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A GARCH Option Pricing Model with Filtered Historical Simulation

Abstract

We propose a new method for pricing options based on GARCH models with filtered historical

innovations. In an incomplete market framework, we allow for different distributions of historical

and pricing return dynamics enhancing the model flexibility to fit market option prices. An exten-

sive empirical analysis based on S&P 500 index options shows that our model outperforms other

competing GARCH pricing models and ad hoc Black–Scholes models. We show that the flexible

change of measure, the asymmetric GARCH volatility and the nonparametric innovation distri-

bution induce the accurate pricing performance of our model. Using a nonparametric approach,

we obtain decreasing state price densities per unit probability as suggested by economic theory

and corroborating our GARCH pricing model. Implied volatility smiles appear to be explained

by asymmetric volatility and negative skewness of filtered historical innovations.

Keywords: Option pricing, GARCH model, state price density, Monte Carlo simulation.

JEL Classification: G13.
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Introduction

There is a general consensus that asset returns exhibit variances that change through time. GARCH

models are a popular choice to model these changing variances—as is well documented in financial

literature. However the success of GARCH in modeling historical return variances only partially

extends to option pricing. Duan (1995) and Heston and Nandi (2000) among others assume normal

return innovations and parametric risk premiums in order to derive GARCH-type pricing models.

Their models consider historical and pricing (i.e. risk neutral) return dynamics in a unified framework.

Unfortunately, they also imply that, up to the risk premium, conditional volatilities of historical and

pricing distributions are governed by the same model parameters. Empirical studies, for instance

by Chernov and Ghysels (2000) and Christoffersen and Jacobs (2004), show that this restriction

leads to rather poor pricing and hedging performances. The reason is that changing volatility in real

markets makes the perfect replication argument of Black and Scholes (1973) invalid. Markets are

then incomplete in the sense that perfect replication of contingent claims using only the underlying

asset and a riskless bond is impossible. Consequently, an investor would not necessarily price the

option as if the distribution of its return had a different drift but unchanged volatility. Of course

markets become complete if a sufficient (possibly infinite), number of contingent claims are available.

In this case a well-defined pricing density exists.1

In the markets we consider, the volatility (and hence the distribution) of historical and pricing

returns is different. This occurs because investors will set state prices to reflect their aggregate

preferences. Our model differs from other models in financial literature because we rely on market

incompleteness to allow for a pricing distribution different in shape from the historical distribution.

It is possible then to calibrate the pricing process directly on option prices. Although this may

appear to be a purely fitting exercise, involving no constraint beyond the absence of arbitrage,
1For instance Jarrow and Madan (1995) investigate the hedging of systematic jumps in asset returns when additional

assets are introduced in the market.
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the stability of the pricing process over time and across maturities imposes substantial parameter

restrictions. Furthermore, economic theory imposes further restrictions on investor preferences for

aggregate wealth in different states, such as decreasing intertemporal marginal rate of substitutions.

Pricing models are economically validated when these restrictions are satisfied.

This paper presents two main contributions: a new GARCH pricing model and the analysis of

aggregate intertemporal marginal rate of substitutions. An in-depth empirical study underlies the

previous contributions. Our GARCH pricing model relies on the Glosten, Jagannathan, and Runkle

(1993) asymmetric volatility model driven by empirical GARCH innovations. The nonparametric

distribution of innovations captures excess skewness, kurtosis and other nonstandard features of

return data. We undertake an extensive empirical analysis using European options on the S&P 500

Index from 1/2002 to 12/2004. We compare the pricing performances of our approach, the GARCH

pricing models of Heston and Nandi (2000) and Christoffersen, Heston, and Jacobs (2006) and the

benchmark model of Dumas, Fleming, and Whaley (1998). Interestingly, our GARCH pricing model

outperforms all the other pricing methods in almost all model comparisons. We show that the flexible

change of measure, the asymmetric GARCH volatility and the nonparametric innovation distribution

induce the accurate pricing performance of our model. To economically validate our approach, we

estimate the state price densities per unit probability (or aggregate intertemporal marginal rate of

substitutions) for all the available maturities in our sample. Compared to previous studies, such

as Jackwerth (2000) and Rosenberg and Engle (2002), we undertake a larger empirical analysis.

More importantly, our estimates of the state price densities per unit probability tend to display the

expected level and shape, as predicted by economic theory.

The financial literature on GARCH pricing models is rather extensive and we provide here only

a partial overview. Heston and Nandi (2000) derive an almost closed form pricing formula assuming

normal return innovations, a linear risk premium and the same GARCH parameters for historical

and pricing asset returns. In our pricing model, we rely on Monte Carlo simulations and hence
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we can relax their assumptions. Duan (1996) calibrates a GARCH model to the FTSE 100 index

options assuming Gaussian innovations and the locally risk neutral valuation relationship, i.e. same

daily conditional variances under historical and pricing measures. Engle and Mustafa (1992) use a

similar method calibrating a GARCH model to S&P 500 index options to investigate the persistence

of volatility shocks under historical and pricing distributions. Recent studies on GARCH pricing

models include, for instance, Christoffersen, Heston, and Jacobs (2006) and Christoffersen, Jacobs,

and Wang (2006), where option prices are computed using the technique in Heston and Nandi (2000),

inverting moment generating functions.

The first section of this paper develops our theoretical framework, the second one presents our

empirical findings on option pricing and state price density and the third one summarizes our con-

clusions.

1 Theoretical framework

1.1 State price densities and derivative prices

The relation between state price density (SPD), asset price dynamic and the representative agent’s

preferences is now well understood, but for completeness and to develop the notation, we provide a

brief summary.

In a dynamic equilibrium model (such as Rubinstein (1976b) or Lucas (1978)), the price of any

asset equals the expected present value of its future payoff, where the discounting is calculated using

the riskless rate r and the expectation is taken with respect to the probability density function (PDF)

of the payoffs weighted by the marginal rate of substitution. This PDF is called the SPD or pricing

density or risk neutral PDF (Cox and Ross (1976)) or equivalent martingale measure (Harrison and

Kreps (1979)). Formally, the current price ψt of an asset with single payoff ψT at date T = t + τ is

ψt = EQ[ψT e−rτ |Ft] = e−rτ

∫ ∞

0
ψT (ST ) qt,T (ST ) dST , (1)
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where ST is the state variable of the economy (e.g. aggregate consumption), Ft is the information

available to the agent up to and including time t, qt,T is the SPD (the PDF under the risk neutral

measure Q) at time t for payoffs liquidated at date T , and EQ is the expectation under Q. The

security price ψt can be equivalently represented as

ψt = EP[ψT Mt,T |Ft] =
∫ ∞

0
ψT (ST )Mt,T (ST ) pt,T (ST ) dST , (2)

where Mt,T is the SPD per unit probability2 and pt,T is the PDF under the historical or objective

measure P at time t for payoffs liquidated at date T . In a continuum of states, the SPD defines the

Arrow–Debreu (Arrow (1964) and Debreu (1959)) security price. For each state of the economy, s,

qt,T (s) is the forward price of an Arrow–Debreu security paying one dollar at time T if the future

state ST falls between s and s+ds. The SPD per unit probability Mt,T (s) is then the current market

price of an Arrow–Debreu security per unit probability, with expected rate of return 1/Mt,T (s) − 1

under the historical measure P. Such expected rates of return depend on the current state of the

economy summarized in the information set Ft.

Equation (2) shows the high information content of the SPD per unit probability. This equa-

tion can be used to determine equilibrium asset prices given historical asset price dynamics and

agent preferences, or to infer agent characteristics given the observed market asset prices. For in-

stance, in a Lucas (1978) economy, the state variable ST is the aggregate consumption CT and

Mt,T = U ′(CT )/U ′(Ct), that is the intertemporal marginal rate of substitution. Using an uncon-

ditional version of equation (2) and the aggregate consumption CT as state variable, Hansen and

Singleton (1982) and Hansen and Singleton (1983) estimate risk aversion and time preference of the

representative agent, hence identifying the SPD per unit probability. In general the SPD per unit
2The SPD per unit probability is also known as asset pricing kernel (Rosenberg and Engle (2002)) or stochastic

discount factor; see Campbell, Lo, and MacKinlay (1997) and Cochrane (2001) for comprehensive surveys of its role

in asset pricing, and Ross (1978), Harrison and Kreps (1979), Hansen and Richard (1987), Hansen and Jagannathan

(1991) for related works.
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probability depends on all variables that affect marginal utility, such as past consumption or equity

market returns; see for instance the discussion in Rosenberg and Engle (2002, Section 2.1) and ref-

erences therein. Furthermore, due to the well-known measurement problems and the low temporal

frequency of aggregate consumption data,3 several researchers have proposed alternative methods to

estimate Mt,T substituting consumption data with market data. For instance, Rosenberg and Engle

(2002) project Mt,T onto the payoffs of traded assets ψT , avoiding the issue of specifying the state

variables in the SPD per unit probability. Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000) adopt

similar approaches projecting Mt,T onto equity return states using S&P 500 index option prices.

