the details. QED.

Lemma D.9: The candidate price function P : [0, T ]×X → Rd+ is real analytic in x ∈ X
and belongs to C3((0, T ]×X ).

Proof. By Proposition 2 we know that the function m > 0 is real analytic in x ∈ X
and so it suffices to prove the result for the function Q ≡ mP .

In order to deal with the function Qi fix again two small open sets X1 ⊂ X2 ⊆ X ,
assume that x ∈ X1 and let

hi(z, x) ≡ N(x)(mgi)(z, x)
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where N : X → [0, 1] is a smooth function which is equal to 1 on the set X1 and to zero
outside of the set X2. Using this notation we may decompose the function Qi1 as

Qi(z, x) = Hi(z, x) + Fi(z, x)

where

Hi(z, x) ≡
∫ T−t0

0

∫
X2

p(θ, x, y)hi(z + θ, y)dydθ,

Fi(z, x) ≡
∫ T−t0

0

∫
X c1

p(θ, x, y) (mgi − hi) (z + θ, y)dydθ,

and X c1 ≡ X\X1. Using the result of Lemma D.8 we obtain that∣∣∣∣ ∂kp(θ, x, y)
∂k1x1 · · · ∂kdxd

(mgi)(τ, y)
∣∣∣∣ ≤ Ck2f̂(y)

d∏
i=1

Ji(yi)e−
Bi
4T Ai(yi)

2

for all (τ, θ, y) ∈ [0, T ]2 ×X c1 and some strictly positive constant Ck2 which depends on
the choice of x but stays uniformly bounded when x varies in compact subsets of X1.
Since the right hand side of the above estimate is integrable with respect to (y, θ) it
follows from standard results on the differentiation of integrals that the function Fi is
smooth with respect to x and satisfies

∂kFi(t, x)
∂k1x1 · · · ∂kdxd

=
∫ T−t

0

∫
X c1

∂kp(θ, x, y)
∂k1x1 · · · ∂kdxd

(mgi − hi)(t+ θ, y)dydθ (81)

for all t ∈ [0, T ] and x varying in compact subsets of X1. Furthermore, it follows from
the above bounds that there exists a constant K > 0 such that∣∣∣∣ ∂k∂xki qi(t, xi, yi)

∣∣∣∣ ≤ Ke−1/(Kt)

for all i and and y ∈ X c1 when x varies on compact subsets of X1. Thus, we may apply
the dominated convergence theorem in equation (81) to obtain

lim
t→T

∂kFi(t, x)
∂k1x1 · · · ∂kdxd

= 0. (82)

Summarizing the above results we have thus far proved that the function Fi belongs to
C0,∞((0, T ] × X1). Combining this result with that of Lemma D.6 shows that Fi is a
classical solution to the partial differential equation

−∂Fi
∂t

(t, x) = (mgi − hi)(t, x) +
d∑
j=1

1
2aj(xj)2

∂2Fi
∂x2

j

(t, x). (83)

Now consider the functionHi. Since the integrand hi is smooth and compactly supported
it follows from standard Feynman-Kac arguments (see, e.g., Oksendal (2007, Theorem
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8.2.1)) that the function Hi is a smooth solution to the partial differential equation30

−∂Hi

∂t
(t, x) = hi(t, x) +

d∑
j=1

1
2aj(xj)2

∂2Hi

∂x2
j

(t, x). (84)

Adding (83) and (84), we get that

−∂Qi
∂t

(t, x) = (mgi)(t, x) +
d∑
j=1

1
2aj(xj)2

∂2Qi
∂x2

j

(t, x)

and since all the coefficients in this partial differential equation are real analytic it now
follows from Theorem A.1 that Qi is real analytic in (t, x) ∈ (0, T ) × X and that its
radius of complex analyticity is uniformly bounded from below when t varies in compact
subsets of (0, T ).

In order to prove that the function Qi belongs to C3((0, T ]×X ) and thus complete
the proof the first step is to show that

lim
t→T

∂kQi(t, x)
∂k1x1 · · · ∂kdxd

= 0. (85)

for all multi-indices of length at most 3. As shown by equation (82) this property holds
for the function Fi and since Qi = Fi +Hi we only need to establish it for the function
Hi. First of all, using the fact that the transition density converges to a point mass as
t→ T we obtain

lim
t→T

Hi(t, x) = lim
t→T

∫ T−t

0

∫
X2

p(θ, x, y)hi(t+ θ, y)dydθ = 0. (86)

On the other hand, since the semigroup of the state variables commutes with the action
of the generator L =

