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1. Introduction

In financial econometrics, one is often interested in estimating the volatility of the efficient log-price process

dXt = µtdt + σtdWt (1.1)

using discretely sampled data on the transaction price process at times 0,∆, . . . , n∆ = T . The volatility of

asset returns plays an important role in derivative pricing and hedging, asset allocation, risk management—

pretty much all of asset pricing. When σt is itself a stochastic process, a main object of interest is the quadratic

variation or integrated variance (IV)

〈X,X〉T =

∫ T

0

σ2
t dt (1.2)

over a fixed time period [0, T ], say one day. The usual estimator of 〈X,X〉T is the realized volatility (RV),

which is simply the sum of observed squared log-returns

[X,X]T =

n∑

i=1

(Xti+1
− Xti

)2 (1.3)

and this estimator has been used extensively in the recent literature: see e.g., Andersen and Bollerslev (1998)

and Barndorff-Nielsen and Shephard (2002).

In theory, sampling at increasingly higher frequency should deliver, in the limit, a consistent estimator of

the quadratic variation. The sum [X,X]T consistently estimates the integral 〈X,X〉T as has been well-known

in the stochastic processes literature. Further, the sum converges to the integral with a known distribution,

a result dating back to Jacod (1994) and Jacod and Protter (1998). Selecting ∆ as small as possible (= n as

large as possible) is optimal.

Everything would be perfect if it were not for the fact that financial asset returns are subject, especially

at high frequency, to a vast array of frictions. As a result, a perhaps more realistic model is one where the

observed transaction log-price is not X but rather Y, the sum of an unobservable efficient price X and a noise

component due to the imperfections of the trading process, ε :

Yt = Xt + εt. (1.4)

ε summarizes market microstructure effects, either informational or not: bid-ask bounces, discreteness of price

changes, differences in trade sizes or informational content of price changes, gradual response of prices to a

block trade, the strategic component of the order flow, inventory control effects, etc.

In the presence of market microstructure noise as in model (1.4), after suitable scaling, RV computed

from the observed log-returns, [Y, Y ]T , is a consistent and asymptotically normal estimator of the quantity

2nE[ε2]. This quantity is not the object of interest, 〈X,X〉T . In the high frequency limit where ∆ → 0,

market microstructure noise swamps the variance of the price signal.

Different solutions have been proposed for this problem. In the constant σ case, Zhou (1996) considers a

bias correcting approach based on autocovariances that is similar to the estimator used in French et al. (1987).

The behavior of this estimator has been studied by Zumbach et al. (2002). Efficient likelihood estimation of σ

is studied by Aı̈t-Sahalia et al. (2005), showing that incorporating ε explicitly in the likelihood function of the

observed log-returns Y provides consistent, asymptotically normal and efficient estimators of the parameters

that are robust to various forms of misspecifications of the noise term. Hansen and Lunde (2006) study

the Zhou estimator and extensions in the case where volatility is time varying but conditionally nonrandom.

Related contributions have been made by Oomen (2006) and Bandi and Russell (2006). The Zhou estimator

and its extensions, however, are inconsistent. This means in this particular case that, as the frequency of
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observation increases, the estimator diverges instead of converging to 〈X,X〉T : this was in fact recognized by

Zhou, see p. 47 in Zhou (1996).

In the stochastic volatility case, Zhang et al. (2005b) propose a solution to this problem which makes use of

the full data sample and delivers the first consistent estimators in the literature for 〈X,X〉T , as well as E[ε2],

in the presence of noise. The estimator, Two Scales Realized Volatility (TSRV), is based on subsampling,

averaging and bias-correction.

Our objective in this paper is to examine and compare the out-of-sample performance of RV and TSRV as

estimators of the quadratic variation, in a variety of contexts that are outside the controlled setup that has

been used to derive the theoretical properties of these estimators. In other words, does the better performance

of TSRV that is evident when looking at its theoretical properties extend to the out-of-sample forecasts when

the data generating mechanism incorporates realistic features of the volatility process such as time series

dependence in the noise, correlation of the noise with the price process, long memory, jumps and the like?

This paper complements other papers which have studied the forecasting ability of various volatility es-

timators. Andersen et al. (2003), Andersen et al. (2004) and Andersen et al. (2005) study the standard RV

estimator, looking at its pointwise forecasts and the efficiency loss relative to optimal, but unfeasible, fore-

casts based on the entire path of volatility. Their assumed model has an ARMA structure for the log of the

volatility, and is one of the data generating processes we will consider. Under the eigenfunction stochastic

volatility model of Meddahi (2001), they obtain analytical formulae for the autocovariance functions of RV.

Market microstructure noise is not incorporated in those papers, however.

Analytical formulae for the autocovariance of RV with noise are given independently by Garcia and Meddahi

(2006), and by Ghysels and Sinko (2006a) within the mixed data sampling (MIDAS) framework. The latter

authors study the autocovariance corrections for RV proposed by Zhou (1996) and later extended by Hansen

and Lunde (2006), and show that they do not improve volatility forecasting. Further results are reported in

Ghysels and Sinko (2006b) and Ghysels et al. (2008), whose data generating process for the volatility is of

the same type as in the papers just cited, but explicitly include market microstructure noise. They find that

at the high frequencies where market microstructure noise matters (although their study does not consider

observation frequencies higher than one minute), TSRV predicts volatility the best; they also find that the

noise component constructed as a difference between the standard RV estimator and TSRV, is predictable

on average. While writing this paper, we became aware that Andersen et al. (2006) are in the process of

extending their previous forecasting work to market microstructure robust noise measures.

Corradi et al. (2008) and Corradi et al. (2005) construct conditional predictive densities and confidence

intervals for IV and estimate these densities using nonparametric kernel estimators. They use different esti-

mators for IV, including RV and TSRV and derive confidence bands around their kernel estimators. Their

findings confirm the theoretical predictions of Zhang et al. (2005b) that, when the time interval between suc-

cessive observations becomes small, the signal to noise ratio of the data decreases, and realized volatility and

bipower variation tend to explode, instead of converging to the increments of quadratic variation. This result is

visible from their predictive densities, as the ranges of the densities of these two uncorrected estimators widen

considerably as the observation frequency increases. They also find that, TSRV, as a microstructure-robust

measure of volatility, is stable, and increasing the frequency at which the data are sampled does not seem to

induce any appreciable distortion in its density estimator.

Unlike those papers, we perform a horse race between different estimators by running Mincer-Zarnowitz

forecasting regressions, and use widely different data generating processes. On the other hand, unlike Corradi

et al. (2008) and Corradi et al. (2005), but like the other papers mentioned, we look only at point estimates

and not at the full forecast distribution.

Our results are unambiguous: no matter what data generating process we consider, and what assumptions

we make on the noise (magnitude within reason, iid or autocorrelated, correlated or not with the price signal),
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we find that TSRV produces better forecasts of future IV than the standard RV does, sometimes by a wide

margin.

This paper is organized as follows. Section 2 summarizes the RV and TSRV estimators we consider.

Section 3 presents our Monte Carlo results under different assumptions: first the standard Heston stochastic

volatility model; second a jump-diffusion model for the volatility; third a log-volatility model; fourth a het-

erogeneous autoregressive realized volatility (HAR-RV) model; fifth a long memory model for volatility based

on a fractional Ornstein Uhlenbeck process. In Section 4, we study the forecasting ability of these estimators

when applied to high frequency DJIA stocks data. Section 5 concludes.

2. Estimating the Quadratic Variation: RV and TSRV

We start with a brief description of the two estimators, RV and TSRV, and their theoretical properties. If one

uses all the log-returns data available (say sampled every second),

[Y, Y ]
(all)
T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+ 2nE[ε2]
︸ ︷︷ ︸

bias due to noise

+ [ 4nE[ε4]
︸ ︷︷ ︸

due to noise

+
2T

n

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]
1/2

total variance

Ztotal, (2.1)

conditionally on the X process, where
L≈ denotes stable convergence in law and Z denotes a standard normal

variable. So the bias term due to the noise, which is of order O(n), swamps the true quadratic variation

〈X,X〉T , which is of order O(1).

Of course, sampling as prescribed by [Y, Y ]
(all)
T is not what is done in practice. Instead, the estimator

[Y, Y ]
(sparse)
T constructed by summing squared log-returns at some lower frequency: 5mn, or 10, 15, 30mn, is

typically used. Reducing the value of n, from say 23,400 (1 second sampling) to nsparse = 78 (∆sparse = 5mn

sampling over the same 6.5 hours), has the advantage of reducing the magnitude of the bias term 2nE[ε2].

Yet, one of the most basic lessons of Statistics is that one should not do this.

TSRV is a simple method to tackle the problem: first, partition the original grid of observation times,

G = {t0, . . . , tn} into subsamples, G(k), k = 1, . . . ,K, where n/K → ∞ as n → ∞. For example, for G(1) start

at the first observation and take an observation every 5 minutes; for G(2), start at the second observation and

take an observation every 5 minutes, etc. Then we average the estimators obtained on the subsamples. To

the extent that there is a benefit to subsampling, this benefit can now be retained, while the variation of the

estimator can be lessened by the averaging.

This gives rise to the estimator [Y, Y ]
(avg)
T = 1

K

∑K
k=1[Y, Y ]

(k)
T constructed by averaging the estimators

[Y, Y ]
(k)
T obtained on K grids of average size n̄ = n/K. The properties of this estimator are given by

[Y, Y ]
(avg)
T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+ 2n̄E[ε2]
︸ ︷︷ ︸

bias due to noise

+ [ 4
n̄

K
E[ε4]

︸ ︷︷ ︸

due to noise

+
4T

3n̄

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]
1/2

total variance

Ztotal.

While a better estimator than [Y, Y ]
(all)
T , [Y, Y ]

(avg)
T remains biased. The bias of [Y, Y ]

(avg)
T is 2n̄E[ε2]; of

course, n̄ < n, so progress is being made. But one can go one step further. Indeed, E[ε2] can be consistently

approximated using RV computed with all the observations:

Ê[ε2] =
1

2n
[Y, Y ]

(all)
T . (2.2)
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Hence the bias of [Y, Y ](avg) can be consistently estimated by n̄
n [Y, Y ]

(all)
T . TSRV is the bias-adjusted estimator

for 〈X,X〉 constructed as

〈̂X,X〉
(tsrv)

T = [Y, Y ]
(avg)
T

︸ ︷︷ ︸

slow time scale

− n̄

n
[Y, Y ]

(all)
T

︸ ︷︷ ︸

fast time scale

. (2.3)

If the number of subsamples is optimally selected as K∗ = cn2/3, then TSRV has the following distribution:

〈̂X,X〉
(tsrv)

T

L≈ 〈X,X〉T
︸ ︷︷ ︸

object of interest

+
1

n1/6
[ 8

c2
E[ε2]2

︸ ︷︷ ︸

due to noise

+ c
4T

3

∫ T

0

σ4
t dt

︸ ︷︷ ︸

due to discretization
︸ ︷︷ ︸

]
1/2

total variance

Ztotal. (2.4)

Unlike all the previously considered ones, this estimator is now correctly centered. The constant c can be set

to minimize the total asymptotic variance above.

In small samples, a small sample refinement to 〈̂X,X〉T can be constructed as follows

〈̂X,X〉
(tsrv,adj)

T =

(

1 − n

n

)−1

〈̂X,X〉
(tsrv)

T . (2.5)

The difference with the estimator (2.3) is of order Op(K
−1), and thus the two estimators have the same

asymptotic behaviors to the order that we consider. However, the estimator (2.5) is unbiased to higher order.

When the microstructure noise ε is iid, the log-returns follow the MA(1) model

Yτi
− Yτi−1

=

∫ τi

τi−1

µt dt +

∫ τi

τi−1

σt dWt + ετi
− ετi−1

. (2.6)

Hence the corresponding negative autocorrelation can affect the estimate of quadratic variations given by

[Y, Y ]
(sparse)
T . An ad hoc remedy is to de-mean and filter the raw high frequency returns using an MA(1)

model before applying such an estimator; see Andersen et al. (2001).

In the simulation and empirical work that follows, RV will refer to the estimator [Y, Y ]
(sparse)
T (with or

without the pre-MA(1) filtering of the raw data), at different values of the sparse sampling interval ∆sparse

and TSRV to the estimator 〈̂X,X〉
(tsrv,adj)

T (with no need for MA(1) filtering), with different values of the

parameter K controlling the number of subgrids we use.

