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Abstract

This paper studies the local robustness of estimators and tests for the conditional location and

scale parameters in a strictly stationary time series model. We first derive optimal bounded-influence

estimators for such settings under a conditionally Gaussian reference model. Based on these results,

optimal bounded-influence versions of the classical likelihood-based tests for parametric hypotheses

are obtained. We propose a feasible and efficient algorithm for the computation of our robust esti-

mators, which makes use of analytical Laplace approximations to estimate the auxiliary recentering

vectors ensuring Fisher consistency in robust estimation. This strongly reduces the necessary compu-

tation time by avoiding the simulation of multidimensional integrals, a task that has typically to be

addressed in the robust estimation of nonlinear models for time series. In some Monte Carlo simula-

tions of an AR(1)-ARCH(1) process we show that our robust statistics maintain a very high efficiency

under ideal model conditions and at the same time perform very satisfactorily under several forms

of departure from conditional normality. On the contrary, classical Pseudo Maximum Likelihood

inference procedures are found to be strongly biased and highly inefficient under such local model

misspecifications. These patterns are confirmed by an application to robust testing for ARCH.

2



Electronic copy of this paper is available at: http://ssrn.com/abstract=414060

1 Introduction

This paper studies the local robustness properties of estimation and testing procedures for the conditional

location and scale parameters of a strictly stationary time series model.

The class of conditional location and scale time series models is quite broad and includes several

well-known dynamic models largely applied in economics and empirical finance, such as pure conditional

scale models (like ARCH models; Engle (1982)) or models that jointly parameterize the conditional

location and the scale of the given time series (like for instance ARCH in mean models; Engle, Lilien and

Robins (1987)). Typically, classical (non robust) estimation of the parameters of such models is obtained

by means of a Pseudo Maximum Likelihood (PML) approach based on the nominal assumption of a

conditionally Gaussian log-likelihood; see also Bollerslev and Wooldridge (1992). Such PML estimators

are based on an unbounded conditional score function, implying – as shown below – an unbounded time

series influence function (IF, Künsch (1984) and Hampel (1974)). As a consequence, PML estimators for

conditional location and scale models are not robust under local departures from conditional normality.

In this paper we propose a new class of inference procedures which are robust to local nonparametric

misspecifications of a parametric, conditionally Gaussian, location and scale model. More specifically,

we consider the class of robust, conditionally unbiased, M -estimators for the parameters of conditional

location and scale models and derive the optimal (i.e. the most efficient) robust estimator within this class.

Based on such estimators, several Maximum Likelihood (ML)-type bounded-influence tests for parametric

hypotheses on the parameters of the conditional location and scale equations are then obtained following

the general approach in Heritier and Ronchetti (1994) and Ronchetti and Trojani (2001).

The need for robust procedures in estimation and testing has been stressed by many authors and is now

widely recognized both in the statistical and the econometric literature; cf. for instance Hampel (1974),

Koenker and Bassett (1978), Huber (1981), Koenker (1982), Hampel et al. (1986), Peracchi (1990),

and more recently Markatou and Ronchetti (1997), Krishnakumar and Ronchetti (1997), Ronchetti and

Trojani (2001), Ortelli and Trojani (2002). However, the problem of the robust estimation for the

parameters of conditional location and scale models has been considered so far by very few authors and

only from the specific perspective of high breakdown estimation. Even less attention has been devoted

3



to robust inference within conditional location and scale models. High breakdown estimators resistant

to large amount of contamination have been proposed by Sakata and White (1998) and Muler and

Yohai (1999). These estimators are very computationally intensive and cannot be applied to estimate

the parameters of a class of broadly applied models – such as for instance threshold ARCH or ARCH in

mean models.

This paper derives optimal bounded-influence estimation and testing procedures for a general con-

ditional location and scale model, which are computationally only slightly more demanding than those

required by a classical PML estimation of such models. The more specific contributions to the current

literature are the following.

First, we characterize the robustness of conditionally unbiased M -estimators for nonlinear conditional

location and scale models by computing the time series IF of Künsch (1984) for the implied asymptotic

functional estimator. This is a first necessary step which allows us to construct robust statistical proce-

dures which can control for (i) the local asymptotic bias on the parameter estimates and (ii) the local

asymptotic distortion on the level and the power of ML-type tests.

Second, we derive the optimal bounded-influence estimator for the parameters of conditional location

and scale models under a conditionally Gaussian reference model. This extends the optimality result in

Künsch (1984) and the application of optimal conditionally unbiased M -estimators in Künsch, Stefanski

and Carroll (1989) to general nonlinear second order dynamic models. Based on these results, optimal

bounded-influence versions of the classical Wald, score and likelihood ratio tests are derived along the

general lines proposed in Heritier and Ronchetti (1994) and Ronchetti and Trojani (2001).

Third, we propose a feasible algorithm for the computation of our optimal robust estimators, which can

be easily implemented in standard packages, such as Matlab. This procedure is based on a truncating

procedure which uses a set of Huber’s weights to downweight the impact of influential observations.

Fisher consistency at the model is preserved by means of some auxiliary recentering vectors, which in a

time series setting have generally to be computed by simulations – as for instance in a Robust Efficient

Method of Moments (REMM, Ortelli and Trojani (2002)) setting. Using the conditional unbiasedness of

our estimator we provide analytical Laplace approximations for such vectors which strongly reduce the
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necessary computation time by avoiding the simulation of multidimensional integrals.

Fourth, we study by Monte Carlo simulation the efficiency and the robustness properties of our

estimator. We estimate a simple AR(1)-ARCH(1) process under several models of local contamination

of a conditionally Gaussian process. Under the Gaussian reference model the classical ML estimator and

our robust estimator have essentially the same efficiency. On the contrary, under local deviations from

conditional normality classical PML estimators, tests and confidence intervals are found to be strongly

biased and highly inefficient, while robust procedures perform very satisfactorily.

Finally, we present an application to robust testing for ARCH where robust procedures help in iden-

tifying ARCH structures which could not be detected using the classical inference approach.

The structure of the paper is as follows. Section 2 introduces conditional location-scale models and the

corresponding classical M -estimation procedure. Section 3 computes the time series IF for conditionally

unbiased M -estimators. The asymptotic bias on the parameter estimates induced by local deviations

from the conditional Gaussian reference model is then approximated. In a second step, the optimal

robust estimator is derived and the optimality of robust inference procedures based on such estimators

is discussed. The section is concluded by deriving analytic approximations for the auxiliary recentering

vectors in our robust estimation and by presenting an algorithm to compute our robust estimator in

applications. Section 5 presents the Monte Carlo experiments where the performance of our robust

estimation and inference approach is evaluated in the setting of an AR(1)-ARCH(1) model. The empirical

application to testing for ARCH is presented in Section 6. Section 7 summarizes and concludes.