∑d
j=1 Lj and the individual generators Lj are pairwise commuting

we obtain

LjHi(t, x) = Lj
∫ T−t

0

∫
X2

p(θ, x, y)hi(t+ θ, y)dydθs

=
∫ T−t

0

∫
X2

p(θ, x, y)Ljhi(t+ θ, y)dydθ (87)

and the fact that the transition density converges to a point mass as time to maturity
decreases to zero now implies that

lim
t→T

LjHi(t, x) = lim
t→T

1
2aj(xj)2

∂2Hi(t, x)
∂2xj

= 0. (88)

for every j. Using this property in conjunction with the smoothness of aj , equation (86)
and the result of Lemma D.7 we obtain that

lim
t→T

∂2Hi(t, x)
∂xj

= lim
t→T

∂Hi(t, x)
∂xj

= 0. (89)

Similarly, applying Lk on both sides of equation (87) and using the fact that the

30It can also be easily checked that Hi is a weak solution to this partial differential equation
and is therefore a strong solution by hypoellipticity. See Shikamura (1992, Theorem 2.1 p.99).
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transition density converges to a point mass we obtain that

lim
t→T

LkLjHi(t, x) = lim
t→T

1
4ak(xk)2aj(xj)2

∂4Hi(t, x)
∂2xj∂2xk

= 0

and combining this property with equation (89) and the result of Lemma D.7 we conclude
that

lim
t→T

∂4Hi(t, x)
∂x2

j∂x
2
k

= lim
t→T

∂3Hi(t, x)
∂x2

j∂xk
= 0. (90)

Now, using the result of Lemma D.7 together with the second parts of equations (89)
and (90) we obtain that

lim
t→T

∂2Hi(t, x)
∂xj∂xk

= 0 (91)

and the validity of equation (85) will follow once we prove that

lim
t→T

∂3Hi(t, x)
∂xj∂xk∂xl

= 0, (92)

for all j 6= k 6= l. Since the coordinates of the vector of state variables are autonomous
we have that the action of the generator commutes with that of the differential operator
∂2/∂xk∂xl for k 6= l. Using this property in conjunction with an argument similar to
that which led to equation (88) we obtain that

lim
t→T

∂4Hi(t, x)
∂x2

j∂xk∂xl
= 0

for all k 6= l and the validity of equation (92) now follows from equation (91) and the
result of Lemma D.7.

In order to complete the proof it remains to show that the derivatives

∂Qi
∂t

,
∂2Qi
∂t2

,
∂2Qi
∂t∂xj

,
∂3Qi
∂t3

,
∂3Qi
∂t2∂xj

and
∂3Qi

∂t∂xj∂xk

are all continuous at the terminal time. The continuity of ∂Qi/∂t follows from equation
(83), Assumption A and the fact that Qi ∈ C0,3((0, T ] × X ) by application of the first
part of the proof. On the other hand differentiating both sides of equation (83) with
respect to the space variables gives

−∂k+1Qi

∂t · ∂xk11 · · · ∂x
kd
d

(t, x) =
∂k(mgi + LQi)
∂xk11 · · · ∂x

kd
d

(t, x)

for all k ∈ N and it follows that Qi ∈ C1,3((0, T ]× X ) since we know from Assumption
A, Proposition 2 and the first part of the proof that the right hand side is continuous
at the terminal time. Similarly, differentiating both sides of equation (83) with respect
to time we obtain

−∂
2Qi
∂t2

(t, x) =
∂(mgi)
∂t

(t, x) +
d∑
j=1

1
2aj(xj)2

∂3Qi
∂t∂x2

j

(t, x)

and the continuity of the second order time derivative follows from Assumption A,
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Proposition 2 and the fact that Qi ∈ C1,3((0, T ]×X ). The continuity of the third order
time derivative can be established similarly by differentiating the above expression first
with respect to x and then with respect to time. We omit the details. QED.

Proof of Theorem 6. Combining Lemma D.6, Lemma D.9, Theorem A.1 and Theo-
rem A.2 we obtain that the candidate price function is real analytic in (t, x) ∈ [0, T ]×X
and belongs to C3((0, T ] × X ). The desired result now follows from Theorem 2 and
Proposition 4. QED.

Proof of Lemma 1. Using well-known results on square root diffusion processes, see
for example Feller (1951) and Cox et al. (1985), we have that the transition density of
the i−th coordinate is explicitly given by

qi(t, x, y) =
1

τi(t)

( y

e−bitx

) νi
2
e
− y+e

−bitx
τi(t) Iνi

(
2

τi(t)

√
e−bitxy

)
for all (t, x, y) ∈ [0, T ] × (0,∞)2 where the function Iνi is the modified Bessel function
of the first kind with index νi and we have set

τi(t) ≡
σ2
i

2bi

(
1− e−bit

)
.