Finally, while TSRV provides the first consistent and asymptotic (mixed) normal estimator of the quadratic

variation 〈X,X〉T , as can be seen from (2.4), it has the rate of convergence n−1/6. Zhang (2006) shows that

it is possible to generalize TSRV to multiple time scales, by averaging not just on two time scales but on

multiple time scales. For suitably selected weights, the resulting estimator, MSRV, converges to 〈X,X〉T at

the slightly faster rate n−1/4. Computing this estimator, however, requires additional computations due to

the extra averaging step (over an asymptotically increasing number of time scales) and will in general produce

close results to those given by TSRV. An alternative derivation of TSRV and MSRV, based on kernels, has

subsequently been proposed by Barndorff-Nielsen et al. (2006).

3. Monte Carlo Evidence Using Alternative Data Generating

Processes

In this section we perform several experiments using widely different volatility models. In each experiment we

compare the in- and out-of-sample forecast performances of RV and TSRV computed at different frequencies.
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3.1. Heston Stochastic Volatility Model

In this Monte Carlo experiment, we use as the data generating process the stochastic volatility model of Heston

(1993) for the instantaneous variance

dXt = (µ − σ2
t /2) dt + σt dW1,t

dσ2
t = κ(α − σ2

t ) dt + γσt dW2,t.
(3.1)

We set the parameters µ, κ, α, γ and ρ, the correlation coefficient between the two Brownian motions W1 and

W2, to parameter values which are reasonable for a stock price, as in Zhang et al. (2005b), namely, µ = 0.05,

κ = 5, α = 0.04, γ = 0.5, ρ = −0.5. The volatility parameters satisfy the Feller’s condition 2κα ≥ γ2 which

makes the zero boundary unattainable by the volatility process. We simulate M = 10,000 sample paths of the

process using the Euler scheme at a time interval ∆ = 1 second. We assume that the market microstructure

noise, ε, has a Gaussian distribution, and (Eε2)1/2 = 0.001, i.e. the standard deviation of the noise is 0.1% of

the value of the asset price.

We simulate “continuous” sample paths of m + 1 = 101 days, [0, T1], . . . , [T99,T100], [T100,T101], for the

observed log-price process Y , that is each sample path consists of 101 × 23,400 log-returns, assuming that

each trading day consists of 6.5 hours, as is the case on the NYSE and NASDAQ.

When constructing the RV estimator, the first m = 100 days are used to estimate an MA(1) filter in order

to remove as much of the noise as possible, and consistently with the common practice in the empirical RV

literature. This step is not needed for the TSRV estimator. On each simulated sample path, the MA(1) model

is estimated using 100×78 = 7,800 log-returns at the 5mn frequency and the de-meaned MA(1) filtered returns

on the 100th day are used to estimate
∫ Tm

Tm−1
σ2

t dt; a similar procedure is applied, for instance, by Andersen

et al. (2001) to investigate the IV’s of the DJIA stocks. The 100th day is used for the in-sample estimate of

the IV and the last 101st day is saved for the out-of-sample forecast of the IV.

3.1.1 One Day Ahead Forecasts of IV

Denoting by T1 − T0 = T2 − T1 the one day time interval, it follows that

E[σ2
T1
|FT0

] = a σ2
T0

+ b, (3.2)

where a = e−κ(T1−T0), b = α(1 − e−κ(T1−T0)), and σ2
t follows the model (3.1): see e.g., Cox et al. (1985).

FT = σ{σ2
t ; t ≤ T} is the information set or σ-field generated by the instantaneous variance process up to

time T . Interchanging the integration operators, we have

E

[
∫ T1

T0

σ2
t dt|FT0

]

= aintσ
2
T0

+ bint, (3.3)

where aint = 1/κ(1 − e−κ(T1−T0)) and bint = α(T1 − T0) − α/κ(1 − e−κ(T1−T0)). Then using (3.3) and (3.2)

gives

E

[

E

[
∫ T2

T1

σ2
t dt|FT1

]

|FT0

]

= E[aintσ
2
T1

+ bint|FT0
] = aintE[σ2

T1
|FT0

] + bint

= aint(a σ2
T0

+ b) + bint = a(aintσ
2
T0

) + aintb + bint

= a(E

[
∫ T1

T0

σ2
t dt|FT0

]

− bint) + aintb + bint

E

[
∫ T2

T1

σ2
t dt|FT0

]

= aE

[
∫ T1

T0

σ2
t dt|FT0

]

+ b(T1 − T0), (3.4)
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which will give the out-of-sample forecast equation (3.6).

Using (3.4), Bollerslev and Zhou (2002) propose a GMM-type estimator for the Heston model based on

intra-day returns for the foreign exchange markets. Notice that the exact conditional forecast of
∫ T2

T1
σ2

t dt is

E

[
∫ T2

T1

σ2
t dt|FT1

]

= aintσ
2
T1

+ bint, (3.5)

which is not feasible as σ2
T1

is not observed.

3.1.2 In-Sample Estimations of IV

We present the in-sample estimation of IV given by TSRV and RV under the Heston volatility model. The

same procedure is adopted in the other experiments. We estimate the IV on the 100th day,
∫ Tm

Tm−1
σ2

t dt,

using the RV estimator [Y, Y ](sparse) and the TSRV estimator 〈̂X,X〉
(tsrv,adj)

based on unfiltered returns and

arbitrarily-determined frequencies of 5, 10, 15 and 30mn. We also report the results for [Y, Y ](sparse) based on

de-meaned MA(1) filtered 5mn returns and 〈̂X,X〉
(tsrv,adj)

under the optimal sampling frequency.

Table 1 shows the in-sample results for the different estimation strategies and TSRV estimators always

largely outperform all RV estimators in terms of bias, variance and RMSE at each frequency. In-sample simu-

lations for this model are also reported in Zhang et al. (2005b), but with half variance for the microstructure

noise, that is (Eε2)1/2 = 0.0005. Hence the outperformance of TSRV over RV is robust to an increase in the

magnitude of the noise, as expected. Of course, going in the reverse direction by decreasing the amount of

noise diminishes the advantage of TSRV over RV, but empirical studies such as those cited in Aı̈t-Sahalia et al.

(2005) suggest level of noise that are significantly higher than 0.0005. Table 1 also shows that the MA(1) filter

tends to improve the estimation performance of RV estimators, which remains largely inferior to the TSRV

performance. Similar in-sample results are obtained for all the subsequent Monte Carlo experiments and to

save space they are not reported here, but collected in Aı̈t-Sahalia and Mancini (2007).

The minimum variance TSRV is computed using K ≈ 100 subsamples which correspond to a slow time

scale of less than two minutes.1 Figure 1 shows the finite sample distribution of the minimum variance TSRV

estimator (2.5) and the corresponding asymptotic Gaussian distribution. Incidentally, the two distributions

appear to be very close, confirming the finding of Zhang et al. (2005a), that are robust to an increase in the

magnitude of microstructure noise. In all the subsequent Monte Carlo experiments the finite sample distri-

butions of the minimum variance TSRV are very close to the asymptotic distribution and the corresponding

plots will be omitted.

3.1.3 Out-of-Sample Forecasts of IV

In this section we compare the one day ahead out-of-sample forecasts of the IV given by TSRV and RV. As

discussed in Section 3.1.1, the relation between the conditional means of IV is

E

[
∫ Tm+1

Tm

σ2
t dt|FTm−1

]

= e−κDE

[
∫ Tm

Tm−1

σ2
t dt|FTm−1

]

+ α(1 − e−κD)D, (3.6)

where D = Tm+1 − Tm = Tm − Tm−1 is one day on an annualized base. Replacing the conditional mean

in the right-hand-side by the estimate of the IV on day m provides a simple method to forecast the IV on

day m + 1. Precisely we proceed as follows. We split each simulated sample path in two parts. The first

part of 100 × 23,400 high frequency log-returns is used to estimate the time series of 100 daily IV and an

AR(1) model for the IV itself or equivalently to estimate intercept and slope in the forecast equation (3.6)

1Roughly the same number of subsamples is also used in the subsequent Monte Carlo experiments.
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where the conditional expectation in the right-hand-side is replaced by the estimated IV. The second part of

the simulated sample path consists of 23,400 high frequency log-returns, it represents the last 101st trading

day of high frequency data and it is saved for out-of-sample purposes. The out-of-sample forecast of IV on

the day 101st is provided by the AR(1) model for IV and compared with true IV realized on that day. This

procedure is repeated for each sample path and for both TSRV and RV computed at the different frequencies.

In empirical applications the true underlying model parameters are unknown and finite sample properties of

stochastic volatility models, such as mean reversion, can be quite different from the corresponding asymptotic

properties. Hence estimation of equation (3.6) is required to be realistic.

In the tradition of Mincer and Zarnowitz (1969) and Chong and Hendry (1986), we compare the alternative

volatility forecasts by projecting the true realized IV on day m+1,
∫ Tm+1

Tm

σ2
t dt, on a constant and the various

model forecasts. The forecast evaluation regressions take the form

{
∫ Tm+1

Tm

σ2
t dt}j = b0 + b1 {TSRVTm+1|Tm

}j + b2 {RVTm+1|Tm
}j + errorj , (3.7)

for j = 1, . . . , 10,000. TSRVTm+1|Tm
is the out-of-sample forecast of IV from day m to day m + 1 given by

the AR(1) model for IV estimated using the time series of TSRV daily IV. RVTm+1|Tm
is similarly computed.

The OLS estimates of the forecast evaluation regressions (3.7) are reported in Table 2. In all cases TSRV

forecasts largely outperform RV forecasts; Figure 2 visually confirms this result. Moreover, in almost all

cases, adding any RV forecasts to TSRV forecasts gives no additional explanatory power, that is the R2 of the

extended regressions do not increase. The only exception is the extreme situation of TSRV computed at the

(excessively long) 30mn frequency. In all cases, the null hypothesis H0 : b0 = 0 and H0 : b1 = 1 are rejected.

However, also using the true in-sample IV on day m = 100 to forecast the IV on day m + 1, the previous

hypothesis are rejected. This is mainly due to a Jensen’s inequality effect which links in a nonlinear way the

parameters of the Heston model and the IV process.

We performed a number of robustness checks to support the previous results. To save space, and because

the results are consistent with those above, these additional results are not reported in the present paper, but

collected in the supplementary appendix Aı̈t-Sahalia and Mancini (2007). For instance, we investigate the

out-of-sample forecasts of the integrated volatility IV1/2 instead of the integrated variance, IV. Then in the

forecast evaluation regressions (3.7), IV and the corresponding estimates are replaced by IV1/2. The overall

conclusions are the same as in Table 2, meaning that the previous findings are robust to Jensen’s inequality

effects. We also repeat the previous simulation study using a nearly integrated Heston model to approximate

long memory features exhibited in the real world by the volatility of some assets; see Section 3.5 below for a

more theoretically-based approach to long memory. In the Heston model, we set the mean reversion coefficient

κ = 1 and the local volatility parameter γ = 0.275 in order to satisfy Feller’s condition. The findings of

the robustness checks confirm the results reported above. The main difference is that RV has an even larger

relative variance when estimating IV in-sample. This is due to a larger over-estimation of small integrated

variances.

3.2. Jump-Diffusion Model

Empirically it has been observed that the Heston model has some difficulties in fitting asset and option

prices (see for instance Jones (2003)) and hence it has been extended in several directions, in particular by

including jump components to the volatility process. To investigate the impact of jumps on RV and TSRV,

we now consider a model where the log-price dynamic is given by equation (3.1), but the volatility follows a

jump-diffusion Heston type model

dσ2
t = κ(α − σ2

t
−

) dt + γσt
−

dW2,t + Jt dqt, (3.8)

7



where σ2
t
−

= lims↑t σ2
s , qt is a Poisson process with intensity λ and Jt is the jump size, assumed to be

exponentially distributed with parameter ξ. The processes q and J are independent of the two Brownian

motions. Without jumps, λ = 0, equation (3.8) reduces to the Heston’s model (3.1). The long run mean of

the volatility process is E[σ2
t ] = α + ξλ/κ.2

We set the jump coefficients λ = ∆ × 23,400/2 which implies (on average) two volatility jumps per day,

and ξ = 0.0007, that is the jump size is about 2% of the unconditional variance. The diffusion coefficients are

as in Section 3.1, but α = 0.035.

