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Abstract

This thesis presents a theoretical description of the phase transition, with formation of long-
range spatial coherence, occurring in a gas of exciton-polaritons in a semiconductor microcavity
structure. The results and predictions of the theories developed in this thesis suggest that this
phase transition, recently observed in experiments, can be interpreted as the Bose-Einstein
Condensation (BEC) of microcavity polaritons.

Our theoretical framework is conceived as a generalization to the microcavity polariton
system of the standard theories describing the BEC of a weakly interacting Bose gas. These
latter are reviewed in Chapter 2, where an introduction to the physics of polaritons is also
given.

The polariton system is peculiar, basically due to three main features, i.e. the compos-
ite nature of polaritons, which are a linear superposition of photon and exciton states, their
intrinsic 2-D nature, and the presence of two-body interactions, arising both from the mu-
tual interaction between excitons and from the saturation of the exciton oscillator strength.
Therefore it is not clear whether the observed phase transition can be properly described in
terms of BEC of a trapped gas. To clarify this point, one has to describe self-consistently
the linear exciton-photon coupling giving rise to polariton quasiparticles, and the exciton-
nonlinearities. This is made in Chapter 3, where a bosonic theory is developed by generalizing
the Hartree-Fock-Popov description of BEC to the case of two coupled Bose fields at thermal
equilibrium. Hence, we derive the classical equations describing the condensate wave function
and the Dyson-Beliaev equations for the field of collective excitations. In this way, for each
value of the temperature and of the total polariton density, a self-consistent solution can be
obtained, fixing the populations of the condensate and of the excited states. In particular,
the theory allows to describe simultaneously the properties of the polariton, the exciton and
the photon fields, this latter being directly investigated in the typical optical measurements.
The predicted phase diagram, the energy shifts, the population energy distribution and the
behavior of the resulting first order spatial correlation function agree with the recent experi-
mental findings [Kasprzak 06, Balili 07]. These results thus support the idea that the observed
experimental signatures are a clear evidence of polariton BEC.

However, from a quantitative pint of view, the measured coherence amount in the condensed
regime is significantly lower than the predicted one. This discrepancy could be due to deviations
from the weakly interacting Bose gas picture and/or to deviations from the thermal equilibrium
regime. In particular, these latter are expected to be strong in current experiments, because
polaritons have a short radiative lifetime, while the rate of the energy-relaxation mechanisms
is very slow.

To investigate how the deviations from equilibrium could affect the condensate fraction and
the formation of off-diagonal long-range correlations, in Chapter 4, we develop a kinetic theory
of the polariton condensation, accounting for both the relaxation mechanisms and for the field
dynamics of fluctuations. Within the Hartree-Fock-Bogoliubov limit, we derive a set of cou-
pled equations of motion for the one-particle populations and for the two particle correlations
describing quantum fluctuations. We account for the relaxation processes due both to the
polariton-phonon coupling and to the exciton-exciton scattering. The actual spectrum of the
system is evaluated within the Popov limit, during the relaxation kinetics. Within this model,
we solve self-consistently the populations kinetics and the dynamics of the excitation field, for
typical experimental conditions. In particular, we show that the role of quantum fluctuations
is amplified by non-equilibrium, resulting in a significant condensate depletion. This behavior
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could explain the partial suppression of off-diagonal long-range coherence reported in experi-
ments [Kasprzak 06, Balili 07]. We complete the analysis, by studying how the deviations from
equilibrium depend on the system parameters. Our results show that the polariton lifetime
plays a crucial role. In particular, we expect that the increase of the polariton lifetime above
10 ps would lead to thermal-equilibrium polariton BEC in realistic samples.

In Chapter 5, devoted to the conclusions, we discuss which issues of BEC could be clarified,
by achieving polariton BEC at thermal-equilibrium, and which extensions of the present work
would be most promising in this respect.

Keywords: Microcavity polaritons; Exciton gas coherence; Semiconductor heterostruc-
tures; Bose-Einstein condensation; Hartree-Fock-Bogoliubov theory.



Version abrégée

Cette these donne une description théorique de la transition de phase, avec formation de
cohérence spatiale a longue distance, qui a lieu dans un gaz de polaritons de microcavité, c¢’est
a dire un gaz de quasiparticules produites par le couplage entre les exciton crées dans un ou
plus puits quantiques a semiconducteur et le mode optique d’une microcavité. Les résultats
et les prédictions des théories développées dans cette these suggerent que cette transition de
phase, observée récemment dans les expériences, peut étre interprétée comme la Condensation
de Bose-Einstein (BEC) des polaritons de microcavité.

Notre théorie est congue comme une généralisation au systeme des polaritons de microcavité
des théories standard qui décrivent la BEC d’un gaz de bosons faiblement interagissant. On
introduit ces théories standard dans le Chapitre 2, ot on donne aussi une introduction a la
physique des polaritons.

Le systeme des polaritons est particulier, a cause de trois propriétés fondamentales, c’est a
dire la nature composite des polaritons, qui sont une superposition linéaire des états de pho-
ton et d’exciton, leur nature intrinsequement bidimensionnelle, et la présence de 'interactions
a deux corps, produite par l'interaction mutuelle entre excitons and par la saturation de la
force d’oscillateur de 'exciton. Donc il n’est pas clair si la transition de phase observée puisse
étre interprétée comme la BEC d’un gaz confiné. Pour clarifier ce point, on doit décrire de
facon auto-consistante le couplage linéaire entre 1’exciton et le photon et les non-linéarités ex-
citoniques. Ce but est réalisé dans le Chapitre 3, ou une théorie est développée en généralisant
la théorie de Hartree-Fock-Popov au cas de deux champs de Bose couplés et a 1'équilibre
thermique. De la, on dérive les équations classiques qui décrivent la fonction d’onde du con-
densat et les équations de Dyson-Beliaev pour le champ des excitations collectives. En cette
maniere, pour chaque valeur de température et densité totale de polaritons, on détermine la
solution auto-consistante qui fixe la populations du condensat et des états excités. En par-
ticulier, la théorie permet de décrire au méme temps les propriétés des champs de polariton,
d’exciton et de photon, ce dernier étant directement investigué dans les mesures optiques.
Le diagramme de phase, les shifts d’énergie, la distribution énergétique de la population et
le comportement de la fonction de corrélation spatiale ainsi obtenus sont en accord avec les
évidences expérimentales récentes [Kasprzak 06, Balili 07]. Donc ces résultats supportent 1'idée
que les signatures expérimentales observées soient une évidence claire de la BEC d’un gaz de
polaritons.

Cependant, d’un point du vue quantitatif, le dégrée de cohérence mesuré dans le régime
condensé est significativement inférieur a notre prévision théorique. Cette différence peut étre
due a une déviation de la description de gaz faiblement interagissant et/ou aux déviations de
I’équilibre thermique. En particulier, on peut prévoir que ces dernieres soient larges dans les
expérience actuelles, parce que les polaritons ont un temps de vie radiatif court, tandis que les
mécanismes de relaxation énergétique sont tres lents.

Pour étudier comment les déviations de I'équilibre peuvent affecter la fraction de conden-
sat et la formation des corrélations non-diagonales a longue distance, dans le Chapitre 4, on
développe une théorie cinétique de la condensation des polaritons, qui tient en compte soit
des mécanismes de relaxation soit de la dynamique du champ de fluctuations. Dans la limite
Hartree-Fock-Bogoliubov, on dérive un set d’équations cinétiques couplées pour les popula-
tions et pour les corrélations a deux particules qui représentent les fluctuations quantiques.
On inclue les processus de relaxation due soit au couplage entre polaritons et phonons soit
au collisions exciton-exciton. Pendant la cinétique de relaxation, le spectre actuel du systeme



est évalué dans la limite de Popov. Avec ce model, on résoudre de facon auto-consistante la
cinétique des populations et la dynamique du champ d’excitation, en modélisant les conditions
expérimentales typiques. En particulier, on trouve que le role des fluctuations quantiques est
amplifié par le régime de non-équilibre, en résultant dans une déplétion significative du con-
densat. Ce comportement pourrait expliquer la suppression partielle de la corrélation a longue
distance, observée dans les expériences [Kasprzak 06, Balili 07]. On compléte notre analyse,
étudiant comment les déviations de ’équilibre dépendent des parametres. Nos résultats mon-
trent que le temps de vie du polariton joue le role dominant. En particulier, on s’attend que,
en augmentant le temps de vie au dessus de 10 ps, il serait possible d’obtenir la condensation
a I’équilibre thermique.

Dans le Chapitre 5, consacré aux conclusions, on discute les issues qui pourraient étre clar-
ifiées en atteignant la BEC des polaritons a 1’équilibre, et les extensions les plus intéressantes
de ce travail.

Mots clef: Polaritons de microcavité; Cohérence d'un gaz d’excitons; Eterostructures a
semiconducteur; Condensation de Bose-Einstein; Théorie Hartree-Fock-Bogoliubov.



Riassunto

Questa tesi fornisce una descrizione teorica della transizione di fase, con formazione di
coerenza spaziale a lunga distanza, che ha luogo in un gas di polaritoni di microcavita, ovvero
il gas di quasiparticelle create dall’accoppiamento tra gli eccitoni prodotti in uno o piu’ pozzi
quantici a semiconduttore e il modo ottico di una microcavita. I risultati e le predizioni
delle teorie sviluppate in questa tesi suggeriscono che questa transizione di fase, osservata
recentemente negli esperimenti, possa essere propriamente interpretata come la Condensazione
di Bose-Einstein (BEC) dei polaritons di microcavita.

La nostra teoria e concepita come la generalizzazione ai polaritoni di microcavita delle
teorie standard che descrivono la BEC di un gas di bosoni debolmente interagenti. Queste
teorie sono introdotte nel Capitolo 2, dove si introducono anche i concetti fondamentali della
fisica dei polaritoni.

I polaritoni costituiscono un sistema particolare, a causa di tre proprieta fondamentali,
ovvero la loro natura composita, dal momento che un polaritone e la sovrapposizione lineare
degli stati di fotone e di eccitone, la loro natura intrinsecamente bidimensionale, e la pre-
senza dell’interazione a due corpi, originata sia dalla mutua interazione tra eccitoni sia dalla
saturazione della forza d’oscillatore eccitonica. Non e quindi chiaro se la transizione di fase
osservata possa essere interpretata come la BEC di un gas confinato. Per chiarire questo punto,
si deve descrivere in modo autoconsistente ’accoppiamento lineare tra I’eccitone e il fotone e
le nonlinearita eccitoniche. Questo e realizzato nel Capitolo 3, dove sviluppiamo una teoria
che generalizza la teoria di Hartree-Fock-Popov al caso di due campi bosonici accoppiati e
all’equilibrio termico. In particolare, deriviamo le equazioni di campo classico che descrivono
la funzione d’onda del condensato e le equazioni di Dyson-Beliaev per il campo delle eccitazioni
collettive. In questo modo, per ogni valore di temperatura e di densita totale di polaritoni,
determiniamo la soluzione autoconsistente che fissa la popolazione del condensato e degli stati
eccitati. La teoria permette di descrivere, allo stesso tempo, il campo di polaritone, di ecci-
tone e di fotone, quest’ultimo essendo 'oggetto delle misure ottiche. Il diagramma di fase, le
variazioni energetiche delle risonanze, la distribuzione in energia della popolazione e il com-
portamento della funzione di correlazione spaziale predetti da questa teoria, sono in accordo
con le recenti misure sperimentali [Kasprzak 06, Balili 07]. Tutti questi risultati supportano
I'idea che quanto osservato negli esperimenti sia una chiara evidenza della BEC dei polaritoni
di microcavita.

Tuttavia, da un punto di vista quantitativo, il grado di coerenza misurato nel regime
condensato e significativamente inferiore alla nostra previsione teorica. Questa discrepanza
potrebbe essere imputabile sia a una deviazione dalla descrizione di gas debolmente interagente
sia a deviazioni dal regime di equilibrio termico. Le deviazioni dall’equilibrio sono attese essere
particolarmente importanti negli esperimenti correnti, perché i polaritoni hanno un tempo di
vita radiativo corto mentre i processi di rilassamento sono molto lenti.

Per studiare come le deviazioni dall’equilibrio influenzino la frazione di condensato e la
formazione di correlazioni a lunga distanza, nel Capitolo 4, sviluppiamo una teoria cinetica
per la condensazione dei polaritoni, che tiene conto sia dei meccanismi di rilassamento sia
della dinamica del campo delle fluttuazioni. Nel limite Hartree-Fock-Bogoliubov, deriviamo
un set di equazioni accoppiate che descrivono ’evoluzione temporale delle popolazioni e delle
correlazioni a due corpi che rappresentano le fluttuazioni quantistiche. Includiamo i processi
di rilassamento dovuti sia all’accoppiamento tra polaritoni e fononi sia alle collisioni eccitone-
eccitone. Durante la cinetica di rilassamento, lo spettro di eccitazione del sistema e valutato
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nel limite di Popov. Con questo modello, risolviamo in modo auto-consistente la cinetica delle
popolazioni e la dinamica del campo di eccitazione, modellizzando le tipiche condizioni speri-
mentali. In particolare, troviamo che il ruolo delle fluttuazioni quantistiche ¢ amplificato dal
regime di non-equilibrio, e risulta in una considerevole riduzione della frazione di condensato.
Questo comportamento potrebbe spiegare la parziale soppressione della correlazione a lunga
distanza incontrata negli esperimenti [Kasprzak 06, Balili 07]. Completiamo la nostra analisi,
studiando come le deviazioni dall’equilibrio dipendano dai parametri. I risultati mostrano che
il tempo di vita dei polaritoni gioca un ruolo dominante, e che, per un tempo di vita superiore
a 10 ps, sarebbe possibile ottenere la BEC di polaritoni all’equilibrio termico

Nel Capitolo 5, dedicato alle conclusioni, discutiamo infine quali aspetti della fisica della
BEC potrebbero essere efficacemente studiati se fosse possibile ottenere un condensato di
polaritoni all’equilibrio. Discutiamo inoltre delle possibili e piti promettenti estensioni di questo
lavoro.