Since the function τi is uniformly bounded above and away from zero on [0, T ] we have
that there are constants Ci = Ci(T ) > 0 such that

C1t ≤ τi(t) ≤ C2t.

Combining this property with Lemma D.10 below and the fact that Iνi(x) ≤ K0(x/2)νiex

for some strictly positive constant K0 (see for example Joshi and Bissu (1991)) we obtain
that the transition density satisfies

|qi(t, x, y)| ≤ K0τi(t)−(1+νi)yνie
− 1
τi(t)

(√y−
√
e−bitx)2

≤ K1t
−(1+νi)yνie

− 1
τi(t)

(√y−
√
e−bitx)2

≤ K2t
−(1+νi)yνieK3(x−y)−K4

t (√y−√x)2

for some strictly positive constants (K0)4
i=1 and the validity of Assumption G now follows

from the definition of the function Mi.
In order to complete the proof assume that the function f satisfies (36). Combining

this assumption with the elementary inequalities

‖x‖δ ≤

(
d∑
i=1

|xi|

)δ
≤

d∑
i=1

d δ|xi|

we deduce that∫
X
f̂(y)

d∏
i=1

Li(yi)e−εMi(yi)
2
dy ≤ K

d∏
i=1

∫
Xi
yνii e

φ|yi|δ−εMi(yi)
2
dyi

for some strictly positive constant φ and the desired result now follows from the definition
of the function Mi and the fact that δ < 1. QED.
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Lemma D.10: We have

e
− (y−e−tx)2

1−e−2t ≤ e− 1
2t (y−x)2+ t

2 + x2−y2
2

for all (t, x, y) ∈ R+ × R2.

Proof. See Downes (2009, Section 3.1). QED.

Proof of Proposition 7. The result follows from Lemma 1 and Proposition 10 after
setting ξ(x) = ‖x‖δ for some δ ∈ (0, 1). QED.

Proof of Lemma 2. The result follows from equation (35) and Lemma 1. We omit
the details. QED.

Proof of Proposition 8. The result follows from Lemma 2 and Proposition 10 after
setting ξ(x) = A + B log(1 + K‖x‖α) for some suitably chosen constants A, B, K and
α < α. We omit the details. QED.

D.3 Counterexamples

Proof of Proposition 9. Assume without loss of generality that d = 2 and consider
the nonnegative process defined by

Ht = H(t,Xt) ≡ Et
[
e−ρT+

R T
t

Φsdsv′(G(XT ))G1(XT )
]

with

Φt = Φ(t,Xt) ≡
g1(t, x)

K + F1(t, x)
.

Since all the terms are bounded we know that H is bounded and choosing K large
enough it can be guaranteed that the function

g2(t, x) ≡ (u′)−1

(
eρtH(t, x)
K + F1(t, x)

)
− g1(t, x)

is nonnegative for all (t, x). Taking g2 as the intermediate dividend on the second stock
we obtain that the equilibrium consumption price process is

eρtm(t,Xt) = 1{t<T}u′(g(t,Xt)) + 1{t=T}v′(G(Xt))

and it follows that the (pre–horizon) equilibrium price of the first stock is

m(t,Xt)P1(t,Xt) =
HtP1(t,Xt)
F1(t,Xt) +K

= Et

[∫ T

t

m(τ,Xτ )g1(τ,Xτ )dτ + e−ρTm(T,XT )G1(XT )

]

Using this expression in conjunction with the definition of the functions g2 and m we
easily get that

d

(
HtP1(t,Xt)
K + F1(t,Xt)

)
= −ΦtHtdt+ dMP

t (93)
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for some uniformly integrable martingale MP . On the other hand, we have that the
dynamics of the process H are given by

dHt = −ΦtHtdt+ e−
R t
0 Φ(s,Xs)dsdMt = −ΦtHtdt+ dMH

t

where M is the bounded martingale defined by

Mt ≡ e
R t
0 ΦsdsHt −H0

= Et

[
e−ρT+

R T
0 Φsdsv′(G(XT ))G1(XT )

]
−H0.

Using the boundedness of M in conjunction with the nonnegativity of Φ and the
Burkholder–Davis–Gundy inequalities (see Karatzas and Shreve (1998, Theorem 3.28))
we get that

E0

[
sup
t∈[0,T ]

|MH
t |

]
≤ C · E0

[
sup
t∈[0,T ]

|Mt|

]
<∞

for some strictly positive constant C and it follows that MH is a uniformly integrable
martingale. Using this property in conjunction with equation (93) we deduce that

Nt = Ht

(
1− P1(t,Xt)

K + F1(t,Xt)

)
= N0 +MH

t −MP
t

is also a uniformly integrable martingale and since limt→T Nt = 0 by definition of g2

and H we finally conclude that P1 = K + F1. QED.
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