They assume that investors have a finite horizon and that the equity index level perfectly correlates

with aggregate wealth. In this paper we also make the same assumptions.4 Our goal is to develop

a pricing model for the derivative securities that takes into account the most important features of

equity returns. The model will be evaluated on the basis of statistical measures (mispricing of ex-

isting securities) as well as economic measures (verifying whether SPD per unit probability satisfies

economic criteria).

1.2 Asset price dynamics

In this section we develop the stochastic volatility model that captures the most important features

of the equity return process. We use this model for pricing options.

1.2.1 Historical return dynamics

A substantial amount of empirical evidence suggest that equity return volatility is stochastic and

mean reverting, return volatility responds asymmetrically to positive and negative returns, and return
3For discussions of these issues see for example Ferson and Harvey (1992), Wilcox (1992), and Slesnick (1998).
4See for example Rubinstein (1976a) and Brown and Gibbons (1985) for the conditions under which the SPD per

unit probability with consumption growth rate as state variable is equivalent to a SPD per unit probability with equity

index return as state variable.
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innovations are non-normal; see for instance Ghysels, Harvey, and Renault (1996). In a discrete time

setting, the stochastic volatility is often modeled using extensions of the autoregressive conditional

heteroscedasticity (ARCH) model proposed by Engle (1982). Comprehensive surveys of the ARCH

and related models are Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle, and Nelson (1994).

In a continuous time setting, stochastic volatility diffusion model are commonly used; surveys of this

literature are for instance Ghysels, Harvey, and Renault (1996) and Shephard (1996).

To model the equity index return we use an asymmetric GARCH specification with an empirical

innovation density. The GARCH model of Bollerslev (1986) accounts for stochastic, mean reverting

volatility dynamics. The asymmetry term is based on Glosten, Jagannathan, and Runkle (1993)

(GJR). The empirical innovation density captures potential non-normalities in the true innovation

density and we refer to this approach as the filtering historical simulation (FHS) method. Barone-

Adesi, Bourgoin, and Giannopoulos (1998) introduce the FHS method to compute portfolio risk

measures and Engle and Gonzalez-Rivera (1991) investigate theoretical properties of the GARCH

model with empirical innovations.

Under the historical measure P the asymmetric GJR GARCH model is

log(St/St−1) = µ + εt

σ2
t = ω + βσ2

t−1 + αε2
t−1 + γIt−1ε

2
t−1,

(3)

where εt = σt zt, zt ∼ f(0, 1) and It−1 = 1, when εt−1 < 0 and It−1 = 0, otherwise. When γ > 0

the model accounts for the leverage effect,5 i.e. bad news (εt−1 < 0) raises the future volatility

more than good news (εt−1 ≥ 0) of the same absolute magnitude. The constant expected return

µ of the log-return is not usually compatible with time varying state prices, but it is unlikely that
5The name leverage effect was introduced by Black (1976) who suggested that a large negative return increases the

financial and operating leverage, and rises equity return volatility; see also Christie (1982). Campbell and Hentschel

(1992) suggested an alternative explanation based on the market risk premium and volatility feedback effects; see also

the more recent discussion by Bekaert and Wu (2000). We shall use the name leverage effect as it is commonly used

by researchers when referring to the asymmetric reaction of volatility to positive and negative return innovations.
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it will strongly affect the estimation of state prices. Hence, equation (3) can be viewed as an

approximation. The scaled return innovation zt is drawn from the empirical density function f that

is obtained by dividing each estimated return innovations ε̂t by its estimated conditional volatility σ̂t.

This set of estimated scaled innovations gives an empirical density function that incorporates excess

skewness, kurtosis and other extreme return behaviors that are not captured in a normal density. We

estimate the model parameters using the pseudo maximum likelihood (PML) approach (Bollerslev

and Wooldridge (1992)) with the nominal (not necessarily true) assumption of normal innovations.

This technique provides consistent parameter estimates even when the true innovation density f is

non-normal; see also Gourieroux, Monfort, and Trognon (1984).

The GARCH literature provides several specifications for the conditional volatility and we could

adopt a different GARCH model in this study. We favor the asymmetric GJR GARCH model (3)

mainly for two reasons: (i) the flexibility in capturing the leverage effect and (ii) the ability in fitting

daily S&P 500 index returns (used in our empirical application). Engle and Ng (1993) document

that the GJR model provides an adequate modeling of the news impact curve, outperforming the

EGARCH model of Nelson (1991). Rosenberg and Engle (2002) fit a number of GARCH models to

daily S&P 500 returns and they find that the GJR model (3) describes the data best. In Section 2

we undertake an extensive empirical analysis using several years of S&P 500 returns and in some

instances there might be other GARCH models which outperform the asymmetric GARCH model

(3). For comparison purposes and to simplify implementation, we always maintain the GJR model

in our study. If on specific occasions we use other GARCH models which fit the data better, we

could obtain more accurate pricing results. Hence our findings can be interpreted in a conservative

way.
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1.2.2 Pricing return dynamics

The asset return model (3) is specified under the historical measure P and cannot be used to price

options directly. To achieve this goal, one possibility is to specify the SPD per unit probability (i.e.

the change of measure from P to Q) and to recover the pricing asset dynamics.6 This approach

is particularly appealing because the GARCH parameter θ = {ω, β, α, γ} can be easily estimated

using historical asset returns and then used for pricing purposes. Unfortunately, several studies (e.g.

Chernov and Ghysels (2000), Christoffersen and Jacobs (2004) and our results in Table 9) show that

this approach leads to a rather poor pricing performance and it is largely dominated by option pricing

models calibrated only using option prices.7 This negative result is mainly due to the difficulties of

specifying a correct SPD per unit probability, that in general has time varying level and shape; see

for instance Rosenberg and Engle (2002).

We do not specify directly the change of measure from P to Q, and we propose to approximate it

by calibrating a new set of pricing GARCH parameter θ∗ = {ω∗, β∗, α∗, γ∗} directly on market option

prices. The parameter θ∗ can possibly be different from the parameter θ under P, and this difference

characterizes the SPD per unit probability. We propose to calibrate the GJR pricing model using the

FHS method and we call this approach FHS. (i) On a given day t, the GARCH model (3) is estimated

using n historical log-returns of the underlying asset, {log(Sj/Sj−1), j = 1−n+t, 2−n+t, . . . , t}. The

empirical innovations {zj = εj/σj} are also estimated. (ii) Given the pricing GARCH parameters

6For instance Rubinstein (1976b) and Brennan (1979) originally used log-normal distributions and power utili-

ties to characterize the SPD per unit probability, while Heston (1993b) and Stutzer (1996) combine log-exponential

distributions with power utility and exponential utility for the same purpose.
7Although Chernov and Ghysels (2000) find that the pricing of long term options in the Heston (1993a) model

could be improved using security and option contracts jointly and Christoffersen and Jacobs (2004) find that the out-

of-sample performances of certain GARCH models estimated on historical data are only slightly inferior to the ones of

the same GARCH models calibrated only on option data.
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θ∗, a return path from t to t+ τ is simulated using the GARCH pricing model for i = t+1, . . . , t+ τ ,

log(Si/Si−1) = µ∗ + εi

σ2
i = ω∗ + β∗σ2

i−1 + α∗ε2
i−1 + γ∗Ii−1ε

2
i−1,

(4)

where the risk neutral drift µ∗ ensures that the expected asset return equals the risk free rate,

i.e. EQ[Si/Si−1|Fi−1] = er. A return path is simulated by drawing an estimated past innovation,

say, z[1], updating the conditional variance σ2
t+1, drawing a second innovation z[2], updating the

conditional variance σ2
t+2, and so on up to T = t + τ . The τ periods simulated return is ST /St =

exp(τµ∗ +
∑τ

i=1 σt+i z[i]). (iii) The τ periods SPD is estimated by simulating several τ periods

return paths, i.e. repeating the previous step several times. (iv) The price of a call option at time

t with strike K and maturity T is given by e−rτ
∑L

l=1 max(S(l)
T −K, 0), where S

(l)
T is the simulated

asset price at time T in the l-th sample path and L is the total number of simulated sample paths

(e.g. L = 20,000). Put prices are computed similarly. (v) The pricing GARCH parameters θ∗ are

varied (which changes the sample paths) so as to best fit the cross section of option prices on date t,

minimizing the mean square pricing error
∑Nt

j=1 e(Kj , Tj)2, where e(Kj , Tj) is the difference between

the GARCH model price and the market price of the option j with strike Kj and maturity Tj .8 Nt is

the number of options on a given day t. (vi) The calibration is achieved when, varying the pricing

GARCH parameter θ∗, the reduction in the mean square pricing error is negligible or below a given

threshold.

