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Abstract

We consider the two message set problem, where a source broadcasts a
common messageW1 to an arbitrary set of receiversU and a private message
W2 to a subset of the receiversP ⊆ U. Transmissions occur over linear
deterministic channels. For the case where at most two receivers do not
require the private message, we give an exact characterization of the capacity
region, where achievability is through linear coding.

1 Introduction

In this paper we study the problem of degraded two-message broadcasting over
linear deterministic channels. More specifically, the question we study is the re-
liable rates at which we can deliver a common message to all users and a private
message to a subset of the users, over linear deterministic broadcast channels.
This is a special case of a long-standing open question in multi-user informatoin
theory of delivering a set degraded messages over a general broadcast channel.
The degraded message set problem was first studied by Cover, in the context of
the general problem of broadcast channels, in his celebrated paper on broadcast
channels [5]. The solution for the case where there is a degradation order between
the users’ channels was given in [3, 7]. The problem of general two-user broad-
cast channel with a degraded two message set requirement wassolved by Korner
and Marton in [8]. However there is comparitively little understanding when there
are either more than two users, and/or more than two degraded messages. Recent
progress on a special case of this question has been made in [10].

The linear deterministic channel model, introduced in [1],was motivated by
its intimate connection to linear Gaussian models. Many insights gained from the
study of such deterministic channels have carried over to the noisy Gaussian case
in many situations including the wireless relay networks [2], interference channel
[4], and relay-interference networks [9] and Therefore, this motivates the study
of this special broadcast model in this paper. Recently [11]solved a three-user,
degraded three (nested) message set problem over linear deterministic broadcast
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channels. This paper builds on these results to an arbitrarynumber of users, but
with the restriction that at most two users do not need all themessages. The main
result is summarized in Theorem 2.1. The primary difficulty in this problem is
the tension between delivering a common message to all the users (akin to a com-
pound channel problem) and delivering a private message to asubset of users. We
show that this tension can be optimally resolved by carefully selecting a struc-
tured linear transmission code, which is discovered by solving a matrix comple-
tion problem. The solution to this problem shows an intimateconnection between
our problem and network coding, since we need to judiciouslymix independent
messages. Another ingredient used is that we reveal some information about the
private message even to the users only interested in only thecommon message.
This has some connection to indirect decoding proposed in [10]. An extension
of our work to three nested messages, is straightforward, and is summarized in
Theorem 2.2.

The paper is organized as follows. In Section 2, we formally define the prob-
lem and give the main results of the paper. The rest of the paper is devoted to the
proof of the main result, starting with the outer bound in Section 3. The construc-
tion of the structured linear code achieving the outer boundis given in Section
4.

2 Problem Formulation and Results

2.1 Model

The problem of interest is communication of a common messageand a private
message to a set of receiversU = {1, · · · ,K} through alinear deterministic
broadcast channel[1]. The common messageW1 of rate R1 is required at all
the receivers while the private messageW2 of rateR2 is required only at receivers
i ∈ P,P being a subset ofU. We call this scenario, thetwo-message setscenario.

The underlying channel model is essentially the same as studied in [11]. The
inputX to the channel lies in anmdimensional vector spaceFm, whereF is a finite
field. The received signalYi ∈ Fni at each receiveri is

Yi = H iX, (1)

where the channel matrixH i is anni ×m matrix inF of rankr i.
We denote withNi the nullspace ofH i. Furthermore, for any subsetS of U,

S = {i1, · · · , i |S|}, we denote the rank of the matrix that collects the corresponding
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channels as

rank





H i1
...

H i |S|





, r i1,···i |S| , (2)

and the nullspace of this augmented matrix asNi1,···i |S|.

2.2 Main Result

Theorem 2.1 The capacity regionR of the two-message set broadcasting over
linear deterministic channels, withU = {1, · · · ,K} andP = {3, · · · ,K}, is given
by

R1 ≤ min
i∈U
{r i} (3)

R1 + R2 ≤ min
i∈P
{r i} (4)

2R1 + R2 ≤ min
i∈P
{r1 + r2 + r12i − r12}, (5)

where|F| is greater than K. The rates given above are expressed inlog|F|(·).

�

This result can easily be extended to thethree-message setproblem, where all
receivers are interested in the common messageW1, users{2, . . . ,K} want mes-
sages (W1,W2) and users{3, . . . ,K} want all three messages (W1,W2,W3).

Theorem 2.2 The capacity regionR of the three message set broadcast over lin-
ear deterministic channels, is given by

R1 ≤ min
i
{r i}, (6)

R1 + R2 ≤ min
i≥2
{r i}, (7)

R1 + R2 + R3 ≤ min
i≥3
{r i}, and (8)

2R1 + R2 + R3 ≤ min
i≥3
{r1 + r2 + r1,2,i − r1,2}. (9)

where|F| is greater than K. The rates given above are expressed inlog|F|(·).

�
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3 Outer bound

In this section we prove an outer bound to the more general problem; i.e., whenP
can be any subset ofU. ForP = {3, · · · ,K}, the converse to Theorem 2.1 follows.