In-sample estimation results are rather close to the findings under the Heston model and reported in Aı̈t-

Sahalia and Mancini (2007). Hence, as in the previous experiment, TSRV outperforms RV in terms of bias,

variance and RMSE at each frequency. Table 3 shows the out-of-sample simulation results. Again as in the

previous cases, TSRV provides more efficient and unbiased forecasts than RV and at each frequency; TSRV

results in larger R2 than RV.

It is known that empirically asset returns tend to display a jump component. Hence we simulate high

frequency data using the same Heston volatility model as in Section 3.1, but adding a jump component to

the log-price process X. All simulation results are collected in Aı̈t-Sahalia and Mancini (2007) and show that

TSRV outperforms RV also in that setting.

3.3. Log-Volatility Model

In empirical work, volatility is sometimes modelled and predicted with ARMA models that are constructed

using logs of realized volatility; see Andersen et al. (2001) and Andersen et al. (2003) for the use of log-RV for

stock return and exchange rate volatility. The rationale for doing this is that the distribution of log-RV can

be closer to Gaussian than that of RV. Goncalves and Meddahi (2005b) generalize this to the use of Box-Cox

transforms. Without log or other transformations, Goncalves and Meddahi (2005a) and Zhang et al. (2005a)

provide Edgeworth expansions for RV and TSRV with and without noise.

Here, it turns out that little of the difference in predictability can be attributed to nonnormality. We run

simulations using a log-volatility model calibrated to the parameter values reported by these papers and add

the same tiny amount of microstructure noise as above. Let IV
(d)
t denote the daily integrated variance IV

(d)
t

=
∫ t

t−d
σ2

s ds, where d = 1 day. Following Andersen et al. (2003), the daily logarithmic standard deviation lt

is assumed to evolve according to an AR(5) model3

lt =
1

2
log(IV

(d)
t ) = φ0 +

5∑

i=1

φilt−id + ut, (3.9)

where ut is a strong white noise, ut ∼ NID(0, Eu2). In contrast to the previous volatility models, the log-

volatility model (3.9) does not specify the instantaneous variance dynamic and is defined in discrete time.

Intraday efficient log-returns rt are given by the daily integrated volatility times a noise term

rt =

√

IV
(d)
t zt, (3.10)

where zt ∼ NID(0, 1). In our simulation experiment we set the parameter φ0 = −0.0161, φ1 = 0.35,

φ2 = 0.25, φ3 = 0.20, φ4 = 0.10, φ5 = 0.09, and (E u2)1/2 = 0.02 to induce approximately the same level of

2This can be seen integrating equation (3.8) and taking the unconditional expectation

E[σ2
t ] = E[σ0] + E

�Z t

0
κ(α − σ2

s
−

) ds

�
+ E

�Z t

0
γσs

−

dW2,s

�
+ E

24 qtX
j=1

Jj

35 .

The Itô integral has zero mean, and E[
Pqt

j=1 Jj ] = ξλt. Denoting E[σ2
t ] = σ̄2 and using Fubini’s theorem gives σ̄2 = σ̄2 + κ(α −

σ̄2) t + ξλt, which implies σ̄2 = α + ξλ/κ.
3Precisely, to capture long memory features in IV, Andersen et al. (2003) use a fractionally integrated AR process. We

investigate the long memory issue in Sections 3.4 and 3.5.
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daily logarithmic standard deviations documented by Andersen et al. (2001) for the DJIA stocks. We simulate

10,000 sample paths of 201 × 23,400 log-returns, i.e. each sample path represents 201 days of log-returns

sampled at one second intervals. The first 200 days are used to estimate the log-volatility model (3.9) and

the last day is saved for the out-of-sample forecasts. In the current experiment we simulate longer sample

paths (201 days instead of 101 days) than in the previous experiments to achieve a reasonable sample size for

the estimation of the log-volatility model. The out-of-sample forecasts of IV are obtained by equation (3.9).

As the logarithmic standard deviation lt is updated on a daily base, AR-type forecast equations are correctly

specified and directly implied by the assumed log-volatility model.

In-sample estimates of IV are reported in Aı̈t-Sahalia and Mancini (2007) and show that TSRV outperforms

RV in terms of bias, variance and RMSE as in the previous simulation experiments. Table 4 shows the out-of-

sample forecasts of IV and largely confirms the previous findings. For instance, RV forecasts have not additional

explanatory power in terms of R2 when added to TSRV forecasts in the Mincer-Zarnowitz regressions.

3.4. Heterogeneous Autoregressive Realized Volatility Model

In this section, we simulate the integrated volatility process using the heterogeneous autoregressive realized

volatility (HAR-RV) model proposed by Corsi (2004). The model is inspired by the heterogeneity of agents

operating in financial markets, and in particular to the different time horizons (such as daily or monthly)

relevant for different investors (such as day traders or fund managers); see also Müller et al. (1997) and

Dacorogna et al. (1998). Such heterogeneity could explain the strong positive correlation between volatility

and market participation observed empirically. Indeed, if all the investors were equal, the more agents acted in

the market, the faster the price converged to its market value on which all agents agreed. Thus, the volatility

had to be negatively correlated with market participation.

Another aspect captured by the HAR-RV model is that short term traders are concerned about long term

volatility as it potentially affects expected future trends and riskiness. Hence on the one hand they react to

changes in long term volatility by revising their trading strategies and causing volatility. On the other hand,

the level of short term volatility does not affect the trading strategies of long term investors such as pension

fund mangers or institutional investors. Such an asymmetric dependence among volatilities at different time

scales can be formalized using a cascade volatility model from low frequencies to high frequencies. To simplify

the model we will consider only three frequencies, i.e. daily, weekly, and monthly as in Corsi (2004). In

the following, irrespective of the frequency, all the quantities are expressed on an annual basis. As in the

previous section, IV
(d)
t denotes the daily integrated variance and RV

(d)
t the daily realized variance RV

(d)
t =

∑d/∆
j=0 r2

t−j∆, where rt−j∆ = xt−j∆ − xt−(j+1)∆, xt is the true underlying log-price and ∆ = 1 second. Weekly

and monthly realized variances, RV (w) and RV (m), are similarly defined by summing up squared log-returns

over the last week and month, respectively. The HAR-RV model for the daily integrated variance is

IV
(d)
t+∆ = β0 + β(d)RV

(d)
t + β(w)RV

(w)
t + β(m)RV

(m)
t + ω

(d)
t+∆, (3.11)

where ω
(d)
t ∼ NID(0, σ2

ω). Similarly to the log-volatility model (3.9), the HAR-RV model does not specify the

instantaneous variance dynamic. Hence intraday efficient log-returns, rt, are given by equation (3.10).

The equation (3.11) has a simple AR structure and formally IV (d) does not belong to the class of long

memory processes. However, the integrated variance can exhibit an apparent long memory behavior with

an autocorrelogram decaying (approximately) hyperbolically as shown for instance in Figure 3;4 see Corsi

4The long sample path of 4,000 days displayed in Figure 3 is obtained by simulating IV (d) with time step of three hours and

persistence of the process β(d) + β(w) + β(m) = 0.9. Empirically, it has been observed that the higher the sampling frequency

of returns, the more persistent is the volatility process. In our Monte Carlo experiment, we will simulate returns at frequency

of one second and then we will increase the persistence of IV (d) to 0.95. In both cases, the unconditional integrated variance

β0/(1 − β(d) − β(w) − β(m)) = 0.04.
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(2004) for further details. In general, a process obtained aggregating short memory processes can exhibit long

memory features when the aggregation level is not large enough compared to the lowest frequency component

of the aggregated process. Indeed, Granger (1980) shows that aggregating an infinite number of short memory

processes can induce a long memory process; see also Ding and Granger (1996). Recently, LeBaron (2001)

shows that the sum of only three AR(1) processes (each process operating on a different time scale) can exhibit

long memory when the half life of the longest component is large enough.5

In our experiments, we set the parameters as follows: β0 = 0.002, β(d) = 0.45, β(w) = 0.30, β(m) = 0.20,

and σω = 0.003. The low variance of ω(d) prevents negative values of IV (d). As in the previous section,

we simulate 10,000 sample paths of 201 × 23,400 log-returns, i.e. each sample path represents 201 days of

log-returns sampled every second. The first 200 days are used to estimate the HAR-RV model (3.11) and the

last day is saved for out-of-sample forecasts. The out-of-sample forecasts of IV are correctly specified using

equation (3.11), which implies AR-type forecast equations. In-sample estimations are collected in Aı̈t-Sahalia

and Mancini (2007) and out-of-sample forecasts are reported in Table 5. These results confirm all the previous

findings about the outperformance of TSRV over RV.

3.5. Fractional Ornstein-Uhlenbeck Model

A substantial amount of empirical evidence suggests that the volatility process may exhibit long memory.

Above, we have considered models which approximate this behavior. But a powerful class of models designed

to capture this feature are processes driven by fractional Brownian motions. We will use a fractional Ornstein-

Uhlenbeck (OU) process, as in Comte and Renault (1998), with a twist, for the purpose of representing a

process with long memory in volatility. The price dynamics continue to be given by equation (3.1).

Let us start with a brief description of fractional OU processes; for details, we refer the reader to Cheridito

et al. (2003). A fractional Brownian motion (FBM) with Hurst parameter H ∈ (0, 1] is an almost surely con-

tinuous, mean zero Gaussian process with covariance kernel Cov(WH,t,WH,s) = 1
2

(

|t|2H
+ |s|2H − |s − t|2H

)

for all t, s ∈ R. Further, WH,0 = 0 almost surely and WH is a process with stationary increments; in general,

however, the increments are not independent, except in the special case H = 1/2 which corresponds to a

(two-sided) standard Brownian motion. When H 6= 1/2, WH is not a semimartingale and for 0 < t < s

Cov(WH,τ+t − WH,τ ,WH,τ+s+t − WH,τ+s) =
1

2

(

|s − t|2H
+ |s + t|2H − 2 |s|2H

)

=
s2H

2

(∣
∣
∣
∣
1 − t

s

∣
∣
∣
∣

2H

+

∣
∣
∣
∣
1 +

t

s

∣
∣
∣
∣

2H

− 2

)

(3.12)

=
∑N

n=1

t2n

(2n)!

(
∏2n−1

k=0
(2H − k)

)

s2H−2n + O(s2H−2N−2) as s → ∞

for every integer N ≥ 1. Thus, for H ∈ (1/2, 1], the increments process (WH,(n+1)t − WH,nt)
∞
n=0 exhibits

long memory, namely
∑∞

n=0 Cov(WH,t,WH,(n+1)t − WH,nt) = ∞. An alternative characterization of FBM is

through its stochastic representation in terms of the standard BM, W :

WH,t =
1

Γ(H + 1/2)

(∫ 0

−∞

(

|t − s|H−1/2 − |s|H−1/2
)

dWs +

∫ t

0

|t − s|H−1/2dWs

)

, (3.13)

where Γ is the Gamma function. The representation (3.13) is in general not unique.

A fractional OU process is the solution of

dZH,t = κ(α − ZH,t) dt + γdWH,t, (3.14)

5A closely related approach to modelling long-range dependence is given by the superposition of Ornstein-Uhlenbeck or CEV

models; see Barndorff-Nielsen (2001) and Barndorff-Nielsen and Shephard (2001).

10



where we assume mean reversion (κ > 0) to a positive mean (α > 0). First, there exists a stationary, almost

surely continuous, solution ZH,t to (3.14). Second, the solution is given by

ZH,t = α + γe−κt

∫ t

−∞

eκudWH,u (3.15)

and is Gaussian and ergodic.6 Third, the autocovariance function of ZH decays at the same rate as that of

WH (see Theorem 2.3 in Cheridito et al. (2003)):

Cov(ZH,t, ZH,t+s) =
γ2

2

∑N

n=1
κ−2n

(
∏2n−1

k=0
(2H − k)

)

s2H−2n + O(s2H−2N−2) as s → ∞

so ZH exhibits long memory when H ∈ (1/2, 1].