To reduce the Monte Carlo variance, we use the empirical martingale simulation method proposed

by Duan and Simonato (1998), where the simulated asset price paths are re-scaled to ensure that

the risk neutral expectation of the underlying asset equals its forward price. To lighten the notation,
8To minimize the criterion function we use the Nelder-Mead simplex direct search method implemented in the

Matlab function fminsearch, which does not require the computation of gradients. To ensure the convergence of the

calibration algorithm, the FHS innovations used to simulate the GARCH sample paths are kept fix across all the

iterations of the algorithm. Starting values for the pricing parameters θ∗ are the GARCH parameters estimated under

the historical measure P and obtained in the step (i).
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σ2
t denotes the pricing as well as the historical volatility, but it will be clear from the context which

volatility we are referring to. Similarly, εt denotes pricing and historical raw innovation.

The distribution of the scaled innovation z could also be changed to better approximate the

change of measure from P to Q. We retain the same historical distribution of the innovation process

under the pricing measure Q because in our empirical applications the parameter change from θ to

θ∗ already provides a flexible change of measure to well fit market options prices. In Section 2.7 we

investigate whether the induced SPD per unit probability is economically sustainable and satisfies

usual economic restrictions on levels and shapes. In this case, the GARCH pricing model is validated

economically.

If the return innovation z was to be normal, the SPD per unit probability would be restricted

as in Duan (1995, Lemma A.1) because both historical and pricing distributions would be normal

and pricing asset returns could not follow a GARCH process with different parameters.9 Our pricing

model does not rely on normal innovations, but on non-normal empirical innovations. To infer the

pricing model, we do not transform the FHS innovation process {zt} and we exploit the flexibility of

θ∗ to compensate for that.

The previously mentioned calibration approach is usually undertaken in option pricing literature;

see for instance Engle and Mustafa (1992), Duan (1996), Heston and Nandi (2000), and Christof-

fersen, Jacobs, and Wang (2006).10 Compared to previous studies, we use a different pricing model,

we consider wider moneyness and/or maturity ranges of option prices and we undertake a more ex-

tensive calibration exercise, calibrating our GARCH pricing model and competing models each week

from 1/2002 to 12/2004 (our sample data). Furthermore, we estimate the SPD per unit probability

for all the available maturities in our database.
9We are grateful to the referee for pointing this out.

10See also Amin and Ng (1997) for related work on interest rate models.
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2 Empirical analysis

2.1 Data

To test our model we use European options on the S&P 500 index (symbol: SPX). The market for

these options is one of the most active index options market in the world. Expiration months are the

three near-term months and three additional months from the March, June, September, December,

quarterly cycle. Strike price intervals are 5 and 25 points. The options are European and have no

wild card features. SPX options can be hedged using the active market on the S&P 500 futures.

Consequently, these options have been the focus of many empirical investigations, including Aı̈t-

Sahalia and Lo (1998), Chernov and Ghysels (2000), Heston and Nandi (2000), and Carr, Geman,

Madan, and Yor (2003).

We consider closing prices of the out-of-the-money (OTM) put and call SPX options for each

Wednesday11 from January 2, 2002 to December 29, 2004. It is known that OTM options are

more actively traded than in-the-money options and using only OTM options avoids potential issues

associated with liquidity problems.12 Option data and all the other necessary data are downloaded

from OptionMetrics. The average of bid and ask prices are taken as option prices, while options

with time to maturity less than 10 days or more than 360 days, implied volatility larger than 70%,

or prices less than $0.05 are discarded, which yields a sample of 29,211 observations. Put and call

options are equally represented in the sample, that is 50.7% and 49.3%, respectively.

Using the term structure of zero-coupon default-free interest rates, the riskless interest rate for

each given maturity τ is obtained by linearly interpolating the two interest rates whose maturities
11In our sample all but two days are Wednesdays. In those cases we take the subsequent trading day, but for

simplicity we refer to all days as Wednesdays.
12Daily volumes of out-of-the-money put options are usually several times as large as volumes of in-the-money puts.

This phenomenon started after the October 1987 crash and reflects the strong demand by portfolio managers for

protective puts, inducing implied volatility smiles.
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straddle τ . This procedure is repeated for each contract and each day in our sample.

We divide the option data into several categories according to either time to maturity or mon-

eyness, m, defined as the ratio of the strike price over the asset price, K/S. A put option is said to

be deep out-of-the-money if its moneyness m < 0.85, or out-of-the-money if 0.85 ≤ m < 1. A call

option is said to be out-of-the-money if 1 ≤ m < 1.15; and deep out-of-the-money if m ≥ 1.15. An

option contract can be classified by the time to maturity, as short maturity (< 60 days); medium

maturity (60–160 days); and long maturity (> 160 days).

Table 1 describes the 29,211 option prices, the implied volatilities, and the bid-ask spreads in

our database. The average put (call) prices range from $0.77 ($0.34) for short maturity, deep OTM

options to $38.80 ($34.82) for long maturity, OTM options. OTM put and call options account

for 27% and 25%, respectively, of the total sample. Short and long maturity options account for

33% and 36%, respectively, of the total sample. The table also shows the volatility smile and the

corresponding term structure. For each given set of maturities the smile across moneyness is evident.

When the time to maturity increases the smile tends to become flatter and the bid-ask spreads tend

to narrow. The number of options on each Wednesday is on average 186.1, with a standard deviation

of 22.3, a minimum of 142 and a maximum of 237 option contracts.

During our sample period, the S&P 500 index ranges from a minimum of $776.8 to a maximum

of $1,213.5 with an average level of $1,029.5. The average daily log-return is quite close to zero

(6.6 × 10−5), the standard deviation is 22.98% on an annual base,13 and skewness and kurtosis are

0.25 and 4.98 respectively.
13The standard deviation of the S&P 500 log-returns is approximately in line with the GARCH unconditional

volatility estimates reported in Tables 2 and 3.
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2.2 Benchmark model and alternative GARCH pricing models

In the empirical analysis we compare our GARCH pricing model to three competing approaches: the

benchmark ad hoc Black–Scholes model proposed by Dumas, Fleming, and Whaley (1998) (BS, in

brief), the GARCH model with Gaussian innovations of Heston and Nandi (2000) (HN, in brief), and

the GARCH model with Inverse Gaussian innovations of Christoffersen, Heston, and Jacobs (2006)

(IG, in brief).

The benchmark ad hoc Black–Scholes model is estimated as follows. Implied volatilities of the

cross section of the SPX options are smoothed across strikes and time to maturities by fitting the

following function

σbs = a0 + a1K + a2K
2 + a3τ + a4τ

2 + a5Kτ, (5)

where σbs is the Black–Scholes implied volatility for an option with strike K and time to matu-

rity τ . Option prices are then obtained by plugging in the Black–Scholes formula the fitted implied

volatilities. Equation (5) is estimated using ordinary least squares (OLS). Although theoretically

inconsistent, ad hoc Black–Scholes methods are routinely used in the option pricing industry and

they represent a more challenging benchmark than the simple Black–Scholes model, because they al-

low for different implied volatilities to price different options. Indeed, Dumas, Fleming, and Whaley

(1998) show that this approach outperforms the deterministic volatility function option valuation

model introduced by Derman and Kani (1994), Dupire (1994), and Rubinstein (1994).14

Heston and Nandi (2000) apply the inversion of the characteristic function technique introduced

by Heston (1993a) to derive an almost closed form expression for European option prices under

GARCH models with Gaussian innovations. To capture the well documented negative asymmetry

in GARCH innovations, Christoffersen, Heston, and Jacobs (2006) extend the previous technique

to GARCH models with possibly negative skewed inverse Gaussian innovations. Here we recall
14See for instance Buraschi and Jackwerth (2001) for a discussion on this point.
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the pricing formulae and the specification of the two GARCH models. We refer the reader to the

corresponding papers for an in-depth discussion of the models.