Theorem 3.1 The capacity region of the linear deterministic broadcast channel
in the two-message set scenario withU = {1, · · · ,K} andP ⊆ U is inside the
polytope characterized by

R1 ≤ min
i∈U
{r i} (10)

R1 + R2 ≤ min
i∈P
{r i} (11)

∀k ≤ |Pc| :

kR1 + R2 ≤ min
i∈P, j1,··· jk<Pc

{
k∑

l=1

r jl + r j1, j2,··· , jk,i − r j1, j2,··· , jk}. (12)

Proof Assume communication using blocks of an arbitrary lengthn, and denote
the received signal at each receiveri by Yn

i . Then (10) and (11) follow from:

∀i ∈ U : n(R1) ≤ I (W1; Yn
i ) ≤ H(Yn

i ) − H(Yn
i |W1) ≤ nri. (13)

∀i ∈ P : n(R1 + R2) ≤ I (W1,W2; Yn
i ) (14)

≤ H(Yn
i ) − H(Yn

i |W1,W2) (15)

≤ nri. (16)

From (13), it follows that

H(Yn
i |W1) ≤ n(r i − R1). (17)

To obtain (12), we use the approach in [11]. Each time, we givethe received
signal at receiversj1 · · · jk ∈ Pc to receiveri ∈ P:

n(R2) ≤ I (W2; Yn
i )

≤ I (W2; Yn
i |W1)

≤ I (W2; Yn
j1,Y

n
j2, · · · ,Y

n
jk,Y

n
i |W1)

(a)
= H(Yn

j1,Y
n
j2, · · · ,Y

n
jk,Y

n
i |W1)

=

k∑

l=1

H(Yn
jl |W1,Y

n
j1, · · · ,Y

n
jl−1

) + H(Yn
i |Yn

j1, · · · ,Y
n
jk,W1)

≤
k∑

l=1

H(Yn
jl |W1) + H(Yn

i |Yn
j1, · · · ,Y

n
jk,W1)

(b)
≤

k∑

l=1

n(r jl − R1) + n(r j1, j2,··· , jk,i − r j1, j2,··· , jk).
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Equality (a) is the result of the deterministic assumption and inequality (b) is
obtained by using (17) and upper boundingH(Yn

i |Yn
1 ,Y

n
2) by n(r1,2,i − r1,2) as in

[11].

4 Achievability Proof

The challenge in the achievability scheme design for the two-message problem
stems from the fact that, although the first two receivers areonly interested in the
common message of rateR1, they might nevertheless also need decode additional
partial information, to allow the reception of the private message by the remaining
receivers. For example, if the common message is represented by variablew1 and
the private message is represented by variables [w2 w3], the first receiver might
decodew1 andw2 + w3, while the second receiverw1 andw2 + 2w3. Instead of
specifying in advance what the first two receivers decode, wewill instead derive
conditions on the structure of the matrices they observe, that guarantee they can
decode the common information. We will then essentially reduce our problem to
a set of matrix completion problems, where we will now require some of the in-
volved matrices to have full rank, and some submatrices to satisfy some rank con-
ditions (which arise from the need for some users to only decode some variables).
We will finally show that such matrix completion problems canbe simultaneously
satisfied with a single matrix by applying the sparse-zero lemma [6].

The technical steps can be described as follows:

• We will design in section 4.1 a basis forFm which depends on the chan-
nel matricesH1,H2. This is used to design a linear encoding scheme which
depends on a matrix of indeterminatesÃ, which we will attempt to fill (com-
plete) so that the decoding requirements are fulfilled. The basis is chosen
such that the first two receivers can directly obtain linear combinations of
specific subsets of the rows ofÃ, while the remaining receivers can poten-
tially observe some linear transformation ofÃ. We impose a structure on
Ã. Given this structure, the decoding requirements of users 1and 2 con-
strains some entries iñA. The structure imposed on the indeterminates is
parametrized by,a1, a2, andb. The matrix completion problem is to fill the
rest ofÃ appropriately.

• In section 4.2, we derive necessary conditions that allow decodability for all
receivers. For the first two receivers these conditions require specific sub-
matrices ofÃ to have given ranks, as well as relationships between column
spaces of specific submatrices. These imposed constraints will need to be
respected while completing̃A so that any other user, with appropriate rank
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requirements, is able to decode all the messages. We will show that these
rank requirements match the bounds given in Theorem 2.1.

• We will then show in section 4.3, that there is a universal choice forÃ which
will satisfy all the users. This is done by applying the sparse zeros lemma
[6] to the new set of matrix completions to show that there exist variable
choices that satisfy all the decodability conditions. To apply the sparse zero
lemma, we will make some judicious choice for the structure parametersa1,
a2, andb.

The example given in Section 4.4 will illustrate some of the ideas outlined
above.

4.1 Problem Reduction

Let w1,1, · · ·w1,R1 andw2,1, · · · ,w2,R2 be the variables inF for messagesW1 andW2

respectively, andW in FR1+R2 the vector with coordinates in the standard basis

W = [w1,1 . . . w1,R1 w2,1 . . . w2,R2]
T . (18)

We will use linear coding as our encoding scheme and broadcast a signal in the
form

X = AW. (19)

A is them× (R1 + R2) matrix over the finite fieldF that we need to design so that
the first two receivers decodeW1 and all the remaining bothW1 andW2.