2 Conditionally Unbiased M -estimators

Let Y := (yt)t∈Z be a real valued strictly stationary random sequence on the probability space (R∞,F ,P∗)

and P := {Pθ, θ ∈ Θ ⊆ Rp} be some parametric model for P∗. Under any model Pθ0 , the random variable

yt has a conditionally Gaussian distribution, yt|Ft−1 ∼ N (µt(θ0), σ2
t (θ0)). Specifically,

yt = µt(θ0) + εt(θ0),

ε2
t (θ0) = σ2

t (θ0) + νt(θ0),
(1)
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where µt(θ0) and σ2
t (θ0) parameterize the conditional mean and the conditional variance of yt given the

information Ft−1 up to time t−1. Finally, denote by ym
1 := (y1, . . . , ym) the finite random sequence of Y

and by Pm
θ0

the m-dimensional marginal distribution of ym
1 induced by Pθ0 . Model (1) covers a broad

class of well-known parametric models for time series. A general example is the following.

Example 2.1 Double threshold AR(1)-ARCH(1) models with volatility asymmetries (see for instance

Li and Li (1996) and Glosten, Jagannathan and Runkle (1993)) assume the specification

µt(θ0) = ρ0 + (ρ1 + ρ2 d1,t−1) yt−1,

σ2
t (θ0) = α0 + (α1 + α2 d2,t−1)(yt−1 − ρ0 − (ρ1 + ρ2 d1,t−2) yt−2)2 + α3 d1,t−1

(2)

with the dummy variable d1,t−1 = 1 if ρ0 + ρ1 yt−1 > 0 and zero otherwise, d2,t−1 = 1 if εt−1(θ0) < 0 and

zero otherwise.

Model (1) includes linear autoregressive models as a straightforward special case. Künsch (1984) defined

a time series influence function (IF) in this context and derived an optimal bounded-influence estimator

for the parameters of an AR(p) model. Martin and Yohai (1986) provided bounded-influence estimators

for AR and MA models and studied the asymptotic bias implied by additive and innovative outliers.

ARCH models (cf. Engle (1982)) are also special cases of model (1). Bounded-influence estimators for

such models are available in the class of robust GMM (RGMM) or robust EMM (REMM) estimators;

cf. Ronchetti and Trojani (2001) and Ortelli and Trojani (2002). Muler and Yohai (1999) considered

explicitly the pure (no location) ARCH setting from the perspective of high breakdown estimation.

Sakata and White (1998) developed high breakdown estimators for conditional location and scale models

that include ARCH models as special cases. However, their high breakdown estimators cannot be applied

directly to all models of the form (1) because they assume a partitioned parameter space Θ = Θ1 × Θ2

in order to imply µt(θ0) = µt(θ1), for θ1 ∈ Θ1. Moreover, all the above robust estimators are much

more computationally intensive than the one proposed in this paper already for simple processes, like for

instance ARCH models.

In robust inference, model (1) is interpreted as an “approximate” description of the true data gener-

ating process P∗. Hence, our aim is to derive efficient and computationally undemanding locally robust

procedures for inference on the parameters of model (1) when the data distribution P∗ is in some non-
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parametric neighborhood of the reference model Pθ0 . To this end we consider the class of conditionally

unbiased M -estimators for θ0 and a functional M -estimator a(·),

a : dom(a) ⊂Mm
stat −→ Θ,

where Mm
stat := {m-dimensional marginals of strictly stationary processes} and m ∈ N \ {∞}. In parti-

cular, this excludes GARCH models (Bollerslev (1986)) from our robust analysis.

The estimator a(·) is implicitly defined by an estimating function ψ : Rm × Θ −→ Rp and some

conditional moment conditions

Eθ0 [ψ(ym
1 ; a(Pm

θ0
))|Fm−1] = 0, (3)

which hold for a unique θ0 ∈ Θ. By construction (ψ(ym+t
1+t ; θ0))t∈Z is a martingale difference sequence

under Pθ0 . Thus, a(·) is conditionally Fisher consistent and the asymptotic estimating equation for θ0 is

Eθ0 [ψ(ym
1 ; a(Pm

θ0
))] = 0. (4)

For example, the conditionally Gaussian score function s

s(ym
1 ; θ0) = −k1,m + k2,m um(θ0) + k1,m um(θ0)2, (5)

where um(θ0) = εm(θ0)σm(θ0)−1 and

k1,m :=
1

2σ2
m(θ0)

∂σ2
m(θ)
∂θ

∣∣∣∣
θ=θ0

, k2,m :=
1

σm(θ0)
∂µm(θ)

∂θ

∣∣∣∣
θ=θ0

,

defines a conditionally unbiased M -estimator of θ0. In this setting, different specifications of µm(θ0) and

σ2
m(θ0) are easily accommodated in the Fm−1-measurable random vectors k1,m and k2,m.

The estimator a(·) depends on m process coordinates which are entirely determined by the parametric

reference model (1). For instance, in Example 2.1 we had m = 3. The M -estimator of θ0 solves the finite

sample estimating equations

n−1
n∑

t=1

ψ(ỹt
t−m+1; θ̂n) = 0, (6)

which are the finite sample version of the asymptotic condition (4), where ỹn
2−m are sample observations

of the process Y. Under model Pm
θ0

,
√

n(θ̂n − θ0) converges in distribution to the Gaussian distribution
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N (0, V (ψ; θ0)), where V (ψ; θ) := J(θ)−1 I(θ)J(θ)−1 with

J(θ) := Eθ

[
−∂ψ(ym

1 ; θ)
∂θ>

]
, I(θ) := Eθ

[
ψ(ym

1 ; θ)ψ(ym
1 ; θ)>

]
;

cf. Bollerslev and Wooldridge (1992), p. 148. In particular, under the reference model Pm
θ0

, the simple

expression for I(θ) is implied by condition (3).

3 Locally Robust Estimation

In this section we allow P∗ to be in a nonparametric neighborhood of the reference model Pθ0 . In partic-

ular, Pθ0 can be dynamically misspecified for P∗. As we focus on local robustness we consider local devi-

ations from Pm
θ0

. Therefore, we assume that Pm
∗ is in the following nonparametric neighborhood Uη(Pm

θ0
)

of Pm
θ0

,

Uη(Pm
θ0

) := {Pm
η = (1− η)Pm

θ0
+ ηGm, η ≤ b, b ∈ [0, 1], Gm ∈Mm

stat}. (7)

The neighborhood defined in (7) is a simple way to formalize local perturbations of the model Pm
θ0

. Notice

that dk(Pm
η ,Pm

θ0
) ≤ η for all Gm ∈Mm

stat, where dk(·, ·) denotes the Kolmogorov distance.