Comte and Renault (1998) investigate the long memory properties of a volatility process driven by the

fractional Ornstein-Uhlenbeck process ZH,t, where ZH,t = log(σt). But in order to be able to forecast IV

exactly under the assumed model, we will modify that specification to one where ZH,t = σt directly. This has

the drawback of allowing for negative values of σt, which is not pretty but otherwise creates no mathematical

difficulties. As in the case of a standard OU process Z1/2,t, a high enough long term mean α can make the

probability of this occurring very small.7

It turns out that we now have all we need to be able to compute a forecasting equation for IV. Let

Iσm =
∫ Tm+1

Tm

σt dt. It is clear that (Iσm, Iσm−1) is jointly Gaussian. As a result,

E[Iσm|Iσm−1] = E[Iσm] +
Cov(Iσm, Iσm−1)

Var(Iσm−1)
(Iσm−1 − E[Iσm−1]). (3.16)

The key point is that this is an affine expression in Iσm−1, hence one that is amenable to an exactly-specified

forecasting regression. The coefficients of that regression expression can be computed explicitly as E[Iσm] =

α(Tm+1 − Tm) and

Cov(Iσm, Iσm−1) = E

[(
∫ Tm+1

Tm

ZH,t dt − E[Iσm]

)(
∫ Tm

Tm−1

ZH,r dr − E[Iσm−1]

)]

= E

[(

γ

∫ Tm+1

Tm

∫ t

−∞

e−κ(t−u)dWH,u dt

)(

γ

∫ Tm

Tm−1

∫ r

−∞

e−κ(r−v)dWH,v dr

)]

(3.17)

= γ2

∫ Tm+1

Tm

∫ Tm

Tm−1

e−κ(t+r)E

[(∫ t

−∞

eκudWH,u

)(∫ r

−∞

eκvdWH,v

)]

dr dt

and we conclude with the fact that

E

[(∫ t

−∞

f(u)dWH,u

)(∫ r

−∞

g(v)dWH,v

)]

=

∫ t

−∞

∫ r

−∞

f(u)g(v) |u − v|2H−2
dv du (3.18)

(see Pipiras and Taqqu (2000)). The calculation for Var(Iσm−1) is identical.

In our experiments, we need to simulate relatively long sample paths of the fractional OU process. Several

approaches are available to simulate fractional Gaussian processes. For instance, using a truncated version

of the FBM, Comte and Renault (1998) propose a tractable representation of the fractional OU process for

simulation purposes; see also Comte and Renault (1996). Unfortunately, this approach relies on a numerical

evaluation of stochastic integrals and it is quite computationally demanding for simulating the long sample

6In equation (3.15) the integral
R t

−∞
eκudWH,u appears, where WH is the FBM. Since the FBM is not a semimartingale,

stochastic integrals with respect to FBM might not be continuous function with respect to the integrand. However, the special

case of deterministic integrand turns out to be sufficient for the present purpose; see, for instance, Gripenberg and Norros (1996)

for a short and elementary FBM-specific introduction to the subject.
7Indeed, all simulated instantaneous variances were strictly positive.

11



paths needed in the present setting.8 For the simulation of the fractional Gaussian noise (FGN), that is the

increment of FBM, we use the method proposed by Davies and Harte (1987). The aim is to compute a matrix

G such that Σ = GG⊤, where G⊤ is the transpose of G and Σ is the covariance matrix of the FGN with

autocovariance function

ρ(k) =
Var(WH,t+∆ − WH,t)

2

(

|k + 1|2H
+ |k − 1|2H − 2 |k|2H

)

. (3.19)

Suppose that a sample path of size N has to be simulated, the main idea is to embed Σ in a so-called circulant

matrix C of size 2N . The first row of such a matrix is

[ρ(0) ρ(1) ρ(2) · · · ρ(N − 1) 0 ρ(N − 1) ρ(N − 2) · · · ρ(1)]

and the i-th row is obtained by shifting the first row i − 1 “places” to the right and padding the removed

elements to the left. The upper left corner of size N is the covariance matrix Σ. The circulant matrix C can

be decomposed as C = QΛQ∗, where Λ is the diagonal matrix of eigenvalues of C, Q is a unitary matrix and

Q∗ is the complex conjugate of Q⊤. Hence QQ∗ is the identity matrix. A sample path of the FGN is obtained

by QΛ1/2Q∗ζ, where ζ is a vector with iid Gaussian random variables. Davies and Harte (1987) provide an

algorithm in three steps to efficiently compute the last quantity; see also Craigmile (2003), Dieker (2004) and

references therein.

1. Compute the Λ eigenvalues. The eigenvalues λk, k = 0, . . . , 2N − 1, can be efficiently computed using

the fast Fourier transform of the elements in the first row of C.

2. Compute U = Q∗ζ. Using the covariance structure of U leads to the following simulation scheme for

U = [U0 U1 · · · UN−1 UN UN+1 · · · U2N−1]
⊤.

• Generate two independent Gaussian random variables U0 and UN .

• For 1 ≤ s ≤ N − 1, generate two independent Gaussian random variables ζ
(1)
s and ζ

(2)
s and

Us =
1√
2
(ζ(1)

s + ıζ(2)
s ), U2N−s =

1√
2
(ζ(1)

s − ıζ(2)
s ), (3.20)

where ı =
√
−1. The resulting vector U has the same distribution as Q∗ζ.

3. Compute QΛ1/2U . This quantity can be efficiently computed using the inverse fast Fourier transform of

the elements
√

λs Us, s = 0, . . . , 2N − 1.

A sample path of the FGN is obtained by taking the first N elements of QΛ1/2U . The main advantage of

the Davies-Harte method is the low computational cost which is of order N log(N) for N sample points (when

log2(N) is an integer) , as opposed for instance to the Hosking method which is of order N2. Once a sample

path of the FGN is available, the fractional OU can be simulated using the Euler discretization of equation

(3.14). We set the parameter α = 0.2, κ = 20, γ = 0.012, H = 0.7 and we simulate 10,000 sample paths of 87

days for the fractional OU process using a time interval ∆ = 1 second. Hence each sample path consists of 87

× 23,401 log-prices.9 Equation (3.16) is estimated using the previous 86 days of IV and the last day is saved

for the out-of-sample forecast of IV.

In-sample simulation results are reported in Aı̈t-Sahalia and Mancini (2007) and confirm that TSRV largely

outperforms RV in the estimation of IV. Table 6 shows the out-of-sample simulation results. Forecasts of IV

given by RV are quite biased and inefficient, while TSRV forecasts are much more accurate for instance in

terms of R2. Other Monte Carlo simulations (not reported here) confirm that the levels of R2 depend on the

amount of predictability (or memory) in the data generating process. Changing model parameters will change

R2, but the outperformance of TSRV over RV and the large differences in R2 remain.

8Similar computational difficulties arise for instance in the Hosking method, also known as the Durbin or Levinson method.
9The odd number of days allows to simulate N = 221 sample points using the standard “power of two” fast Fourier transform

algorithm and to speed up the simulation. Since 221 > 87 × 23,401, the first unnecessary sample points are discarded.
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3.6. Alternative Correlation Structures for the Market Microstructure Noise

In the Monte Carlo experiments above, the microstructure noise term ε was assumed to be iid. In the

parametric volatility context, Aı̈t-Sahalia et al. (2005) discuss how the likelihood function is to be modified in

the case of serially correlated noise and noise that is correlated with the price process. Aı̈t-Sahalia et al. (2006)

propose a version of the TSRV estimator which can deal with such serial dependence in market microstructure

noise. Hansen and Lunde (2006) considered such departures from the iid noise assumption in the case of the

Zhou estimator for σ time varying.

The literature reports some evidence against the iid noise assumption. For instance, Griffin and Oomen

(2008) provide an interesting analysis of the tick vs. transaction time sampling schemes showing that the nature

of the sampling mechanism can generate distinct autocorrelogram patterns for the resulting log-returns: in

transaction time the microstructure noise can be close to iid, but in tick time it is strongly autocorrelated.

Hansen and Lunde (2006) argue that the microstructure noise is autocorrelated and negatively correlated with

the latent return process, in particular when prices are sampled from quotations.

In this section, we remove the independent noise assumption and ε will be neither time independent nor

independent of the latent price X. The underlying data generating mechanism for X is given by the Heston

model (3.1) and we examine the two estimators, RV and TSRV in that context.

3.6.1 Autocorrelated Microstructure Noise

Following Aı̈t-Sahalia et al. (2006), a simple model to capture the time series dependence in the microstructure

noise ε is

εt = Ut + Vt, (3.21)

where U is iid, V is an AR(1) process with first order coefficient ̺, |̺| < 1, and U ⊥ V are normally

distributed. We set E[U2] = E[V 2] = 5 × 10−7 and ̺ = −0.2, which imply that (E ε2)1/2 = 0.001 as in the

previous experiments.

In-sample estimations of IV are rather close to the ones in the iid microstructure noise case (documented

in Table 1) and the corresponding results are collected in Aı̈t-Sahalia and Mancini (2007). Hence TSRV

outperforms RV in estimating the IV also under autocorrelated noise. Table 7 shows the out-of-sample

forecasts of IV and largely confirms all the previous findings. For instance RV forecasts have not additional

explanatory power in terms of R2 when added to TSRV forecasts in the Mincer-Zarnowitz regressions.

3.6.2 Microstructure Noise Correlated with the Latent Price Process

We simulate a microstructure noise ε not autocorrelated, but correlated with the return latent process X

Corr(εt, (Xt − Xt−∆)) = ϑ (3.22)

and we consider both positive, ϑ = 0.2, and negative, ϑ = −0.2, correlations. Both in- and out-of-sample

results are very close to the findings in the iid noise case documented in Tables 1 and 2 and are not reported

here, but collected in Aı̈t-Sahalia and Mancini (2007).

3.6.3 Autocorrelated Microstructure Noise Correlated with the Latent Price Process

In this section the microstructure noise ε is autocorrelated and correlated with the latent return process, that

is ε = U + V , where V is the same AR(1) process as in Section 3.6.1, and U is negatively correlated with the

latent returns, Corr(εt, (Xt − Xt−∆)) = −0.2.

In- and out-of-sample simulation results are very close to the results in the autocorrelated noise case

discussed in Section 3.6.1 and are reported in Aı̈t-Sahalia and Mancini (2007). The correlation between
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microstructure noise and latent return process has a minor impact on the measurement and the forecast of

the IV, while the autocorrelation in the microstructure noise plays a major role. Overall, TSRV outperforms

RV in estimating and forecasting IV also when the microstructure noise is autocorrelated and correlated with

the latent price process.

3.7. Comparison between TSRV and MSRV

We have seen that TSRV provides the first consistent and asymptotic (mixed) normal estimator of IV and has

the rate of convergence n−1/6. At the cost of higher complexity TSRV can be generalized to multiple time

scales, by averaging not on two time scales but on multiple time scales. The resulting estimator, multiple scale

realized volatility (MSRV) is

〈̂X,X〉
(msrv)

T =

M∑

i=1

ai [Y, Y ]
(Ki)
T

︸ ︷︷ ︸

weighted sum of M slow time scales

+2 Ê[ε2]
︸ ︷︷ ︸

fast time scale

, (3.23)

where Ê[ε2] is given in (2.2). TSRV corresponds to the special case M = 1 and uses only one slow time scale

(and the fast time scale to bias correct it). For suitably selected weights ai’s, 〈̂X,X〉
(msrv)

T converges to the

true 〈X,X〉T at the rate n−1/4. This generalization is due to Zhang (2006).

We repeat all the previous Monte Carlo experiments to compare in-sample estimations and out-of-sample

forecasts of TSRV and MSRV. To save space we report all the details and simulation results in Aı̈t-Sahalia and

Mancini (2007). Overall, under all scenarios TSRV and MSRV provide rather close (and accurate) estimations

and forecasts of IV. The efficiency loss in using TSRV instead of MSRV is essentially negligible. These results

are in agreement with the empirical findings of Aı̈t-Sahalia et al. (2006) as they show that TSRV and MSRV

give rather close estimates of IV for the Intel and Microsoft stocks.

4. Empirical Analysis

4.1. The Data

Our empirical analysis is based on the transaction prices from the NYSE’s Trade and Quote (TAQ) database

for the thirty DJIA stocks. The sample period extends from January 3, 2000 until December 31, 2004, for a

total of 1,256 trading days and the daily transaction records extend from 9:30 until 16:00. The DJIA stocks

are among the most actively traded U.S. equities and the sample period covers high and low volatility periods.

Hence the comparisons between TSRV and RV and in particular the out-of-sample forecasts of the integrated

volatilities will be interesting exercises.

The original data are pre-processed eliminating obvious data errors (such as transaction prices reported

at zero, transaction times that are out of order, etc.) and “bounce back” outliers larger than the cutoff 0.03.