We choose a new basis,B, for Fm in the following manner (see Fig. 1): First
select a set of vectorsBΦ such that〈BΦ〉 = N12. Then select vectorsB1 andB2

such that〈BΦ〉 ⊕ 〈B1〉 = N2, and〈BΦ〉 ⊕ 〈B2〉 = N1. Form, finally,B12 such that
〈BΦ〉 ⊕ 〈B1〉 ⊕ 〈B2〉 ⊕ 〈B12〉 = Fm. LetB = BΦ ∪B1∪B2∪B12. Let the associated
transformation matrix be

V =
[

V12 V2 V1 VΦ
]

,

where the column vectors ofV12 are the vectors inB12 and so on. Note that

|BΦ| = m− r12,

|B1| = r12− r2,

|B2| = r12− r1,

|B12| = r1 + r2 − r12.
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N1 N2

N12

F
m

Figure 1: Venn diagram of the null spaces of the 2 receivers requiring onlyW1.

Then we may expand the inputX to the channel using this basisB as follows

X = VX̃ =
[

V12 V2 V1 VΦ
]





X̃12

X̃2

X̃1

X̃Φ





,

whereX̃ ∈ Fm is the vector of coefficients of the basis vectors under this basis
expansion. Further, we defined̃X12 to be the first|B12| coefficients ofX̃ corre-
sponding to the column vectors ofV12, andX̃2 to be the next|B2| coefficients and
so on. It is clear that we may takẽX ∈ Fm to be the input of an equivalent channel
in which the channel output at receiver-i is

Yi = H iVX̃.

For user-1, the resulting channel matrix is

H1V = H1

[

V12 V2 V1 VΦ
]

=
[

H1V12 0 H1V1 0
]

Hence,

Y1 =
[

H1V12 H1V1

]
[

X̃12

X̃1

]

.

Moreover, by the manner in whichB was formed, the matrix
[

H1V12 H1V1

]

has full (column) rank. Hence, we may replace the output at user-1 without loss
of generality with

Ỹ1 =

[

X̃12

X̃1

]

=

[

I 0 0 0
0 0 I 0

]

X̃ ≕ H̃1X̃. (20)
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Similarly,

Ỹ2 =

[

X̃12

X̃2

]

=

[

I 0 0 0
0 I 0 0

]

X̃ ≕ H̃2X̃. (21)

For the rest of the users, we simply set

Ỹk = Yk = HkVX̃ ≕ H̃kX̃, k ∈ P = 3, 4, . . . ,K, (22)

where

H̃k =
[

HkV12 HkV2 HkV1 HkVΦ
]

≕

[

H̃12
k H̃2

k H̃1
k H̃Φk

]

. (23)

We have now an equivalent problem in which the input to the channel isX̃ ∈ Fm,
and the received signal at user-i is

Ỹi = H̃ iX̃, i ∈ U, (24)

whereH̃ i are given by (20)-(22). The following lemma calculates the ranks of
certain submatrices of̃H i and will be used in 4.3 to prove the achievability of our
coding theorem.

Lemma 4.1 For k ∈ P,

rank
(

H̃Φk
)

= r12k − r12,

rank
([

H̃1
k H̃Φk

])

= r2k − r2,

rank
([

H̃2
k H̃Φk

])

= r1k − r1,

rank
([

H̃2
k H̃1

k H̃Φk
])

≥ max






r1k − r1,

r2k − r2,

rk − r1 − r2 + r12






,

rank
([

H̃12
k H̃2

k H̃1
k H̃Φk

])

= rk.

Proof The key point of the proof is to note that rank(HkV) is the same for all
matricesV with the same column space. Thus, without loss of generalitywe
assume in this proof thatBΦ = BΦ,k̄ ∪ BΦ,k such that

〈

BΦ,k̄
〉

= N12k, B2 ∪ BΦ =
B2,k̄ ∪ B2,k, such that

〈

B2,k̄

〉

= N1,k, andB1 ∪ BΦ = B1,k̄ ∪ B1,k, such that
〈

B1,k̄

〉

=

N2k. This way, we have the following:
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1. rank
(

H̃Φk
)

:

H̃Φk = HkVΦ = [0 HkVΦ,k], whereVΦ,k denotes the matrix that has as its
columns the vectors inBΦ,k. Because the vectors inBΦ,k are linearly inde-
pendent and do not belong in the null space ofHk, the columnsHkVΦ,k are
also linearly independent, and thus rankHkVΦ = |BΦ,k| = |N12| − |N12k| =
r12k − r12.

2. rank
([

H̃1
k H̃Φk

])

:

Similarly, rank
([

H̃1
k H̃Φk

])

= rank
(

Hk

[

V1 VΦ
])

= |B1,k| = |N2| −
|N2k| = r2k − r2.

3. rank
([

H̃2
k H̃Φk

])

:
This rank is calculated similarly and found to ber1k − r1.