In the HN model, the asset return dynamic under the risk neutral measure Q is

log(St/St−1) = r − σ2
t /2 + σtzt

σ2
t = ω∗hn + β∗hnσ

2
t−1 + α∗hn(zt−1 − γ∗hnσt−1)2,

where zt is a standard Gaussian innovation, and in the IG model

log(St/St−1) = r + νσ2
t + η∗yt

σ2
t = w∗ + b∗ σ2

t−1 + c∗ yt−1 + a∗ σ4
t−1/yt−1,

where yt follows an inverse Gaussian distribution with parameter δt = σ2
t /η∗2. In both models, at

time t the call option Ct with strike price K and time to maturity τ is worth

Ct = e−rτζ∗(1)
(

1
2

+
1
π

∫ ∞

0
<

[
K−iφζ∗(iφ + 1)

iφζ∗(1)

]
dφ

)
−e−rτK

(
1
2

+
1
π

∫ ∞

0
<

[
K−iφζ∗(iφ)

iφ

]
dφ

)
, (6)

where <[·] denotes the real part of a complex number, ζ∗(φ) is the conditional moment generating

function at time t of the log-price XT = log(ST ),

ζ∗(φ) = EQ[eφXT |Ft] = Sφ
t eAt+Btσ2

t+1 .

The coefficients At’s and Bt’s are computed backward starting from the terminal condition AT =

BT = 0, and using the following recursive equations in the HN model

At = At+1 + φr + Bt+1ω
∗
hn −

1
2

log(1− 2α∗hnBt+1)

Bt = φ(γ∗hn −
1
2
)− γ∗2hn

2
+ β∗hnBt+1 +

1/2(φ− γ∗hn)
2

1− 2α∗hnBt+1

and in the IG model

At = At+1 + φr + Bt+1w
∗ − 1

2
log(1− 2a∗η∗4Bt+1)

Bt = Bt+1b
∗ + φν∗ + η∗−2 − η∗−2

√
(1− 2a∗η∗4Bt+1)(1− 2c∗Bt+1 − 2η∗φ).
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The motivation for choosing the BS, HN and IG models for comparison is as follows. The

three models allow to ascertain whether introducing changing volatility (not allowed in BS) or non-

normality (not allowed in BS and HN) leads to better pricing using our FHS approach. The com-

parison between IG and FHS models concerns the relative advantage of modeling non-normality of

innovations parametrically or in a nonparametric way, respectively.

2.3 Calibration of the pricing models

All the pricing models (FHS, HN, IG and BS) are calibrated on the cross section of out-of-the-

money SPX option prices. This procedure is repeated each Wednesday from 1/2002 to 12/2004, thus

obtaining 157 calibrations for each model.

To calibrate our FHS model, the GARCH model (3) is estimated each Wednesday using the

PML approach and n = 3,500 historical log-returns, i.e. a sample size of approximately fourteen

years. Unreported means and standard deviations of FHS innovations are remarkably close to zero

and one, respectively, meaning that GJR GARCH models are correctly identified. FHS innovations

are highly non-normal and descriptive statistics are available from the authors upon request. As an

example, Figure 1 shows the S&P 500 log-returns, the estimated GARCH volatility {σt} and the

scaled innovations {zt} up to a randomly chosen date, July 9, 2003. A sufficiently long sample size

ensures that the innovation distribution is adequately estimated. As a robustness check, we repeated

all the estimations and calibration exercises using a sample size n = 2,500; this point is discussed in

Section 2.5. The GARCH pricing parameter θ∗ = {ω∗, β∗, α∗, γ∗} in model (4) is calibrated using the

FHS method described in Section 1.2.2. The current conditional volatility σt+1 is readily obtained

using historical GARCH estimates and asset returns. This is an important advantage of the GARCH

pricing models over continuous time stochastic volatility models where the current instantaneous

volatility is not observable and is usually calibrated on option prices increasing the computational

burden; see for instance Bakshi, Cao, and Chen (1997). The SPD is estimated by simulating L
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= 20,000 return paths.15 The sample paths are simulated in parallel running only one for-loop,16

on a standard Pentium IV processor with 1GB RAM. Hence our Monte Carlo approach could be

potentially inaccurate—as any other simulation method—but the computation time is roughly the

same as for the competing GARCH pricing models, where one for-loop is needed to compute the

coefficients At’s and Bt’s.17 Whether Monte Carlo option prices are sufficiently accurate for pricing

purposes will be reflected in the empirical pricing performance of our approach. However, for almost

all the deepest out-of-the-money options, at least 100 simulated paths end “in-the-money”. As an

example, Figure 2 shows the calibration of the GJR model with FHS method on the cross-section of

out-of-the-money SPX options on July 9, 2003. Given the wide range of moneyness and maturities

considered, the calibration is quite satisfactory. An extensive empirical analysis is undertaken in the

next sections.

When computing option prices using the HN and IG models, the integrals in equation (6) are

computed numerically via discretization. We take as integration domain the interval (0, 100) and we

evaluate the integrand function on 5,000 equally spaced mid-points. Then, the integrals are computed

by averaging the function values over such an interval.18 As the moment generating function ζ∗ does

not depend on the strike K, for each given maturity τ , the coefficients At’s and Bt’s need to be

computed only once. Hence, this numerical procedure allows to evaluate a whole cross section of

option prices in a few seconds, largely reducing the calibration time. As in Christoffersen, Heston,
15For a few selected days we repeated the calibration exercises using L = 10,000 sample paths and we obtained very

similar pricing results. As the computation burden was still manageable we used L = 20,000 sample paths in our

empirical study.
16The for-loop is the programming language statement which allows code to be repeatedly executed.
17If the number of simulated sample paths L has to be increased and the computer memory is not enough then the

Monte Carlo approach is substantially slower than the competing GARCH approaches.
18The choice of the integration domain and the subinterval length are selected to match option prices on a few

selected days computed using the Romberg’s numerical integration method over the interval (10−6, 200) with tolerance

10−4. Some differences between the two approaches are observed for only a few deepest out-of-the-money option prices.
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and Jacobs (2006), we set the riskless rate r = 0.05/365 in the GARCH pricing formula. At each step

of the calibration procedure, the conditional variances σ2 is initialized at the unconditional variance

level and then updated using the corresponding pricing GARCH dynamic. The iterations are started

250 trading days before the first option date to allow for the models to find the right conditional

variances.

Christoffersen, Heston, and Jacobs (2006) show that the ν∗ parameter in the IG model is not a

free parameter but it is constrained to ensure that the underlying asset earns the risk free rate under

the risk neutral measure Q. This observation explains why ν∗ does not appear in Table 3 which

shows the calibrated risk neutral parameters.

Finally, when implementing all the pricing formulae, the dividends paid by the stocks in the

S&P 500 index have to be taken into account. Dividends are treated in different ways in option

pricing literature; see for instance Aı̈t-Sahalia and Lo (1998) and Heston and Nandi (2000) for two

alternative procedures. We use the dividend yields downloaded from OptionMetrics to compute an

ex-dividend spot index level.

2.4 In-sample model comparison

Table 3 shows summary statistics for the pricing GARCH parameters calibrated each Wednesday

from 1/2002 to 12/2004. It is known that option prices are more sensitive for example to γ∗, γ∗hn,

c∗, η∗ than ω∗, ω∗hn, w∗. Indeed, the first set of parameters turn out to be more stable than the

second one, confirming the finding for instance in Heston and Nandi (2000). As expected, all the

unconditional volatilities and the corresponding persistency measures are more stable than single

parameters. For each Wednesday, we also calibrate the ad hoc Black–Scholes model (5) and Table 4

shows summary statistics for the parameter estimates ai, i = 0, . . . , 5. The low standard deviations

of the parameter estimates confirm that the implied volatility smile is a persistent phenomenon in

SPX option market.
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Following Dumas, Fleming, and Whaley (1998) and Heston and Nandi (2000), in order to assess

the quality of the pricing models, we report several measurements of fit. The dollar root mean square

error (RMSE) is the square root of the averaged squared deviations between the model prices and

the market prices; the mean absolute error (MAE) is the average of the absolute valuation error

when the model price is outside the bid-ask spread; the mean outside error (MOE) is the average of

the valuation error when the model price is outside the bid-ask spread; the minimum and maximum

pricing errors; the percentage of positive pricing errors; the average pricing error as a percentage of

the bid-ask spread.

