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ABSTRACT

This paper presents a novel method of enhancing image qual-
ity of face pictures using 3D and spectral information. Most
conventional techniques directly work on the image data,
shifting the skin color to a predefined skin tone, and so do
not take into account the effects of shape and lighting. The
proposed method first recovers the 3D shape of a face in
an input image using a 3D morphable model. Then, using
color constancy and inverse rendering techniques, specular-
ities and the true skin color, i.e., its spectral reflectance, are
recovered. The quality of the input image is improved by
matching the skin reflectance to a predefined reference and
reducing the amount of specularities. The method realizes the
enhancement in a more physically accurate manner compared
to previous ones. Subjective experiments on image quality
demonstrates the validity of the proposed method.

Index Terms— face image enhancement, color con-
stancy, spectral analysis, 3D morphable model

1. INTRODUCTION

With the recent, rapid popularization of imaging appliances
digital pictures are now everywhere. All those pictures have
ultimately been taken by a digital camera, and if those cam-
eras are getting better and take photographs closer to reality
every year, in the end what end users really want is in fact
not only realistic pictures but nice looking ones. Humans are
particularly sensible to the appearance of skin, making its en-
hancement both desirable and difficult.

The retouching of a digital photograph is still a tedious
process, often requiring the intervention of an expert. Fur-
thermore, since it is impossible to give a formal definition
of perceived image quality, as it depends both on the pho-
tographed object and the viewer, assessing the quality of the
result is complicated, and needs to be tested by a great num-
ber of users to be considered valid. It is tedious because the
operations performed by the expert are dependent of the im-
age specificities (luminance, scene type, etc.), and so cannot
be simply repeated on another image and expected to yield
a good result. The reason is that some of the information
needed to enhance a photograph (for example, the white point
of the illuminant or the surface reflectance of the objects in the

scene) are not directly available but must be estimated, even
indirectly, by the operator.

A way to solve this problem is to augment the image with
additional information about the scene, so that the estimation
of those parameters can be done directly, automatically, and
so that only the intended parameters are modified. Conven-
tional techniques [1][2] assume that there is a preferred skin
tone, to which they can shift the image skin colors. But this
assumption cannot be true, as those values depends heavily
on the particular illumination of the scene and characteristics
of the imaging system. In this paper, we instead make the
assumption that there exists a preferred face skin reflectance,
independent of lighting and imaging conditions.

Our proposed method works first by canceling the effects
of lighting on the face using a 3D model and inverse render-
ing techniques, before applying a color constancy technique
to recover the skin spectral reflectance. The reflectance is
then matched to a predefined reference, taken as the recov-
ered mean skin reflectance of a face in a target image. Some
other lighting parameters, such as the amount of specularities
can also be modified before reconstructing the output image.
Techniques based on physical models already exist for skin
synthesis [3][4], but we are not aware of any targeting face
image enhancement.

Experimental results reveal the benefits of using a phys-
ical model to perform image enhancement, as the improved
images look more physically correct and are clearly preferred
in our subjective experiments.

2. PHYSICAL PARAMETERS RECOVERY

2.1. 3D shape and lighting condition determination

The appearance of a face under different lighting conditions
can vary significantly, even though the spectral reflectance
of the skin stays constant. However, as shown recently both
by Basri and Jacobs [5] and Ramamoorthi and Hanrahan [6],
if one neglects the effects of cast shadows and near-field il-
lumination, the irradiance is then a function of the surface
normal n only and can be well approximated analytically in
terms of spherical harmonic coefficients. Those assumptions
are reasonable since human heads are mostly convex and the
distance to the light is usually much greater than the size of



Fig. 1. First 9 spherical harmonic basis functions shown on
a sphere. Positive values are in light gray, negative values in
dark and zero is set to the gray of the background.

the face. They derived an analytic formula for the irradiance,
showing that it can be treated as a convolution of the inci-
dent illumination with the Lambertian reflectance function (a
clamped cosine). A key result of their work is that Lamber-
tian reflection acts as a low-pass filter, so that the radiance
lies very close to a nine-dimensional subspace. The eigen-
vectors of this subspace are simply quadratic polynomials of
the Cartesian components of n, and are illustrated in Fig. 1.
It is thus possible to closely model the reflected radiance of
a solid diffuse object under any distant illumination with just
nine coefficients. In the case of a textured object, the irra-
diance E is simply scaled by the surface albedo ρ(x) which
depends on the position x and gives the reflected radiance B,
directly related to image intensity.