Parole chiave: Polaritoni di microcavita; Coerenza di un gas di eccitoni; Eterostrutture
a semiconduttore; Condensazione di Bose-Einstein; Theoria Hartree-Fock-Bogoliubov.
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Chapter 1

Introduction

Bose-Einstein condensation (BEC) is one of the most remarkable manifestations of quantum
mechanics at the macroscopic scale [Pitaevskii 03]. In a Bose-Einstein condensate, many par-
ticles share the same quantum mechanical wave function, giving rise to the formation of off-
diagonal long range order (ODLRO) [Penrose 56], i.e. the formation of spatial correlations
extending over the whole system size. The experimental observation of BEC in diluted atomic
gases in 1995 [Anderson 95, Davis 95, Bradley 95] renewed the interest on the fundamental
aspects of the physics involved and stimulated the study of several linked applications. In
particular, the idea to achieve the same phenomenon in semiconductor based systems was
very appealing [Griffin 95]. This would help to answer several fundamental questions of the
BEC physics. Indeed the main advantage of semiconductor systems is that measurements are
made optically. This could allow the direct observation of several key properties of BEC, as the
modification of the spectral function or the formation of spatial coherence. Another interesting
property is the possibility of growing semiconductor structure of lower dimensionality, which
are an ideal candidate to study the effects of the reduced dimensionality on quantum fluids.
In addition, the critical temperature is expected to be much larger than in atom gases, due to
the very small effective mass of the particles involved, thus possibly favoring the exploration
of a large region of the phase diagram. Finally, achieving BEC in a solid-state device, with
ease of control and integration, would represent a new promising way to the implementation
of quantum information technology [Bouwmeester 00].

The most promising candidates for the observation of BEC in a semiconductor structure
were excitons [Moskalenko 62, Blatt 62, Keldysh 68, Griffin 95, Moskalenko 00] and exciton-
polaritons [Imamoglu 96, Moskalenko 00, Snoke 02b]. All the experimental attempts to ob-
tain either a three-dimensional or a two-dimensional exciton quantum degenerate gas have
given controversial results and the exciton BEC has not been observed up to now [Griffin 95,
Fortin 93, Snoke 02a]. On the other hand, the signature of a quantum degenerate gas of micro-
cavity polariton has been reported by several groups [Dang 98, Senellart 99, Deng 02, Deng 03,
Richard 05b, Richard 05a, Kasprzak 06, Deng 06] in the previous years and the occurrence of
ODLRO has been very recently observed [Kasprzak 06, Balili 07]. For this reason, microcavity
polaritons has received an increasing attention in these years, from both the experimental and
the theoretical point of view.

Due to the peculiarities of the polariton system, that we will discuss in the following
subsection, many theoretical models have been introduced [Laussy 04, Keeling 04, Doan 05,
Carusotto 05, Schwendimann 06, Marchetti 06, Szymanska 06, Wouters 07b]. We will briefly
review them later on. In spite of the high relevance of all these theoretical frameworks, a basic
question remains still unanswered. Are the experimental findings correctly interpreted in terms
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of a quantum field theory of interacting bosons? The first main contribution of this thesis is
to answer this question, by means of the bosonic theory developed in Chapter 3, which allows
a clear interpretation of the phenomenon in terms of BEC and which results in a very good
agreement with the experimental observations.

Another relevant open question of fundamental interest concerns the mechanism of the
condensate growth, and how the non-equilibrium regime could affect the properties of the
condensed system. This problem has been considered also in the context of atomic BEC and
it is even more relevant for polaritons. Here, we study the problem by means of the kinetic
model developed in Chapter 4, focusing on the interplay between the non-equilibrium regime
and the formation of coherence in the polariton system. The description of this mechanism is
the second main contribution of the present work.

1.1 Outlook of the present work

This thesis is organized in three parts: an introduction, reviewing the basic concepts and the
existing literature about both microcavity polaritons and BEC, and two Chapters containing
the original contribution of this work.

In Chapter 2, we introduce the basic features both of the microcavity polariton system and
of the BEC physics. In particular, in Section 2.1 we review the theory of microcavity polaritons,
focusing on three crucial points, i.e. the bosonic behavior, the mutual interactions and the
finite lifetime. In Section 2.2 we review the main concepts related to BEC and the theoretical
frameworks developed both for describing the condensed system at thermal equilibrium and
for predicting the non-equilibrium condensate growth. In Section 2.3 we discuss the main
experimental evidence of polariton BEC.

In Chapter 3 we develop a bosonic theory for polariton BEC at thermal equilibrium. We
describe the main features of this theory, generalizing the Hartree-Fock-Popov approach to
the case of two linearly coupled fields. In particular, we discuss the predictions of the theory
for typical material parameters, showing that the experimental findings can be interpreted as
evidence of polariton BEC.

In Chapter 4 we develop a kinetic model in order to describe the condensate growth, un-
der typical experimental non-equilibrium conditions. We derive a set of kinetic equations for
populations and two-body correlations, within a Number-conserving formalism. We compare
the predictions of this model with recent experimental findings [Kasprzak 06, Balili 07]. The
results suggest that deviations from equilibrium are responsible for the observed partial sup-
pression of ODLRO, because of the enhancement of quantum fluctuations. In Section 4.3, we
finally compare the results of the kinetic model and of the equilibrium theory. In particular, we
study the dependence of the results of the kinetic model on the polariton lifetime, showing that
the thermal equilibrium regime could be reached with a reasonable increase of the polariton
lifetime, i.e. by slightly improving the quality of the microcavity mirrors.

Chapter 5 is devoted to the conclusions and the perspectives of the present work.
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Chapter 2

Review on polaritons and
Bose-Einstein Condensation

2.1 Microcavity polaritons

2.1.1 Excitons

In this subsection we give an overview of the physics of excitons in semiconductors. We
report only the main results of the exciton theory, referring, for the details, to semiconductors
textbooks [Bassani 75, Haug 90].

We start by considering a general crystal composed by an equal number N of positive ions
and delocalized electrons. The full Hamiltonian of this problem, expressed in coordinate space,
is

h2V2

h2v2
B _Z _Z 2m0
Z de 1 2
Z|R "R, Z|R _r]| 2;—|rj_rl|, (2.1)

where the ionic and the electronic kinetic terms are written in the first line, while in the second
line we have the ion-ion, the ion-electron, and the electron-electron Coulomb interaction terms.
Notice that here, for simplicity, we have neglected the spin interactions. Spin, and the spin-orbit
interaction, play an important role in the determination of the semiconductor band structure
and of the energy splitting between heavy and light hole bands. However, for our present
purposes, it is sufficient to adopt the simplest possible assumption for the band structure. We
will thus assume the system in a fully spin-polarized state, as produced by circularly-polarized
optical excitation, and model it in terms of a scalar theory. The ground state of the Hamiltonian
(2.1) is calculated within the Born-Oppenheimer approximation, i.e. by separating the motion
of electrons and ions, because of the very different masses of the two species, and by assuming
the electronic motion to adiabatically follow the ionic motion. Therefore the total ground state
wave function is factored in a product of a ionic wave function and an electronic wave function,

as
U ({Ra}, {r;}) = T"({Ra}) 2 ({Ra}, {r;}). (2.2)
In this way, the electronic problem is solved by considering the ions as fixed in the equilibrium

positions and neglecting the kinetic term of the ions. At the same time, the equilibrium
positions of the ions are determined self-consistently by the requirement that the total energy
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of the system be minimal. The electronic problem can be solved within the mean-field limit
by means of the Hartree-Fock (HF') approach, i.e. by assuming the electronic many-body state
to be a Slater determinant of single-particle wave functions

B({1}) = = Det (W (m1) - Yy ()} (2.3

Here, each wave function ), (r) satisfies the Hartree-Fock equation

Un(r) + Vegen = Enthn(r), (2.4)

2m0

n*v? Z€2
Hypibn(r) = [ -3 R, 1| + Vair

where s
2 1Y)~ ry)|
V E 2.
dir = € / |I‘ I'1’ ( 5)

is the direct local Coulomb potential, whlle

Vegen = —€ Z/ r19;(r 1“1)?/)71(1“1) (2.6)

|r—r1\

is the non-local Fock term and the sum is taken over all the resulting HF single-particle states.
Since the ions in the equilibrium positions form a lattice, Bloch’s theorem holds. Then, it is
useful to introduce the vectors k of the reciprocal lattice space, and the corresponding periodic
Bloch functions

1 ik-r
Ynx(r) = W“n,k(r)e 7 (2.7)

where V' is the volume of the system. In the band approximation the wave functions ¢, x(r),
are assumed to satisfy the Schroedinger equation

h2 V2
|:_ 2m0

V(I‘):| wn,k(r) = En,kwn,k(r)a (28)

where V(r) is an average, local and self-consistent, potential characterized by the lattice sym-
metries. The solution of Eq. (2.8) gives the band structure of the crystal.

Here we consider a two band model, i.e. we restrict ourselves to the case where the band
index n represents the valence (n = v) or the conduction (n = ¢) band. The energy gap
between the two bands is F,. Therefore, for small vectors k the energy dispersion of the two
bands can be simply written within the effective mass approximation as

h2k?
B0~ —
k—0 o
h2k?
Eox—o~E;+ T (2.9)

where m, is the effective mass of an electron lying in the conduction band, while my is the
effective mass of an electron in the valence band. Since a single-particle excitation in the
valence band is produced when an electron is removed, producing a positive charged hole,
my, corresponds to an effective mass for the hole states. Clearly, the ground state of the
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system corresponds to the configuration where electrons occupy only the valence band and the
electronic wave function (2.3) reduces to

1
({r;}) = Vol Det {11, (r1) = - - oy (ta) } - (2.10)
We notice that, in the expression for the ground state, the electronic states are self-consistently
evaluated by using the mean-field Coulomb potential generated by the correspondent electronic
density. Therefore, the correct many-body excited state with wave vector K is not simply given
by a general configuration where an electron is promoted to the conduction band, i.e.

B ({131) = o Det {Usa (1) - Vrsriac Vo (48] .11

because this operation also modifies the electron density and so the mean-field Coulomb poten-
tial. Actually, if Ej is the ground state energy, every configuration of this kind has an energy
Fyx,x = Fo+ Ecx,+x — Eyx, > Ey+ E,. On the other hand, a good ansatz for the many-body
excited state is a general linear combination of all the excited configurations (2.11), i.e.

W= Aux®k({r;}) (2.12)

where the normalization

Z | Akx|* =1 (2.13)

Kk

is imposed. The combination ®{f¢ which minimizes the expectation value of the Hamiltonian
(2.1) is the actual many-body excitation at wave vector K and it is called exciton. The
minimization procedure, starting from the ansatz (2.12), accounts for the Coulomb correlation,
namely for the corrections to the HF result represented by the single Slater determinant (2.11).
The main effect of Coulomb correlation is that the difference between the exciton energy and
the ground state energy is lower than the energy band gap £,.

If we consider the case of weakly bound excitons (Wannier excitons), i.e. excitons whose
wave function extends over a region much larger than the lattice characteristic length, we can
safely assume

uv(c)7k(r) >~ uv(c)jo(r) = uv(c)(r), (2.14)
and that only the contributions for small wavevectors k are relevant. In this limit, we adopt
the effective mass approximation Eq. (2.9) for the electron/hole energies. Consequently the
exciton wave function takes the form

K= Ak ® g ({15), (2.15)
k

with M = m, + my. The expectation value
(PK [Her|PK) = (PK| (Hpin + U) |PK"), (2.16)

where Hy;, is the one-body kinetic term, and U is the two-body Coulomb interaction between
electrons, can be written in terms of matrix elements between states containing one electron
and one hole [Bassani 75]. In particular, each interaction matrix element between Slater de-
terminants produces two contributions,

UlPY, ki) = Okeknie—tcn ((YereVoin| U 00k, Ve,
- <wc,kewv7k’h’U|¢c,k/e¢v7kh>) . (217)

el
<®kh JKkntke
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The first matrix element on the right hand side of (2.17) represents the electron-hole exchange
interaction, which gives a small, repulsive contribution. On the other hand, the second ma-
trix element represents the direct electron-hole interaction! and it is attractive. This term is
responsible for exciton binding energy. By neglecting for the moment the electron-hole ex-
change interaction, whose implications will be discussed later on, from the minimization of the
expectation value (2.16), with the normalization constraint Eq. (2.13), we finally obtain the
equation

h2k? hQK 2
Ey — EYC Ay, Aq =0 2.18
where pu=! = mJ1 + mh , giving the exciton energy E“C, entering in (2.18) as the Lagrange

multiplier. Notlce that here we have included the dynamical dielectric constant €., accounting
for the effect of screening due to the medium, neglected up to now. This effect corresponds to
the vertex renormalization of the Coulomb interaction, which is overlooked in the Hartree-Fock
limit [Bassani 75, Mahan 81]. We need to account for this effect in order to obtain a realistic
exciton binding energy. We mention that the electron-hole exchange interaction, neglected
in deriving Eq. (2.18), can be taken into account by means of perturbation theory. Its main
implication is the energy splitting between the mode with longitudinal polarization and the
two degenerate modes with transverse polarization, with respect to the exciton center of mass
motion.? This result, the so called LT splitting has important consequences in the problem of
the exciton-photon coupling [Andreani 94|, which will be treated in following subsections. It is
interesting to mention that the evaluation of the electron-hole exchange term does not require
the inclusion of the screening dielectric constant, because the electron-hole exchange diagrams
are already included in the definition of e, [Mahan 81].

Notice that, by Fourier transforming Eq. (2.18), we get for the Fourier transform of the
exciton envelope function

1 )
=Y Ay (2.19)
VV 4

the hydrogenic Schroedinger equation
hK? h2V?