Admittedly, other cutoff thresholds could be conceived, but they would be all equally arbitrary. Aı̈t-Sahalia

et al. (2006) investigate the dependence of TSRV and RV on cutoff levels, and they show empirically that

TSRV is much less affected than RV by the different level choices. Such outliers can be viewed as a form of

microstructure noise and the robustness of TSRV to different ways of pre-processing the data is a desirable

property. The pre-processed data will be used to estimate the daily integrated variances applying the TSRV

and RV estimators.
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4.2. Unconditional Return and Integrated Volatility Distributions

In this section we present the statistical properties of the unconditional return and the integrated variance

distributions. For each stock, daily integrated variances are estimated using the TSRV estimator (2.5) with

a slow time scale of five minutes and two RV estimators based on de-meaned MA(1)-filtered and unfiltered

5mn log-returns. In the construction of the RV estimators we follow Andersen et al. (2001). The five minutes

log-return series are obtained by taking the difference between log-prices recorded at or immediately before

the corresponding 5mn marks. Then to compute the first RV estimator, the raw log-returns are de-meaned

and for each stock an MA(1) model is estimated using the 5mn log-return series of the full five years sample.

The second RV estimator is computed using the unfiltered 5mn log-returns. In our sample, the IV estimates

given by the two RV estimators are very similar, confirming the findings in Andersen et al. (2001). For all

stocks and all trading days the differences between the corresponding annualized integrated volatilities are

always below 1%. Therefore, to save space the subsequent analysis will only involve the RV estimates based

on 5mn de-meaned MA(1) filtered returns. This choice is consistent with the previous Monte Carlo analysis,

where the RV forecasts based on MA(1) filtered returns tends to outperform the corresponding forecasts based

on unfiltered returns. For completeness, we report all the summary statistics for both RV estimators for each

DJIA stock in Aı̈t-Sahalia and Mancini (2007).

Table 8 presents summary statistics for the daily log-returns of the DJIA stocks, ri,t, i = 1, . . . , 30, over

the sample period, t = 1, . . . , 1,256, i.e. January 3, 2000 to December 31, 2004. The average returns across

all stocks are very close to zero, the majority of the stock returns have positive skewness, and all stock

returns display excess kurtosis. These findings are broadly consistent with the large empirical literature on

speculative asset returns, dating back at least to Mandelbrot (1963) and Fama (1965). As observed for instance

in Andersen et al. (2001), when the log-returns are standardized by the corresponding integrated volatility,

ri,t/IV
1/2
i,t , the unconditional distributions are very close to the Gaussian distribution. Table 9 shows the

previous summary statistics for the log-returns standardized using TSRV and RV and confirms this finding.

For instance the average kurtosis is reduced from 6.990 for the raw log-returns ri,t to 2.886 and 2.796 for

the log-returns standardized using TSRV and RV, respectively. We remark that the integrated volatilities for

standardizing the returns are only observable ex-post, and not ex-ante as for instance in GARCH-type models.

Nonetheless, the approximate Gaussian distribution of standardized returns, ri,t/IV
1/2
i,t , is in contrast to the

typical finding that, when standardizing daily returns by the one day ahead GARCH-type volatility forecasts,

the resulting distributions are invariably leptokurtic, albeit less so than the raw returns, ri,t.

Table 10 summarizes the unconditional distribution of the integrated volatilities, IV1/2, on an annual base

(252 days), given by TSRV and RV for the DJIA stocks. On average, the integrated volatilities estimated

using TSRV are lower, and less volatile, positively skewed and leptokurtic than the integrated volatilities

given by RV. These findings are consistent with the fact that the RV estimates can be adversely affected by

microstructure noise as demonstrated in the Monte Carlo analysis. In particular, the IV1/2 estimated using

RV are 2% higher with a kurtosis 23% larger than the IV1/2 estimated using TSRV. These differences are

economically significant, resulting in different asset prices and optimal asset allocations. For example, with a

typical three-month option with a vega sensitivity to volatility of 10, such a 2% difference in volatility results

in an option price that is 20% higher. To illustrate typical differences recorded on a single stock, Figure 4

shows the integrated volatilities of the Intel stock (ticker INTC) estimated using TSRV and RV: as can be

seen, in several occasions the two estimates are quite different.

As discussed earlier, given the high skewness and kurtosis of the integrated volatilities, a logarithmic

transformation of IV1/2 is sometimes adopted to induce an approximate Gaussian distribution. Table 11 shows

the summary statistics for the log(IV
1/2
i,t ) distributions estimated using TSRV and RV. Both distributions are

closer to the Gaussian one when compared to the unconditional distributions of IV1/2. For instance, the average

kurtosis across all the thirty stocks are now reduced to 2.987 and 2.900 for TSRV and RV estimates, compared
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to 9.856 and 12.074 for the IV1/2 in Table 10. As observed in Andersen et al. (2003), the approximate normality

of the log-integrated volatility, log(IV1/2), suggests the use of standard linear Gaussian approaches for modeling

and forecasting logarithmic volatility. In our in- and out-of-sample forecasts of the DJIA integrated volatilities,

we will use AR models for log(IV1/2) to obtain IV1/2 forecasts. We will also experiment AR models for the

integrated variance processes, IV, to obtain integrated volatility forecasts.

4.3. Temporal Dependence and Long Memory of Integrated Volatility

Temporal dependence and long memory are well documented empirical features of financial asset returns.

Table 12 reports summary statistics to investigate the temporal dependence of the integrated volatility, IV
1/2
i,t ,

in Panel A, and the logarithmic integrated volatility, log(IV
1/2
i,t ), in Panel B, estimated using TSRV and RV.

Consistently with the empirical literature, all the Ljung-Box portmanteau test strongly rejects the joint null

hypothesis of zero autocorrelations up to lag 22, that is about one month of trading days. All the test statistics

are well above the 40.289 critical value at 1% confidence level, documenting the well-known volatility clustering

phenomenon. Similar slow decay rates in the autocorrelation functions have been documented in the empirical

literature with daily time series of absolute and squared returns spanning several decades (see, for example,

Ding et al. (1993)), but the results in Table 12 are noteworthy in that the sample only spans five years. In

spite of the slow decay in the autocorrelations, about 90% of the augmented Dickey-Fuller tests for IV
1/2
i,t and

log(IV
1/2
i,t ) estimated using TSRV and RV reject the null hypothesis of unit root, (H0 : ADF = 0, in Table 12),

when judged by the conventional −3.432 critical value at 5% confidence level. It is known, however, that the

outcome of standard unit root tests should be carefully interpreted with slowly decaying memory processes;

see, for instance, Schwert (1987).

Following the theoretical contribution of Robinson (1991), many subsequent studies suggested the empirical

relevance of long memory in asset return volatility, including for instance, Ding et al. (1993), Baillie et al.

(1996) and Breidt et al. (1998).10 Table 12 shows the degrees of fractional integration, dGPH, obtained using

the Geweke and Porter-Hudak (1983) log-periodogram regression estimator as formally developed by Robinson

(1995), for the integrated volatility and the logarithmic integrated volatility estimated using TSRV and RV.

For IV
1/2
i,t and log(IV

1/2
i,t ), respectively in five and six cases, TSRV gives point estimates of dGPH above 0.5,

although all these estimates are not statistically different from 0.465 at 1% confidence level. For all stocks

and all integrated volatilities and logarithmic integrated volatilities the null hypothesis of no long memory

(H0 : dGPH = 0) is strongly rejected. The estimates of the fractional parameter dGPH have to be carefully

interpreted because of the measurement error in IV
1/2
i,t .

Table 12 shows that the Ljung-Box statistics and the degree of fractional integrations are almost always

larger for TSRV than RV. These findings are consistent with the fact that TSRV provides more precise

and less noisy estimates of the integrated volatility process. In contrast, RV can be largely affected by the

microstructure noise and this noise masks the strong persistence in the integrated volatility process.

4.4. Forecasts of the Integrated Volatility

In this section we investigate the in- and out-of-sample forecasts of the integrated volatility given by TSRV

and RV. We use two approaches to forecast IV1/2. In the first approach we use an AR(1) model with constant

for IV and in the second approach an AR(1) model with constant for the logarithmic integrated volatility,

log(IV1/2). For each stock the AR models are estimated on a moving window of 100 trading days. As in the

Monte Carlo analysis, the in-sample forecasts are obtained for the 100th day and the out-of-sample forecasts for

10Long memory, or fractionally integrated volatility processes also help to explain empirical features of options data, such as

the persistent volatility smiles even for long maturity options; see, for example, Comte and Renault (1998), and Bollerslev and

Mikkelsen (1996).
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the 101st day. Hence in- and out-of-sample forecast results can be consistently compared. All the AR models

are separately estimated for both time series of integrated volatilities given by TSRV and RV. Of course, we do

not expect that a simple AR(1) model perfectly captures the dynamic of the integrated volatility. This model

is manly chosen to make the empirical analysis comparable with the Monte Carlo analysis. Nevertheless, the

moving window estimation of AR models will deliver relatively high R2 for the Mincer-Zarnowitz forecast

evaluation regressions, that are for instance higher than the ones reported in Andersen et al. (2003), meaning

that overall the volatility forecasts are reasonably good.

Moreover, as we already mentioned, the log-normality of the integrated volatility documented in Table 11

suggests the use of linear models to describe the integrated volatility dynamics. To evaluate the volatility

forecasts, some benchmark integrated volatility has to be assumed, as in empirical applications the true

integrated volatility is unknown. The standard practice is to use the best available estimate as the true

integrated volatility.11 In our setting, theoretical considerations and the previous Monte Carlo analysis suggest

to use TSRV as a proxy for the true integrated variance.

Tables 13 and 14 show, respectively, in-sample and out-of-sample Mincer-Zarnowitz forecast evaluation

regression (3.7) for the integrated volatility, IV1/2, using AR models for log(IV1/2). The corresponding forecast

results based on AR models for IV are quite similar and are omitted here, but collected in Aı̈t-Sahalia and

Mancini (2007). The Newey and West (1987) robust standard errors are reported in parenthesis.12 In terms of

R2, TSRV forecasts are more accurate than RV forecasts. The regression coefficients b1 associated to the TSRV

forecasts are always larger than the coefficients b2 associated to the RV forecasts, except in one occasion for

the Altria Group Inc. stock (ticker MO); see Aı̈t-Sahalia and Mancini (2007) for details. Moreover, forecasts

based on the RV estimator have no additional explanatory power when compared to TSRV forecasts.

When compared to the in-sample forecasts, in terms of R2 the deterioration of the out-of-sample forecasts

is quite modest; see also Aı̈t-Sahalia and Mancini (2007) for in- and out-of-sample forecasts on a stock by

stock base. The moving window estimation of AR models, the strong persistence of the integrated volatility

process, and the one day ahead horizon for the out-of-sample forecasts explain this result. Certainly integrated

volatilities can be forecasted for longer time horizons, such as a week, and in those cases the deterioration in

the forecasting performances would be more pronounced. However, the ranking of the out-of-sample forecast

performances will be hardly reverted. Our goal is to compare the TSRV and RV forecasts, and even considering

longer time horizons it is quite reasonable to believe that TSRV will continue to outperform RV.

Finally, the overall conclusion of the empirical analysis is that both in- and out-of-sample forecasts on real

data largely confirm the previous simulation results.

5. Conclusions

We compared in-sample estimations and out-of-sample forecasts of quadratic variation given by the two scales

realized volatility estimator and the realized volatility estimator, under five different dynamics for the volatility

process. Overall, the different volatility models account for well-known empirical stylized facts of volatility

processes, such as volatility clustering and long memory features. In all Monte Carlo experiments the TSRV

estimator largely outperforms the RV estimator. An empirical application to the DJIA stocks confirms the

simulation results.