Bk(x,n) = ρk(x)E(n) (1)

As our method takes only a single image as input, we fit
a morphable face model [7] to recover the normal vector n at
each pixel. We used an extended version of the original algo-
rithm, based on [8], which can fit a 3D morphable model with-
out any prior assumption on the illumination. Augmenting
the image with 3D information enables us to decompose each
pixel intensity into albedo, specularities and shading terms.
This improves the effectiveness of the skin reflectance recov-
ery, as it allows the estimation to be performed on the specu-
larity and shading free skin albedo, which is the only thing we
would like to modify. Under the assumption that skin albedo
is constant at low frequency, one can solve for the nine spher-
ical harmonics coefficients using a least square procedure [9].
The coefficients will be scaled by the constant skin albedo,
which thus must be estimated to obtain the true irradiance.
Once the irradiance has been recovered, one can simply in-
vert Eq. (1), dividing the image intensities by the irradiance
to get the albedo. An additional improvement comes from the
fact that it is also easy to estimate specularities. Image pixel
intensity of value greater than the recovered reflected radi-
ance B are simply clamped, and the residual part is taken as
specularities, i.e.:

δk(x) = max(σk(x) − Bk(x,n), 0) (2)

ρk(x) =
σk(x) − δk(x)

E(n)
(3)

where ρ(x) is the albedo and δ(x) is the estimated specularity
component. The whole process is described in Fig. 2.

Fig. 2. Albedo and specularities recovery.

2.2. Skin spectral reflectance estimation

As detailed in [10], supposing that we can ignore the surface
characteristics, lighting, and viewing geometry by using a rel-
ative SPD E(x, λ) instead of physical irradiance measures, the
color response σk(x) of a sensor k with sensitivity Rk(λ) is:

σk(x) =

∫
υs

S(x, λ)E(x, λ)Rk(λ)dλ (4)

where S(x, λ) is the spectral reflectance of the object at posi-
tion x and υs indicates the visible spectrum. As shown in [11],
it is usually enough to represent the functions R(λ), S(x, λ)
and E(x, λ) by samples taken at 10 nm intervals over the spec-
tral range of 400 to 700 nm. Using linear algebra notations,
reflectance S(x, λ), illumination E(x, λ), and sensor sensitivity
R(λ) can thus respectively be expressed as the 31 × 1 vectors
s, e, r and Eq. (4) can be simply written:

σk = sTdiag(e)rk (5)

where T indicates the transpose and diag is an operator that
turns a vector into a diagonal matrix. Since our goal is to en-
hance images taken by a standard digital color camera, which
process colors so as to be viewable by the human visual sys-
tem, we used the CIE 1931 color matching functions, and ap-
propriately converted input images to CIEXYZ.

Having first estimated the power spectral distribution of
the illuminant, it is easy to recover the spectral surface re-
flectance vector s of each skin pixel in the input image using
a color constancy technique. We first determined a skin re-
flectance basis by principal component analysis (PCA) over
a database consisting of the skin spectral reflectance of 4407
Japanese men and women from the data of several cosmetic
companies. We then solved the linear system obtained from
Eq. (5) at each pixel location, setting s = c0 +

∑3
i=1 sici =



c0 +
[
c1c2c3

] [
s1s2s3

]T
. Since we have three color stimuli,

only the first three coefficients si, i = 1, 2, 3, corresponding
to the first three eigenvectors ci of the basis can be recovered,
where c0 is the mean skin reflectance of the da, which was
subtracted before performing the PCA analysis. Three ba-
sis vector are enough to get a good approximation of the real
skin reflectance, as human skin reflectance function is fairly
smooth. Our PCA analysis reveals that for our database, the
first three eigenvectors already account for 85% of the energy.
The system that we have to solve is:σ1

σ2
σ3

 =
[
r1r2r3

]T
diag(e)(c0 +

[
c1c2c3

] s1
s2
s3

). (6)

Defining the 3 × 31 matrix M =
[
r1r2r3

]T
diag(e), converting

skin reflectance to color responses, it is equivalent to:s1
s2
s3

 = (M
[
c1c2c3

]
)−1(

σ1
σ2
σ3

 −Mc0). (7)

The reflectance of every skin pixel can thus be estimated very
efficiently by a matrix multiplication and vector subtraction.