4. rank
([

H̃2
k H̃1

k H̃Φk
])

:
Though it turns out that calculating this rank is not trivial, the following
bounds prove sufficient for our achievability conclusion.

rank
([

H̃2
k H̃1

k H̃Φk
])

(25)

= rank(Hk[V1|V2|VΦ])

= | 〈B1 ∪ B2 ∪ BΦ〉 | − | 〈B1 ∪ B2 ∪ BΦ〉 ∩ Nk|
≥ |N1| + |N2| − |N12| − |Nk|
= rk − r1 − r2 + r12. (26)

Furthermore,

rank
([

H̃2
k H̃1

k H̃Φk
])

≥ r1k − r1 (27)

rank
([

H̃2
k H̃1

k H̃Φk
])

≥ r2k − r2. (28)

5. rank
([

H̃12
k H̃2

k H̃1
k H̃Φk

])

:
This rank is immediatelyrk.

4.2 Decodability Basic Lemmas

To argue decodability ofW1 at receiver 1 and 2, and decodability ofW1,W2 at
receiversk ∈ {3, · · · ,K}, we need the following lemmas.

Lemma 4.2 ConsiderG ∈ Fn×m and W= [ w1 · · · wm ]T . [ w1 · · · wd ]T , d ≤ m,
can be decoded uniquely fromGW iff
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•
〈

g
1
, · · · , g

d

〉 ⋂ 〈

g
d+1
, · · · , g

m

〉

= φ,

• {g
i
}di=1 are linearly independent,

where{g
i
}mi=1 are the columns ofG.

Proof w1 · · ·wd is uniquely decodable fromGW iff

GW , GV (29)

for all V that differ fromW in the firstd entries. Equivalently,

d∑

i=1

wig
i
+

n∑

i=d+1

wig
i
,

d∑

i=1

vig
i
+

n∑

i=d+1

vig
i
, (30)

or,

d∑

i=1

δig
i
,

n∑

i=d+1

βig
i
∀δi , βi ∈ F, δi , 0. (31)

This concludes the proof.

Lemma 4.3 Consider a matrixB =
[

B1 B2

]

, whereB1 ∈ Fn×d, B2 ∈ Fn×(m−d),

and d≤ min{n,m} . Form the matrixG =
[

B1 L1

]

, whereL1 ∈ Fn×l is the first
component ofB2 = L1L2. If l ≤ n− d, thenG being full-rank guarantees

•
〈

b1, · · · , bd

〉 ⋂ 〈

bd+1, · · · , bm

〉

= φ,

• {bi}di=1 are linearly independent,

where{bi}mi=1 are the columns ofB.

Proof Let rank(B2) = l. B2 can thus be written as

B2 = L1L2, (32)

whereL1 is a full rank matrix of dimensionn × l andL2 a full rank matrix of
dimensionl×(m−d). L1 is essentially just a set of linearly independent columns of
B2 spanning its columns space. Now formG =

[

B1 L1

]

which is of dimension
n× (d + l). since (d+ l) ≤ n, G being full-rank guarantees

1.
〈

b1, · · · , bd

〉

∩
〈

l1, · · · , l l
〉

= φ, where{l i}li=1 are the column vectors ofL1.

2. {bi}di=1 are linearly independent.
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The fact that
〈

l1, · · · , lr
〉

=
〈

bd+1, · · · , bm

〉

(33)

concludes the proof.

To summarize lemma 4.2 and 4.3 in a more intuitive way, letW = [w1 · · · wm]T

and fori ≤ j, let W j
i = [wi wi+1 · · · wj]T . Then

BW =
[

B1 L1L2

]

W (34)

=
[

B1 L1

]
[

Wd
1

L2Wm
d+1

]

(35)

= G
[

Wd
1

L2Wm
d+1

]

. (36)

One should note now thatG of dimensionn× (d + l) (d + l ≤ n) being full-rank
guarantees decodability of [w1 · · · wd Wm

d+1L
T
2 ]T .

Lemma 4.4 Consider a matrixT over the finite fieldF of the form

T =
[

T1 T2 T3 T4

]

. (37)

Let t1, t2, t3, and t4 be non-negative integers such that

rank
(

T4

)

≥ t4, (38)

rank
( [

T3 T4

] )

≥ t3 + t4, (39)

rank
( [

T2 T4

] )

≥ t2 + t4, (40)

rank
( [

T2 T3 T4

] )

≥ t2 + t3 + t4, and (41)

rank
( [

T1 T2 T3 T4

] )

≥ t1 + t2 + t3 + t4. (42)

Then, there are matricesU1, U2, U3, and U4 such that the columns ofU4 are
drawn from the columns ofT4, the columns ofU3 from the columns ofT3 andT4,
the columns ofU2 from the columns ofT2 andT4, and, finally, the columns ofU1

are taken from the columns ofT1, T2, T3, andT4 such that they satisfy

• rank(Ui) = ti, i ∈ {1, 2, 3, 4},

•
[

U1 U2 U3 U4

]

has linearly independent columns.
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Proof We form a basisE for the column space ofT as follows: We pick ex-
actly rank(T4) linearly independent vectors fromT4 and denote the set of these
vectors byT4. Then, we find a setT3 of rank([T3|T4]) − rank(T4) linearly inde-
pendent vectors fromT3 such thatT3 ∪ T4 is a linearly independent set. Sim-
ilarly, we proceed to find a set of vectorsT2 from the columns ofT2 andT1

from the columns ofT1 such that|T2| = rank([T2|T3|T4]) − rank([T3|T4]), |T1| =
rank(T) − rank([T2|T3|T4]), and the vectors ofT4 ∪ T3 ∪ T2 ∪ T1 are linearly
independent. Clearly,