2M 21

62

| Ficlr) = Fclr) < =

6oo’ ‘

Eq + 2¢ e () . (2.20)

This feature suggests the interpretation of the exciton state as the bound state of an hydrogenic
atom formed by an electron in the conduction band and an hole in the valence band. Following
this analogy it is useful to define the exciton Bohr radius ay and the exciton binding energy
E}y = Ey+ E, — Ege.

By adopting the second quantization formalism, the operator that transforms the ground
state into state (2.15) is

i f i
k

where é! and AT are the electron and the hole creators, respectively. From Eq. (2.21), using
the canonical anti-commutation rules (CAR) for the electron and hole fields and the useful

1To avoid confusion, we stress the point that the electron-hole direct interaction originates from the ezchange
term of the matrix element between Slater determinants, while the electron-hole exchange interaction originates
from the direct term of the matrix element between Slater determinants

2Notice that only the transverse polarized modes, which correspond to a total exciton spin equal to +1,
are optical active. Therefore the coupling with the electromagnetic field only affects the transverse polarized
exciton modes.
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operator relation
[Ol, (5203} = {Ol, Og} O3 — O, {Ol, (53} (2.22)
we derive the exact exciton commutation rule

|:bK, b-(g:| — Z Aik{ KAk+7"6 K— Q)7Q57%K+Q,%K (223)
- Z Ak Az -y mygehor-mexciq

- Z A x Ak —Th (K- Q),Q€L+meK€k— LK+Q
= 5K,Q + DK,Q (224)

where the first term has been obtained by using the normalization of the exciton wave function.
As shown by Eq. (2.24) the exciton field obeys a quasi-Bose commutation rule. The deviation
from the Bose commutator rule is expressed by the operator lA)KVQ, acting on the electron-hole
space. To estimate this deviation, we calculate the expectation value of Eq. (2.24) for Q = K,

<[z§K, 131(]> — 1= Akl [nh(—k + %K) +ng(k + %K)]
k

Ny + NX
]. - ]\7h—<:[<)7 (2.25)

conf

where n@) is the electron (hole) population in the single state, while N§(<h) is the total
electron (hole) population in the N, ,¢(K) electron-hole configurations contributing to the
K exciton state. In the second line of (2.25), we have assumed for simplicity that each
electron-hole configuration equally contributes to the exciton state (i.e. we assume a con-
stant weight [Ay k|* = 1/N.,,¢(K)). Eq. (2.25) shows that excitons behave as Bose quasi-
particles if the number of electrons and holes per state is much smaller than 1. This result
can be explained in an intuitive way: since many electron/hole states contribute to one ex-
citon state, the population of the latter can be large although the population in each elec-
tron/hole state is much smaller than 1, thus in a regime where the effects of the Pauli prin-
ciple are vanishingly small. The fact that excitons follow Bose statistics at moderate excita-
tion densities has suggested, long time ago, the possibility to achieve BEC of an exciton gas
[Moskalenko 62, Blatt 62, Keldysh 68].

In the next subsection we will see how the concept of semiconductor exciton can be trans-
lated to the two dimensional case.

2.1.2 Excitons in quantum wells

Due to the advances of the crystal growth, nowadays it is possible to realize low-dimensional
semiconductor structures, where electrons and holes are confined in one or two dimensions
[Bastard 89]. Therefore, it is interesting to understand if the exciton bound state is well
defined also in reduced dimensions, and to explore how the exciton properties change due to
the quantum confinement. For our purposes, here we address to the two-dimensional case, i.e.
the case of quantum well excitons.

A semiconductor quantum well can be modeled as a small gap semiconductor sandwiched
in a large gap semiconductor. In such a geometry, the translational symmetry is broken along
the direction orthogonal to the semiconductor plane and the lowest energy excitations are
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localized inside the small gap semiconductor. As a consequence, the total wave vector k is no
more conserved in these structures, while the only conserved quantity is the in-plane component
of the wave vector k.

Nevertheless, the problem can be treated in perfect analogy with the bulk case, the only
difference lying in the form of the band wave functions, which in the present case are written
as

1 3 c(v
Ve (s 2) = ﬁe_“‘”"’f () (). (2.26)

where S represents the area of the quantum well, p is the in-plane real coordinate, ui(“U) (p) are

the Bloch functions in the plane and f,)(z) represent the envelope functions accounting for
the confinement in the orthogonal direction. With the exception of the envelope functions in
the z-direction, the expression (2.26) is just the 2-D version of Eq. (2.7).

The Slater determinants for the ground and excited states are defined as in the bulk case.
Correspondingly, the ansatz for the excited state with a given K| is

=D Ay Bl e, i, ({07 (2.27)
k

Then, by using the approximation of weakly bound excitons, uf((Hv) (p) = ut™ (p) and the effective
mass approximation, we get, for the 2-D Fourier transform of the exciton envelope function

1 -
Fi, (p) = VvV ZAkuvKu‘ka” % (2.28)
ki

the Schroedinger equation

hQKﬁ h2v2 & exc
where )
- e
0p=p1=p) = [ dendza— R ()PP (2.30)
6c><>|1‘1 - 1'2\

is the electron-hole direct Coulomb interaction, weighted by the envelope functions f.,(z). In
the limit where the confinement length is much shorter than the exciton Bohr radius, we can
replace f.,(z) with delta-functions. In this case, we recover a purely two dimensional hydro-
genic problem. We mention that this calculation predicts a binding energy of the lowest energy
exciton state four times larger than the corresponding quantity in the 3-D case [Haug 90].

It is important to remark that, in real systems, structural disorder is present and it destroys
the translational invariance. This effect is particularly important in quantum wells and it
reflects on the physics of excitons [Zimmermann 95, Zimmermann 03]. Therefore, the most
general expression of the exciton state in real systems is a linear superposition of several wave
functions (2.27) having different wave vector.

In the next subsection we will see how the concept of semiconductor exciton has to be
generalized by taking into account the presence of the external electromagnetic field.

2.1.3 Exciton Polaritons

In this subsection we will show that the normal excitation modes of a semiconductor structure
are not simply the exciton states, but the polariton modes, i.e. states arising from the strong
coupling between the excitons and the electromagnetic field.

18



First, we briefly discuss why the solution of Hamiltonian (2.1), derived in the previous
subsections, does not describe completely the problem. To this purpose, we consider for a
moment the effect of the spin, neglected up to now, and we focus on the exciton modes
which are optically active in a bulk semiconductor (i.e. having total spin equal to 1). The
different projections of the spin of the exciton modes correspond to longitudinal or transverse
polarization with respect to the motion of the exciton center of mass. As we have mentioned
before, these two polarizations are not degenerate in energy, because of the exchange electron-
hole Coulomb interaction [Andreani 88]. On the other hand, we know that, for symmetry
reasons, in cubic crystals, the true eigenstates of the system have to be threefold degenerate
at k = 0. This apparent contradiction is explained by the fact that the exciton states are not
the eigenstates of the system for small wave vectors. Intuitively, this fact is not surprising
because the creation of an exciton population induces a polarization in the medium. Therefore
the full Hamiltonian of the system has to include a term describing the interaction between
excitons and the electromagnetic field, which has been neglected up to now. The inclusion of
this term is crucial because the transverse component of the electromagnetic field results to
be strongly coupled with the transverse exciton states with wave vectors k < nw/c, where w is
the frequency of the field, n the refraction index and ¢ the light velocity [Andreani 88].3

Such a coupling mechanism results in two new eigenstates of the system, called lower and
upper polariton states [Hopfield 58, Agranovich 66, Quattropani 86, Andreani 94], each one
twofold degenerate by polarization. It turns out that the upper polariton states are degenerate
with the longitudinal exciton mode at k = 0, thus permitting to recover the required symmetry
property.

To derive the polariton states in a bulk semiconductor, the starting point is the minimal
coupling expression of the radiation-matter interaction

2
__° A 2(x.
H; = — EZ A(x;) pi + — EZ A (x;), (2.31)

where the sum is over all the electrons of the crystal, A is the electromagnetic vector potential
while p; is the momentum of the electron. To write in the second quantization formalism the

Hamiltonian (2.31), we introduce the second quantization expression of the electromagnetic
field

ekxe h. 2.32
Z nwk '+ hee (2.32)

where ¢y is the operator which destroys a photon with wave vector k, €y is the polarization

vector of the field and /2% is the factor accounting for the proper density of states. The

nV|k|
total exciton-photon Hamiltonian is finally obtained by calculating the matrix elements
exc 1 exc
(OJAGx) - vil Pi) = — (01 A(xa) - 33, Heae][ D7), (2.33)

between the electronic many-body ground-state and the exciton state |Pg"¢), and

(0] A%(x,)|0) = hz 0|[A (%), A (x;)v| D), (2.34)

3Here, strongly coupled means that the effect of coupling cannot be treated via a perturbation approach.
We will see in the next subsection that, in the case of quantum well excitons coupled to the microcavity photon
field, the strong coupling regime occurs only if the coupling strength is much larger than the linewidth of the
cavity mode.
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and reads [Quattropani 86]
Hxe = Y Ef<bibe+ Y helklelé (2.35)
k k

) el + ) (b — bY) + > Silel + e (@ + e,
k k

(21N .
Qk = E}e(a:c %Fkﬂ' = O)Gk * Hew (236)

represents the exciton-photon coupling strength, while Sy = C Eq. (2.36), Fx(r) is the

Eixc
Fourier transform of the exciton envelope function, defined in Eq. (2.19) and

where the quantity

Mcv:/‘/I‘UZ(I‘)GI‘Uu(I‘) (2.37)

is the dipole matrix element between the conduction and the valence band, evaluated inside
each elementary cell V5. The compact form of the matrix element (2.36) is a direct consequence
of the band and envelope function approximations. We stress that this latter limit is valid
when the Bohr radius of the exciton is much larger than the lattice parameter. Eq. (2.36) has
a simple interpretation. While the scalar product € - p,. describes the coupling between the
electromagnetic field and the exciton dipole field inside each elementary cell, the amplitude
Fx(r = 0) weights the probability to have one electron and one hole at the same position.

Hamiltonian (2.36) essentially describes two coupled oscillators. It clearly conserves the
wave vector and so each term of the sum can be diagonalized separately. In the 3-D case,
each contribution is quadratic and it is diagonalized exactly via the so called Hopfield trans-
formation of the operators [Hopfield 58, Quattropani 86]. The resulting eigenmodes are the
lower and upper polariton states, shown in Fig. 2.1. At k = 0, the upper polariton and the
longitudinal exciton mode are degenerate, proving that the exciton-photon coupling is exactly
equal to the LT splitting at k = 0. For increasing wave vectors, the lower polariton mode tends
to the unperturbed transverse exciton mode, while the upper polariton mode tend to the elec-
tromagnetic mode. These results are in perfect agreement with the experimental observation,
shown in Fig. 2.2. In particular we stress that, due to momentum conservation, each polari-
ton state is given by the superposition of one exciton state and one photon state. Since only
one photon mode contributes to the polariton mode, the coupling with the electromagnetic
field does not introduce any additional dissipation. Consequently polaritons are stationary
modes propagating in the crystal. This fact suggests the interpretation of polaritons as hybrid
exciton-photon quasi-particles.

It is useful to make some additional comments about the form of Hamiltonian (2.36). First
of all, we notice that the term proportional to A? is typically negligible because the matrix
elements Sy are much smaller than ), since {2y ~ 10 meV, while Ef* ~ 1.5 eV. Second,
the Hamiltonian (2.36) contains anharmonic terms, which do not conserve the number of
excitations. These terms are responsible for two phenomena, i.e. the intrinsic squeezing of
the polariton states and the renormalization of the HF vacuum state. The squeezing is the
possibility to reduce below the quantum limit the uncertainty on the phase or on the amplitude
of a quantum field, whereas the fluctuations in the other observable become larger than this
limit. Squeezing of bulk polaritons has been predicted [Schwendimann 93] but never detected
experimentally. The renormalization of the vacuum state is due to the fact that the true
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Figure 2.1: Calculated dispersion of the lower and upper polariton and of the longitudinal

exciton mode (solid lines), compared with the dispersion of the transverse exciton mode (TE)
and of the photon mode (PM). Here kg = nE§™/hc. From Ref. [Savona 97].
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Figure 2.2: Experimental polariton dispersion for excitons in CuCl, obtained by two pho-
ton absorption (circles) and hyper-Raman scattering (dots and crosses) and reported in Ref.
[Honerlage 85].

ground state of Hamiltonian (2.36) includes virtual processes where exciton-photon pairs are
spontaneously created and reabsorbed.

In this subsection we have seen that the bulk polariton modes are the eigenmodes of a
system of two coupled oscillators. In the next subsection we will see how the polariton physics
can be recovered in two-dimensional artificial structures.
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2.1.4 Microcavity Polaritons

In this subsection we discuss how the polariton physics is translated to the two-dimensional
case. We will show that, due to the artificial confinement of both the exciton and the photon
fields in two dimensions, microcavity polaritons can be considered as 2-D bulk polaritons.

In the previous subsection, we have seen that the conservation of the total wave vector k
imposes that each exciton mode be coupled only to one photon mode. On the other hand,
in a quantum well the total wave vector in not conserved and, consequently, an exciton with
in-plane wave vector k| can be created via the absorption (or recombine via the emission) of
a photon with the same k| but many different values k. of the orthogonal component of the
wave vector. Thus, the discrete quantum well exciton modes are coupled to the continuum of
photon modes. The resulting polariton mode is a resonance in a continuum. Since for a bare
quantum well the density of photon modes at varying k. is very broad, the exciton-photon
coupling reduces to a small perturbation, only introducing the finite lifetime of the excitations,
and the polariton modes result to be a small correction of the exciton modes [Andreani 94].

