Student project

Registration of multi-modal and multi-temporal remote sensing images and introduction to novelty detection

The database of satellite images covering the earth is growing extremely quickly and represents an important amount of data. The extension of this huge amount of data with images from very different sources and time of acquisition can provide a wide range of applications. The climate change monitoring could be more easily achieved or Natural disasters (deforestation, floods, dry rivers, earthquake) characterized by Unmanned Aerial Vehicle (UAV), allowing a rapid intervention. This project aims to realize a robust registration of images from different modalities (view angle, resolution, sensors sensitivity) having temporal changes and possible novelties. A novelty would be a change not due to normal season changes, like with new buildings or natural disaster. An introduction to the application of novelty detection on multi-modal and multi-temporal images is discussed based on recent research on novelty detection. Video recordings from UAV are provided by RUAG. Different flight conditions have been realized to get a wide range of images, in terms of content, view angle, field of view or stabilization. The images, taken as reference, are from satellite (SPOT 5) and airborne (Google Map) sources. A registration algorithm based on the phase-correlation allowing to retrieve rotation, scaling and translation between two images is proposed. It handles the multi-modal characteristics of the images by correcting the perspective deformation, exploiting the redundancy of video sequence and adaptively choose between the image edges or the extraction of large structure from the image depending on the image frequency content. The results are encouraging for the possibility of novelty detection. The algorithm is sensitive to the initial conditions but accurate registration with stabilized and unstabilized flights is achieved using Google Maps. Less precise registration is achieved with SPOT images coming from their lower resolution.


  • There is no available fulltext. Please contact the lab or the authors.

Related material