E = T4 ∪ T3 ∪ T2 ∪ T1

is a basis for the column space ofT. We will now attempt to choose theU matrices
such that

• U4 hast4 distinct columns fromT4,

• U3 hast3 distinct columns fromT3 ∪ T4,

• U2 hast2 distinct columns fromT2 ∪ T4,

• U1 hast1 distinct columns fromE, and

• no twoU matrices share a column.

It is clear that the lemma is proved if we can find such an assignment. We proceed
in steps.

1) Let us choose anyt4 vectors fromT4 to form theU4 matrix. We may do this
since

t4 ≤ rank(T4) = |T4|.

After this, we have|T4| − t4 vectors inT4 which could be assigned to other
U matrices.

2) To formU3, we choose any min(t3, |T3|) vectors fromT3, and an additional
(t3 − T3)+ vectors from the unassigned vectors inT4. We may do this if the
number of unassigned vectors available inT4 is at least equal to the number
of vectors we need,i.e.,

|T4| − t4 ≥ (t3 − |T3|)+,

where (x)+ stands for max(0, x). But, this holds since

|T4| + |T3| = rank([T3|T4]) ≥ t3 + t4.
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At the end of this step, we have

|T4| − t4 − (t3 − |T3|)+

unassigned vectors inT4.

3) We now formU2 by choosing any min(t2, |T2|) vectors fromT2, and an
additional (t2 − |T2|)+ vectors from among the unassigned vectors inT4

when available. This assignment fails only if we fall short of unassigned
vectors inT4, and this happens when

t2 − |T2| > |T4| − t4 − (t3 − |T3|)+.

However, ift3 ≥ |T3|, the above condition reduces to

t2 + t3 + t4 > |T2| + |T3| + |T4| = rank([T2|T3|T4])

which violates our hypothesis (41). Thus, we will fail to findaU2 only if

t2 − |T2| > |T4| − t4. (43)

This case will be handled separately below. For now, we will proceed as-
suming that the above is not the case.

4) We chooset4 vectors from among the vectors inE which have not been
assigned. Since,|E| = rank(T) and

t1 + t2 + t3 + t4 ≤ rank(T),

we are guaranteed to find such vectors.

It only remains to prove the lemma when (43) holds. With this end, we will
form a new basisE′ for the column space ofT. We first pick the sameT4 as before.
Then we pick aT ′2 ⊇ T2 such that it hast2−(|T4|− t4) linearly independent vectors
from the columns ofT2 andT ′2∪T4 forms a basis for the column space of [T2|T4].
We may do this since (i) by (43), the required size ofT ′2 satisfies

T ′2 = t2 − (|T4| − t4) > T2,

and (ii) the required size ofT ′2 is not larger than the number of linearly indepen-
dent vectors available inT2 such thatT ′2 ∪ T4 is a linearly independent set. This
second fact can be seen from

(t2 − (|T4| − t4)) + |T4| = t2 + t4 ≤ rank([T2|T4]).
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SinceT3 ∪ T2 ∪ T4 is a basis for the column space of [T2|T3|T4], and the basis
vectors of the new basisE′ that we have picked so far includes all the vectors in
T4 andT2, it is clear that there is aT ′3 ⊆ T3 such thatT ′3 ∪ T ′2 ∪T4 is also a basis
for the column space of [T2|T3|T4]. Moreover, the size of thisT ′3 is

|T ′3| = |T2| + |T3| − |T ′2|
= |T2| + |T3| + |T4| − t2 − t4
= rank([T2|T3|T4]) − (t2 + t4)

≥ t3, (44)

where the last step follows from our hypothesis (41). We may now pick T1 to
complete the new basis

E′ = T4 ∪ T ′3 ∪ T ′2 ∪ T1.

We now proceed to pick theU matrices from this new basis following the same
steps as before. Step 1 remains unchanged, step 2 goes through since (44) implies
that we have sufficient number of vectors inT ′3 from which to pickU3. Step 3
also succeeds since the number of unassigned vectors inT4 is exactly equal to the
number of additional vectors needed to formU2, i.e.,

t2 − |T ′2| = |T4| − t4.

Finally, a choice forU4 exists for the same reason as earlier. This completes the
proof.