11For instance, Andersen et al. (2003) and Corsi (2004) use the RV estimates as true integrated variances.
12In the estimation of the robust covariance matrix we set the number of lags equal to 20, as most autocorrelations of the

residuals in the Mincer-Zarnowitz regressions are not significantly different from zero beyond that lag.
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Bias Var RMSE Rel. Bias Rel. Var Rel. RMSE

RV 5mn 1.560 0.318 1.659 2.508 47.701 7.348

RV 5mn MA(1) 1.348 0.274 1.446 2.026 26.985 5.576

TSRV 5mn −0.014 0.071 0.266 −0.011 0.022 0.149

RV 10mn 0.779 0.390 0.999 1.238 10.664 3.492

TSRV 10mn −0.032 0.135 0.369 −0.023 0.035 0.188

RV 15mn 0.528 0.474 0.867 0.834 5.376 2.464

TSRV 15mn −0.050 0.199 0.449 −0.034 0.051 0.227

RV 30mn 0.275 0.780 0.925 0.422 1.522 1.304

TSRV 30mn −0.110 0.395 0.638 −0.072 0.097 0.319

TSRV minimum variance −0.001 0.020 0.140 −0.004 0.010 0.099

Table 1. In-sample estimates of daily IV×104 based on 10,000 simulated paths under the Heston model,

dσ2 = 5 (0.04 − σ2) dt + 0.5σ dW2. The efficient log-price dX = (0.05 − σ2/2) dt + σdW1, and correlation

ρ = −0.5 between Brownian motions. The observed log-price Y = X + ε, where ε ∼ NID(0, 0.0012). Euler

discretization scheme with time step ∆ = 1 second.
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b0 b1 b2 R2

RV 5mn −1.467 (0.016) 0.971 (0.005) 0.809

RV 5mn MA(1) −1.105 (0.013) 0.916 (0.004) 0.841

RV 10mn −0.689 (0.013) 0.958 (0.005) 0.782

RV 15mn −0.432 (0.013) 0.950 (0.005) 0.753

RV 30mn −0.136 (0.014) 0.921 (0.006) 0.670

TSRV 5mn 0.018 (0.006) 0.991 (0.003) 0.928

TSRV 5mn + RV 5mn 0.146 (0.016) 1.057 (0.008) −0.074 (0.009) 0.928

TSRV 5mn + RV 5mn MA(1) 0.190 (0.014) 1.116 (0.010) −0.126 (0.010) 0.929

TSRV 5mn + RV 10mn 0.159 (0.010) 1.120 (0.008) −0.146 (0.008) 0.930

TSRV 5mn + RV 15mn 0.119 (0.008) 1.107 (0.007) −0.134 (0.007) 0.930

TSRV 5mn + RV 30mn 0.089 (0.007) 1.085 (0.006) −0.118 (0.006) 0.930

TSRV 10mn 0.023 (0.007) 0.996 (0.004) 0.888

TSRV 10mn + RV 5mn −0.184 (0.019) 0.884 (0.010) 0.122 (0.011) 0.890

TSRV 10mn + RV 5mn MA(1) −0.115 (0.018) 0.891 (0.013) 0.103 (0.013) 0.889

TSRV 10mn + RV 10mn 0.114 (0.013) 1.087 (0.011) −0.098 (0.011) 0.889

TSRV 10mn + RV 15mn 0.148 (0.010) 1.158 (0.010) −0.178 (0.011) 0.891

TSRV 10mn + RV 30mn 0.122 (0.008) 1.151 (0.008) −0.183 (0.008) 0.893

TSRV 15mn 0.026 (0.008) 1.005 (0.004) 0.853

TSRV 15mn + RV 5mn −0.507 (0.020) 0.708 (0.011) 0.316 (0.011) 0.864

TSRV 15mn + RV 5mn MA(1) −0.482 (0.019) 0.601 (0.014) 0.386 (0.013) 0.864

TSRV 15mn + RV 10mn −0.065 (0.014) 0.909 (0.013) 0.101 (0.013) 0.854

TSRV 15mn + RV 15mn 0.085 (0.012) 1.091 (0.013) −0.090 (0.013) 0.853

TSRV 15mn + RV 30mn 0.138 (0.010) 1.211 (0.010) −0.230 (0.011) 0.859

TSRV 30mn 0.071 (0.011) 1.014 (0.006) 0.759

TSRV 30mn + RV 5mn MA(1) −0.971 (0.017) 0.158 (0.013) 0.790 (0.011) 0.843

TSRV 30mn + RV 30mn 0.085 (0.013) 1.047 (0.017) −0.033 (0.017) 0.759

TSRV minimum variance 0.005 (0.004) 0.993 (0.002) 0.961

Table 2. Out-of-sample, one day ahead forecasts of daily IV in percentage based on 10,000 simulated paths

under the Heston model, dσ2 = 5 (0.04 − σ2) dt + 0.5σ dW2. The efficient log-price dX = (0.05 − σ2/2) dt +

σdW1, and correlation ρ = −0.5 between Brownian motions. The observed log-price Y = X + ε, where ε ∼
NID(0, 0.0012). Euler discretization scheme with time step ∆ = 1 second. OLS standard errors in parenthesis.

Equation (3.6) is estimated using the previous 100 simulated days and regressing the corresponding estimates

of
∫ Ti+1

Ti

σ2
t dt on a constant and

∫ Ti

Ti−1
σ2

t dt, for i = 1, . . . , 99.
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b0 b1 b2 R2

RV 5mn −1.298 (0.020) 0.962 (0.005) 0.806

RV 5mn MA(1) −1.026 (0.018) 0.926 (0.004) 0.827

RV 10mn −0.481 (0.019) 0.945 (0.005) 0.763

RV 15mn −0.197 (0.019) 0.934 (0.006) 0.725

RV 30mn 0.170 (0.021) 0.903 (0.007) 0.630

TSRV 5mn 0.093 (0.009) 0.983 (0.003) 0.910

TSRV 5mn + RV 5mn 0.160 (0.019) 1.017 (0.009) −0.038 (0.010) 0.911

TSRV 5mn + RV 5mn MA(1) 0.233 (0.018) 1.077 (0.011) −0.097 (0.011) 0.911

TSRV 5mn + RV 10mn 0.226 (0.013) 1.100 (0.008) −0.133 (0.009) 0.912

TSRV 5mn + RV 15mn 0.188 (0.011) 1.082 (0.007) −0.117 (0.008) 0.912

TSRV 5mn + RV 30mn 0.160 (0.010) 1.054 (0.006) −0.092 (0.006) 0.912

TSRV 10mn 0.145 (0.012) 0.983 (0.004) 0.860

TSRV 10mn + RV 5mn −0.283 (0.023) 0.754 (0.011) 0.247 (0.011) 0.866

TSRV 10mn + RV 5mn MA(1) −0.196 (0.022) 0.743 (0.014) 0.240 (0.014) 0.864

TSRV 10mn + RV 10mn 0.180 (0.017) 1.017 (0.012) −0.037 (0.012) 0.860

TSRV 10mn + RV 15mn 0.246 (0.014) 1.107 (0.011) −0.137 (0.011) 0.862

TSRV 10mn + RV 30mn 0.233 (0.013) 1.097 (0.008) −0.138 (0.009) 0.863

TSRV 15mn 0.184 (0.013) 0.988 (0.005) 0.817

TSRV 15mn + RV 5mn −0.619 (0.023) 0.554 (0.011) 0.460 (0.011) 0.843

TSRV 15mn + RV 5mn MA(1) −0.573 (0.022) 0.444 (0.014) 0.533 (0.013) 0.843

TSRV 15mn + RV 10mn −0.019 (0.018) 0.782 (0.014) 0.217 (0.014) 0.821

TSRV 15mn + RV 15mn 0.188 (0.017) 0.993 (0.014) −0.005 (0.014) 0.817

TSRV 15mn + RV 30mn 0.276 (0.015) 1.130 (0.011) −0.163 (0.011) 0.820

TSRV 30mn 0.332 (0.017) 0.987 (0.006) 0.710

TSRV 30mn + RV 5mn MA(1) −0.936 (0.020) 0.114 (0.012) 0.836 (0.010) 0.829

TSRV 30mn + RV 30mn 0.291 (0.019) 0.908 (0.017) 0.083 (0.017) 0.710

TSRV minimum variance 0.041 (0.006) 0.987 (0.002) 0.958

Table 3. Out-of-sample forecasts, one day ahead of daily IV in percentage based on 10,000 simulated paths

under the Heston jump-diffusion model, dσ2 = 5 (0.035 − σ2) dt + 0.5σ dW2 + J dq, q is a Poisson process

with intensity λ = ∆ × 23,400/2 and J ∼ Exp(0.0007). The efficient log-price dX = (0.05 − σ2/2) dt +

σdW1, and correlation ρ = −0.5 between Brownian motions. The observed log-price Y = X + ε, where

ε ∼ NID(0, 0.0012). Euler discretization scheme with time step ∆ = 1 second. OLS standard errors in

parenthesis. The corresponding equation (3.6) is estimated using the previous 100 days of estimated IV,

regressing the corresponding estimates of
∫ Ti+1

Ti

σ2
t dt on a constant and

∫ Ti

Ti−1
σ2

t dt, for i = 1, . . . , 99.
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b0 b1 b2 R2

RV 5mn −1.363 (0.025) 0.953 (0.008) 0.580

RV 5mn MA(1) −1.142 (0.021) 0.941 (0.007) 0.645

RV 10mn −0.592 (0.020) 0.950 (0.009) 0.553

RV 15mn −0.280 (0.018) 0.927 (0.009) 0.514

RV 30mn 0.171 (0.017) 0.838 (0.010) 0.415

TSRV 5mn −0.038 (0.008) 1.050 (0.005) 0.828

TSRV 5mn + RV 5mn −0.084 (0.019) 1.032 (0.009) 0.024 (0.009) 0.828

TSRV 5mn + RV 5mn MA(1) −0.040 (0.018) 1.049 (0.010) 0.001 (0.010) 0.828

TSRV 5mn + RV 10mn 0.013 (0.013) 1.084 (0.009) −0.045 (0.009) 0.829

TSRV 5mn + RV 15mn 0.008 (0.011) 1.087 (0.008) −0.051 (0.009) 0.829

TSRV 5mn + RV 30mn −0.013 (0.009) 1.073 (0.007) −0.035 (0.008) 0.829

TSRV 10mn −0.037 (0.010) 1.073 (0.006) 0.752

TSRV 10mn + RV 5mn −0.367 (0.022) 0.929 (0.011) 0.177 (0.011) 0.758

TSRV 10mn + RV 5mn MA(1) −0.319 (0.021) 0.897 (0.013) 0.189 (0.012) 0.758

TSRV 10mn + RV 10mn −0.084 (0.016) 1.037 (0.012) 0.044 (0.012) 0.752

TSRV 10mn + RV 15mn −0.027 (0.013) 1.083 (0.011) −0.012 (0.012) 0.752

TSRV 10mn + RV 30mn −0.021 (0.011) 1.092 (0.009) −0.025 (0.010) 0.752

TSRV 15mn −0.017 (0.011) 1.085 (0.007) 0.694

TSRV 15mn + RV 5mn −0.589 (0.024) 0.823 (0.012) 0.309 (0.012) 0.715

TSRV 15mn + RV 5mn MA(1) −0.562 (0.022) 0.724 (0.014) 0.371 (0.013) 0.718

TSRV 15mn + RV 10mn −0.211 (0.017) 0.925 (0.013) 0.187 (0.013) 0.700

TSRV 15mn + RV 15mn −0.077 (0.015) 1.020 (0.013) 0.077 (0.013) 0.695

TSRV 15mn + RV 30mn −0.013 (0.013) 1.092 (0.011) −0.008 (0.011) 0.694

TSRV 30mn 0.103 (0.013) 1.078 (0.009) 0.571

TSRV 30mn + RV 5mn MA(1) −0.900 (0.021) 0.419 (0.014) 0.657 (0.012) 0.673

TSRV 30mn + RV 30mn 0.034 (0.015) 0.953 (0.016) 0.142 (0.014) 0.575

TSRV minimum variance −0.016 (0.006) 1.019 (0.003) 0.895

Table 4. Out-of-sample, one day ahead forecasts of daily IV in percentage based on 10,000 simulated paths

under the log-volatility model (3.9), lt = −0.0161+0.35 lt−d+0.25 lt−2d+0.20 lt−3d+0.10 lt−4d+0.09 lt−5d+ut,

where u ∼ NID(0, 0.022) and d = 1 day. The efficient log-return rt = Xt − Xt−∆ =

√

IV
(d)
t zt, where

z ∼ NID(0, 1) and ∆ = 1 second. The observed log-price Y = X + ε, where ε ∼ NID(0, 0.0012). OLS

standard errors in parenthesis. Equation (3.9) is estimated using the previous 200 days of estimated daily IV.
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b0 b1 b2 R2