For all pricing models, Table 5 shows the in-sample pricing errors summarized by the previous

measurements of fit. Table 6 disaggregates the in-sample pricing errors by moneyness/maturity

categories; see also the left graphs in Figure 3 for the in-sample absolute mispricing. The overall

conclusion is that in terms of all measurements of fit our GJR model with FHS innovations outper-

forms all the other pricing models. For example, aggregate RMSE of IG and HN models are 46% and

37% larger than the RMSE of our FHS model. Occasionally, the GJR is somewhat outperformed by

other models (for e.g. in terms of RMSE by the HN model during 2003 in Table 5, or by the IG model

for deep out-of-the-money put options in Table 6), but its good pricing performance is remarkably

stable. The percentage of positive pricing errors in Table 5 for the HN and the IG models seems to

be too low, but no systematic bias emerges for the MOE’s in Table 6 and hence this finding is due to

slight underestimations of option prices. Finally, all the GARCH pricing models largely outperform

the benchmark ad hoc Black–Scholes model, which has difficulties in fitting the whole cross section

of option prices. As a further comparison, we also consider CGMY models proposed by Carr, Ge-

man, Madan, and Yor (2003), where the underlying asset follows a mean corrected, time-changed

exponential Lévy processes. Despite their models having more parameters (for e.g. CGMYSA model

has nine parameters), our FHS model compares favorably. To save space the corresponding results

are omitted but are available from the authors upon request.
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2.5 Out-of-sample model comparison

Out-of-sample forecasting of option prices is an interesting challenge for any pricing method. It tests

not only the goodness-of-fit of the pricing formulae, but also whether the pricing methods overfit

the option prices in the in-sample period. For each Wednesday in our sample, in-sample model

estimates are used to price SPX options one week later (hence out-of-sample) using asset prices,

time to maturities and interest rates relevant on the next Wednesday.19

Table 7 shows the out-of-sample pricing errors summarized by the different measurements of fit

and Table 8 disaggregates the out-of-sample pricing errors by moneyness/maturity categories; see

also the right graphs in Figure 3 for the out-of-sample absolute mispricing. Interestingly, the out-

of-sample results largely confirm the previous in-sample ones and overall our GJR model with FHS

innovations outperforms all the competing pricing models. Hence our model is flexible enough to

achieve a good pricing performance, capturing the pricing mechanisms, without overfitting the data.

In all the previous in- and out-of-sample pricing exercises the GJR GARCH is estimated and

calibrated using n = 3,500 past S&P 500 log-returns. As a robustness check, we repeat all the

previous analyses using n = 2,500 log-returns. We obtain very similar results in terms of parameter

estimation, calibration and pricing performance. These additional findings confirm the robustness of

the reported results. The corresponding tables are omitted but are available from the authors.

2.6 Analysis of GJR GARCH pricing model with FHS method

2.6.1 News impact curves

It might be surprising that the GJR GARCH with FHS innovations outperforms the other GARCH

pricing models, sometimes even by a large extent. After all, also the HN and IG models can account

for the same stylized facts about the asset returns and volatility dynamics. To shed light on the
19The one week ahead forecast horizon is also adopted by Dumas, Fleming, and Whaley (1998) and Heston and

Nandi (2000), among others, and for comparative purposes we adopt it here as well.
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differences among the GARCH models, we compute the news impact curve (Engle and Ng (1993))

implied by the different models. The news impact curve (NIC) measures the impact on the conditional

variance σ2 of a shock in the scaled innovation z, when the volatility is at its long run level. Figure 4

shows the NIC for the FHS, HN and IG models using the pricing GARCH parameters in Table 3.

The graphs have to be interpreted carefully because the NIC is estimated using the average pricing

parameter values and to simplify the interpretation, the vertical axis shows the conditional volatility

rather than the conditional variance. However, the findings are remarkably stable across the three

years and show that different GARCH volatilities react to innovation shocks differently. Overall,

negative shocks z tend to raise volatilities more than positive shocks of equal magnitude (with some

exceptions for the IG model), documenting leverage effects. This effect is much stronger in the FHS

than HN model. Gaussian innovations in the HN model are very rarely below, say, −3, while in

the GJR model with FHS, innovations are often below this threshold; see for instance Figure 1.

The IG model can potentially react very strongly to negative shocks because the inverse Gaussian

innovation, yt, enters as 1/yt in the GARCH dynamics. Hence NIC tends to explode when yt goes to

zero, although the probability of this event depends on the degrees of freedom parameter δt = σ2
t /η∗2.

2.6.2 Comparison to alternative GJR GARCH models

To further understand the pricing performance of our FHS model, we compare it to the following two

GARCH models: the GJR model fitted to historical returns and driven by FHS innovations (HIST,

in brief), and the GJR model calibrated to the cross section of SPX options and driven by Gaussian

innovations (GAUSS, in brief). The calibration procedure of the GAUSS model is the same as the

FHS model but the FHS innovations are replaced by randomly drawn Gaussian innovations.20 As in
20To reduce the variance of the Monte Carlo estimates we use the method of antithetic variates; see, for instance,

Boyle, Broadie, and Glassermann (1997). This method is not used in our FHS approach so as to preserve the negative

asymmetry of the historical GARCH innovations.
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previous analysis, GARCH models are re-estimated and re-calibrated each Wednesday from 1/2002

to 12/2004; see Table 2 for GARCH parameters of HIST and GAUSS models. Table 9 shows in- and

out-of-sample aggregated pricing results; to simplify comparisons, pricing results of HN and FHS

models are reported in this table as well. Comparing FHS and HIST models (which rely on the same

FHS innovation distribution but different asset return dynamics) shows that allowing for different

historical and pricing return distributions induces a major improvement in the pricing performance,

such as a reduction of more than 70% in terms of RMSE. Comparing FHS and GAUSS models

(which rely on the same GARCH dynamic but different innovation distributions) shows that using

nonparametric instead of Gaussian innovations induces an overall improvement in pricing options,

but by a lesser extent. Finally, comparing GAUSS and HN models (which rely on different GARCH

dynamics but the same Gaussian innovation distribution) shows that the GJR GARCH dynamic

allows for a better fitting of option prices than the asymmetric GARCH dynamic in Heston and

Nandi (2000). Pricing errors disaggregated across years and moneyness/maturity categories confirm

the results in Table 9 and are omitted, but are available from the authors upon request.

Overall, allowing for different volatilities (and hence different distributions) under historical and

pricing measures induces a major improvement in the pricing performance. This finding is in line

with recent studies on variance swap contracts, which document higher risk neutral volatilities than

historical ones, inducing negative volatility premia; see for instance Carr and Wu (2007) and Egloff,

Leippold, and Wu (2007). Capturing this phenomenon seems to be crucial in order to achieve

accurate pricing performances.

2.6.3 Applications of GJR GARCH pricing model with FHS method

The proposed GARCH pricing model has been used to price European calls and puts but the model

has other potential applications as well. As the calibration procedure relies on Monte Carlo sim-

ulation, transition densities of the stock price are readily available. Hence other European and
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path-dependent claims can be priced and hedged using the simulated trajectories of the stock price.

In particular, a sensitivity analysis (e.g. computing delta and gamma) can be easily obtained follow-

ing the direct approach in Duan (1995) or the regression methodology approach in Longstaff and

Schwartz (2001). Recently, Barone-Adesi and Elliott (2007) proposed a model-free approach to com-

pute delta hedge ratios. Comparing option price forecasts based on their model-free approach and

on our GARCH model allows to evaluate the deterioration of delta hedging due to volatility shocks.

Our GARCH pricing model provides an arbitrage free procedure to optimally interpolate strike

prices and time to maturities, as required in several applications.21 In particular, the grid of time to

maturities is rather sparse and standard interpolation methods are likely not to work in that case.

Our FHS model also provides risk neutral dynamic and forecast of the pricing volatility term

structure. Such forecasts are not available in other models, such as ad hoc Black–Scholes methods,

but play a key role in pricing and hedging volatility-dependent claims. To gauge the accuracy of the

GARCH forecasts based on the FHS method, for each Wednesday t from 1/2002 to 12/2004, Figure 8

shows the VIX, a 30-day volatility index constructed by the Chicago Board of Options Exchange,

and the conditional forecast of the risk neutral integrated volatility,

100×
√√√√365

30

30∑

i=1

EQ[σ2
t+i|Ft],

given by our GARCH pricing model. In most occasions the VIX and GARCH forecasts are very

close, the correlation is 0.96, the average difference (GARCH forecast minus VIX) is 0.1%, and the

standard deviation of such differences is 1.9%. An in-depth analysis of GARCH volatility forecasts

is beyond the scope of this paper but these findings suggest that our GARCH pricing model can

provide sensible predictions of the risk neutral volatility term structure.
21Interpolation methods are used for instance to synthesize variance swap rates from European calls and puts; see

Carr and Wu (2007).
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2.7 State Price Density per unit probability

In this section we estimate SPD per unit probability, Mt,t+τ , using our FHS model (Section 1.2) and

the GAUSS model (Section 2.6.2), and we study their economic implications. Estimates of Mt,t+τ

are based on conditional historical and pricing densities, pt,t+τ and qt,t+τ . In our FHS model, the

historical density pt,t+τ is obtained by simulating from t to t + τ the GJR model fitted to historical

log-returns up to time t and driven by FHS innovations.22 The historical density depends on the

expected return, which is notoriously difficult to estimate. Indeed, Merton (1980) argues that positive

risk premia should be explicitly modeled and, as in Jackwerth (2000), we set the risk premium at 8%

per year. The pricing density qt,t+τ is obtained by simulating the GJR model calibrated on the cross-

section of SPX options observed on date t and driven by the same FHS innovations. Then, Mt,t+τ is

given by the discounted ratio of the pricing over the historical densities, Mt,t+τ = e−rτqt,t+τ/pt,t+τ .