Clearly the reason for this behavior resides in the different dimensionality of the quan-
tum well excitons, which are two-dimensional, and the electromagnetic field, which is three-
dimensional. Therefore, to recover the bulk behavior in a 2-D situation, it is necessary to reduce
the dimensionality of the electromagnetic field, i.e. to confine photons in a two-dimensional
structure.

The simpler way to realize such a confinement is by means of a Fabry-Pérot resonator. The
general idea is that in a ideal Fabry-Perot resonator, the light is perfectly reflected by two
parallel mirrors and an electromagnetic mode with in-plane wave vector k| and frequency w
can exist inside the cavity only if the component k. satisfies the condition

2
\/ %nQ — k2= k. = NLic , (2.38)
where n.4, is the refraction index and L. the width of the cavity. Due to the condition (2.38),
only discrete values of k, are admitted. In this situation, the one-to-one coupling between the
exciton and the photon modes would be essentially restored, because only one discrete photon
mode could possibly result enough close in energy to the exciton resonance. Nevertheless,
this ideal condition can be only approached in real systems, but never achieved, because real
mirrors are never perfectly reflecting. Consequently, for real systems, the component k, of
the confined electromagnetic field has to be always considered as a continuous variable, taking
values accordingly to a distribution peaked around the cavity resonance.

The most efficient realization of the ideal mechanism of confinement is given by semiconduc-
tor based microcavities, whose scheme is sketched in Fig. 2.3. In a semiconductor microcavity
the mirrors are constituted by stacks of semiconductor A/4-layers with alternating refraction
indices (interferential mirrors), called Distributed Bragg Reflectors (DBR). The number of
these mirrors is usually different for the left and the right side of the cavity. Between the
mirrors a dielectric material, called “spacer” layer is present. Finally, one or more semicon-
ductor quantum wells can be embedded inside the microcavity. The crucial property of these
structures is that the reflectivity R of DBR is very close to one within a large frequency re-
gion, called stop-band, resulting in finesse factors F = 7R/(1 — R)? up to 5000 [Stanley 94].
Consequently the cavity resonance can be very sharp. In addition, the microcavity can be de-
signed in order to have the optical mode roughly in resonance with the quantum well exciton
mode. The resulting resonances of these structures are microcavity polaritons, experimentally
characterized for the first time in 1992 [Weisbuch 92]. The finite width of the cavity resonance
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Figure 2.3: Schematic of a quantum well (vertical red solid line) embedded in a planar semicon-
ductor microcavity. The spatial dielectric profile n(z) in the z-direction is also shown. Notice
that, as displayed in figure, real semiconductor microcavities usually have the substrate on one
side and the air on the other side.

is directly related to the finite lifetime of the photon, the photon mode becoming stationary in
the limit of a delta-peaked resonance. Correspondingly, the microcavity polariton has a finite
radiative lifetime 7, because it has a finite probability to transform into a photon outside the
cavity. The finite polariton lifetime is an intrinsic property in the 2-D case. On the other
hand, in the 3-D case, the polariton lifetime is an extrinsic property depending either on the
degree of impurity and on the finite size of the system.

Microcavity polaritons has been studied either within a semiclassical treatment [Chen 95,
Savona 95] and by means of a quantum theory allowing for the diagonalization of the total
Hamiltonian of the coupled exciton and radiation fields [Savona 96]. Since this latter is the
more useful picture for our purposes, here we only sketch the quantum approach, reporting the
main steps and results of the theory developed in Ref. [Savona 96] and discussing the crucial
implication on the possible condensation of polaritons.

In order to write the exciton-photon Hamiltonian, we need to express the electromagnetic
modes of the microcavity. By using the translational symmetry, the electric field with in-plane
wave vector k|| and frequency w is written as

Ex(r, 2) = & U (2)e™I™, (2.39)
where € is the polarization vector. The function Uy satisfies the Maxwell’s differential equation

PUE) 4 (G- ) vt =0, (2.40

where £(z) indicates the space-dependent dielectric constant. The equation (2.40) admits two
degenerate orthogonal solutions Ujx, k., J = 1,2, for each of the two polarizations. Here and
in what follows, we do not indicate the polarization dependence. The cavity electromagnetic
modes enter in the microcavity polariton Hamiltonian which, in perfect analogy with the bulk
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Hamiltonian Eq. (2.36), reads

~

HXC = HX+ﬁC+ﬁznt

— Z Eﬁfcblt“ b + Z Z/

2\1/2 At A
+ kz) Cj,ku,kzcjzkﬂykz

k =12 Ky
+ Z Z/ dk.$Y;, k) .kz ;ku ke T Gtk )(b k) — ka)
Jj=12 ¥k
+ Z Z/ dk.dk; SJ 7K k=, k’( }Lk” ke T CJ7 ky, kz)( ;f A + C]’,k” k') (2 41)
33" K
where QO -
j’kH’kz j/vk vklz
Sjvjlka’kaklz = Elfia:c ” (242)
I
and
o
Qj,ku,kz = % kaH (0)61( " Hev dZUj,kH,kz (Z)p(Z) ) (24?))

where i, is the dipole matrix element between the valence and the conduction band in an
elementary cell, defined as in the bulk case, Fy, (r) is the exciton envelope function in the
plane of the quantum well and p(z) = f.(2) f,(2) is the exciton envelope function in the growth
direction [Andreani 94].

Notice that in Hamiltonian (2.41) we treat the sum over k, in the integral limit, in order
to highlight the presence of the continuum. As in the bulk case, the last term of Eq. (2.41),
proportional to the square of the electromagnetic field, is very small if compared to the exciton-
photon coupling term [Savona 94, S; ik k..k ~ €21 k./1000, and it will be neglected in the
following analysis. In addition, here we omit the polarization indices, thus restricting to the
case of materials where the interaction doesn’t introduce polarization mixing, as in the case
of heavy-hole excitons in GaAs-based semiconductors. We finally stress the point that the
exciton-photon interaction explicitly conserves the in-plane component of the wave vector k.
Thus we can separately find the resonances for each value of k;.

The resonances of Hamiltonian (2.41) can be obtained by means of the Green’s function
formalism. Indeed, the propagator of an exciton with wave vector k) obeys the Dyson equation

(ret) By = ! 9.44
Gy (E) E — Eg° 4 ihy, — Xy (E)’ (244)

where we have included an imaginary part Ay,, modeling the nonradiative exciton broadening
due to all the possible dissipation mechanisms, and the self-energy is

2ho(|k > + £2)"2

2 z

Ak, () =l 3 / 191 s~ e T (2.45)
]7 ,2 z

The two complex poles £ = Ellg‘ P of Gl(:“et)(E) correspond to the lower and upper polariton
modes.

The dispersion relation of the polariton modes can be written analytically, as a function
of the reflectivity of the DBR [Savona 96]. This is possible because the Maxwell’s equation
(2.40), for DBR mirrors, defines a Sturm-Liouville problem, whose solutions have a form which
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allows to express analytically the result of the integration over k,. Nevertheless, we leave aside
the exact solution, because we are more interested in deriving an approximated solution in a
very compact form, useful for further applications.

Starting from the exact solution, it is possible to show that the self-energy hX, (E) has a
complex pole approximately at £ = hwﬁH — iY., where

Cc

huiy = h—([ky|” + (K)?)12, (2.46)

cav

with k’,go) = 7/ L., is the energy of the cavity photon mode and

c (1 —+VR)?
ncaU(Lc + LDBR) 2\/?{
is the cavity mode linewidth, Lpggr being an effective length estimating the dephasing across

the DBR mirror. Therefore, we can expand hi (E) in Laurent series around its complex pole.
In this way, the dispersion relation for polariton modes is reduced into the compact form

(2.47)

hv.=h

(E = B&e +iv.) (B — hwg +1i7.) = Q% (2.48)

where the quantity h{2g thus defines an effective exciton-photon coupling strength. It is possible
to show [Savona 97| that

CFO 1+ V R
Qg ~ h , 2.49
i \/ncav(Lc + LDBR) 2\/ R ( )
where o Frere
s ~
hlo = ———|F(0)*| ey - &/? (2.50)

is the exciton radiative linewidth at ky = 0, for a bare quantum well [Andreani 94]. It turns
out that usually the linewidths are much smaller than the effective coupling strength. Indeed
typical values are Ay, ~ 1 — 100 peV and hy. ~ 0.1 — 1 meV, while 2 ~ 2 — 15 meV.
Therefore we can interpret Eq. (2.48) as the secular equation associated to the Hamiltonian of
two coupled oscillators

H =" EZbbi + hoy &+ hQp Y (bléx + hec.), (2.51)
k k

thus recovering the same physics of bulk polaritons, with the exception that now polaritons
have a finite radiative lifetime.
The two solutions of Eq. (2.48) are

1 1 2
Ellsl(“p) =3 f(ﬁc + hwfcu — (e + %)} F \/FL?Q% + 1 [Eﬁ’H“ — hwf{u — (e — %)] . (2.52)
In Fig. 2.4, we show the real (a) and the imaginary (b) parts of Ellf P using the parameters,
hQ2r = 4 meV, hy. = 0.66 meV, Ay, = 6.6 ueV, and for zero exciton-photon detuning. The
largest effect of coupling is at k = 0, where the energy splitting between the lower and the upper
polariton states is maximum. On the other hand, for large wave vectors, the lower polariton
tends to the exciton mode while the upper polariton tends to the photon mode. At k =0,
the lower and the upper polariton have the same linewidth (the equality is the consequence
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Figure 2.4: (a) Energy dispersion of lower (solid line) and upper (dash-dotted line) microcavity
polaritons, compared with the dispersion of the exciton (dotted line) and the cavity photon
(dashed line) fields. (b) Imaginary part of the energy of the two polariton, the exciton and the
cavity photon modes.

of the zero detuning). For increasing wave vectors, the linewidth of the lower polariton tends
to the exciton one, while the linewidth of the upper polariton tends to the cavity photon one.
Since the imaginary part of the modes determines the lifetime of polaritons along the energy
dispersion, we can conclude that the lowest energy polariton state has a lifetime shorter than
the lower polariton excited states. This fact has important consequences in the problem of
polariton condensation, because it will deplete the ground state population under steady-state
non-resonant pumping, the so called relaxation bottleneck.

In this subsection we have seen that the concept of polariton can be extended to two-
dimensional artificial structures confining both the exciton and the photon field, i.e. semicon-
ductor quantum wells embedded in a microcavity. We have shown that the physics of 2-D
polaritons is the physics of the damped coupled oscillators. However, up to now, we have
overlooked an important aspect of the exciton and polariton problems, i.e. the presence of
two-body interactions. In the next subsection, we will see how two-body interactions can be
included in our description of the microcavity polariton system.

2.1.5 Effective two-body interaction

In this subsection, we will address to the problem of the exciton two-body interactions, focusing
on the 2-D case. We will discuss how an effective interaction Hamiltonian for microcavity
polaritons can be obtained.

We have shown via Eq. (2.25) that, for low and moderate density regimes, excitons follow
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a quasi-Bose statistics. However, a picture in terms of ideal Bose quasi-particles would be
extremely oversimplified for the exciton gas, for two crucial reasons. First, Coulomb interaction
acts between the components of different excitons. This interaction is responsible for the
exciton-exciton scattering and for the formation of the bound singlet state of two excitons, i.e.
the biexciton [Hanamura 77]. Second, excitons are composite particles, as shown by Eq. (2.21),
without a defined statistics. Indeed, the fermionic components of the exciton obey the Pauli
exclusion principle. Therefore it is not clear if the deviation from the Bose statistics can be
included as an effective interaction in a bosonic exciton Hamiltonian. Here we do not discuss
in detail this very complicated problem. In fact, two difficulties are present. First, exciton
has to be represented as a Bose particle in a consistent way. Second, the nature of composed
particle has to be formally written as two-body interaction terms.

There exist works claiming for the formal impossibility of writing a bosonic exciton Hamilto-
nian, because it would be intrinsically not-Hermitian [Combescot 02]. Nevertheless, many dif-
ferent approaches [Stolz 81, Rochat 00, Okumura 01, Ben-Tabou de Leon 01, Zimmermann 07]
have suggested that, at low and moderate densities, excitons can be correctly described by
means of an effective bosonic Hamiltonian, provided that the saturation terms arising from
Pauli exclusion are properly included. All these works agree on the final formal expression of
the effective Hamiltonian, the only differences residing in the quantitative values of the matrix
elements. Focusing on the 2-D case, the exciton field b (to simplify the notation, here and in
the following equations k represents the in-plane wave-vector) is considered as an exact Bose
field, i.e. o

[brc, bly] = G - (2.53)

Correspondingly the effective interaction Hamiltonian, accounting either for the exciton-exciton
scattering and for the coupling with an electromagnetic field, can be written in the general
form

ﬁint - -[;[x + ]:Isa (254)
where .
- S s s
Hy= o kzk%vx(k, K, )bl bl obirbi (2.55)

is the 2-body exciton term arising from the Coulomb interaction and the Pauli exclusion and

. 1 PO
Hy=— > ik K, @) (bl g brebic + hc.) (2.56)

kk'q

is the term arising from the coupling with the electromagnetic field. Here A is the system size.
We notice that the contribution H, is entirely due to the fermionic saturation. Furthermore
the Pauli exclusion also enters in the determination of the contribution ]:.lz Both terms are
made by a direct and an exchange part [Rochat 00]. In Hamiltonian (2.54) we have omitted
the spin. For the full expression accounting for the spin degree of freedom we refer to Ref.
[Ben-Tabou de Leon 01, Zimmermann 07].

The term H, describe the Coulomb scattering of two excitons. Having omitted the spin,
here we limit to treat the repulsive interaction in the triplet channel, while we are neglecting
the spin-flip processes [Zimmermann 07] and the scattering in the singlet channel, which is
responsible for the biexciton bound state. Nevertheless we expect that these two latter effects
are of minor importance in the diluted regime that we are considering.