RV 5mn −1.499 (0.017) 0.981 (0.005) 0.762

RV 5mn MA(1) −1.162 (0.014) 0.934 (0.005) 0.804

RV 10mn −0.727 (0.013) 0.978 (0.006) 0.757

RV 15mn −0.466 (0.012) 0.976 (0.006) 0.734

RV 30mn −0.111 (0.012) 0.921 (0.006) 0.670

TSRV 5mn −0.005 (0.006) 1.017 (0.004) 0.891

TSRV 5mn + RV 5mn −0.098 (0.017) 0.970 (0.009) 0.053 (0.009) 0.891

TSRV 5mn + RV 5mn MA(1) −0.065 (0.016) 0.975 (0.011) 0.043 (0.011) 0.891

TSRV 5mn + RV 10mn −0.027 (0.011) 0.996 (0.009) 0.023 (0.009) 0.891

TSRV 5mn + RV 15mn −0.012 (0.009) 1.009 (0.008) 0.009 (0.009) 0.891

TSRV 5mn + RV 30mn −0.017 (0.007) 0.998 (0.007) 0.023 (0.007) 0.891

TSRV 10mn −0.015 (0.007) 1.037 (0.004) 0.860

TSRV 10mn + RV 5mn −0.333 (0.019) 0.872 (0.010) 0.182 (0.010) 0.864

TSRV 10mn + RV 5mn MA(1) −0.287 (0.017) 0.836 (0.013) 0.198 (0.012) 0.864

TSRV 10mn + RV 10mn −0.118 (0.012) 0.937 (0.011) 0.109 (0.011) 0.861

TSRV 10mn + RV 15mn −0.049 (0.010) 0.994 (0.010) 0.048 (0.011) 0.860

TSRV 10mn + RV 30mn −0.034 (0.008) 1.003 (0.009) 0.039 (0.009) 0.860

TSRV 15mn −0.015 (0.007) 1.051 (0.005) 0.833

TSRV 15mn + RV 5mn −0.535 (0.019) 0.775 (0.010) 0.299 (0.010) 0.847

TSRV 15mn + RV 5mn MA(1) −0.498 (0.017) 0.686 (0.013) 0.353 (0.012) 0.848

TSRV 15mn + RV 10mn −0.234 (0.013) 0.831 (0.012) 0.235 (0.011) 0.840

TSRV 15mn + RV 15mn −0.109 (0.011) 0.924 (0.012) 0.137 (0.012) 0.836

TSRV 15mn + RV 30mn −0.045 (0.009) 0.993 (0.010) 0.064 (0.010) 0.834

TSRV 30mn 0.021 (0.009) 1.071 (0.006) 0.764

TSRV 30mn + RV 5mn MA(1) −0.821 (0.016) 0.432 (0.012) 0.604 (0.010) 0.827

TSRV 30mn + RV 30mn −0.072 (0.010) 0.858 (0.013) 0.220 (0.012) 0.771

TSRV minimum variance 0.009 (0.005) 0.997 (0.003) 0.918

Table 5. Out-of-sample, one day ahead forecasts of daily IV in percentage based on 10,000 simulated paths

under the HAR-RV model, IV (d) = 0.002 + 0.45RV (d) + 0.30RV (w) + 0.20RV (m) + ω(d), where ω(d) ∼
NID(0, 0.0032). The efficient log-return rt = Xt − Xt−∆ =

√

IV
(d)
t zt, where z ∼ NID(0, 1) and ∆ = 1

second. The observed log-price Y = X + ε, where ε ∼ NID(0, 0.0012). OLS standard errors in parenthesis.

Equation (3.11) is estimated using the previous 200 days of estimated daily IV, and then aggregating such

estimates to obtain weekly, and monthly IV.
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b0 b1 b2 R2

RV 5mn −1.155 (0.032) 0.873 (0.010) 0.438

RV 5mn MA(1) −0.928 (0.026) 0.855 (0.009) 0.499

RV 10mn −0.448 (0.024) 0.862 (0.010) 0.421

RV 15mn −0.158 (0.022) 0.831 (0.010) 0.389

RV 30mn 0.192 (0.021) 0.760 (0.011) 0.325

TSRV 5mn 0.006 (0.009) 1.007 (0.006) 0.757

TSRV 5mn + RV 5mn 0.306 (0.024) 1.111 (0.010) −0.147 (0.011) 0.762

TSRV 5mn + RV 5mn MA(1) 0.315 (0.021) 1.159 (0.011) −0.185 (0.011) 0.764

TSRV 5mn + RV 10mn 0.263 (0.017) 1.150 (0.009) −0.202 (0.011) 0.766

TSRV 5mn + RV 15mn 0.209 (0.014) 1.139 (0.009) −0.194 (0.010) 0.766

TSRV 5mn + RV 30mn 0.159 (0.012) 1.118 (0.008) −0.176 (0.009) 0.766

TSRV 10mn 0.035 (0.012) 1.003 (0.007) 0.645

TSRV 10mn + RV 5mn 0.017 (0.029) 0.996 (0.013) 0.009 (0.014) 0.645

TSRV 10mn + RV 5mn MA(1) 0.051 (0.026) 1.013 (0.016) −0.011 (0.015) 0.645

TSRV 10mn + RV 10mn 0.213 (0.021) 1.129 (0.014) −0.157 (0.015) 0.649

TSRV 10mn + RV 15mn 0.240 (0.018) 1.184 (0.014) −0.229 (0.014) 0.654

TSRV 10mn + RV 30mn 0.207 (0.015) 1.185 (0.012) −0.245 (0.013) 0.657

TSRV 15mn 0.080 (0.014) 0.988 (0.009) 0.567

TSRV 15mn + RV 5mn −0.258 (0.032) 0.843 (0.015) 0.177 (0.015) 0.573

TSRV 15mn + RV 5mn MA(1) −0.270 (0.028) 0.765 (0.018) 0.234 (0.017) 0.575

TSRV 15mn + RV 10mn 0.060 (0.023) 0.972 (0.017) 0.018 (0.017) 0.567

TSRV 15mn + RV 15mn 0.206 (0.020) 1.122 (0.017) −0.157 (0.018) 0.570

TSRV 15mn + RV 30mn 0.244 (0.016) 1.216 (0.016) −0.277 (0.016) 0.580

TSRV 30mn 0.210 (0.016) 0.944 (0.011) 0.432

TSRV 30mn + RV 5mn MA(1) −0.738 (0.028) 0.302 (0.019) 0.640 (0.016) 0.511

TSRV 30mn + RV 30mn 0.248 (0.019) 1.026 (0.024) −0.086 (0.022) 0.433

TSRV minimum variance −0.009 (0.006) 1.010 (0.004) 0.877

Table 6. Out-of-sample, one day ahead forecasts of daily IV in percentage based on 10,000 simulated paths

under the fractional OU model, dσ = 20 (0.2−σ) dt+0.012 dWH , where dWH is a FBM with Hurst parameter

0.7. The efficient log-price dX = (0.05 − σ2/2) dt + σdW1. The observed log-price Y = X + ε, where ε ∼
NID(0, 0.0012). Euler discretization scheme with time step ∆ = 1 second. OLS standard errors in parenthesis.

Equation (3.16) is estimated using the previous 86 days of estimated IV, regressing the corresponding estimates

of
∫ Ti+1

Ti

σ2
t dt on a constant and

∫ Ti

Ti−1
σ2

t dt, for i = 1, . . . , 85.
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b0 b1 b2 R2

RV 5mn −1.476 (0.016) 0.974 (0.005) 0.813

RV 5mn MA(1) −1.111 (0.013) 0.918 (0.004) 0.843

RV 10mn −0.696 (0.013) 0.962 (0.005) 0.785

RV 15mn −0.436 (0.013) 0.953 (0.005) 0.756

RV 30mn −0.135 (0.014) 0.920 (0.006) 0.671

TSRV 5mn 0.166 (0.005) 0.993 (0.003) 0.928

TSRV 5mn + RV 5mn 0.279 (0.017) 1.047 (0.008) −0.061 (0.009) 0.928

TSRV 5mn + RV 5mn MA(1) 0.332 (0.016) 1.101 (0.010) −0.109 (0.010) 0.928

TSRV 5mn + RV 10mn 0.327 (0.010) 1.122 (0.008) −0.146 (0.008) 0.930

TSRV 5mn + RV 15mn 0.273 (0.008) 1.096 (0.007) −0.120 (0.007) 0.929

TSRV 5mn + RV 30mn 0.249 (0.007) 1.084 (0.006) −0.114 (0.006) 0.930

TSRV 10mn 0.098 (0.007) 0.997 (0.004) 0.888

TSRV 10mn + RV 5mn −0.148 (0.020) 0.869 (0.010) 0.139 (0.011) 0.890

TSRV 10mn + RV 5mn MA(1) −0.078 (0.019) 0.870 (0.013) 0.124 (0.013) 0.889

TSRV 10mn + RV 10mn 0.192 (0.013) 1.084 (0.011) −0.094 (0.011) 0.889

TSRV 10mn + RV 15mn 0.220 (0.011) 1.140 (0.010) −0.158 (0.011) 0.891

TSRV 10mn + RV 30mn 0.206 (0.008) 1.148 (0.008) −0.179 (0.008) 0.893

TSRV 15mn 0.076 (0.008) 1.005 (0.004) 0.853

TSRV 15mn + RV 5mn −0.498 (0.021) 0.693 (0.011) 0.332 (0.011) 0.865

TSRV 15mn + RV 5mn MA(1) −0.477 (0.020) 0.583 (0.014) 0.404 (0.013) 0.865

TSRV 15mn + RV 10mn −0.027 (0.015) 0.902 (0.013) 0.109 (0.013) 0.854

TSRV 15mn + RV 15mn 0.126 (0.012) 1.072 (0.013) −0.071 (0.013) 0.853

TSRV 15mn + RV 30mn 0.197 (0.010) 1.209 (0.010) −0.228 (0.011) 0.859

TSRV 30mn 0.096 (0.010) 1.014 (0.006) 0.759

TSRV 30mn + RV 5mn MA(1) −0.982 (0.017) 0.147 (0.012) 0.801 (0.011) 0.845

TSRV 30mn + RV 30mn 0.109 (0.013) 1.045 (0.017) −0.032 (0.017) 0.759

TSRV minimum variance 0.331 (0.004) 1.390 (0.003) 0.941

Table 7. Out-of-sample, one day ahead forecasts of daily IV in percentage based on 10,000 simulated paths

under the Heston model, dσ2 = 5 (0.04−σ2) dt+0.5σ dW2. The efficient log-price dX = (0.05−σ2/2) dt+σdW1,

and correlation ρ = −0.5 between Brownian motions. The observed log-price Y = X + ε, where ε = U + V ,

U is iid, V is AR(1) with first order coefficient ̺ = −0.2, U ⊥ V , and E ε2 = 0.0012. Euler discretization

scheme with time step ∆ = 1 second. OLS standard errors in parenthesis. Equation (3.6) is estimated using

the previous 100 simulated days and regressing the corresponding estimates of
∫ Ti+1

Ti

σ2
t dt on a constant and

∫ Ti

Ti−1
σ2

t dt, for i = 1, . . . , 99.
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ri,t

Stock Mean Std. Skew. Kurt.

Min. −0.132 1.363 −0.612 4.105

0.10 −0.101 1.473 −0.455 4.405

0.25 −0.049 1.757 0.049 4.862

0.50 −0.011 1.883 0.205 5.477

0.75 0.056 2.064 0.322 8.386

0.90 0.071 2.294 0.411 9.418

Max. 0.118 2.787 0.759 12.277

Mean −0.007 1.946 0.097 6.990

Std. 0.086 0.454 0.449 2.869

Table 8. Summary statistics for the daily log-return distributions in percentage of the DJIA stocks, ri,t. The

sample period extends from January 3, 2000 to December 31, 2004, for a total of 1,256 observations.

TSRV ri,t/IV
1/2
i,t RV ri,t/IV

1/2
i,t

Stock Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.

Min. −0.098 0.927 −0.080 2.564 −0.091 0.864 −0.002 2.582

0.10 −0.041 0.936 −0.011 2.644 −0.043 0.878 0.018 2.614

0.25 −0.031 0.956 0.018 2.737 −0.027 0.895 0.043 2.667

0.50 0.005 0.993 0.106 2.791 0.006 0.937 0.101 2.774

0.75 0.032 1.026 0.154 2.931 0.032 0.962 0.140 2.842

0.90 0.067 1.053 0.197 3.062 0.061 0.986 0.162 2.989

Max. 0.103 1.092 0.266 3.475 0.105 1.019 0.287 3.107

Mean 0.006 0.998 0.093 2.886 0.006 0.934 0.107 2.796

Std. 0.064 0.058 0.114 0.286 0.061 0.054 0.093 0.182

Table 9. Summary statistics for the standardized log-return distributions of the DJIA stocks, ri,t/IV
1/2
i,t .