This procedure gives semiparametric estimates of Mt,t+τ , because the densities pt,t+τ and qt,t+τ are

based on parametric GARCH models, but no a priori functional form is imposed on Mt,t+τ . In the

GAUSS model, the estimation procedure of Mt,t+τ is the same as for the FHS model but the FHS

innovations are replaced by Gaussian innovations.

We estimate SPD per unit probability for each Wednesday t and each time to maturity τ in

our sample from 1/2002 to 12/2004, using both GJR GARCH models with FHS and Gaussian

innovations. We obtain 862 density estimates of Mt,t+τ for each model. As an example, Figure 5

shows historical and pricing densities on July 9, 2003, using our FHS approach and SPD per unit

probability for different times to maturities estimated using GJR models with the FHS and Gaussian

innovations; see also Table 10 for the numerical values of Mt,t+τ . In agreement with economic theory,

all state price densities per unit probability are fairly monotonically decreasing in ST , with some

exceptions for the longest maturity and the lowest states. Interestingly, SPD per unit probabilities
22All density functions are estimated using the Matlab function ksdensity with Gaussian kernels and optimal default

bandwidths for estimating Gaussian densities.
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based on FHS innovations are lower than those based on Gaussian innovations; this point is discussed

below. To visually represent all SPD per unit probabilities, we follow a similar approach as in

Jackwerth (2000). For each Wednesday t and maturity τ , Mt,t+τ ’s are first estimated on a grid of

100 points of the gross return {St+τ/St}, and then averaged across each year and each short, medium

and long maturity categories. The averaged SPD per unit probability, and ± 0.5 times the empirical

standard deviations, are plotted in Figure 6. As predicted by economic theory and in contrast to

previous studies such as Jackwerth (2000) and Rosenberg and Engle (2002), our estimates of SPD per

unit probability are monotonically decreasing in the S&P 500 state variable.23 Moreover, estimates

of Mt,t+τ based on Gaussian innovations are clearly higher than those based on FHS innovations

for low states, but very close for medium and high states of the S&P 500. These differences are

economically significant. High values of Mt,t+τ on the left imply that simple Arrow–Debreu state

contingent claims are “overpriced” and have very negative expected rates of return. As an example,

Table 11 shows average SPD per unit probabilities and implied expected returns of Arrow–Debreu

securities for long maturities (> 160 days) in 2002 as defined in our sample (Section 2.1). Arrow–

Debreu securities for low states of S&P 500 can be viewed as “insurance” contracts, providing

positive payoff when the economy is in a bad state. Hence, not surprisingly, investors are prepared

to suffer expected losses when entering these contracts. However, such expected losses might appear

“unreasonably” high when SPD per unit probabilities are estimated using Gaussian innovations, such

as 1/4.20 − 1 = −76.2%, for moneyness of 0.40. In contrast, SPD per unit probability estimated

using our FHS method implies an expected rate of return of 1/1.50 − 1 = −33.3% for the same

contingent claim, which is certainly a more “reasonable” return. As a consequence, Mt,t+τ ’s based

on Gaussian innovations imply that out-of-the-money puts appear to be “overpriced”, while using

FHS innovations they are not. Negative skewness of FHS innovations and asymmetric GARCH
23In this paper we use a different methodology, sample period and moneyness/maturity ranges for the SPX options

than previously mentioned studies. These differences can explain the different findings.
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volatilities can account for excess out-of-the-money put prices and provide an adequate pricing of

the downside market risk.

To assess the time stability of SPD per unit probabilities, Figure 7 shows estimates of Mt,t+τ

on four consecutive Wednesdays in July 2002, July 2003 and July 2004, and for time to maturity τ

closest to 100 days. Similar qualitative findings are observed for other periods and time to maturities.

SPD per unit probability under both FHS and Gaussian innovations tends to change slowly through

time, although our FHS method provides more stable estimates.24 This finding is consistent with

aggregate risk aversion (absolute slope of SPD per unit probability) changing slowly through time

at a given wealth level. For example, Rosenberg and Engle (2002) document that empirical risk

aversions change with the business cycle in a counter-cyclical way, increasing (decreasing) during

contractions (expansions) of the economy.

Comparing Tables 2 and 3 shows that the asymmetry parameter γ∗ tends to be larger when the

GJR model is calibrated using Gaussian innovation rather than FHS innovations. Hence, despite the

stochastic volatility, Gaussian innovations cannot account for market expectations on frequencies of

large negative returns and to fit out-of-the-money put prices, a large asymmetry parameter γ∗ is

needed. Using FHS innovations, the GJR model can more easily price out-of-the-money puts giving

SPD per unit probability more in line with economic reasonings.

Several other studies provide estimates of SPD per unit probability. Perhaps the most closely

related study is provided by Rosenberg and Engle (2002). The main similarity is that in both cases

conditional SPD per unit probability is investigated, reflecting current market conditions such as

high or low volatility. The main difference is that Rosenberg and Engle (2002) consider a flexible but

parametric functional form for Mt,t+τ , while here we provide nonparametric estimates of the ratio

qt,t+τ/pt,t+τ . Detlefsen, Härdle, and Moro (2007) estimate conditional SPD per unit probability

24The rather volatile estimates of SPD per unit probability for lowest moneyness correspond to low pricing errors in

the calibration procedure and hence they have a limited impact on calibrated models.

27



nonparametrically using DAX options data, but relying on the Heston (1993a) volatility model.

Aı̈t-Sahalia and Lo (2000) and Jackwerth (2000) provide nonparametric estimates of SPD per unit

probability (or related quantities such as risk aversions), but they exploit the time continuity of

Mt,t+τ to average state prices and probabilities across time. Hence, their results are best interpreted

as estimates of the average SPD per unit probability over the sample period, instead of conditional

estimates; for a recent extension see Constantinides, Jackwerth, and Perrakis (2007). Compared

to all the previous studies, we provide estimates of SPD per unit probability for many more time

horizons τ and much larger ranges of St+τ/St.

3 Conclusions

We propose a new method for pricing options based on an asymmetric GARCH model with filtered

historical innovations. In an incomplete market framework, we allow for historical and pricing dis-

tributions to have different shapes, enhancing the model flexibility to fit market option prices. An

extensive empirical analysis based on S&P 500 index options shows that our model outperforms other

competing GARCH pricing models and ad hoc Black–Scholes methods. We show that the flexible

change of measure, the asymmetric GARCH volatility dynamic and the nonparametric innovation

distribution induce the accurate pricing performance of our model. In contrast to previous studies,

using our GARCH model and a nonparametric approach we obtain decreasing state price densities

per unit probability as suggested by economic theory therefore validating our GARCH pricing model.

Furthermore, implied volatility smiles appear to be explained by asymmetric GARCH volatility and

negative skewness of the filtered historical innovations, with no need for “unreasonably” high state

prices for out-of-the-money puts. Our discrete-time model does not impose restrictions similar to

Girsanov’s theorem on the change of measure. The only requirement is the non-negativity of state

prices, necessary for no arbitrage and ensured by our Monte Carlo method. Such a weak require-
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ment allows for more flexible option pricing than enabled by diffusion models. Further refinements

of pricing and stability issues are left to future research.
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Maturity

Moneyness Less than 60 60 to 160 More than 160

K/S Mean Std. Mean Std. Mean Std.