3.1 Time Series Influence Function

Robust procedures aim at the estimation of the parameter θ0 when local deviations from the reference

model Pm
θ0

are allowed. Such deviations induce an asymptotic bias on the functional estimator a(·),

defined by

bias := a(Pm
∗ )− a(Pm

θ0
) = a(Pm

∗ )− θ0.

For a robust inference on θ0, the standard robustness condition on the estimator a(·) is a bounded

asymptotic bias. To describe the linearized asymptotic bias of a(·) under some model Pm
η ∈ Uη(Pm

θ0
) we

consider the first order von Mises (1947) expansion of a(·) at Pm
θ0

(cf. for instance Fernholz (1983)),

a(Pm
η )− a(Pm

θ0
) = η a′(θ0,Gm) + o(‖Pm

η − Pm
θ0
‖), (8)

where a′(θ0,Gm) is the Gâteaux derivative of a(·) in the direction Gm − Pm
θ0

, defined by

a′(θ0,Gm) := lim
η↓0

a((1− η)Pm
θ0

+ ηGm)− a(Pm
θ0

)
η

,
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for all Gm such that this limit exists. By contrast with a simple i.i.d. setting, in a time series framework

the derivative a′(θ0,Gm) is determined by a set of equivalent kernels. The next definition introduces a

natural unique representant of such kernels.

Definition 3.1 The conditional influence function of the functional estimator a(·) is a kernel IF : Rm×

Θ −→ Rp such that

i) a′(θ,Gm) =
∫

Rm

IF (y; θ) dGm(y), for all Gm ∈Mm
stat,

ii) Eθ0 [IF (ym
1 ; θ0)|Fm−1] = 0,

where Eθ0 [·] denotes expectations with respect to the reference distribution Pm
θ0

.

Künsch (1984) introduced the natural additional condition ii) which determines a unique representant of

the IF. This condition simply requires that, at the reference model Pm
θ0

, ym|y1, . . . , ym−1 has no influence

on the asymptotic bias of the estimator. When the dependence of the conditional IF on the corresponding

score function ψ has to be emphasized we use in the sequel the notation IFψ.

The function IF is unique (cf. also Künsch (1984), Th. 1.3) and has some desirable properties.

First, under the reference model Pm
θ0

, the martingale difference property ii) implies the simple expression

V (ψ; θ0) = Eθ0 [IF (ym
1 ; θ0) IF (ym

1 ; θ0)>] for the asymptotic covariance matrix V (ψ; θ0) of a(·). Second,

for conditionally unbiased M -estimators of the form (3) the conditional IF can be computed as in the

one dimensional case by calculating the limit

IF (xm
1 ; θ0) := lim

η↓0
a((1− η)Pm

θ0
+ ηδx(1),...,x(m))− a(Pm

θ0
)

η
,

where δx(1),...,x(m) is the Dirac mass at {(y1, . . . , ym) = (x(1), . . . , x(m))}. This implies

IF (xm
1 ; a(Pm

θ0
)) = D(ψ; a(Pm

θ0
))−1 ψ(xm

1 ; a(Pm
θ0

)), (9)

where D(ψ; θ0) := −EPm
θ0

[(∂/∂θ)ψ(y; θ)>]θ=θ0 . As the conditional IF is unique and defines a martingale

difference process, (9) is the only admissible representation.

A bounded conditional IF ensures a bounded linearized asymptotic bias of any contaminated distri-

bution Pm
η in the neighborhood Uη(Pm

θ0
)

bias := a(Pm
η )− a(Pm

θ0
) = η

∫

Rm

IF (y; θ0)
∂

∂η
Pm

η (dy)
∣∣∣∣
η=0

+ o(‖Pm
η − Pm

θ0
‖),
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because the derivative on the right hand side is uniformly bounded for any Pm
η ∈ Uη(Pm

θ0
). Moreover,

since the conditional IF is linearly related to the ψ-function of the estimating equation (4), it is bounded

if and only if the ψ-function is bounded. As the Gaussian score function (5) is unbounded (at least) in

ε1(θ), PMLE’s based on such a score function are not robust.

3.2 Optimal Conditionally Unbiased Robust Estimators

We derive the most efficient estimator with bounded self-standardized sensitivity (see Proposition 3.1 and

Corollary 3.1 below) in the class of conditionally unbiased M -estimators for θ0. The self-standardized

sensitivity γ of the estimator is

γ(ψ) := sup
z∈Rm

‖V (ψ; θ0)−1/2IFψ(z; θ0)‖;

cf. for instance Krasker and Welsch (1982). By definition, nonrobust estimators have γ = ∞ while

bounded influence estimators have γ ≤ c < ∞, for some positive constant c ≥ √
p; cf. Hampel et

al. (1986), p. 228.

3.2.1 Optimality Results

Under the reference model Pm
θ0

, the classical estimator of θ0 defined by the score function (5) is the

most efficient but not robust. Therefore, we propose a robust estimator of θ0 that achieves for models

of the form (1) an optimality result, which is the direct extension of the one in Künsch, Stefanski and

Carroll (1989).

Let ψc(ym
1 ; θ) := A(θ)ψbif (ym

1 ; θ), where ψbif (ym
1 ; θ) :=

(
s(ym

1 ; θ)− τ(ym−1
1 ; θ)

)
w(ym

1 ; θ). We define

a robust functional M -estimator a(·) of θ0 implicitly by

EPm∗ [ψc(ym
1 ; a(Pm

θ0
))] = 0, (10)

where w(ym
1 ; θ) := min(1, c ‖A(θ)

(
s(ym

1 ; θ)− τ(ym−1
1 ; θ)

) ‖−1). The non singular matrix A(θ) ∈ Rp ×Rp

and the Fm−1-measurable random vectors τ(ym−1
1 ; θ) ∈ Rp are determined by the implicit equations

Eθ0 [ψc(ym
1 ; θ0) ψc(ym

1 ; θ0)>] = I, (11)

Eθ0 [ψc(ym
1 ; θ0)|Fm−1] = 0. (12)
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The estimating function ψc (or the unscaled version ψbif ) is conditionally unbiased at the reference

model and is a truncated version of the ML score (5) as, by construction, ‖ψc(ym
1 ; θ)‖ ≤ c. Moreover,

as (ψc(ym+t
1+t ; θ0))t∈Z is a martingale difference sequence under Pθ0 , the conditional IF of the functional

estimator a(·) is given by (9),

IFψc(y
m
1 ; a(Pm

θ0
)) = D(ψc; θ0)−1 ψc(ym

1 ; a(Pm
θ0

)).

The estimating function ψbif satisfies the following optimality criterion.