The term H, is a mixed term, describing two excitons scattering in one photon and one
exciton. This term can be interpreted as the first order correction to the linear exciton-photon
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coupling entering in Eq. (2.51). As a matter of fact, if we take the mean field limit

Z;Lijk’ ~ 5k7k/nﬁ s (257)
I;TS becomes R R
H,~ny Y (b + hec.), (2.58)
k

where n, = ), ni is the total exciton density. Therefore we notice that (2.58) represents a
correction, scaling with the exciton density, for the linear coupling term. We will see later
on that the matrix elements v, are negative, thus resulting in a net decrease of the effective
exciton-photon coupling, for increasing exciton density.

Though the formal expression (2.54) is almost universally accepted in literature, the quanti-
tative value of the scattering matrix elements, v, (k, k', q) and v,(k, k', q), and their momentum
dependence, are strongly model dependent. The Hartree-Fock approximation [Hanamura 77,
Stolz 81, Zimmermann 88, Ciuti 98] of the Coulomb exciton-exciton scattering problem is
known to be very poor. In particular, since screening effects are neglected, the effect of
the exciton density is overestimated. Moreover, in the HF limit, the normalization of the
exciton wave function is not consistent with the composite nature of excitons [Okumura 01].
A formal tool which allows in principle the derivation of an effective bosonic Hamiltonian at
all orders is the Usui transformation [Hanamura 77|, resulting in the direct correspondence
between the space of fermion pairs (electrons and holes) and the bosonic space of excitons
[Rochat 00]. Nevertheless, the Hamiltonian resulting from such a bozonization scheme is usu-
ally truncated, by means of a perturbation approach, thus recovering again the HF limit
[Rochat 00]. Several approaches beyond the HF approximation have been recently developed.
In Ref. [Ben-Tabou de Leon 01] the Hamiltonian is obtained within a systematic expansion in
small exciton density. In Ref. [Okumura 01] the Heitler-London (HL) approach is applied to
the exciton case, in order to account for a consistent normalization of the exciton wave func-
tion. Finally, in Ref. [Zimmermann 07] the HF and HL approaches are extended, including
the van der Waals effect.

We mention that, in experiments, it is very difficult to evaluate the correct value of the
exciton-exciton scattering matrix element, because only indirect evidence is obtained. For
example, one can measure the density dependence of the excitonic blue-shift. For this reason,
and since for our present purposes we are only interested in a rough quantitative estimation
of the scattering matrix elements, we adopt here the HF result obtained in Ref. [Rochat 00].
Within this approximation, in the zero-momentum limit, the matrix elements tend to the
values

v,(0,0,0) = v, = 6Eya3 (2.59)
hQ
0(0,0,0) = v, = —— i (2.60)
sat

where FEj, is the exciton binding energy, ag is the exciton Bohr radius, h{2g represents the
linear contribution to the coupling strength between the exciton and the photon oscillators,
and ng; = 7/(16ma?) represents the density at which the total coupling oscillator strength
vanishes (see Eq. (2.58)).

Effective interaction for microcavity polaritons

The total exciton-photon Hamiltonian describing the microcavity polariton system can now
be obtained by combining Eq. (2.51) and Eq. (2.54). Since in many realistic situations only
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the lower polariton branch is significantly populated, it is very useful to derive an effective
Hamiltonian restricted to the lower polariton field. This can be obtained straightforwardly, by
first diagonalizing the linear Hamiltonian Eq. (2.51) and then by writing the non-linear terms
in the polariton basis, by means of the Hopfield transformation Eq. (2.66). By collecting the
terms describing scattering processes inside the lower polariton branch, we obtain the effective
two-body interaction term

H, = Zvl(:ll()/ﬁig_t,_qﬁ]t/_qﬁk’ﬁk> (2.61)
kk’q
where
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+ ’A‘Xk’—Q(‘Ck+Q|Xk+Xk+q‘0k’)Xk’7 (2.62)

is the polariton-polariton scattering matrix element. Here the two contributions arising from
the exciton Hamiltonian, written in the limit of contact interactions, are properly weighted by
the Hopfield coefficients giving the exciton/photon amount in the lower polariton state, i.e.

P = Xichie + Ciclc - (2.63)

We notice that both contributions are positive and so the interaction inside the lower polariton
branch is repulsive. On the other hand, we mention that the interaction between the lower
and the upper polariton branches can also be attractive, if the saturation contribution is larger
than the Coulomb contribution [Ciuti 04].

We stress the point that the derivation just performed is strictly valid only at zero exciton
density, because the energy and the structure of the polariton states are affected by interactions
and so they depend on the density. Therefore, the use of the polariton basis obtained via the
diagonalization of the linear Hamiltonian is generally not self-consistent. We will see in Chapter
3 how the interacting polariton problem can be solved in a self-consistent way.

It is worth mentioning that polariton-polariton interaction can produce parametric phe-
nomena, clearly observed in experiments. A brief review of the main experimental signatures
of the polariton optical parametric oscillator will be given later on. Now we give a simple
theoretical picture of the physics behind the parametric mechanisms. A parametric process
is possible when an optical excitation (the laser pump) acting resonantly on the polariton
system, produces the macroscopic occupation of a single quantum state. As we will see in
the next section, when this condition is accomplished, the system manifests coherence and a
classical field can be safely adopted to model the coherent part of the Bose field. Within this
approximation the resonantly pumped polariton mode can be expressed by px, = P, where P
is a classical amplitude. Thus the Hamiltonian restricted to the non-pumped states becomes

ar, =% (Ell(p + QU|P|2> P + (p2 ST hL bl + C.) , (2.64)

k kk’q

where we assume a constant interaction matrix element v and we neglect the interaction terms
linear in P, consistently to our assumptions. In Eq. (2.64), we see that the macroscopic
occupation of the pumped mode, results either in a shift of the energy levels, and in processes
where two polaritons in the pumped mode scatter in the two states k, — q and k, + q. Due
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to the peculiar dispersion of the lower polariton (see Fig. 2.4), a set of k values fulfill energy
and momentum conservation in the parametric scattering. In particular, the value of kj, can
be chosen in such a way that the resonant processes have k£ = 0 as final state. Then, for P
larger than a threshold value P, a macroscopic population arises also in the k = 0 state, as
a result of the stimulated scattering originated by the bosonic nature of polaritons. Starting
from this point, the system behaves as a parametric oscillator between the pump state, the
signal state at k = 0 and the idler state at 2kp,. The polariton parametric oscillator shows
that the physics of the polariton system is that of an interacting Bose gas out of equilibrium.

In this subsection we have seen how an effective interaction Hamiltonian can be written
for microcavity polaritons. This result completes our introduction of the problem. In the
next subsection, we will summarize the results obtained in this section, extracting the simplest
theoretical framework to describe microcavity polaritons.

2.1.6 Minimal theoretical approach to microcavity polaritons

Making use of the results reviewed in the previous subsections, we have now a very efficient
tool to describe the physics of microcavity polaritons and we can focus on the crucial properties
of this system.

The exciton and the photon field are treated as Bose fields. The exciton-photon coupling
in a microcavity structure is described by the 2-D Hamiltonian of two coupled oscillators

Hy = Z Eii’LBk + Ei@Lék + hQg Z(@Lék + h.c.), (2.65)
k k

where ei(c) = hwi(c) gives the unperturbed exciton (cavity photon) energy, k labeling the in-
plane wave vector of the state, while h{lp represents the effective coupling strength between
the two oscillators. The two distinct normal modes of Hamiltonian (2.65), El(f) 1 = Ip, up, are

the lower and the upper polaritons, defined via the Hopfield transformation

A = X b+ CPé (2.66)
where p(lp “P) thus define a Bose operator destroying a lower or an upper polariton, respectively.

The mutual Coulomb interaction between excitons, and the fermionic nature of the com-
ponents of the exciton, are accounted for via an effective two-body interaction for the exciton-
photon system. Within this contribution, the total exciton-photon Hamiltonian reads

H = H,,+ H, + H,, (2.67)
where 4 v
g -z Z bk+q K/ — bklbk (268)
kk’

is the exciton-exciton interaction term while

i o

= b, b by + h. 2.69
nsatAl;Ck+q k'—q"k k+ < ( )

represents a saturation term for the exciton-photon coupling.
Hamiltonian (2.67) can be written in the non-interacting polariton basis defined by Eq. (2.66)
and restricted to the lower polariton branch to give

Hlp - Z Ekpkpk +5 Z Ukk/pk+qpk’ qpk’pk ) (270)
kk’
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i.e. an effective two-body Hamiltonian for the lower polariton.

Microcavity polaritons have an intrinsically finite lifetime, related to the quality factor of
the microcavity. This means that a polariton population in the state k decays after a finite
time 75. This decay can be accounted for in the rate equations for the polariton populations

?

i (£) = == ([DkOp(), H]) = e (1) (2.71)

where the decay rate 1 = 7. I can be safely related to the photonic Hopfield coefficient and
the cavity photon lifetime, v = |Ci|*7..

The problem of the polariton finite lifetime deserves some additional comments. In Fig. 2.4(b)
we see that polaritons in the lowest energy state, i.e. lower polaritons at k = 0, have a life-
time much shorter than the lower polariton in the excited states. Therefore, when a polariton
population is created* somewhere along the polariton dispersion, two different regimes are
possible. If the relaxation mechanisms and/or the coupling with an external bath are fast
enough, taking place on a time scale much shorter than the lifetime of the lowest state, the
occupation of the different states reaches the equilibrium distribution (i.e. the Bose distribu-
tion) before polaritons decay. In the opposite case, if all the mechanisms bringing the system
towards equilibrium are not fast enough, the polariton decay will occur while the system still
lies in a non-thermal configuration. We observe that, also in the case of complete polariton
thermalization, the system is never in an equilibrium regime, because of the population decay.
Nevertheless, the population distribution can be made stationary, in a steady-state regime, i.e.
when a continuous pumping balances the polariton decay. Within this regime, and if com-
plete polariton thermalization is possible, the system can reach a stationary quasi-equilibrium
distribution.

It is well known that all the relaxation mechanisms are very poorly effective within the
low-energy region of the polariton dispersion and that, for the actual microcavity samples,
the radiative lifetime is too close to the typical relaxation time scale to allow a complete
thermalization, although recent improvement in this direction have been recently reported
[Deng 06]. In particular, the coupling between polaritons and the bath of acoustical phonons
is very inefficient, giving rise to a sort of bottleneck in the relaxation process [Tassone 97]. At
the same time, the typical dispersion curve of the lower polariton is responsible for an abrupt
decrease of the density of states at small wave vectors, resulting in the suppression of the
polariton collisions inside this energy region [Doan 05]. While the first property contrasts the
thermalization at the sample temperature, the second property hinders the evolution towards
an internal equilibrium.

We anticipate that all these features are crucial for the technical realization of polariton
BEC. Nevertheless, before discussing the possibility of polariton BEC, and the properties of a
polariton condensate, it is instructive to remind the fundamental concepts related to the BEC
physics. This will be the argument of the next section.

4From a practical point of view, the polariton system is connected with the environment via photon ab-
sorption and emission. A polariton population can be created only by optically pumping the system. If the
pump is in resonance with the polariton energy dispersion, polaritons are directly created in this region of the
dispersion. If the pump is strongly non-resonant with the polariton modes, it creates an initial particle-hole
excitation at high energy, which rapidly relaxes along the lower polariton dispersion at large wave-vector, via
the emission of optical phonons. [Tassone 97]
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2.2 Bose-Einstein condensation

In this section we review the history of BEC, focusing on the properties of the weakly interacting
Bose gases in three and two dimensions. Since several reviews devoted to this problem have
been written [Griffin 95, Dalfovo 99, Leggett 01, Zagrebnov 01, Pitaevskii 03], here we sketch
the basic facts which are relevant for the problem of polariton BEC and refer to these reviews
for a more complete account of the experimental and theoretical facts behind BEC.

2.2.1 Basic concepts related to the BEC physics

It was in 1924 that S. N. Bose introduced a new statistics to describe the energy distribution
of the quanta of light [Bose 24]. In the same year, A. Einstein suggested that a novel phase
transition could occur for a gas of identical bosons, i.e. particles obeying the Bose statistics
[Einstein 24, Einstein 25]. This phase transition consists of the macroscopic occupation of a
single microscopic state by an ensemble of these particles. To give an intuitive picture of this
phenomenon, in analogy with a classical phase transition, Einstein interprets the formation
of a macroscopic population as the condensation of a part of the gas. This picture has the
important advantage of immediately suggesting that the condensate and the non-condensate
population manifest very different behaviors.

Ideal Bose gas

Accordingly to the Bose statistics, a gas of N free noninteracting Bose particles in thermal
equilibrium at temperature 7' is distributed in the wave vector space as

1

e =1 (2.72)

Nk = nB(ek) =
where €, = h?k?/(2m) is the energy-momentum dispersion of free particles, and 3 = (kgT)™'.
The total number of particles

> Ne=N, (2.73)

determines the chemical potential p in (2.72). We see that p is always smaller than the lowest
energy eigenvalue €p, so as to guarantee that the occupation be finite. Moreover, if ;1 approaches
the value ¢y, the occupation of the lowest level Ny becomes increasingly large. On the other
hand, the total occupation in the excited states depends on the density of states, which in
turn depends on the dimensionality of the system. For an isotropic system, in the limit of very
large size V = L9, we can treat the wave vector as a continuous variable, obtaining

N=> N — (%)dﬂd /ldkkdlng(e(k))

L\ Qy (2m\? [’
“(a) T () fomettmin. e

where Q; =1, Qg = 2@ Y7 for d > 1, and the prime indicates that the value k = 0 is excluded
from the integration. If d = 3, the density i = N /V remains finite, at finite temperature, also
for 4 = €y. This means that, in the three-dimensional case, the density in the excited states
cannot exceed a finite saturation value n./V = n(T, 4 = €p). This is no more valid for d = 1,2,
because, in that case, the density in the excited states n increases indefinitely for u — €.
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Therefore, for a three dimensional system and for a fixed temperature 7', two situations
are possible. If the total density n is smaller than n., the normalization condition (2.73)
is satisfied for p < €, also in the thermodynamic limit N,V — oo with N/V = constant.
Consequently the occupation of the lowest energy state Ny is of order of one and Ny/V — 0
for V. — oo. If on the other hand n is larger than n., the exceeding density occupies the
lowest energy state in order to fulfill the normalization condition (2.73), and u — €, in the
thermodynamic limit. In this latter case, the population in the lowest state is an extensive
quantity proportional to the system volume and the density Ny/V remains finite also in the
thermodynamic limit. Consequently, the ratio Ny/N has a finite value, independent on V|
which is called the condensate fraction. It is important to point out that, for a finite volume
V and a finite number of particles N, the chemical potential is strictly smaller than ¢, even
when the system is condensed. It is only in the thermodynamic limit that u = €.