Lemma 4.5 Consider a matrixG of the form

m1←→ m2←→ m3←→ m4←→[

T1 T2 T3 T4

]

︸                        ︷︷                        ︸

Tn×m

t1←−−−→ t2←→ t3←→
t4←→



0 0 0
0 0

0 0





︸                     ︷︷                     ︸

Λm×p

l m1

l m2

l m3

l m4

where the matrixT is a fixed matrix and matrixΛ can be any matrix inFm×p in
the given structure, and we have p≤ min{m, n}. G can be made full-rank iff

• t4 ≤ rankT4

• t2 + t4 ≤ rank[T2|T4]

• t3 + t4 ≤ rank[T3|T4]
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• t2 + t3 + t4 ≤ rank[T2|T3|T4]

• t1 + t2 + t3 + t4 ≤ rank[T1|T2|T3|T4]

Proof Let Λ be a 0− 1 matrix so that there is one 1 in each column. Thus mul-
tiplying T with Λ gives a column collection ofT in the form of [U1|U2|U3|U4]
where the zero-one structure ofΛ forcesU4’s columns to be drawn from the set
of columns ofT4, U3’s columns to be drawn from the set of columns ofT3 and
T4, U2’s columns to be drawn from the set of columns ofT2 andT4, and finally
U1’s columns be drawn from all theT i ’s. From lemma 4.4, we know that such
Ui ’s exist that satisfy rankUi = ti and [U1|U2|U3|U4] having linearly independent
columns. So the lemma is proved by designingΛ so that theti columns pickUi ’s
columns, lettingG = [U1|U2|U3|U4] be full rank.

4.3 Structured Linear Code

We will now prove the achievability part of our coding theorem for the equivalent
channel defined in section 4.1. We will use linear coding as our encoding scheme
and broadcast a signal in the form

X̃ = ÃW, (45)

whereÃ maps the vector of messagesW ∈ FR1+R2 to X̃ ∈ Fm, the input to the
channel. The message vectorW consists of two partsW1 andW2. We select the
following specific structure for the matrix̃A

Ã =

a1−b←→ a2−b←→ b←→




0 0 0
0 0

0 0





l |B12|

l |B2|

l |B1|

l |BΦ |

(46)

wherea1, a2 andb are size parameters to be decided, and satisfya1+ a2 − b ≤ R2.
In the rest of this section, we first construct matricesG(k) such that (1) For

eachk ∈ {1, 2}, if G(k) is full-rank, then receiverk can decodeW1 from Ỹk, and (2)
For eachk ∈ P, if G(k) is full-rank, then receiverk can decodeW1,W2 from Ỹk.
We then find conditions ona1, a2, andb so that suchG(k) exist, and could be made
fullrank for eachk ∈ U. Finally, we find a universal choice ofa1, a2, andb and,
using the sparse zeros lemma, an assignment of values toÃ.

From (24), receiverk ∈ {1, 2} can decodeW1, if it can decode it fromỸk =

H̃kÃW. Let

H̃kÃ = [ B(k)
1 B(k)

2 ], (47)
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whereB(k)
1 ∈ Frk×R1, B(k)

2 = L (k)
1 L (k)

2 , l
k
1 = rank(B(k)

2 ), andL (k)
1 ∈ Frk×lkl . Note that

given the structure (20) and (21) ofH̃k and the structure (46) of̃A,

(i) rankB(k)
2 ≤ R2 − ak,

(ii) H̃1Ã (resp.H̃2Ã) is just a collection of the first|B12| and the third|B1| (resp.
second|B2|) rows ofÃ.

From lemma 4.2 and lemma 4.3, we know that receiverk ∈ {1, 2} can decode
W1 if rankB(k)

2 ≤ rk − R1 and if G(k) = [B(k)
1 |L

(k)
1 ] is full-rank. (Recall from (10)

thatR1 ≤ min (rk,R1 + R2) as required by lemma 4.3.) We have thus proved the
following lemma.

Lemma 4.6 Assuming that for k∈ {1, 2}

ak ≥ R1 + R2 − rk, (48)

receiver k can decode W1 if G(k) as defined above is full-rank.

Lemma 4.7 For each k∈ {1, 2}, there exists an assignment of values toÃ such
thatG(k) is full-rank.

Proof In the matrixG(k) = [B(k)
1 |L

(k)
1 ], first select an assignment for the columns

of B(k)
2 in L (k)

1 that makes them linearly independent (such an assignment exists
from construction). Since the indeterminants inB(k)

2 are independent of those
in B(k)

1 , G(k) can be made full-rank just by pickingR1 vectors fromFrk linearly
independent from the columns ofL (k)

1 . This is possible since rankB(k)
2 + R1 ≤ rk.

The constructedG(k) then uniquely defines̃Ak and can be completed arbitrarily to
give a corresponding̃A.

From (24), receiverk ∈ P can decodeW1 andW2, if G(k) = H̃kÃ is full-rank.
Lemma 4.5 translates this in conditions ona1, a2, andb such that there exists an
assignment of the structured̃A that makesG(k) full-rank:

b ≤ rankHkVBΦ (49)

a1 ≤ rankHk[VB2|VBΦ] (50)

a2 ≤ rankHk[VB1|VBΦ] (51)

a1 + a2 − b ≤ rankHk[VB1|VB2|VBΦ] (52)

R1 + R2 ≤ rankHk[VB12|VB1|VB2|VBΦ] (53)

We then have the following lemma.
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Lemma 4.8 For k ∈ P, there exists an assignment ofÃ, such thatG(k) is full-rank
if

b ≤ r12k − r12 (54)

a1 ≤ r1k − r1 (55)

a2 ≤ r2k − r2 (56)

a1 + a2 − b ≤ max






r1k − r1,

r2k − r2,

rk − r1 − r2 + r12






(57)

R1 + R2 ≤ rk. (58)

So the questions of interest become:
(i) Whether there existsa1, a2, andb such that they satisfy the structural con-
straints

a1 − b, a2 − b, b ≥ 0 (59)

a1 + a2 − b ≥ R2 (60)

along with the requirement (48) for allk ∈ {1, 2}, and requirements (54) to (58),
for all k ∈ {3, · · · ,K}.
(ii ) If such a universal tuple (a1, a2, b) exists, whether an assignment ofÃ within
the structure of (46) exists such that allG(k) are full-rank simultaneously for all
k ∈ U.