Proposition 3.1 If for a given constant c ≥ √
p equations (11) and (12) have solutions A(θ0) and

τ(ym−1
1 ; θ0), then ψbif minimizes tr(V (ψ; θ0)V (ψbif ; θ0)−1) among all ψ satisfying (3) and such that

sup
z∈Rm

(
IFψ(z; θ0)> V (ψbif ; θ0)−1 IFψ(z; θ0)

)1/2 ≤ c. (13)

Up to multiplication by a constant matrix, ψbif is unique almost surely.

Any score function ψopt such that V (ψ; θ0)− V (ψopt; θ0) is positive semi-definite for all ψ satisfying (3)

is called strongly efficient. The following corollary holds.

Corollary 3.1 If there exists an unbiased, strongly efficient score function ψopt satisfying γ(ψopt) ≤ c <

∞, then ψopt is equivalent almost surely to ψbif whenever the latter is defined.

Proof. The proofs follow from Stefanski et al. (1986), pp. 422–423, using the property

Eθ0 [τ(ym−1
1 ; θ0)ψ(ym

1 ; θ0)] = Eθ0 [τ(ym−1
1 ; θ0)Eθ0 [ψ(ym

1 ; θ0)|Fm−1]] = 0,

for any conditionally unbiased score function ψ.

Under standard conditions, the optimal robust estimator a(·) is consistent and asymptotically nor-

mally distributed at the reference model Pm
θ0

, with an asymptotic covariance matrix given by V (ψc; θ0) =

D(ψc; θ0)−1 D(ψc; θ0)−>.

3.2.2 Interpretation of A and τ

The A matrix ensures that the normed self-standardized IF of a(·) is equal to the norm of the robust

score function ψc, which is bounded by c. Indeed, under the scaling condition (11),

‖V (ψc; θ0)−1/2 IFψc(y; θ0)‖ = ‖ψc(y; θ0)‖.
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The A matrix can be computed by a simple iterative procedure given explicitly in Section 3.2.4.

Further, to satisfy the conditional Fisher consistency condition (12), each truncated score function has

to be shifted by some corresponding τ -vector. This implicitly defines the random sequence of τ -vectors

(τ(ym−1+t
1+t ; θ0))t∈Z associated to (ψc(ym+t

1+t ; θ0))t∈Z. The existence of such a sequence is guaranteed by

the continuity of the mapping τ(ym−1
1 ; θ) 7−→ ( s(ym

1 ; θ) − τ(ym−1
1 ; θ) ) w(ym

1 ; θ) and by the mean value

theorem; cf. also Lemma 2.1 in Künsch et al. (1989). As τ(ym−1
1 ; θ0) is Fm−1-measurable,

τ(ym−1
1 ; θ0) =

Eθ0 [s(y
m
1 ; θ0) w(ym

1 ; θ0)|Fm−1]
Eθ0 [w(ym

1 ; θ0)|Fm−1]
. (14)

In the next section we provide an accurate analytical approximation of τ(ym−1
1 ; θ0). This approximation

makes use crucially of the conditionally unbiasedness of the robust score function ψc. For an uncondi-

tionally unbiased robust M -estimator the centering τ -vector is implicitly defined by

τ(θ0) =
Eθ0 [s(y

m
1 ; θ0)w(ym

1 ; θ0)]
Eθ0 [w(ym

1 ; θ0)]
. (15)

In general, the expectations in (15) cannot be expressed analytically. In these cases, the computation of τ

requires computing some unconditional moments under Pm
θ0

. Unfortunately, in virtually all cases relevant

for this paper such moments are unknown and the functional dependence of τ on θ0 and A in (15) must

be computed by solving some m-dimensional integrals by Monte Carlo simulation.

3.2.3 Analytical Approximations for τ(ym−1
1 ; θ0)

We briefly explain the analytic approximation of the τ -vectors in (14). Detailed calculations are given in

Appendix A. We proceed in two steps.

Step 1. Given τ (0) as initial value for τ(ym−1
1 ; θ0), we compute the real roots of the following quartic

equation, with respect to the real variable um(θ0),

0 = ‖A(θ0)
(
s(ym

1 ; θ0)− τ (0)
) ‖2 − c2

:= ‖A(θ0)
(−k1,m + k2,m um(θ0) + k1,m u2

m(θ0)− τ (0)
) ‖2 − c2.

(16)

In almost all simulations and all empirical estimations in Sections 5 and 6, equation (16) had only two

real roots. Therefore, we only consider this case for brevity. The case of four real roots is discussed in

Appendix A.
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Step 2. We ‘split’ the integrals in (14) according to the roots determined by (16). Denoting such roots

by um and um, with um ≤ um, the denominator in (14) is

Eθ0 [w(ym
1 ; θ0)|Fm−1] = (17)

∫ um

−∞

c

‖A(θ0)(s(υ; θ0)− τ (0))‖ dΦ(u) + [Φ(um)− Φ(um)] +
∫ +∞

um

c

‖A(θ0)(s(υ; θ0)− τ (0))‖ dΦ(u),

where υ := (ym−1
1 , µm(θ0) + σm(θ0)u) and φ(·) and Φ(·) denote the standard Gaussian density and

cumulative distribution function. In our applications, typical values of um range from 2.7 to 3.5 (the

opposite for um). Hence, the ‘main contribution’ to the expectation on the left hand side of (17) comes

from the term in the square brackets. Since um and um are ‘quite far’ in the tails of a standard Gaussian

distribution, the remaining integrals can be well approximated using Laplace’s method; cf. for instance

Jensen (1995), Th. 3.1.1. The integral in the numerator of (14) is split in the same way as in (17) and

the relevant integrals are again approximated using Laplace’s method. The resulting formula for the

computation of τ is given in the next proposition.

Proposition 3.2 Given model (1) and the conditionally Gaussian reference model Pm
θ0

, if the quartic

equation (16) has only two real roots um ≤ um, then

τ(ym−1
1 ; θ0) =

−Ln(um)− k1,m [Φ(um)− Φ(um)] + k2,mM1,m + k1,mM2,m + Ln(um)
−Ld(um) + [Φ(um)− Φ(um)] + Ld(um)

+O
(
u−3

m

)
+O

(
u−3

m

)

where M1,m := φ(um) − φ(um), M2,m := umφ(um) − umφ(um) + Φ(um) − Φ(um). Ln(·) and Ld(·) are

defined in Appendix A and correspond to some Laplace approximations for the integrals in the numerator

and in the denominator of (14).