3. ENHANCEMENT PROCESS

The spectral reflectance of every skin pixel can now be re-
covered by using Eq. (7) on the estimated albedo ρ(x). We
improve the perceived image quality of the face in the image
by matching its mean reflectance savg(λ) to a preferred refer-
ence sre f (λ) (taken as the estimated mean skin reflectance of a
face in a target photograph). First we determine the function
f , matching the mean reflectance to the reference:

sre f (λ) = f (λ) · savg(λ)⇔ f (λ) =
sre f (λ)
savg(λ)

(8)

Using our algebraic notation, we can represent f by a linear
transformation F, such that sre f = Fsavg with:

F = diag([
sre f ,1

savg,1
. . .

sre f ,31

savg,31
]) (9)

The estimated skin reflectance of each pixel is then multiplied
by the function f (or the matrix F in algebraic notation), giv-
ing the enhanced skin reflectance values, which we convert
back to color stimuli to get the enhanced image. The whole
process can be summarized as:ρ

′
1
ρ′2
ρ′3

 = MF[c0 +
[
c1c2c3

]
(M
[
c1c2c3

]
)-1(

ρ1
ρ2
ρ3

 −Mc0)] (10)

Where ρ′1, ρ′2, ρ′3 are the enhanced color stimuli and the other
variables are defined as before. An overview of the whole
enhancement process is drawn in Fig. 3.

Fig. 3. Enhancement steps.

An additional improvement comes from smoothing the
appearance of the skin by scaling down the specularities im-
age. As each pixel is treated independently there is no blur
effect as would be observed by trying to smooth the face im-
age directly. Face specularities comes primarily from the skin
surface lipid film (SSLF) [12]. Reducing its intensity cor-
responds thus roughly to reducing the amount of sebum and
sweat on the skin surface. Such specularities reveal the skin’s
imperfections, and are thus undesirable to most people.

4. SUBJECTIVE EXPERIMENTS

To assess the performance of the proposed algorithm for face
relighting, experiments were realized where volunteers had to
compare pictures enhanced by a conventional method [1] and
by the proposed method with and without 3D information.

We used the pairwise comparison method to determine the
performance order of the different enhancement techniques.
Two images randomly selected from four (the three enhanced
images and the original one) were displayed on a monitor.
They were not displayed simultaneously but alternatively in
response to the subjects’ mouse clicks. Subjects were in-
structed to select from the two images the one they preferred.
The experiment was repeated twice to improve the accuracy
of the data obtained. Ten images were compared by four-
teen subjects (seven men and women, with normal color vi-
sion), all Japanese as they are the target users. There is (4

2) =

6 possible combinations of comparisons, making a total of
10 × 14 × 6 × 2 = 1680 tests. The results of all the experi-
ments can be read in Table 1, and one of the ten images used
is shown in Fig. 4.

It can be seen from Table 1 that the proposed method
works well, as it outperforms the conventional method 256
times on 280. We confirmed by variance analysis that the re-



Fig. 4. One of the ten images used in the experiments, en-
hanced by each model.

sults obtained in the subjective experiments were significant
at the 1% level (F(3, 36) = 4.38, P < 0.01). Interval scales
were calculated from the evaluation results of the fourteen
subjects using Thurstone’s law. Fig. 5 shows the results. If
the conventional method indeed leads to an improvement of
the original image, the proposed method obtains significantly
higher scores, both with and without 3D. Using 3D also leads
to a notable improvement, although maybe not as much as ex-
pected. A likely explanation is that human faces are relatively
flat, except for the curvature of the sides and the protrusion
of the nose, making the lighting artifacts sometimes hard to
spot. Comparing the two bottom images of Fig. 4, one can
see that ignoring shape information makes the face look flat,
as the lighting is wrongly estimated.

Table 1. Total number of times an image enhanced with
model (i) was chosen over one corrected by model ( j).

i j Original Convent. Spectral 3D + Spectral

Original 0 63 24 18
Convent. 217 0 48 24
Spectral 256 232 0 107

3D + Spectral 262 256 173 0

5. CONCLUSIONS AND FUTURE WORK

This paper presents a method to enhance the perceived qual-
ity of an image of a face, using physical parameters instead
of directly modifying the image data. If additional work is re-
quired to estimate those parameters more reliably, we believe
that our approach of using physical parameters for automatic
image enhancement is promising, as proved by the results ob-
tained in our subjective experiments.
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Fig. 5. Interval scales and confidence intervals calculated us-
ing Thurstone’s law.
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