Item (i) can be answered in different manners. One way is to solve a feasi-
bility problem ona1, a2, b; one can show that there always exists an integer tuple
(a1, a2, b) satisfying all the requirements in (i). This method, nevertheless, does
not necessarily give us a unique good choice ofa1, a2, b for all rate pairs of the
regionR.

We are instead proposing to use the specific universal choice:

a=1(R1 + R2 − r1)
+ (61)

a2 = (R1 + R2 − r2)
+

b = (a1 + a2 − R2)
+

To show that this is a valid choice, it is sufficient to prove the achievability
for the rates on the facet 2R1 + R2 = mini∈P{r1 + r2 + r12i − r12} when1 r1 +

mini∈P r i ≥ mini∈P{r1 + r2 + r12i − r12} (i.e., when this facet exists) and otherwise,
whenr1+mini∈P r i ≤ mini∈P{r1+ r2+ r12i − r12}, for the rate pair (r1,mini∈P r i − r1).
(We assume without loss of generality thatr1 ≤ r2.) It is sufficient to do so,
because, for the choice of values that we make in (61), the rest of the rate pairs

1Here we have for notational convenience assumedr1 ≤ r2.
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in R will be “redundant”. By this, we mean that they are either dominated by
the rate pairs we study, or can be achieved from them by a rate transfer. To be
more specific, consider the rate pairs (R1,R2) on the facetR1 +R2 = mini∈P r i. We
argue here that all those rate pairs can be achieved as the corner point (RB

1 ,R
B
2) is

achieved (see Fig. 2), simply by a rate transfer of an amount of RB
2 −R2 part of the

private message to the common message. This is possible because, for the choice
of values in (61), both the first two receivers decode enough variables fromW2 for
the rate transfer to occur.

We show in the following thata1, a2, andb selected as in (61) satisfy all the
requirements mentioned in (i) for the non-redundant rate pairs discussed. Clearly,
the structural constraints are satisfied by definition. (48)also holds fork = 1, 2.
(54) holds for allk ∈ {3, · · · ,K} by positivity of r12k − r12 and by the character-
ization (12) of the rate regionR. (55) and (56) hold for allk ∈ {3, · · · ,K} by
positivity of r1k − r1 andr2k − r2 and (11) characterization ofR. (58) being true
for all k ∈ {3, · · · ,K} is also a result of (11) characterization ofR. (57) holds for
the non-redundant pairs under study as follows. We first present the case where
r1 +mini∈P r i ≥ mini∈P{r1 + r2 + r12i − r12}.

a1 + a2 − b = min{R2, a1 + a2} (62)

≤ R2 (63)
(a)
= 2R1 + 2R2 −min

i∈P
{r1 + r2 + r12i − r12} (64)

≤ rk +min
i∈P

r i min
i∈P
{r1 + r2 + r12i − r12} (65)

(b)
≤ rk − r1 − r2 + r12. (66)

Step (a) follows by the assumption that the rate pairs (R1,R2) are on the facet of
2R1+R2 = mini∈P r1+r2+r12i−r12 and step (b) follows from mini∈P r i ≤ mini∈P r12i.
Similar arguments hold for the other case whenr1 +mini∈P r i ≤ mini∈P{r1 + r2 +

r12i − r12}, namely

a1 + a2 − b = min{R2, a1 + a2} (67)

≤ R2 (68)
(a)
= R1 + R2 − r1 (69)

≤ rk − r1 (70)

≤ r1k − r1. (71)

Step (a) follows by the assumption of the non-redundant rate pair (R1,R2) being
(r1,mini∈P r i − r1) in this case. Finally, (58) holds as a result of characterization
(11) ofR.

Now that we proved such a universal tuple (a1, a2, b) exists, we answer (ii )
by showing that an assignment ofÃ within the structure of (46) exists such that
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(RB
1 ,R

B
2)

R1

R2

mini∈U{r i}

mini∈P{r i}
(a) r1 +mini∈P r i ≥ mini∈P{r1 + r2 + r12i − r12}

(RB
1 ,R

B
2)

R1

R2

mini∈U{r i}

mini∈P{r i}
(b) r1 +mini∈P r i ≤ mini∈P{r1 + r2 + r12i − r12}

Figure 2: Rate regionR
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all G(k) are full-rank simultaneously for allk ∈ U; i.e., an assignment of̃A such
that linearly encoding the messagesW1, andW2 with it lets all receiversk ∈ {1, 2}
decodeW1 and all receiversk ∈ P decodeW1 andW2.