Intuitively, the real roots um and um in equation (16) determine the range where the standardized

innovation um(θ0) is ‘not influential’ (in terms of the self-standardized sensitivity of a(·)) for the arising

asymptotic bias. Indeed,

‖A(θ0) (s(ym
1 ; θ0)− τ (0))‖ ≤ c, ⇐⇒ um(θ0) ∈ [um, um],

> c, ⇐⇒ um(θ0) ∈ (−∞, um) ∪ (um, +∞),

and the normed self-standardized IF of a(·) is equal to the norm of the ψc-function.
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3.2.4 Algorithm

To compute the robust estimator defined by (10)–(12) an iterative algorithm has to be adopted because

the weights w(ym
1 ; a(Pm

θ0
)), the matrix A(a(Pm

θ0
)) and the random vectors τ(ym−1

1 ; a(Pm
θ0

)) depend on the

value of the estimator itself in a nonlinear way. Given a constant c ≥ √
p (cf. Hampel et al. (1986),

p. 228), the robust estimator is computed by the following four steps algorithm.

1. Fix a starting value θ(0) for θ0, and initial values τ
(0)
t := τ(ỹt−1

t−m+1; θ
(0)) = 0, for all t = 1, . . . , n

and A(0) such that

A(0)>A(0) =

[
n−1

n∑
t=1

s(ỹt
t−m+1; θ

(0)) s(ỹt
t−m+1; θ

(0))>
]−1

.

2. Compute, for all t = 1, . . . , n, the real roots of equations (16), and the associated new values

τ
(1)
t := τ(ỹt−1

t−m+1; θ
(0)) for τt and the new matrix A(1) for A, defined by

τ
(1)
t :=

−Ln(ut)− k1,t [Φ(ut)− Φ(ut)] + k2,tM1,t + k1,tM2,t + Ln(ut)
−Ld(ut) + [Φ(ut)− Φ(ut)] + Ld(ut)

,

(A(1)>A(1))−1 := n−1
n∑

t=1

(
s(ỹt

t−m+1; θ
(0))− τ

(0)
t

) (
s(ỹt

t−m+1; θ
(0))− τ

(0)
t

)>
×

min2(1, c ‖A(0) (s(ỹt
t−m+1; θ

(0))− τ (0))‖−1).

3. Compute the robust estimator θ(1) implied by (10) for given A(1) and τ
(1)
t as the solution of the

implicit equation

n∑
t=1

(
s(ỹt

t−m+1; θ
(1))− τ

(1)
t

)
min(1, c ‖A(1) (s(ỹt

t−m+1; θ
(0))− τ

(1)
t )‖−1) = 0.

4. Replace A(0) by A(1) and τ
(0)
t by τ

(1)
t for all t = 1, . . . , n and iterate steps 2 and 3 above until

convergence of the sequence (θ(i))i∈N of estimators associated with (10) and with the sequence

(A(i), τ (i))i∈N, where τ (i) := (τ (i)
1 , . . . , τ

(i)
n ).

Starting values for θ(0) could be the PML estimate of θ0 or the result of a grid search algorithm. We wrote

a Matlab code to implement the algorithm and we used the Matlab function ‘roots’ to compute the real

roots of equation (16). Analytical expressions for the τ -vectors avoid “internal” simulations to compute

the robust estimator. This largely reduces the computation time. For comparison, we implemented a
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second algorithm in which the τ integrals were computed numerically using the Matlab function ‘quadl’.

This algorithm is unfeasible as the computation time of a is almost two hours already for a simple AR(1)-

ARCH(1) model. For further comparison, we also implemented a robust GMM estimator as in Ronchetti

and Trojani (2001) with moment conditions A(θ)(s(ym
1 ; θ)− τ(θ))w(ym

1 ; θ), where τ(θ) is given by (15).

In our simulations of Section 5, the computation time of the estimator (10)–(12) was about 20% the one

of such a robust GMM estimator.

4 Robust Testing Procedures

Robust versions of the classical Wald, score and likelihood ratio tests based on the robust estimator

in (10)–(12) can be derived following the general approach proposed by Heritier and Ronchetti (1994)

and Ronchetti and Trojani (2001). Such robust tests satisfy the optimality criterion of maximizing the

asymptotic power subject to a bound on the asymptotic bias of the level and the power test. Such biases

can be controlled by imposing a bound on γ; cf. Ronchetti and Trojani (2001), p. 54. For brevity, we

focus on the robust version of the Wald test. Robust score and likelihood ratio tests can be handled in a

similar way.

Consider a parametric null hypothesis of the form

g(a(Pm
θ0

)) = 0, (18)

for a smooth function g : Θ −→ Rr such that (∂/∂a) g(a(Pm
θ ))> is of full column rank r for all θ ∈ Θ.

We consider for any n ∈ N test statistics nQ that are quadratic forms of a Wald functional U ,

nQ(Pm
n ) := nU(Pm

n )>U(Pm
n ); U(Pm

n ) :=
[
∂g(θ)
∂θ>

V (ψc; θ)
∂g(θ)>

∂θ

]−1/2

θ=a(Pm
n )

g(a(Pm
n )), (19)

where Pm
n is the empirical m-dimensional distribution of the observations ỹn

1 . Under the reference

model Pm
θ0

and the null hypothesis (18), n Q(Pm
n ) converges in distribution to a χ2 distribution with r

degrees of freedom. To apply the methodology in Heritier and Ronchetti (1994), we make the following

assumption.

Assumption 4.1 Let a bounded-influence estimator a of a(Pm
θ0

) be given. Then,

√
n

(
a(Pm

n )− a(Pm
η(ε,n))

)
→ N (0, V (ψ; θ0)), n →∞ (20)
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in distribution, uniformly over the sequence (Uη(ε,n)(Pm
θ0

))n∈N of η(ε, n)-neighborhoods defined by (7) for

η := η(ε, n) = ε/
√

n and G ∈ dom(a).

Under Assumption 4.1 the following proposition holds.

Proposition 4.1 Let a be the robust estimator defined by (10)–(12) and denote by α the asymptotic level

functional of the Wald statistic (19). Further let (Pm
η(ε,n))n∈N be a sequence of η(ε, n)-contaminations of the

null distribution Pm
θ0

, i.e. Pm
η(ε,n) ∈ Uη(ε,n)(Pm

θ0
). Then, the bias of the asymptotic level limn→∞ α(Pm

η(ε,n))

is uniformly bounded by

lim
n→∞

|α(Pm
η(ε,n))− α0| ≤ ε2 µ sup

z∈Rm

‖ψc(z; a)‖2 + o(ε2),

where µ := −(∂/∂β)Hr(q1−α0 ; β)|β=0, Hr(·; β) is the cumulative distribution function of a noncentral

χ2(r;β) distribution with r degrees of freedom and noncentrality parameter β ≥ 0, q1−α0 is the 1 − α0

quantile of a χ2(r; 0) distribution and α0 = α(Pm
θ0

) is the nominal asymptotic level of the test at the

reference model.