< 0.85 Put price $ 0.77 1.20 2.54 3.20 8.69 7.63

σbs% 38.97 9.59 33.36 7.75 28.37 5.21

Bid-Ask% 0.99 0.69 0.69 0.68 0.27 0.36

Observations 1,798 2,357 2,845

0.85–1.00 Put price $ 8.43 7.60 19.12 11.63 38.80 15.67

σbs% 22.38 7.05 21.88 5.35 21.28 3.91

Bid-Ask% 0.19 0.21 0.10 0.05 0.06 0.03

Observations 3,356 2,136 2,314

1.00–1.15 Call price $ 7.45 7.81 15.79 12.60 34.82 18.19

σbs% 17.55 5.80 17.31 5.02 17.61 4.00

Bid-Ask% 0.34 0.46 0.17 0.23 0.07 0.04

Observations 2,955 2,128 2,247

> 1.15 Call price $ 0.34 0.43 0.85 1.61 3.96 5.60

σbs% 34.87 12.35 24.34 8.27 18.87 4.48

Bid-Ask% 1.81 0.47 1.49 0.71 0.83 0.78

Observations 1,633 2,288 3,154

Table 1: Mean, standard deviation (Std.) and number of observations for each moneyness/maturity category of

out-of-the-money SPX options observed on Wednesdays from January 2, 2002 to December 29, 2004, after applying

the filtering criteria described in the text. σbs is the Black–Scholes implied volatility. Bid-Ask% is 100 × (ask price−
bid price)/market price, where the market price is the average of the bid and ask prices. Moneyness is the strike price

divided by the spot asset price, K/S. Maturity is measured in calendar days.
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a0 a1 × 103 a2 × 107 a3 × 10 a4 × 10 a5 × 104

2002

Mean 1.11 −1.41 6.23 −1.42 2.57 −2.02

Std. 0.12 0.22 1.09 1.37 1.41 1.83

2003

Mean 1.07 −1.45 6.48 −1.88 1.64 −0.57

Std. 0.21 0.31 1.32 2.52 1.19 3.12

2004

Mean 1.35 −1.68 5.68 −5.45 0.93 3.87

Std. 0.11 0.22 1.32 1.75 0.73 1.48

Table 4: Estimated coefficients of the ad hoc Black–Scholes model, σbs = a0 + a1K + a2K
2 + a3τ + a4τ

2 + a5Kτ,

where σbs is the Black–Scholes implied volatility for an option with strike price K and time to maturity τ . The model

is calibrated on the out-of-the-money SPX options on each Wednesday from January 2, 2002 to December 29, 2004.
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Panel A: Aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 0.87 0.44 0.08 −6.02 4.64 50.50 23.69 21.16 10.75

HN 1.19 0.74 −0.20 −5.66 6.47 30.65 −44.20 23.93 −25.74

IG 1.27 0.77 −0.10 −5.41 6.34 32.06 −32.31 22.49 −25.82

BS 3.39 2.15 0.06 −15.88 28.66 50.82 69.95 57.91 39.46

Panel B: Valuation errors by years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

2002

FHS 0.88 0.43 0.06 −5.63 4.64 47.57 14.67 14.80 4.82

HN 1.16 0.72 −0.21 −4.64 5.55 27.59 −48.00 19.55 −33.06

IG 1.26 0.76 −0.15 −5.14 5.89 27.45 −44.15 19.33 −33.87

BS 3.69 2.36 0.03 −15.25 28.66 48.38 51.20 58.95 39.79

2003

FHS 0.93 0.47 −0.06 −6.02 3.68 44.63 0.95 20.90 6.44

HN 0.92 0.57 −0.28 −3.82 4.92 25.73 −64.94 22.10 −32.13

IG 0.93 0.56 −0.19 −3.72 6.09 27.75 −49.26 20.67 −32.09

BS 3.32 2.12 0.03 −15.88 15.35 49.86 68.37 58.59 38.69

2004

FHS 0.79 0.43 0.23 −3.41 3.90 58.86 53.82 27.61 20.58

HN 1.41 0.91 −0.12 −5.66 6.47 38.24 −21.06 29.92 −12.60

IG 1.53 0.98 0.02 −5.41 6.34 40.62 −4.86 27.27 −12.08

BS 3.15 1.98 0.12 −13.98 15.18 54.11 89.74 56.26 39.85

Table 5: In-sample pricing errors of the different pricing models. RMSE is the root mean square error of the dollar

pricing error (model price−market price); MAE is the dollar average absolute pricing error outside the bid-ask spread

(MAE% is in relative terms and in percentage); MOE is the dollar average pricing error outside the bid-ask spread

(MOE% is in relative terms and in percentage); Min (Max) is the minimum (maximum) pricing error; Err>0% is the

percentage of positive pricing errors; ErrBD% is the average of 100 × (model price−market price)/(bid-ask spread).
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Panel A: Aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 1.48 0.86 0.09 −9.20 7.84 49.92 31.80 26.52 13.09

HN 1.55 0.98 −0.20 −7.69 9.52 30.27 −44.90 25.36 −25.38

IG 2.36 1.33 0.19 −11.12 20.91 35.08 2.48 27.90 −19.61

BS 3.82 2.32 0.18 −18.19 63.31 50.97 88.89 66.38 47.03

Panel B: Valuation errors by years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

2002

FHS 1.72 1.00 0.03 −9.20 7.10 43.61 18.01 19.64 5.57

HN 1.70 1.07 −0.27 −7.69 6.76 26.33 −53.00 21.16 −33.26

IG 2.22 1.36 −0.09 −11.12 12.65 29.11 −35.65 22.68 −31.56

BS 4.41 2.59 0.27 −16.03 63.31 49.59 80.71 70.94 51.32

2003

FHS 1.36 0.78 −0.14 −8.16 6.06 41.12 −10.62 23.28 4.81

HN 1.29 0.81 −0.31 −6.99 5.59 24.51 −70.93 23.87 −32.44

IG 1.58 0.96 0.01 −6.52 9.50 30.02 −31.94 22.81 −29.44

BS 3.62 2.27 0.11 −18.19 26.76 49.32 78.23 68.51 47.51

2004

FHS 1.35 0.81 0.37 −7.12 7.84 63.86 83.99 35.76 27.62

HN 1.63 1.07 −0.03 −5.99 9.52 39.21 −13.22 30.54 −11.67

IG 3.00 1.65 0.63 −7.08 20.91 45.19 69.07 37.38 0.37

BS 3.40 2.10 0.16 −13.46 32.05 53.75 106.26 60.27 42.72

Table 7: Out-of-sample pricing errors of the different pricing models. For the legend see Table 5.

43



M
at

ur
it
y

M
on

ey
ne

ss
L
es

s
th

an
60

60
to

16
0

M
or

e
th

an
16

0

R
M

SE
M

O
E

M
A

E
%

R
M

SE
M

O
E

M
A

E
%

R
M

SE
M

O
E

M
A

E
%

<
0.

85
F
H

S
0.

54
0.

12
69

.4
3

0.
92

0.
29

65
.2

1
1.

38
0.

51
43

.0
9

H
N

0.
56

−0
.1

9
54

.6
1

0.
91

−0
.5

0
28

.2
5

1.
74

−1
.2

6
26

.5
5

IG
0.

55
−0

.1
8

45
.0

5
1.

04
−0

.3
8

32
.2

4
1.

80
−0

.9
8

23
.6

9

B
S

0.
50

−0
.2

3
38

.3
4

0.
90

−0
.3

1
31

.4
0

4.
63

0.
37

74
.0

4

0.
85

–1
.0

0
F
H

S
1.

52
0.

21
19

.3
5

1.
95

−0
.4

9
7.

85
2.

23
−0

.3
6

3.
98

H
N

1.
74

0.
58

26
.6

9
1.

67
0.

23
8.

31
2.

02
−0

.1
9

3.
72

IG
3.

03
1.

41
41

.2
8

3.
28

1.
11

14
.8

6
3.

06
0.

28
6.

02

B
S

2.
87

1.
77

30
.1

0
2.

36
−0

.1
9

10
.7

8
6.

94
−4

.6
3

16
.4

6

1.
00

–1
.1

5
F
H

S
1.

53
0.

21
27

.1
9

1.
73

−0
.1

9
12

.4
4

2.
21

0.
24

5.
52

H
N

1.
87

0.
15

39
.5

5
1.

88
−0

.6
5

24
.0

0
2.

06
0.

46
6.

28

IG
2.

77
1.

06
44

.0
0

2.
95

0.
15

26
.2

7
3.

39
0.

55
9.

86

B
S

4.
24

3.
47

11
5.

43
3.

03
1.

95
36

.2
5

6.
28

−2
.6

9
16

.5
4

>
1.

15
F
H

S
0.

26
−0

.0
8

34
.7

1
0.

46
−0

.0
5

15
.9

2
1.

04
0.

33
21

.3
4

H
N

0.
32

−0
.0

6
16

.8
0

0.
76

−0
.3

5
28

.8
8

1.
14

−0
.6

1
34

.7
1

IG
0.

30
−0

.0
6

12
.2

2
0.

70
−0

.3
1

27
.0

9
1.

37
−0

.6
5

36
.8

5

B
S

0.
75

0.
24

61
.3

1
1.

03
0.

46
88

.1
3

3.
83

0.
22

21
7.