We notice that n, = n.(T') ~ T%? depends on temperature. Therefore, for a fixed density
n, there exist a critical temperature T, such as, if T" < T, then n > n.(T) and BEC occurs.
For an ideal Bose gas, the critical temperature is given by

27rh2< n )2/3

T, =
ki 2.612

- (2.75)
The idea of critical temperature is generally more useful than the one of critical density, because
it can be extended to treat interacting systems. Indeed we will see that the description in terms
of weakly interacting gases only apply to very diluted systems, i.e. for densities na® < 1, where
a describes the scattering length. Therefore, the concept of critical density can be translated to
weakly interacting systems only if, at a given temperature, n.a® < 1. Furthermore, particles
with repulsive interaction probably cannot condense at very high density, due to the too
strong repulsion. Nevertheless, the idea of critical density is very useful to treat the problem
of polariton BEC, and, for this reason, we have introduced the BEC problem in this way.

By inspection of Eq. (2.74), we see that, for uniform one-dimensional and two-dimensional
systems, the transition discussed above is not possible, because the density in the excited
states is not limited for 7' finite. However, in presence of trapping, the density of states is
modified with respect to what assumed in Eq. (2.74). In this case, the macroscopic occupation
of a single state might be restored also in system with reduced dimensionality [Bagnato 91,
Ketterle 96, Lauwers 03]. We will return to this point later on.

Off-Diagonal Long Range Order

For a system of finite size, the above considerations seem to suggest that BEC is just charac-
terized by the quantitative criterion that ng be significantly larger than ny.o. This naturally
leads to the question whether BEC makes any sense for a finite size system. Now we will see
that there is actually a more stringent criterion for BEC, which can be easily extended to non
uniform, and eventually interacting systems. To this purpose, we consider a system, whose
Hamiltonian admits a set of single-particle eigenstates |j), defined by the energies E; and wave
functions ¢;(r). We introduce the field operator

p(r) = do(r)io + Y ¢;(r)a; (2.76)
j#0

where a; is the operator which destroys a particle in the state |j) and it obeys Bose commutation
rules. The field operator describes the quantum field of the many-body Bose system. Now we
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evaluate the one-body density matrix

n(r,r') = (@) = Nogi(r)do(r') + Y Ny (r)e; (r')
J7#0
= ngo(r,r’) + n(r,r’) (2.77)

where we have used the orthonormality of the wave functions, and the average (---) is taken
over the equilibrium state of the system. This quantity describes the correlation between the
particle quantum field at two different positions in space. The first contribution in Eq. (2.77)
corresponds to the condensate occupation. Obviously this contribution remains finite over dis-
tances s = |r —r’|, comparable to the extension of the condensate wave function. On the other
hand, the contribution of the sum tends to zero at large distance, because the contributions of
the different states, thermally occupied, cancel out. This is evident, if we consider again the
uniform system, i.e. ¢;(r) = L™32e%* and k; = (27/L)j, in the thermodynamic limit. In
that case, above T, ng is vanishing and it is easy to show that the one-body density matrix
decays with the distance s according to an exponential law, with a characteristic length given
by the thermal De Broglie wavelength

Ar = +/27h?/(mkgT) . (2.78)

This means that for a normal gas, spatial correlations survive only on the scale Ay, whereas at
larger distance the system is uncorrelated as expected for a classical gas. On the other hand,
below T, the one-body density matrix n(r,r’) tends to the finite value ng, in the limit s — oo.
Since the one-body density matrix is equal to the Fourier transform of the momentum distri-
bution n(k) of the particle density, this property is related to the fact that the k-distribution

below T, becomes
\% 1

(27)3 €PB09 — 1

i.e. manifests a delta-peak at k = 0. This result allows to state the Penrose-Onsager criterion
for BEC [Penrose 56, Pitaevskii 03], stating that a Bose-condensed system is characterized
by a finite long-range one-body correlation. This feature, called Off-Diagonal Long Range
Order or ODLRO, is the true peculiar property of BEC, at the origin of spectacular effects
like the matter-wave interference and amplification [Pitaevskii 03]. Since Eq. (2.77) can be
written for any system, after having defined a proper single-particle spectrum, the Penrose-
Onsager criterion can be extended to confined and interacting systems. However an important
restriction exists for confined systems. Indeed, in order to adopt the occurrence of ODLRO as
the signature of BEC in a finite size system, we need that the thermal De Broglie wavelength
Ar be much smaller than both the size of the system and the extension of the condensate wave
function. In addition, it has been recently proven that BEC could occur without formation of
ODLRO, in systems where disorder results in a very small localization length [Lenoble 04].

In this subsection we have discussed a general criterion for the definition of BEC, which
can be applied to both the ideal and the real interacting gas. In the next subsection we will
see that interactions are responsible for important features manifested by a Bose condensate
and we will show how they can be accounted for.

N(k) = Nod(k) +

(2.79)

The weakly interacting Bose gas

In this subsection we will see that the ideal gas picture is inadequate to describe the crucial
properties of BEC and we will discuss the standard approach developed to treat the interactions

34



in a Bose condensed system. Here, we specialize the analysis to the three dimensional system
with repulsive interaction.

We have seen in subsection 2.2.1 that the condensation of a uniform free Bose gas is a pure
statistical result, not modifying the parabolic free-particle spectrum of the system. This fact
results in the instability of the condensate against local density fluctuations. Indeed any ex-
ternal perturbation, producing a local inhomogeneity, would induce single-particle excitations,
thus depleting the condensate and reducing the coherence (see Eq. (2.77)). Such a property is
directly related to the incompressibility of the free gas and it is no more valid for real, inter-
acting, systems. Indeed, interactions are responsible for a finite compressibility, resulting in a
restoring force against inhomogeneities [Nozieres 89, Pitaevskii 03]. Therefore the inclusion of
interactions is necessary to correctly describe the properties of the Bose condensed system.

A microscopic approach to the problem of interacting Bose system has been developed only
in the case of weak interaction or in the case of very diluted gas. Within these two limits,
the treatment can be safely restricted to only include two-particles scattering processes. In
particular, the interaction between condensed and non-condensed particles can be accounted
for by means of a perturbation scheme [Nozieres 89, Pitaevskii 03]. In addition, since in the
diluted regime only the long range part of the interaction potential is relevant, the results
can be obtained in function of the two-body T-matrix (which, for small momenta, tends to a
constant term proportional to the s-wave scattering amplitude), without any dependence on the
peculiar form of the interaction potential [Nozieres 89, Pitaevskii 03]. This procedure is valid
in three dimensions. On the other hand, in two dimensions, the two-body energy dependent
T-matrix does not tend to a constant, in the small momenta limit, and it vanishes at zero
energies [Morgan 02]. Therefore, in the 2-D case, a self-consistent energy renormalization of
the single-particle states is required [Lee 02] to apply an analogous procedure.

We consider the general system described by the two-body Hamiltonian

H=-— / dry)t(r) ZZ d(r) + % / drdr'v(r — v')01 (r)f (') ()i (x) (2.80)

expressed in terms of the field operator (2.76) and where v(r —1’) is the microscopic two-
body potential. The exact time evolution of the field operator is thus given by the Heisenberg
equation

00 = 00, 8] = =200 + [ o - r)i)ieie) . sy

ih
2m

We anticipate that, for a fully Bose condensed system (Ny ~ N), this exact operator equation
tends to a classical limit [Pitaevskii 03]. Indeed, since BEC occurs with the formation of a
coherent field, (see Eq. (2.77)), and a coherent field can be approximated by means of a classical
field, the field operator can be written as

D (x) = o(r) + 64 (r), (2.82)

i.e. as the sum of an extensive classical part 1(r) = N'/2¢y(r), playing the role of the order
parameter for the Bose-Einstein phase transition, and an incoherent part represented by the
quantum operator 52,@(1“). Thus, within the assumption (2.82), and by neglecting the incoherent
contribution, we obtain the Gross-Pitaevskii equation [Pitaevskii 03]

h2V?

2m

do(r) + gN|¢o(r)[*po(r) . (2.83)

zﬁ%qbo(r) = —
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Here, we have introduced the effective contact interaction strength g = 4wh%a/m, related to the
s-wave scattering length a of the true interaction potential.> The quantity g is the first order
term of the expansion of the energy-dependent two-body T-matrix in the low-momenta limit
[Morgan 02]. Eq. (2.83) describes the dynamical evolution of the condensate field. Although
the determination of the solutions of (2.83) is not trivial, some properties of the condensate
field can be easily extracted. The stationary solution of this equation is found by substituting
the evolution ¢g(r,t) = e/ ¢y(r,0), defining the condensate energy p. In particular, if the
condensate field is uniform,

w= /dr’v(r —1')N|go(r')]* = gN|go(r)*. (2.84)
Consistently with our assumption that all the N particles are in the condensate, the energy
of the system is U = u/N and thus p is nothing else than the chemical potential, u = g—%. We

stress the important point that, while for the ideal gas the chemical potential is determined by
the constraint over the number of particles Eq. (2.73), for the condensed interacting system it
is fixed by the interaction energy. Another important result can be immediately derived from
the Gross-Pitaevskii equation (2.83). In fact, also in a non uniform geometry like a finite box
with Dirichelet boundary conditions ¢o(r)|s = 0, the lowest energy solution of Eq. (2.83) turns
out to be quasi-uniform everywhere apart for an interval of length

h

* g 5
close to the boundaries. The quantity £ is called healing length and it represents the max-
imal length over which a local inhomogeneity can be admitted by interactions [Nozieres 89,
Pitaevskii 03]. Obviously, this quantity tends to infinity for the ideal system. This result shows
that interaction forces the condensate field towards uniformity.

We now return to the assumption (2.82). It reposes on the fact that the population of the
condensate microscopic state is much larger than one: Ny > 1. If this is the case, the order
of application of the two Bose operators ag and dg over the many-body state of the system

|®(N)) is of minor importance because

ol ®(N)) = /No(No — D|®(N)) 2= /No(No + 1)|®(N)) = aoag|(N)) . (2.86)

This means that the commutator [ao, dé] = 1 can be neglected with respect to terms propor-
tional to the condensate population. In other words, the condensate operator,

ao — N2, (2.87)

is treated as a complex number and, correspondingly, the condensate field as a classical field.
This ansatz was introduced by Bogoliubov [Bogoliubov 47|, in order to allow the perturbation
treatment of the interaction and describe the behavior of the non-condensed particles, whose
role has been neglected up to now. To this purpose, Bogoliubov introduced another ansatz for
the model Hamiltonian. Actually, since the kinetic energy of the condensate state k = 0 is zero,
any interaction term would result too large to be treated as a perturbation of the ground-state

5We stress the point that the Gross-Pitaevskii equation, i.e. the substitution of the quantum field operator
by its classical limit, is only valid if expressed in terms of the contact interaction g. Indeed, the effect of the
short range contribution of a realistic potential v would not be correctly described in the present classical limit.
On the other hand, the condition of diluteness of the gas allows to characterize the interaction potential only
via the resulting s-wave scattering length [Pitaevskii 03].
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energy of the non-interacting system. The solution proposed by Bogoliubov was a truncation
of the full Hamiltonian (2.80). The idea is that the effect of the mutual interaction inside the
condensate (which gives the larger contribution of the interaction energy) can be included in
the energy of the ground state, as U, gs = gNZ/2V , while the interaction of condensed particles
with particles out of the condensate can be treated as a perturbation. In terms of the excited
single particle operators, and by using the relation (2.87), the Bogoliubov Hamiltonian for a
uniform system then reads

2
v 9 a2 9 o m
k#0 k#0

12k N
{ s —alan+ L 2afin+ (afaly + hc)] } L (2.88)

where the relation a}a)dagiag ~ N2—N ok al dy has been used, while the second term arises from
the expression of the scattering length in the second order Born approximation [Pitaevskii 03].
Since the Hamiltonian (2.88) is quadratic, it is diagonalized via the linear transformation

fe = Uil + VoG, (2.89)

where ay are Bose operators and, consequently, |ux|*> — |vk|*> = 1. In terms of the operator éy
the Hamiltonian (2.88) takes the diagonal form

H=Uy+ Y Exdfn, (2.90)
k40

where

2 27.2
g o0 G5 5 m 1 h°k
Up=—=N"+=— —+= Ex —gn —
07 oy +2"sz+22(k AL,
k0 k40

) , (2.91)

is the energy of the ground state, corrected by the inclusion of the interaction with the non-

condensed particles, Uy = Ugs + Ugls, while

1/2
B2\ 2
%rﬁkz + ( ) ] (2.92)

EL =
k 2m

is the excitation spectrum of the interacting system. The diagonalization fixes the amplitudes
of the Bogoliubov transformation (2.89)

(2.93)

h2k2/2m+gni 172
2FEx 2 '

Uk, V—x = |: a

This result shows that the Bose weakly interacting system can be described in terms of free
quasi-particles, described by the operators ay. Correspondingly, the ground state of the system
coincides with the vacuum of quasi-particles. The Bogoliubov spectrum (2.92) is shown in
Fig. 2.5. We notice that for small wave vectors, k < £~ where £ is the healing length defined
in Eq. (2.85), the excitation spectrum of the system is linear, instead of parabolic as in the ideal
case. In other words, the long wavelength excitations are phonon modes, Fy_ .o = ck, where
¢ = hy/gn/m is the corresponding sound velocity. The linear energy-momentum dispersion of
the excitation spectrum is at the basis of the superfluid behavior of a Bose fluid, as pointed out
by Landau [Landau 41] and then demonstrated by Bogoliubov within the present microscopic
approach. Indeed, if a Bose condensate moves with a velocity vs < ¢ inside a pipeline, all the
accessible excited states Fy have an energy larger than the energy that the condensate and the
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Figure 2.5: Energy dispersion of the Bogoliubov quasi-particle excitations (solid red line) com-
pared with the single-particle dispersion (dashed black line). The dotted blue line highlights
the linear behavior at low wave vectors, k < £, where Fy = ck, with ¢ = hy/gn/m.

walls could possibly exchange. Consequently particles cannot be promoted to excited states
and the energy dissipation in the flow of the Bose gas is prevented [Bogoliubov 47, Nozieres 89,
Pitaevskii 03].