Proof. The proof follows from Heritier and Ronchetti (1994), p. 903 and Ronchetti and Trojani (2001),

p. 64.

Interpretion of ε. Choice of c. As a consequence of Proposition 4.1, the maximal asymptotic bias in the

level of the test based on the robust M -estimator a in (10)–(12) is bounded by

lim
n→∞

|α(Pm
η(ε,n))− α0| ≤ µ (ε c)2 + o(ε2).

The “power” counterpart of Proposition 4.1 can also be obtained. Hence, also the maximal asymptotic

bias in the power of a robust Wald test can be controlled by our robust estimator a; cf. Ronchetti and

Trojani (2001), Th. 2.

5 Monte Carlo Simulations

We compare by Monte Carlo simulations the performance of the classical PMLE (cf. Gourieroux, Monfort

and Trognon (1984)) defined by the score function (5) with the one of our robust estimator, both at the
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reference model and in the presence of local model contaminations. We estimate an AR(1)-ARCH(1)

model and simulate the following contaminated models “near” the reference model Pθ0 .

1. Standard Gaussian innovations. In this experiment, the innovation ut(θ0) has a standard Gaussian

distribution. Hence, the PMLE is the MLE and we compare the efficiency of our robust estimator

and the MLE at the reference model Pθ0 .

2. Replacement model (cf. for instance Martin and Yohai (1986)). Under such a model the observed

process X := (xt)t∈Z is generated according to the data generating process,

xt = (1− ϑη
t )yt + ϑη

t ξt, (21)

where the clean process Y := (yt)t∈Z is generated by the reference model Pθ0 and (ϑη
t )t∈Z is an

i.i.d. 0-1 random sequence, independent of Y, such that P(ϑη
t = 1) = η. Hence, at a time t ∈ Z,

the clean observation yt is replaced by ξt with probability η. In our simulations we set η = 0.5%

and ξt = 1.5 for all t. Such a low probability of contaminations is motivated by some difficulties of

the standard PMLE to converge when higher probabilities of contaminations occur (for e.g. η = 1%).

In this experiment model (1) is dynamically “slightly” misspecified as the dynamic equations (1)

are not satisfied. This experiment allows to compare the performances of the PMLE and the robust

estimator when very few observations deviate from the assumed model.

3. Innovative outlier model (cf. for instance Bustos and Yohai (1986)). Under such a contamination

the innovations are given by ut(θ0) = ǔt(θ0) [(1 − ε) + ε%2]−1/2, where ǔt(θ0) is distributed as the

following mixture distribution

ǔt(θ0) ∼ (1− ε)N (0, 1) + εN (0, %2). (22)

We set ε = 1% and % = 3. (22) describes situations where a given shock (or outlier) affects also

future realizations of the process Y. Furthermore, as ut(θ0) ∼ i.i.d.(0, 1), the dynamic equations (1)

are satisfied and the model is dynamically correctly specified. Hence, this is a typical situation in

which the PMLE is applied and there are no theoretical efficiency reasons to prefer one estimator

to the other.
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We simulate an AR(1)-ARCH(1) model implied by (2) for the parameter choice: ρ0 = 0.01, ρ1 = 0.8,

α0 = 0.02, α1 = 0.8 and ρ2 = α2 = α3 = 0 under the above distributions for yt and for a sample

size n = 1,000. The tuning constant for the robust estimator a was set at c = 9. Such a rather large

value of the tuning constant c implies that very few observations were downweighted. For instance, in our

simulations under the reference model Pθ0 only 3 or 4 (out of 1,000) observations were typically slightly

downweighted with weights around 0.8–0.9. Each model is simulated 5,000 times. For each simulation we

compute the PML and the robust estimates of θ0 with the corresponding asymptotic covariance matrices.

Then, for each parameter we compute the corresponding confidence interval at the 95% confidence level.

In a simulation study not reported here we also compared the performances of the RGMM estimates

introduced in Section 3.2.4 and our robust estimator under the reference model Pθ0 and the replacement

model (21) for η = 5%, ξt ∼ N (0, 1) and c = 4 for both estimators. The two performances were quite

close, up to the large differences in the computation time.

5.1 Point Estimation

Estimation results are presented in Table 1. For each estimated parameter, the first (second) column

contains summary statistics for the PML estimates (the robust estimates). In Figures 1–3 we plot the

estimated densities of the classical and the robust estimators. The first panel in Table 1 shows that

the efficiency loss of the robust estimator at the reference model Pθ0 is almost negligible. Specifically,

the mean squared errors of all parameter estimates for the two estimation procedures are very close.

This is confirmed by Figure 1. The second panel in Table 1 and Figure 2 show instead large biases

and mean squared errors of PML estimates under the replacement model (21). By contrast, robust

estimates maintain low mean squared errors. It is somehow surprising that such a large bias in the PML

estimates is induced by contaminating (on average) only 0.5% of the sample. Finally, the third panel in

Table 1 and Figure 3 show that, in terms of mean squared error, both estimators estimate correctly the

conditional mean parameters ρ0 and ρ1. However, the robust estimator always outperforms the PMLE

in the estimation of the conditional variance parameters α0 and α1.
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5.2 Interval Estimation

Figures 4–6 show the boxplots of the estimated confidence interval lengths for the PML and the robust

estimates. Actual confidence interval coverages are close to the nominal level 95% in both cases (an

exception is the confidence interval of the parameter α0 which is 78% for the PMLE and 92% for our

robust estimator under the replacement model (21).) Moreover, Figure 4 shows that, under the reference

model Pθ0 , the confidence interval lengths for both estimation techniques are almost identical. However,

Figure 5 shows that, under the replacement model (21), the PML confidence intervals are much larger

than the robust ones, denoting a large inaccuracy of the inference results. Moreover, PML confidence

intervals are not centered around θ0 as the parameter estimates are biased; cf. again Figure 2. Robust

confidence intervals are much more concentrated around θ0. Finally, Figure 6 shows that confidence

intervals under the innovative outlier model (22) are tighter for the robust than for the PML estimates,

especially for the conditional variance parameters α0 and α1.

