Oxygen diffusion through the disordered oxide network during silicon oxidation

An atomic-scale description is provided for the long-range oxygen migration through the disordered SiO2 oxide during silicon oxidation. First-principles calculations, classical molecular dynamics, and Monte Carlo simulations are used in sequence to span the relevant length and time scales. The O-2 molecule is firmly identified as the transported oxygen species and is found to percolate through interstices without exchanging oxygen atoms with the network. The interstitial network for O-2 diffusion is statistically described in terms of its potential energy landscape and connectivity. The associated activation energy is found in agreement with experimental values.


Published in:
Physical Review Letters, 88, 12, 125901
Year:
2002
Other identifiers:
Laboratories:




 Record created 2009-10-08, last modified 2018-03-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)