Infoscience

Journal article

Locally-Resolved Study of Degradation in a SOFC Repeat- Element

The locally-resolved degradation behavior was studied during 1900 hours in an SOFC repeat-element. In-situ measurements of local electrochemical performance were made on 18 locations over a segmented anode-supported cell. The evolution of local current densities, overpotentials and area-specific resistances was studied, showing a reorganization of the electrochemical reaction with time. The extent and the spatial distribution of degradation were established for different electrochemical reactions steps using impedance spectroscopy. The low- frequency cathode contribution was the mostly altered process, followed by the charge transfer reaction on anode side. Post-experiment analyses allowed to identify three major pollutants on the cathode side (chromium, silicon and sulfur), whose spatial distributions corresponded to the observed local degradation. Sources of pollutants were identified in system components as well as within the stack repeat-element.

Related material