The sample extends from January 3, 2000 to December 31, 2004, for a total of 1,256 observations. TSRV is

computed using a slow time scale of 5mn. RV is computed using MA(1) filtered 5mn log-returns, as detailed

in the text.
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TSRV IV
1/2
i,t RV IV

1/2
i,t

Stock Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.

Min. 0.210 0.092 1.069 4.376 0.223 0.100 0.980 3.928

0.10 0.218 0.098 1.241 5.217 0.231 0.107 1.258 5.047

0.25 0.248 0.108 1.394 6.040 0.269 0.121 1.373 6.002

0.50 0.275 0.124 1.506 7.106 0.297 0.133 1.660 8.379

0.75 0.297 0.136 1.903 10.534 0.319 0.154 2.110 13.762

0.90 0.319 0.157 2.155 15.004 0.347 0.173 2.530 18.949

Max. 0.394 0.180 2.981 20.713 0.415 0.195 3.072 28.451

Mean 0.280 0.128 1.750 9.856 0.300 0.141 1.855 12.074

Std. 0.059 0.030 0.611 5.587 0.063 0.032 0.696 8.320

Table 10. Summary statistics for the volatility distributions of the DJIA stocks on annual base (252 days),

IV
1/2
i,t . The sample extends from January 3, 2000 to December 31, 2004, for a total of 1,256 observations.

TSRV is computed using a slow time scale of 5mn. RV is compute using MA(1) filtered 5mn log-returns, as

detailed in the text.

TSRV log(IV
1/2
i,t ) RV log(IV

1/2
i,t )

Stock Mean Std. Skew. Kurt. Mean Std. Skew. Kurt.

Min. 0.176 0.342 −0.300 2.490 0.229 0.358 −0.265 2.424

0.10 0.234 0.369 −0.083 2.578 0.288 0.392 −0.032 2.513

0.25 0.335 0.389 0.062 2.761 0.405 0.406 0.006 2.717

0.50 0.456 0.418 0.154 2.913 0.514 0.433 0.142 2.872

0.75 0.535 0.447 0.255 3.117 0.600 0.460 0.266 3.073

0.90 0.625 0.475 0.332 3.323 0.689 0.489 0.328 3.253

Max. 0.819 0.551 0.460 3.725 0.865 0.552 0.431 3.447

Mean 0.454 0.427 0.126 2.987 0.513 0.442 0.125 2.900

Std. 0.210 0.066 0.239 0.405 0.209 0.060 0.222 0.351

Table 11. Summary statistics for the log-volatility distributions of the DJIA stocks in percentage on daily base,

log(IV
1/2
i,t ). The sample extends from January 3, 2000 to December 31, 2004, for a total of 1,256 observations.

TSRV is computed using a slow time scale of 5mn. RV is compute using MA(1) filtered 5mn log-returns, as

detailed in the text.
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Panel A TSRV IV
1/2
i,t RV IV

1/2
i,t

Stock Q22 ADF dGPH Q22 ADF dGPH

Min. 2,998.953 −6.191 0.269 2,881.977 −6.132 0.290

0.10 4,753.831 −5.211 0.426 4,632.983 −5.281 0.351

0.25 7,213.061 −4.755 0.433 6,310.282 −4.745 0.381

0.50 8,704.990 −4.511 0.460 7,205.355 −4.350 0.406

0.75 10,684.396 −4.145 0.487 9,824.078 −4.161 0.435

0.90 11,803.375 −3.848 0.502 11,258.890 −4.000 0.471

Max. 12,567.612 −2.662 0.516 11,709.776 −2.686 0.489

Mean 8,389.460 −4.475 0.442 7,689.049 −4.479 0.403

Std. 3,341.030 1.025 0.077 3,117.939 1.001 0.064

Panel B TSRV log(IV
1/2
i,t ) RV log(IV

1/2
i,t )

Stock Q22 ADF dGPH Q22 ADF dGPH

Min. 4,132.995 −5.492 0.357 4,038.436 −5.683 0.355

0.10 7,152.367 −4.658 0.406 7,372.738 −4.760 0.368

0.25 8,683.572 −4.352 0.425 8,416.448 −4.443 0.388

0.50 11,562.323 −4.051 0.440 10,676.330 −4.055 0.413

0.75 13,624.768 −3.741 0.475 13,157.981 −3.770 0.451

0.90 14,658.166 −3.429 0.519 13,582.058 −3.488 0.461

Max. 16,293.398 −2.341 0.528 15,705.337 −2.453 0.479

Mean 10,872.513 −4.009 0.450 10,421.333 −4.093 0.416

Std. 4,067.642 0.920 0.057 3,770.563 0.946 0.045

Table 12. Summary statistics of the time series dependence for the DJIA stocks integrated volatility, IV
1/2
i,t ,

in Panel A, and log-integrated volatility, log(IV
1/2
i,t ), in Panel B. The sample extends from January 3, 2000 to

December 31, 2004, for a total of 1,256 observations. TSRV is computed using a slow time scale of 5mn. RV

is compute using MA(1) filtered 5mn log-returns, as detailed in the text. The table reports the Ljung-Box

portmanteau test for up to 22nd order autocorrelation, Q22, the 1% critical value is 40.289. The augmented

Dickey-Fuller test for unit root involving 22 augmentation lags, a constant term and time trend, ADF, the

5% critical value is −3.432, and at 1% critical value is −3.998. The Geweke and Porter-Hudak estimate for

the degree of fractional integration, dGPH, the estimates are based on the first m = 1,2569/10 = 615 Fourier

frequencies, the asymptotic standard error for all of the dGPH estimates is π(24m)−1/2 = 0.026.
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Stock b0 b1 b2 R2

RV 5mn MA(1) Min. −0.098 (0.050) 0.759 (0.031) 0.353

0.10 −0.092 (0.064) 0.861 (0.044) 0.418

0.25 −0.041 (0.067) 0.925 (0.049) 0.501

0.50 −0.004 (0.080) 0.960 (0.055) 0.578

0.75 0.037 (0.095) 0.980 (0.064) 0.640

0.90 0.122 (0.105) 1.006 (0.070) 0.661

Max. 0.255 (0.113) 1.022 (0.082) 0.709

Mean 0.025 (0.082) 0.930 (0.056) 0.551

Std. 0.118 (0.022) 0.086 (0.016) 0.122

TSRV 5mn Min. −0.099 (0.039) 1.000 (0.029) 0.380

0.10 −0.086 (0.051) 1.008 (0.037) 0.451

0.25 −0.064 (0.057) 1.019 (0.043) 0.542

0.50 −0.048 (0.066) 1.035 (0.052) 0.595

0.75 −0.018 (0.085) 1.054 (0.057) 0.668

0.90 −0.004 (0.092) 1.060 (0.062) 0.686

Max. 0.030 (0.097) 1.065 (0.076) 0.723

Mean −0.041 (0.070) 1.034 (0.051) 0.578

Std. 0.043 (0.021) 0.024 (0.015) 0.118

Both Min. −0.120 (0.041) 0.523 (0.094) −0.333 (0.086) 0.380

0.10 −0.083 (0.049) 0.806 (0.131) −0.267 (0.119) 0.452

0.25 −0.066 (0.057) 0.964 (0.167) −0.130 (0.143) 0.542

0.50 −0.038 (0.065) 1.120 (0.182) −0.077 (0.170) 0.596

0.75 −0.011 (0.083) 1.161 (0.214) 0.052 (0.183) 0.669

0.90 0.001 (0.090) 1.299 (0.230) 0.223 (0.211) 0.686

Max. 0.046 (0.095) 1.390 (0.337) 0.512 (0.302) 0.725

Mean −0.039 (0.068) 1.037 (0.193) −0.003 (0.173) 0.579

Std. 0.052 (0.020) 0.277 (0.073) 0.272 (0.065) 0.118

Table 13. In-sample one day ahead forecasts of IV1/2 in percentage using an AR(1) model with constant for

log(IV1/2) for the DJIA stocks. AR(1) models are estimated on a rolling window of 100 days, from January

3, 2000 to December 31, 2004. Robust standard errors in parenthesis.
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Stock b0 b1 b2 R2

RV 5mn MA(1) Min. −0.068 (0.053) 0.735 (0.032) 0.332

0.10 −0.050 (0.062) 0.829 (0.042) 0.381

0.25 −0.007 (0.069) 0.907 (0.048) 0.477

0.50 0.033 (0.082) 0.936 (0.056) 0.545

0.75 0.083 (0.101) 0.961 (0.066) 0.617

0.90 0.173 (0.110) 0.980 (0.075) 0.641

Max. 0.293 (0.135) 1.000 (0.089) 0.696

Mean 0.065 (0.087) 0.907 (0.058) 0.527

Std. 0.120 (0.027) 0.087 (0.018) 0.126

TSRV 5mn Min. −0.067 (0.039) 0.959 (0.030) 0.353

0.10 −0.043 (0.051) 0.984 (0.036) 0.421

0.25 −0.026 (0.057) 1.005 (0.045) 0.513

0.50 −0.013 (0.066) 1.016 (0.053) 0.576

0.75 0.008 (0.087) 1.029 (0.058) 0.642

0.90 0.036 (0.096) 1.036 (0.063) 0.670

Max. 0.086 (0.103) 1.048 (0.080) 0.709

Mean −0.003 (0.071) 1.011 (0.052) 0.555

Std. 0.048 (0.022) 0.029 (0.016) 0.123

Both Min. −0.071 (0.041) 0.409 (0.069) −0.339 (0.046) 0.355

0.10 −0.052 (0.050) 0.753 (0.128) −0.243 (0.114) 0.421

0.25 −0.027 (0.058) 0.945 (0.162) −0.106 (0.135) 0.515

0.50 −0.009 (0.065) 1.092 (0.190) −0.069 (0.169) 0.576

0.75 0.012 (0.084) 1.131 (0.208) 0.057 (0.187) 0.642

0.90 0.042 (0.093) 1.258 (0.225) 0.237 (0.210) 0.671

Max. 0.109 (0.102) 1.375 (0.343) 0.593 (0.311) 0.711

Mean 0.000 (0.070) 0.995 (0.189) 0.019 (0.167) 0.556

Std. 0.057 (0.021) 0.304 (0.079) 0.293 (0.077) 0.123

Table 14. Out-of-sample one day ahead forecasts of IV1/2 using an AR(1) model with constant for log(IV1/2)

for the DJIA stocks. AR(1) models are estimated on a rolling window of 100 days, from January 3, 2000 to

December 31, 2004. Robust standard errors in parenthesis.
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Fig. 1. Asymptotic and small sample distributions of the minimum variance TSRV estimator based on 10,000

simulated paths of the instantaneous variance under the Heston model, dσ2 = 5 (0.04 − σ2) dt + 0.5σ dW2.

The efficient log-price dX = (0.05 − σ2/2) dt + σdW1, and correlation ρ = −0.5 between Brownian motions.

The observed log-price Y = X + ε, where ε ∼ NID(0, 0.0012). Euler discretization scheme with time step

∆ = 1 second.
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Fig. 2. Out-of-sample forecast error, (i.e. forecast minus true value of IV×104), plotted versus true value

of IV×104 for the 10,000 simulated paths of the instantaneous variance under the Heston model, dσ2 =

(0.04 − σ2) dt + 0.5σ dW2. The efficient log-price dX = (0.05 − σ2/2) dt + σdW1, and correlation ρ = −0.5

between Brownian motions. The observed log-price Y = X+ε, where ε ∼ NID(0, 0.0012). Euler discretization

scheme with time step ∆ = 1 second.
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Fig. 3. First plot: Simulated path of daily, weekly and monthly IV1/2 on an annual base under the HAR-RV

model, IV (d) = 0.004 + 0.35RV (d) + 0.30RV (w) + 0.25RV (m) + ω(d), where ω(d) ∼ NID(0, 0.0032). The

efficient log-return rt = Xt − Xt−∆ =

√

IV
(d)
t zt, where z ∼ NID(0, 1) and ∆ = 3 hours. Second plot:

estimated autocorrelation function of daily IV1/2 with lags measured in days.
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Fig. 4. Integrated volatility, IV1/2, for Intel stock (ticker INTC) on an annual base (252 days) given by TSRV

and RV from January 3, 2000 to December 31, 2004.
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Goncalves, S., Meddahi, N., 2005b. Box-Cox transforms for realized volatility. Tech. rep., Université de
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