The Bogolubov transformation (2.89) shows that a particle out of the condensate can be
produced either by creating a quasi-particle (with probability |uy|?), or by destroying a quasi-
particle (with probability |vk|?). This fact has a deep physical meaning which will become
more clear when we will consider the particle propagator, in the next subsection. However,
two consequences of this feature are already clear. First, the particle populations differs from
the quasi-particle ones. Indeed, since quasi-particles are the true excitations of the system,
their occupation follows, per definition, the Bose distribution at the given temperature, i.e.

Ny = (4l én) = np(Ey) . (2.94)

On the other hand, the particle occupation does not follow a Bose distribution as in the ideal
case but it is given by

Ny = (afan) = (Juie|® + [o]?) Nic + |ue]?, (2.95)

where we have used the relations |vy|? = |v_k|? and Ny = N_y, valid for an isotropic system.
In particular we notice that the particle population in the excited states is finite also at zero
temperature and equal to |vy|?. This quantity represents the amount of quantum fluctuations,
depleting the condensate also at zero temperature via the relation [Pitaevskii 03]

No = N=) M (2.96)
k#£0
8
— N<1—— na3> (T'=0).
3m

Second, since the ground state of the system corresponds to the vacuum of quasi-particles, then
it doesn’t corresponds to the vacuum of excited particles. This means that particles in the
excited states partially contribute to the ground-state configuration of the system. The amount
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of this partial anomalous contribution is again determined by the amplitudes vy, which for this
reason are usually called the anomalous components, the normal components uy representing
on the other hand the normal behavior of the excitations. Like the phonon-like spectrum, also
the anomalous components are relevant only for long wavelength excitations, as displayed in
Fig. 2.6.

— 2
ju|

— v

Figure 2.6: Bogoliubov components |vi|?, Jux|?, as a function of the rescaled wave vector k€.
The anomalous component becomes negligible for k > £71.

It is interesting to notice that the contribution of the excited particles to the one-body
density matrix, 7n(s), manifests a different distance dependence, according to whether the
fluctuations have a quantum or a thermal origin. To highlight this behavior, we display in
Fig. 2.7 the quantity 7(s)/n(0) for the weakly interacting gas at 7' = 0 and for an ideal gas at
finite temperature T' < T,.. We see that, for the thermal fluctuations regime, the characteristic
length is the De Broglie length Ap and the resulting 7V (s) ~ s~! at large distance, while,
for the quantum fluctuations regime, the characteristic length is the healing length ¢ and
M (s) ~ 572,

To conclude this brief review of the Bogolubov approach, we just mention that, within the
Bogoliubov approach, the total energy of the excited non-condensed particles is a well defined
quantity. On the other hand, the kinetic and the interaction contributions to the total energy
are not well defined in the Bogoliubov limit, due to the behavior of the populations Ny at large
momenta, i.e. Ny ~ k=%

Symmetry breaking

We point out that the Bogoliubov ansatz implies that the expectation value

~

((r)) = o(r), (2.97)

has a well defined phase in the complex plane. The Hamiltonian of the system, however, does
not depend on the phase of the order parameter. This broken gauge symmetry is analogous
to that emerging from the semiclassical theory of a laser [Mandel 95, DeGiorgio 70, Scully 99,
Kocharovsky 00]. A contradiction then arises, as the Heisenberg uncertainty principle states
that the expectation values of the phase and of the number of particles cannot be simultane-
ously determined. The point is that the number of particles in the excited states is no more
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Figure 2.7: Contribution 7n(s) of the non-condensed particles to the one-body density matrix
n(s) = ng+ n(s), for an interacting gas at 7' = 0 (red solid line) and for the ideal gas at finite
temperature (black dashed line). The two functions are renormalized to their value at s = 0.
The distance is rescaled to the healing length ¢ for the interacting case and to the De Broglie
wavelength A\p for the ideal case.

conserved by the Bogoliubov Hamiltonian, as clearly shown by the last two terms of Eq. (2.88).
Since the condensate acts as a classical reservoir of particles, excited particles can be created
or destroyed by the coupling with this reservoir. In this respect, Eq. (2.96), fixing the number
of particles in the condensate and in the excited states, has to be interpreted as a relation
between expectation values.

Density and phase fluctuations of the condensate are at the origin of the phenomenon of
phase spreading [Lewenstein 96, Svidzinsky 06, Sinatra 07]. We will return to this problem in
subsection 2.2.3.

Reduced dimensionality

For the purpose of the present work it is essential to extend our discussion to systems of
reduced dimensionality, in particular 2D systems. In one or two dimensions, for the ideal
gas, the critical density N.(T') diverges for any finite temperature. This amounts to the fact
that BEC only occurs at T = 0 [Pitaevskii 03]. A more general result holds for interacting
particles where, according to the Hohenberg-Mermin-Wagner theorem [Hohenberg 67], the
thermal fluctuations of the phase of the order parameter destroy the condensate at any finite
temperature. As a result, in two dimensions, the one-body density matrix does not approach
a constant value at large distance, but vanishes according to a power law [Pitaevskii 03].
This behaviour is still significantly different from that of a normal gas and can be shown
to still exhibit the phenomenon of superfluidity below a finite superfluid critical temperature
T. [Popov 72]. This superfluid-normal transition is however not allowed, as another critical
phenomenon occurs at temperatures lower than 7T, in a 2D system. In two dimensions, a
compressible fluid can form free vortices by spending a finite energy. This is not possible
in three dimensions where a vortex-line costs a macroscopic energy proportional to its length.
Unbound pairs of vortices in two dimensions, however, can only be spontaneously created above
a critical temperature Tgxr which characterizes the so called Berezinskii-Kosterlitz-Thouless
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transition [Kosterlitz 73]. Above Tggr the presence of free vortices results in a nonvanishing
friction and the superfluid behaviour disappears. For a two dimensional system the relation
Terr < T. is always fulfilled and the KBT mechanism is the one determining the transition
from a superfluid to a normal phase [Pitaevskii 03].

Spatial confinement

Spatial confinement cannot be neglected when studying the properties of BEC of real diluted
atomic gases, as these systems are experimentally prepared in spatial magnetic trap used to
increase the gas density. Therefore all the experimental evidence is relative to confined sys-
tems. The theory of uniform weakly interacting Bose gases, reviewed above, gives only a
qualitative understanding of the physics of these systems. Nevertheless, the nonuniform Bose
gas is theoretically described in terms of a quantum-field theory under the same assumptions
as in the spatially uniform case but including the effect of a confining potential. To the lowest
order in the density of noncondensed particles, this theory reduces to the Gross-Pitaevskii
equation (2.83), with an additional term describing the confining potential. This theory suc-
cessfully describes the spatial and time evolution of the condensate wave function. The main
features of BEC, such as a collective excitation spectrum and superfluidity, are also found
in the case of confined Bose systems, and confirmed experimentally [Steinhauer 02]. Spatial
confinement has also important consequences on the thermodynamics of BEC, modifying the
critical temperature and the condensate fraction.

In reduced dimensionality, confinement has a more dramatic effect on the basic properties of
BEC and its role is still poorly understood. An ideal trapped one or two-dimensional Bose gas,
with a finite number of particles, differently from its spatially uniform counterpart, is expected
to undergo BEC at finite temperature [Ketterle 96]. The Hohenberg-Mermin-Wagner theorem
in fact applies only to uniform systems. Physically, a confined system has a dramatically
reduced density of states and therefore the effects of phase fluctuations, responsible for the
absence of BEC, are quenched at low enough temperature. In presence of interactions the
physics of BEC in two dimensions is not well understood. From the theoretical point of view,
it has been rigorously proven that BEC can occur in an interacting two-dimensional system,
provided a finite gap in the one-particle spectrum exists [Lauwers 03]. On the other hand, the
experimental observation of the crossover between the BEC regime and the regime dominated
by the spontaneous formation of vortices typical of the KBT transition was recently reported
[Hadzibabic 06].

In this subsection, we have seen that the fundamental concepts related to the physics of
BEC can be discussed on the basis of the standard Bogoliubov approach. However, in order
to get a deeper understanding of the BEC features and to give a more realistic description
of the phenomenon, theories going beyond the Bogoliubov limit have been developed. In the
next subsection we will briefly discuss these theories, showing how some tricky aspects of the
Bogoliubov results have a very clear physical meaning.

2.2.2 Equilibrium theory beyond the Bogoliubov approach

In the previous subsection we have briefly discussed the physics of BEC in different geometries.
We have also reviewed in some details the Bogoliubov description of the weakly interacting
Bose gas in three dimensions. In this subsection we aim to show how the Bogoliubov description
can be obtained as a particular limit of a more general quantum field theory approach. To this
purpose, we will follow the analysis contained in Ref. [Griffin 96]. The description obtained in
this way will allow a better understanding of the BEC properties.
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Dyson-Beliaev formalism

We remind that the one-particle propagator is defined by the Green function

~ ~

G(1,2) = G(ry,t1,ra, 1) = <w(r1,t1)w(r2,t2)> , (2.98)

where the symbol (...) represents the simultaneous operations of time-ordering and averaging
[Fetter 71].° The free propagator, i.e the one-particle propagator in absence of interactions, is
Go(1,2). Thus, in a general way, the one-particle propagator G(1,2) obeys a Dyson equation

G(1,2) = Go(1,2) + Go(1,3)2(3,4)G(4,2) (2.99)

where we integrate over the intermediate time-spatial coordinate rs 4,%34 and where ¥ repre-
sents the one-particle self-energy, resulting from interaction. The explicit expression of ¥ in
terms of the one-particle propagator and of the interaction strength depends on the approxi-
mation considered.

In particular, for the interacting Bose gas, below the critical temperature, it is very hard to
write a consistent expression for the self-energy 3, essentially because the usual perturbation
approaches fail. As already explained, this is due to the macroscopic occupation of the ground
state.

The most suited way to solve this problem is to adopt the separation (2.82) of the field
operator in a symmetry breaking classical term describing the condensate plus a quantum
operator describing the fluctuation field, i.e. the presence of particles out of the condensate.
Within this approximation, the standard quantum field theory scheme is then restricted to
only treat excited particles. Accordingly to this separation, which automatically imposes the
non-conservation of the number of the excited particles, we need to define the new set of
propagators of the excited particles

A Gu G )
Gap(1,2) ={ ~ A , 2.100
8(1,2) ( ot Con (2.100)
where ) A A
Gi11(1,2) = (60(r1, 1)1 (r2, 22)) (2.101)
and Ga5(1,2) = G11(2,1) are the normal one-particle propagators, while
Gha(1,2) = (5 (r1, 1) (vs, 1)) (2.102)

and Gy (1,2) = [G12(1, 2)]* are the anomalous propagators describing a pair of excited particles
scattering in or out of the condensate, respectively. The Green’s function matrix G obeys a
matrix Dyson equation, the so called Dyson-Beliaev equation [Shi 98|

Go(1,2) = Go(1,2)005 + Go(1,3) 80, (3,4)G 5(4,2) (2.103)

where iaﬁ is a 2-by-2 self-energy matrix. The diagrams corresponding to Eq. (2.103) are
shown in Fig.2.8. As before, the explicit expression of ¥, depends on which approximation

6In this subsection, for simplicity, we prefer to leave unspecified if the propagator is taken for real times, or
for imaginary times. Indeed, the following analysis can be specified to be applied to both the cases with minor
changes. Real time Green functions describe real propagation and they are used to describe the response of the
system. For imaginary time Green functions, the average symbol represents the finite temperature average, in
the Matsubara formalism. In this case the propagator gives the thermodynamical and the spectral properties
of the system.
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Figure 2.8: Diagrams corresponding to the Dyson-Beliaev equation for excited particles. Thick
lines represents self-consistent one-particle propagators, while the thin lines are the free prop-
agators.

has been considered. It is useful to consider the uniform case. In this limit Eq. (2.103) can be
expressed in the energy-momentum space as

Gop(k, E) = Go(k, E)das + Go(k, E)Sa (k, E)G. 5(k, E). (2.104)

For a given k, the four propagators éaﬂ(k, E) share the same poles, which correspond to the
energies F) of the excitations with respect to the condensate.
Eq. (2.103) is coupled to a time independent equation satisfied by the condensate complex

field ¥o(1) = o(r1,t1) = e_mt/hiﬂo(rl, 0), i.e.