5.3 Hypothesis Testing

To compare the performance of the classical PMLE and our robust estimator from the perspective of

hypothesis testing we also simulated 1,000 sample paths of an AR(1)-ARCH(1) model for the parameter

choices ρ0 = 0, ρ1 = 0, 0.05, 0.10 and α0 = 0.02, α1 = 0.8 under scaled Student t3 and scaled Student t5

innovations. We do not necessarily believe that in applications the innovations will generally follow these

distributions. We rather take the student t3 and t5 distributions as further examples of distributions

which are very close to the normal one. Under scaled Student t innovations model (1) is dynamically

correctly specified and hence the PMLE should perform well. In our experiments we tested the joint

null hypothesis ρ0 = ρ1 = 0 by means of a classical and a robust Wald statistic. The empirical rejection

frequencies of a Wald test based on the classical PMLE and a Wald test based on our robust estimator

are calculated for a fixed nominal level 5% of the test. The results are presented in Table 2. The

estimated standard error of the empirical rejection frequency p̂ is 0.7%, 1.4%, 1.5% for p̂ = 5%, 30%,

60%, respectively. Table 2 shows that the robust Wald test performs very well across all models, while

the classical test is oversized in finite sample and shows a lower power than the robust ones.
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The low power of classical tests under even slight departures from conditional normality suggests that

robust tests could be useful in application to unmask some possible ‘dynamics’ in the data hidden by the

presence of influential observations.

6 Empirical Application

We apply classical and robust Wald tests for ARCH to weekly exchange rate returns of the Spanish

peseta against the US dollar over the period November 2nd, 1993 until October 28th, 2003. The data

were downloaded from Datastream and consist of 522 observations. A similar data set from the Federal

Reserve Bank of Chicago has been analyzed by van Dijk et al. (1999) over the sample period January 8th,

1986 until December 27th, 1995. Our sample period contains a more ‘regular’ time series where no large

clear outlier seem to occur in the data. Indeed, the first ten sample autocorrelations of squared and

absolute returns are not significantly different from zero. Moreover, the Jarque-Bera test has a p-value

of 0.54 not rejecting normality. Classical PML estimates for the parameters ρ0, ρ1, α0 and α1 of an

AR(1)-ARCH(1) model (Wald test p-values for the hypothesis that the corresponding parameter is zero)

are 0.02 (0.76), 0.006 (0.90), 1.67 (0), 0.04 (0.55). The robust estimates under a tuning constant c = 4

are 0.04 (0.50), 0.001 (0.97), 1.54 (0), 0.44 (3.9 · 10−5). Therefore, as is typical for many financial return

series, the conditional mean parameters are not significantly different from zero. Moreover, the PML

estimate of the ARCH parameter α1 is also not significant. Hence, the classical Wald test does not reject

the homoscedasticity hypothesis. By contrast, the robust estimate of this ARCH parameter is highly

significant, showing that ARCH effects in the data are possibly obscured by some outlying observations

detected by the robust Huber weight presented in the bottom panel of Figure 8. These results are

consistent with the low power of PML tests under nonnormal conditional returns in Section 5.3.

7 Conclusions

We derived optimal bounded-influence estimators for the parameters of conditional location and scale

models under a conditionally Gaussian reference model. Based on these results, we obtained optimal
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bounded-influence versions of the classical likelihood-based tests for parametric hypotheses. We proposed

an efficient algorithm for the computation of our robust estimators, which strongly reduces the necessary

computation time by avoiding the simulation of multidimensional integrals. Monte Carlo simulations

show that our robust estimators maintain a high efficiency under ideal model conditions and have good

robustness properties under local departures from conditional normality, both in estimation and inference.

On the contrary, classical PML estimators are strongly biased and highly inefficient even under small

departures from conditional Gaussianity. An application to exchange rate data seems to confirm these

patterns.
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A Computation of τ(ym−1
1 ; θ0)

This appendix describes the computation of the correction factor τ(ym−1
1 ; θ0) in equation (12). According

to (16), the Gaussian score function can be written as

s(ym
1 ; θ0) = −k1,m + k2,mum(θ0) + k1,mu2

m(θ0),

where um(θ0) ∼ N (0, 1) under the reference model Pm
θ0

. For brevity we write A instead of A(θ0). Formally,

the problem is to compute τ(ym−1
1 ; θ0) such that

0 = A

∫ +∞

−∞

(−k1,m + k2,m u + k1,m u2 − τ(ym−1
1 ; θ0)

)
w(ym−1

1 , µm(θ0) + σm(θ0) u; θ0) dΦ(u).

As τ(ym−1
1 ; θ0), k1,m and k2,m are Fm−1-measurable, we have

τ(ym−1
1 ; θ0) =

τnum(ym−1
1 ; θ0)

τden(ym−1
1 ; θ0)

,

where

τnum(ym−1
1 ; θ0) :=

∫ +∞

−∞

(−k1,m + k2,mu + k1,mu2
)
w(ym−1

1 , µm(θ0) + σm(θ0)u; θ0) dΦ(u), (23)

τden(ym−1
1 ; θ0) :=

∫ +∞

−∞
w(ym−1

1 , µm(θ0) + σm(θ0) u; θ0) dΦ(u). (24)

Clearly, the difficulties in the computation of these integrals derive from the presence of the weighting

function w(ym
1 ; θ0) defined by (10). However, as the weighting function implies that ‖ψc(ym

1 ; θ0)‖2 ≤

c2, we can equivalently express such an inequality in terms of ‘admissible’ values of the standardized

innovation um(θ0). Specifically, we compute τ(ym−1
1 ; θ0) by means of the following two steps procedure.

Step 1

In the first step we compute the real roots in the real variable um(θ0) of the quartic equation (16), i.e.

0 = ‖A (s(ym
1 ; θ0)− τ (0))‖2 − c2

= ‖A (−k1,m + k2,m um(θ0) + k1,m u2
m(θ0)− τ (0))‖2 − c2

= a4u
4
m(θ0) + a3u

3
m(θ0) + a2u

2
m(θ0) + a1um(θ0) + a0 − c2,

where

a4 := k>1,mA>Ak1,m, a3 := 2k>1,mA>Ak2,m,
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a2 := k>2,mA>Ak2,m − 2k>1,mA>Ak1,m − 2k>1,mA>Aτ (0),

a1 := −a3 − 2k>2,mA>Aτ (0),

a0 := a4 + 2k>1,mA>Aτ (0) + τ (0)>A>Aτ (0).

Existence of a solution is guaranteed by Lemma 2.1 in Künsch et al. (1989) when choosing c ≥ √
p. In

general, we have either two or four real roots. As a4 > 0, in the first case

‖A (s(ym
1 ; θ0)− τ (0))‖ ≤ c, um(θ0) ∈ [um, um],

> c, um(θ0) ∈ (−∞, um) ∪ (um, +∞),

denoting by um ≤ um the real roots. In the second case, with four real roots u
m
≤ um ≤ um ≤ um,

‖A (s(ym
1 ; θ0)− τ (0))‖ ≤ c, um(θ0) ∈ [u

m
, um] ∪ [um, um]

> c, um(θ0) ∈ (−∞, u
m

) ∪ (um, um) ∪ (um, +∞).

In almost all simulations and all empirical estimations in the paper we found only two real roots.