52

T
ab

le
8:

O
u
t-

o
f-
sa

m
p
le

p
ri

ci
n
g

er
ro

rs
o
f
th

e
d
iff

er
en

t
p
ri

ci
n
g

m
o
d
el

s
d
is

a
g
g
re

g
a
te

d
b
y

m
o
n
ey

n
es

s
a
n
d

m
a
tu

ri
ti

es
.

F
o
r

th
e

le
g
en

d
se

e
T
a
b
le

5
.

44



Panel A: In-sample aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 0.87 0.44 0.08 −6.02 4.64 50.50 23.69 21.16 10.75

HIST 3.32 1.88 0.22 −19.64 15.29 48.57 35.82 31.38 8.46

GAUSS 0.99 0.53 −0.23 −6.44 4.72 32.38 −18.85 16.72 −2.10

HN 1.19 0.74 −0.20 −5.66 6.47 30.65 −44.20 23.93 −25.74

Panel B: Out-of-sample aggregate valuation errors across all years

RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE%

FHS 1.48 0.86 0.09 −9.20 7.84 49.92 31.80 26.52 13.09

HIST 3.33 1.87 0.18 −18.55 16.06 48.56 29.66 31.18 0.31

GAUSS 1.55 0.90 −0.22 −10.13 9.03 37.35 −9.43 22.13 −8.26

HN 1.55 0.98 −0.20 −7.69 9.52 30.27 −44.90 25.36 −25.38

Table 9: In- and out-of-sample pricing errors of the different pricing models. FHS is the GJR GARCH model with FHS

innovations calibrated on the cross-section of out-of-the-money SPX option prices; HIST is the GJR GARCH model

with FHS innovations estimated on historical returns; GAUSS is the GJR GARCH model with Gaussian innovations

calibrated on the cross-section of out-of-the-money SPX option prices; HN is the Heston–Nandi GARCH model with

Gaussian innovations calibrated on the cross-section of out-of-the-money SPX option prices. For the legend see Table 5.

S&P 500 800 900 1,000 1,100 1,200

Mt,t+38 1.72 1.26 1.08 0.64 0.20

Mt,t+73 1.37 1.27 1.15 0.71 0.36

Mt,t+164 1.56 1.48 1.22 0.84 0.48

Mt,t+255 1.69 1.64 1.26 0.90 0.59

Table 10: State price densities per unit probability, Mt,t+τ , for different time to maturities τ = 38, 73, 164, 255 days,

estimated on July 9, 2003; see also Figure 5. Mt,t+τ is the discounted ratio of the pricing over the historical densities

of the GJR GARCH model with FHS innovations.
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FHS GAUSS

k/St Mt,T Rt,T % Mt,T Rt,T %

0.40 1.50 −33.3 4.20 −76.2

0.60 1.45 −31.0 2.80 −64.3

0.80 1.40 −28.6 1.80 −44.4

1.00 1.20 −16.7 1.20 −16.7

1.20 0.90 11.1 0.90 11.1

Table 11: Average state price densities per unit probability, Mt,T , for long maturities in 2002, in our database; see

also Figure 6. Mt,T is the discounted ratio of the pricing over the historical densities of the GJR GARCH model with

FHS and Gaussian innovations, respectively. Rt,T is the expected rate of return at time t of an Arrow–Debreu security

paying one dollar at time T if ST ∈ (k, k + dk) and zero otherwise.
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Figure 1: Daily log-returns of the S&P 500 index from August 23, 1989 to July 9, 2003, (i.e. 3,500 log-returns),

conditional GARCH volatility σt (on an annual base) and FHS innovations zt. The GARCH model is estimated using

the PML method with the nominal assumption of Gaussian innovations
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Figure 2: Calibration of the GJR GARCH model with the FHS method on the cross section of out-of-the-money

SPX options on July 9, 2003. Moneyness is the strike price K divided by the spot asset price S.

48



< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

Maturity < 60

FHS
HN
IG
BS

< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

Maturity < 60

FHS
HN
IG
BS

< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

60 < Maturity < 160

FHS
HN
IG
BS

< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

60 < Maturity < 160

FHS
HN
IG
BS

< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

Maturity > 160

FHS
HN
IG
BS

< 0.80 0.80 − 0.90 0.90 − 1 1 − 1.10 1.10 − 1.20 > 1.20
0

10

20

30

40

50

60

70

80

90

100

Moneyness = K/S

A
bs

ol
ut

e 
m

is
pr

ic
in

g 
%

Maturity > 160

FHS
HN
IG
BS

Figure 3: Absolute mispricing in percentage, i.e. 100 × |model price −market price|/market price, of the different

pricing models, averaged across Wednesdays from January 2, 2002 to December 29, 2004 for out-of-the-money SPX

options. Left graphs are in-sample comparisons and right graphs are out-of-sample comparisons. Moneyness is the

strike price K divided by the spot asset price S.
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Figure 4: News impact curves of the FHS, HN and IG GARCH models based on the average pricing parameters

reported in Table 3 for 2002, 2003 and 2004 from top to bottom. The horizontal axis is the standardized GARCH

innovations z. The vertical axis is the change in volatility from the long-run level, σ(z)−
p

EQ[σ2] on an annual base as

a function of the standardized innovation z. For GJR model σ2(z) = ω∗+β∗EQ[σ2]+EQ[σ
2](α∗+γ∗I{z<0})z

2; for HN

model σ2(z) = ω∗hn+β∗hnEQ[σ
2]+α∗hn(z−γ∗hn

p
EQ[σ2])2; for IG model σ2(z) = w∗+b∗EQ[σ2]+c∗ỹ(z)+a∗EQ[σ2]2/ỹ(z),

where ỹ(z) = (z+
√

δ∗)
√

δ∗, and δ∗ = EQ[σ
2]/η∗2. Notice that ỹ(z) is the positive unscaled inverse Gaussian innovation.
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Figure 5: Left graphs: pricing and historical density estimates for different time horizons on July 9, 2003. The pricing

density is obtained by calibrating the GJR model with the FHS method on the cross-section of out-of-the-money SPX

options. The historical density is obtained by fitting the GJR GARCH model to 3,500 historical S&P 500 log-returns

and using the PML method. Right graphs: SPD per unit probability given by the discounted ratio of the pricing over

the historical densities. The Gaussian SPD (gauss.) are based on the GJR GARCH model with Gaussian innovations

calibrated on the cross-section of out-of-the-money SPX options.

51



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n
it
 p

ro
b

.

Year 2002

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n
it
 p

ro
b
.

Year 2002

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2002

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2003

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2003

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2003

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2004

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n
it
 p

ro
b
.

Year 2004

fhs
gauss.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

S
T
/S

t

S
P

D
 p

e
r 

u
n

it
 p

ro
b

.

Year 2004

fhs
gauss.

Figure 6: Average SPD per unit probability for 2002, 2003 and 2004 (from top to bottom), and short, medium and

long maturities (from left to right). For each Wednesday t from January 2, 2002 to December 29, 2004 and for each time

to maturity τ between 10 and 360 days, the SPD per unit probability, Mt,t+τ , are estimated by the discounted ratio of

the pricing over the historical densities. For each Wednesday t, the pricing GJR model is calibrated on the cross-section

of out-of-the-money SPX options, and the historical GJR model is estimated using 3,500 historical S&P 500 log-returns.

Two estimates of Mt,t+τ are provided using (i) the FHS method (fhs) and (ii) the GAUSS method (gauss.). In case (i)

historical and pricing GJR models are simulated using FHS innovations, and in case (ii) using Gaussian innovations.

For each year and each maturity category, the graphs show the average Mt,T computed for a given set of gross returns

ST /St, and the average Mt,T ± 0.5 times the empirical standard deviation of Mt,T .
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Figure 7: SPD per unit probability on four consecutive Wednesdays in July 2002, July 2003 and July 2004 and for

time to maturity τ closest to 100 days. SPD per unit probability, Mt,t+τ , are estimated by the discounted ratio of the

pricing over the historical densities. For each Wednesday t, the pricing GJR model is calibrated on the cross-section of

out-of-the-money SPX options, and the historical GJR model is estimated using 3,500 historical S&P 500 log-returns.

Two estimates of Mt,t+τ are provided using (i) the FHS method (left graphs) and (ii) the GAUSS method (right

graphs). In case (i) historical and pricing GJR models are simulated using FHS innovations, and in case (ii) using

Gaussian innovations.
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Figure 8: For each Wednesday t from January 2, 2002 to December 29, 2004, the graph shows VIX 30-day volatility

index at time t and conditional forecast of the risk neutral integrated volatility, 100 ×
q

(365/30)
P30

i=1 EQ[σ2
t+i|Ft],

given by the GJR model with the FHS method.
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