We will use the sparse zeros lemma to this end. From lemma 4.7 and 4.8, we
have shown that for eachk ∈ U, there exists an assignment ofÃ in the structure of
(46) with (a1, a2, b) of (61) such thatG(k) is full-rank. This implies that there exists
a full rank square submatrix ofG(k), sayG(k)

s . Let P(k) be the polynomial corre-
sponding to the determinant ofG(k)

s , andG = ∏kP(k). Given that there exists an
assignment for the variables such that each individual polynomialP(k) is nonzero,
we can conclude from the sparse zero lemma that there exists an assignment of̃A
over any fieldF′, |F′| being larger than the maximum degree ofG in its variables,
such that all polynomials are simultaneously nonzero. Withthis assignment, all
users can simultaneously receive their required messages.

The following lemma, provides an upper bound on the requiredsize forF.
Note that operation over smaller fields is also possible, by using vector coding.

Lemma 4.9 The two-message set problem with K receivers has always a solution
over a field of size|F| > K.

Proof What should be proved here is that the maximum degree of the polynomial
G = ∏kP(k) is at mostK. We first bound the degree of each ofP(k) by 1 and then
conclude the proof.
(i) Consider a matrixGl×l that hasl × l independent variablesgi, j. Call √ =
detG.Obviously, degree ofP in gi, j is at most 1.
(ii )Consider a matrixGl×l = T l×mAm×l, whereT is a fixed matrix andAm×l com-
posed ofm× l independent variablesai, j. Then eachgi, j =

∑

l ti,lal, j. Using the
Laplace expansion to calculateP = detG, we have

P =
∑

i

(−1)i+ jgi, j detGi, j. (72)

where detGi, j is not a function ofai, j sinceai, j shows up only in columnj of G.
Thus again, degree of detG in ai, j is at most 1.G(1) andG(2) are of the form (i)
and all the otherG(k)’s are of the form (ii ):

• k ∈ {1, 2}:
G(k) is basically a submatrix of̃A, and has thus all independent variables
ãi, j. From (i) degree ofP(k) in ãi, j is at most 1.

• k ∈ P:
G(k) = H̃kÃ andÃ has all independent variables ˜ai, j. From (ii ), degree of
P(k) in ãi, j is at most 1.

ConstructingG = ∏k∈U P(k), where eachP(k) is of degree at most 1 in ˜ai, j results
in the degree ofG being at mostK in eachãi, j and this concludes the proof.
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4.4 Example

We conclude with an example that illustrates our code designfor a specific instan-
tiation. Consider the following channel matrices.

H1 =

[

1 0 0 0
0 0 1 1

]

(73)

H2 =

[

1 0 0 0
0 1 0 0

]

(74)

H3 =





0 1 1 0
1 0 0 0
0 0 0 1




(75)

H4 =





1 0 0 0
0 1 0 0
0 0 1 1




(76)

(77)

One could verify that the rate regionR for this example would be characterized
by

R1,R2 ≥ 0 (78)

R1 ≤ 2 (79)

R1 + R2 ≤ 3 (80)

2R1 + R2 ≤ 4 (81)

In this example, we desigñA to achieve the corner point (RB
1 ,R

B
2) = (1, 2).

BasisB is formed byBΦ =










0
0
1
1










, B2 =










0
1
0
0










, B1 =










0
0
1
0










, andB12 =










1
0
0
0










as explained in 4.1. This gives

V =
[

V12 V2 V1 VΦ
]

=





1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1





.
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Our code design, using the size parameters (a1, a2, b) = (1, 1, 0) from 61 makes
matrix Ã to be strutured as

Ã =





x1 0 0
x2 0 x5

x3 x4 0
x6 x7 x8





. (82)

Furthermore,Ỹk, k ∈ {1, 2, 3, 4} from which each receiverk decodes its required
message is as follows:

Ỹ1 = H̃1ÃW =

[

x1 0 0
x3 x4 0

]




w1,1

w2,1

w2,2




(83)

Ỹ2 = H̃2ÃW =

[

x1 0 0
x2 0 x5

]




w1,1

w2,1

w2,2




(84)

Y3 = H̃3ÃW =





0 1 1 1
1 0 0 0
0 0 0 1









x1 0 0
x2 0 x5

x3 x4 0
x6 x7 x8









w1,1

w2,1

w2,2




(85)

Y4 = H̃4ÃW =





1 0 0 0
0 1 0 0
0 0 1 0









x1 0 0
x2 0 x5

x3 x4 0
x6 x7 x8









w1,1

w2,1

w2,2




. (86)

One can readily verify thatG(3) is individually full-rank for x1 = 1, x4 = 1, x8 =

1, and the remainingxi ’s being zero, andG(4) is individually full-rank for x1 =

1, x4 = 1, x5 = 1, and the remainingxi ’s being zero. One should note that either
of x4 andx5 being zero makes it impossible for receiver 4 to decodeW2. Finally,
the following Ã allows receivers 1 and 2 to decodeW1 and receivers 3 and 4 to
decodeW1 andW2:

Ã =





1 0 0
0 0 1
0 1 0
0 0 1





. (87)
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