Step 2

In the second step we ‘split’ the integral in equation (23) and (24) according to the roots determined in

Step 1. Assume first that there are two real roots, then

τnum(ym−1
1 ; θ0)

=
∫ um

−∞

qn(u) :=︷ ︸︸ ︷(−k1,m + k2,mu + k1,mu2
) c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

+
∫ um

um

(−k1,m + k2,mu + k1,mu2
)

dΦ(u)

+
∫ +∞

um

(−k1,m + k2,mu + k1,mu2
) c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

:=
∫ um

−∞
qn(u)

1√
2π

exp(−.5u2) du− k1,m [Φ(um)− Φ(um)] + k2,mM1,m + k1,mM2,m

+
∫ +∞

um

qn(u)
1√
2π

exp(−.5u2) du.

Notice that qn : R −→ Rp with the same functional form in each component. M1,m, M2,m are defined in

Proposition 3.2 and υ := (ym−1
1 , µm(θ0) + σm(θ0) u).

In particular M1,· and M2,· are the truncated first and second moments of a standard Gaussian random
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variable and integration by parts yields

M1,· =
∫ b

a

u dΦ(u) = φ(a)− φ(b), M2,· =
∫ b

a

u2 dΦ(u) = aφ(a)− b φ(b) + Φ(b)− Φ(a).

The remaining univariate integrals are approximated ‘componentwise’ using Laplace’s method. Under

standard regularity conditions (cf. for instance Jensen (1995), p. 58) on the real function q(·), for α →∞
∫ ∞

0

α exp(−αu) q(u) du = q(0) +
q′(0)

α
+

q′′(0)
α2

+ O

(
1
α3

)

=: L(q, α) + O

(
1
α3

)
.

L(q, α) is the Laplace approximation of the integral up to the third order. We use third order Laplace

approximations as the contribution of higher order terms is negligible. Therefore,

∫ +∞

um

qn(u)
1√
2π

exp(−.5u2) du

=
1√
2π

exp(−.5u2
m)

1
um

∫ +∞

0

um exp(−umz) qn(um + z) exp(−.5z2) dz

=
1√
2π

exp(−.5u2
m)

1
um

(
L(qn, um) + O

(
1

u3
m

))

=: Ln(um) + O

(
1

u3
m

)
,

where qn(z) := qn(um + z) exp(−.5z2). Similarly,

∫ um

−∞
qn(u)

1√
2π

exp(−.5u2) du = − 1√
2π

exp(−.5u2
m)

1
um

(
L(q

n
, um) + O

(
1

u3
m

))

=: −Ln(um) + O

(
1

u3
m

)
,

where q
n
(z) := qn(um + z) exp(−.5z2). The procedure for computing the denominator of τ in (24) is

analogous.

In the general case where the quartic equation (16) has four real roots u
m
≤ um ≤ um ≤ um, for

instance the integral in (24) becomes

τden(ym−1
1 ; θ0)

=
∫ u

m

−∞

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u) +
∫ um

u
m

dΦ(u) +
∫ um

um

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

+
∫ um

um

dΦ(u) +
∫ +∞

um

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

and Laplace approximation could be applied to the first and the last integral. Numerical results (not

reported here) show that the error when neglecting the weighting function in the central integral is very
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small. In fact um and um are typically very close and ‖A (s(υ; θ0)−τ (0))‖ is quite small, so that the error

is essentially zero.
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ρ0 = 0.01 ρ1 = 0.8 α0 = 0.02 α1 = 0.8

mean 0.0100 0.0100 0.7983 0.7977 0.0200 0.0200 0.7976 0.8007

median 0.0099 0.0100 0.7989 0.7985 0.0199 0.0200 0.7986 0.8016

MSE% 0.0026 0.0026 0.0199 0.0208 0.0002 0.0002 0.5756 0.5850

mean 0.0166 0.0112 0.7930 0.7959 0.0298 0.0222 0.8037 0.8081

median 0.0161 0.0111 0.7952 0.7965 0.0290 0.0218 0.8052 0.8064

MSE% 0.0132 0.0034 0.0832 0.0254 0.0145 0.0012 1.7880 0.8097

mean 0.0100 0.0100 0.7982 0.7978 0.0199 0.0194 0.7989 0.7727

median 0.0100 0.0100 0.7988 0.7983 0.0199 0.0194 0.7992 0.7748

MSE% 0.0030 0.0026 0.0256 0.0209 0.0003 0.0002 0.8006 0.6328

Table 1: Summary statistics for the PMLE (first column) and the robust estimator (second column) of

the AR(1)-ARCH(1) model under the reference model Pθ0 (first panel; cf. also Figure 1), the replacement

model (21) (second panel; cf. also Figure 2), the innovative outlier model (22) (third panel; cf. also Figure 3).
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t3 t5

ρ1 PML ROB PML ROB

0.00 0.08 0.05 0.07 0.05

0.05 0.17 0.24 0.22 0.26

0.10 0.46 0.65 0.62 0.74

Table 2: Each entry in the Table corresponds to the empirical rejection frequency of the joint hypothesis

ρ0 = 0 and ρ1 = 0 obtained using 5% critical values for the χ2 test of the AR(1)-ARCH(1) model under

scaled t3 and scaled t5 innovations, respectively.
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Figure 1: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> for the AR(1)-ARCH(1) process under the reference

model Pθ0 , i.e. under Gaussian distribution for the innovations; cf. also the fist panel of Table 1.
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Figure 2: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> of the AR(1)-ARCH(1) process under the

replacement model (21); cf. also the second panel of Table 1.
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Figure 3: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> of the AR(1)-ARCH(1) process under the innovative

outlier model (22); cf. also the third panel of Table 1.
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Figure 4: Boxplot of the lengths of ML (column 1) and robust (column 2) confidence intervals for θ̂0 :=

(ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 1) under the reference model Pθ0 .
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Figure 5: Boxplot of the lengths of PML (column 1) and robust (column 2) confidence intervals for θ̂0 :=

(ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 2) under the replacement model (21).
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Figure 6: Boxplot of the lengths of PML (column 1) and robust (column 2) confidence intervals for θ̂0 :=

(ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 3) under the innovative outlier model (22).
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Figure 7: Weekly exchange rate returns of the Spanish peseta versus the US dollar, for the period 11/2/1993

until 10/28/2003 (top panel) and the weights implied by the robust estimate of the AR(1)-ARCH(1) model

with c = 4 (bottom panel).
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Figure 8: Weekly exchange rate returns of the Swedish krona versus the US dollar, for the period 11/29/1993

until 11/17/2003 (top panel) and the weights implied by the robust estimate of the AR(1)-ARCH(1) model

with c = 4 (bottom panel).
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