IRV
2m

0af1) = [0 Vi) 1) + 22,50, 2)a(2) (2.105)
where W(1) = (¢o(1) v§(1))7, while the 2 by 2 matrix X° represents the self-energy of con-
densed particles. Eq. (2.105) determines the energy of the condensate p, which plays the role
of chemical potential, and which enters in the definition of the unperturbed Green’s function
Go 272
0  hV
h—+ —L V., Go(1,2) = 6(ry —r2)d(t —t3) . 2.106
it Tl Vi) + ] Gol1.2) = 600~ )5 - 1 (2.106)
Therefore, in order to obtain a consistent one-particle excitation spectrum, the condensate
problem (2.105) and the excitation problem (2.103) have to be solved within the same approx-
imation. Quite surprisingly, using the same approzimation does not correspond to adopting
the same form for the self energies X° and ¥..
Before discussing which general requirements must be satisfied by the self-energies, it is
interesting to consider the Bogoliubov limit for the uniform gas already discussed before.
Within such a limit, the solution of Eq. (2.104) is

~ E+ e+ gng
Gu(k,E) =
n ) E? — ex(ex + 2gno)
Cha(k, E) = 9T (2.107)

E? — ex(ex + 2gn0)

where €, = h?k?/2m is the energy of a free particles, and pu = gng. Therefore, the normal and
anomalous one-particle propagators have two poles, at £ = +F, = +(e + 2egng)'/?, where
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Ey coincides with the Bogoliubov quasiparticle energy derived in Eq. (2.92). Furthermore, the
spectral function [Fetter 71]

Ak, E) = 2ImG1y (k, E) = ud(F — Ey) — v20(E + E\), (2.108)

where the amplitudes uy, vx are the same as in Eq. (2.93). This simple result allows to clarify
an important point of the BEC physics. In fact, the creation of a non-condensed particle in
a Bose condensed system involves a coherent weighted combination of creating an excitation
and destroying an excitation. This is due to the many-body nature of the ground state, whose
energy is minimized by the presence of non-condensed particles, also at zero temperature (see
Eq. (2.96).

The Hugenholtz-Pines theorem and the different approximations beyond Bogoli-
ubov

The exact solution of the coupled problem (2.105)-(2.103) would verify two properties. First,
the two-particle propagators, derived from the single-particle ones, would fulfill conservation
laws, as the continuity equation. Second, it would result in a gapless one-particle spectrum
at zero wave vector, i.e. Fy_,o = 0. Indeed this latter property has been proven to rigorously
hold for the interacting Bose gas at equilibrium [Hugenholtz 59, Hohenberg 65, Griffin 96]
and represents the so-called Hugenholtz-Pines theorem, which is a consequence of the Ward
identities [Boyanovsky 02].

It is possible to show that a theory verifies the conservation laws if it is possible to obtain
the self-energies X0 and X by deriving a functional W[¥, G| [Griffin 96]

Yaps(1,2) = L
5Ga7ﬁ(172)
1 OW
Sas(L2¥s(2) = S o (2.109)

where repeated indices are summed. On the other hand, a theory verifies the Hugenholtz-
Pines theorem if the self-energies for excited particles, expressed in the energy-momentum
space, verify the relation

211<k:O,E: )—Zlg(k:O,E: ):,u, (2110)
or, equivalently [Griffin 96], if

~ N
£00(1.2) = [Zag;;;v (3)

(2.111)

We see that this latter is an additional condition different from (2.109). Consequently, a theory
can be conservative but not verify the Hugenholtz-Pines theorem or viceversa. Unfortunately,
it is very hard to get approximated theories satisfying simultaneously these two properties
[Hohenberg 65, Griffin 96]. This is essentially due to the absence of a well-established renor-
malized perturbation theory for Bose systems [Hohenberg 65].

Manifestly, the Bogoliubov theory is not conservative, due to the intrinsic asymmetry of the
condensate and non-condensate self-energies. However it is gapless, as shown by Eq. (2.92). A
self-consistent way to extend the Bogoliubov result by including the effect of excited particles is
to apply the self-consistent Wick decomposition procedure to the many-body terms appearing
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in the equation of motion of the field operator. The mean field limit of such a procedure is
the so called Hartree-Fock-Bogoliubov (HFB) approximation, which essentially corresponds to
adopt factorizations like

0T (1)5¢h(2)0¢(3) = (34T (1)5¢(2))0¢(3) 4 (50T (1)64)(3)) 54 (2) +(59(2) 64 (3)) 63T (1), (2.112)

for the products involving the fluctuation field. For a uniform system, the self-energies in the
HFB approximation result

iﬂa):&1—mg(m%m)zmﬁ)), (2.113)

and
E%L%zéﬂ—%g(n&ﬂ+mh) m(ry) ), (2.114)

where

n(r) = |¢o(r)]® +0(r) = [¢o(r)]® + Gul(r,t,xr,t7)
m(r) = ¥i(r)+m(r) =3(r) + Gua(r, t,r,t). (2.115)

It is easy to see that the HFB approximation is conservative but it does not verify the
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Figure 2.9: Diagrams corresponding to the HFB self-energy 3. Thick lines represents self-
consistent one-particle propagators, while the wavy lines represent the condensate and the
dashed lines the interaction. In 3y, we recognize the direct and the exchange term of interac-
tion. The second term in Yo is neglected in the HFP limit.

C>

Hugenholtz-Pines theorem, thus the one-particle spectrum manifests a gap for k — 0.7 Ac-
tually, to obtain a gapless theory via the Wick’s procedure, it is necessary to retain also
second order contributions in the interaction, i.e. to adopt the so-called Beliaev approxima-
tion [Shi 98]. This suggests that the pathology of the HFB approximation arises from an
inconsistent treatment of the order of perturbation. Indeed, the anomalous contribution gm,
which appears as a first order contribution in the bare perturbation scheme, is in reality of
second order because, at the first order, the non-diagonal propagators G1y are vanishing. This

"Nevertheless, the HFB approximation, and in general all the conservative approximations, results in a
gapless density fluctuation spectrum, given by the poles of the two-particle propagators. In particular, the
HFB density fluctuation spectrum coincides with the result of the Beliaev second order theory. However, a
consistent theory, like the Beliaev theory, predicts the same spectrum for the one-particle and the two-particle
excitations, as a general result of the spontaneous symmetry breaking [Hohenberg 65].
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results in an over counting of this contribution in the HFB approach. The second order terms
present in the Beliaev theory are then required to cancel out this over counting.

Though the second order Beliaev theory solves the problems of consistency, it is of hard
applicability in realistic cases and at finite temperature [Shi 98]. For this reason several cor-
rections of the HFB approximations have been suggested, in order to establish a mean field
approach, satisfying the Hugenholtz-Pines theorem and extending at finite temperatures the
basic Bogoliubov treatment. The most natural way to obtain this result is to perform the so
called Hartree-Fock-Popov (HFP) limit of the HFB approach, consisting in totally neglecting
the dangerous m terms in the self-energies [Griffin 96]. This approximation is demonstrated to
be a good approximation for temperatures not too close to the critical temperature 7., both
above and below T,.. In particular, the spectrum of excitations is in good agreement with
the experimental one for T' < 0.57,. [Dodd 98, Liu 04]. Clearly, although not conservative,
the HFP approximation has the important advantage of resulting in a physical gapless one-
particle spectrum accounting for the presence of non-condensed particles. In this respect, HFP
is an improvement of the Bogoliubov theory, and maintains a clear interpretation in terms of
interaction diagrams.

Other attempts have been made to derive by hand a mean field theory both conservative
and gapless. We just mention two possible way to realize this idea. The first consists in
choosing a proper form for the functional T/V[éY , Wo], which guarantee the fulfillment of relations
(2.109) and (2.110) [Kita 06]. This corresponds to partially, but not completely as in HFP,
cancel out the effects of the anomalous contribution. However, within this kind of approach,
the form of the self-energies is not unique. Furthermore, and more problematic, the BEC
transition results as a first order one and the chemical potential is not minimized in the
condensed regime [Andersen 04]. The second approach consists in introducing a different
chemical potential for the condensed and the non-condensed particles (the spectral gap can be
seen as a consequence of assuming the same chemical potential for the two phases) [Yukalov 06].
The condensate chemical potential is then fixed by the requirement that the number of particles
in the condensate be fixed. This is an interesting approach pointing out the problem of the
conservation of the number of particles. However the assumption of two distinct chemical
potentials has not a clear physical meaning for a system at equilibrium. Furthermore, imposing
a fixed number of particles in the condensate, seems to be in contradiction with the phase
coherence of the condensate.

Finally we just mention a crucial problem arising in the description of BEC around the
critical temperature. Indeed, since BEC is a second order phase transition, the real interaction
is expected to vanish at the critical temperature, where correlations are expected to become
infinite. Clearly, in order to capture this feature, it is necessary to develop a theory accounting
for the temperature dependence of the scattering length. Essentially for this purpose, an
improved version of the Popov approximation has been realized, treating the interaction in
the T-matrix description [Shi 98]. This corresponds to substitute the two-body interaction g,
which is temperature independent, with a many-body renormalized interaction, which depends
on the energy of the scattering particles and on the temperature. Within the approaches of this
kind, it is in principle possible to analyze the properties of the system close to the transition
temperature, and to predict the dependence of the critical temperature on the density of the
system. However, there is not a general full agreement between the different theories developed
up to now.

In this subsection we have briefly discussed the properties and the open problems related
to the theoretical description of the condensation of an interacting Bose gas at thermal equi-
librium. In the next subsection, we will see that a Bose condensate can be realized in a true
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equilibrium regime only in few cases, while usually BEC is obtained in metastable regimes with
a finite lifetime. In these conditions, the dynamics of condensation, and in particular the rate
of growth of the condensate, become crucial in determining if thermalization and eventually
BEC can occur during the metastable regime. In the next subsection, we will briefly discuss
non-equilibrium issues, which are of great interest also for the polariton system.

2.2.3 Condensate growth and non-equilibrium

In the previous subsections we have analyzed the features of an interacting Bose gas, in terms of
theories assuming thermal equilibrium. Nevertheless, in real systems, thermal equilibrium limit
is possible only if the condensate formation is sufficiently rapid. In this subsection we will focus
on this point, discussing the problem of condensate growth and evolution. In particular we will
give a brief review of the main theoretical approaches used to study this subject. Furthermore,
we will discuss the most relevant features related to the deviation from equilibrium.

It is important to remind that, for a Bose gas, condensation is expected to occur well
below the temperature of solidification. For these systems, the thermal equilibrium thus coin-
cides with the solid phase. In current experiments on trapped Bose gases, the solidification is
prevented only because the gas is very diluted, and isolated from any material wall via mag-
netic trapping. Indeed in these conditions three-body collisions and consequently molecular
recombination are strongly inhibited. Therefore, BEC of a trapped gas can only occur in a
metastable regime, whose lifetime is of the order of seconds, depending on the efficiency of
molecular recombination [Pitaevskii 03]. The possibility of reaching thermal equilibration and
eventually BEC in this period of time, depends on the relaxation rate, which in turn depends
on the efficiency of two-body collisions.

Many theoretical efforts have been made to describe the dynamics of condensate for-
mation [Kagan 92, Stoof 92, Griffin 95, Jaksch 97, Gardiner 97b, Gardiner 98, Schmitt 01,
Mieck 02, Pitaevskii 03]. A generally accepted result for a weakly interacting Bose gas in
three dimensions is that BEC is achieved in more than one step, involving different timescales
[Kagan 92, Stoof 92, Griffin 95, Gardiner 98]. In the pioneering works about this subject, two
different and in some respect opposite, growth mechanisms were been proposed. Kagan et
al. [Kagan 92] suggested the initial formation of a quasi-condensate, characterized by the sup-
pression of density fluctuations, but manifesting strong phase fluctuations and thus no phase
coherence. This would be the result of the initial global increase of the population in an ensem-
ble of low-energy states. Only in a second time, the population is expected to concentrate in a
single condensate state, thus resulting in the formation of long-range phase coherence. On the
other hand, Stoof [Stoof 92] suggested the idea of the nucleation of the condensate already in
the initial stage stage of condensation. In this picture, a seed of coherent field, stable against
phase fluctuations, is formed before the suppression of density fluctuations. Only in the second
stage, the condensate population grows according to kinetic equations and density fluctuations
are suppressed. In fact, the picture of Kagan et al. [Kagan 92| seems to be supported by
experiments [Ritter 07| and by the quantitative predictions of the quantum kinetic theory de-
veloped by Gardiner et al. [Gardiner 97b, Gardiner 98]. The main idea of this latter approach
is that of separating the spectrum into two energy regions. The high energy region represents
the levels occupied by the thermal vapor of incoherent atoms. These energy levels are assumed
to be thermally populated and not affected by the possible presence of the condensate. On the
other hand, in the low-energy region, the states can be strongly affected by the presence of the
condensate and form the so-called condensate band. The growth of the population within the
condensate band is determined by means of a kinetic theory, in terms of quantum Boltzmann
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equations modified by including the energy shifts induced by interaction. In particular, within
this theory, the equation describing the time dependence of the number Ny of atoms in the
condensate results to be

Ny = 2WH(No)[(1 — e’ No)=m)/kT) Ny 4 1] (2.116)

where (1°(Np) is the chemical potential of the condensate, determined in the spirit of the Gross-
Pitaevskii equation, yu is the chemical potential of the thermal vapor, u®(No) < u, and W+ is
an analytically known rate factor [Gardiner 98]. The growth dynamics predicted by Eq. 2.116
can be separated in three stages. In the first one, starting from Ny = 0, the condensate initially
grows at a finite rate. At the same time, the population in the other low-energy states also
increases, remaining comparable to Ny. The scattering rate which enters in this stage, in the
s-wave approximation, is

W ~ 4ma®/(7h?), (2.117)

where a is the characteristic scattering length of the interacting system. Since the scattering
rate is proportional to the mass and to the scattering length, the formation is thus inhibited
for very light particles or for very weak interactions. After this kinetic process has taken
place, we can argue that the system is still characterized by short-range correlation and large
phase fluctuations because the condensate density is vanishing. When Ny becomes larger than
one, the condensate growth becomes exponential, thus resulting in the relaxation of the phase
fluctuations and in the formation of a genuine condensate, according to the Penrose-Onsager
criterion (see Eq. (2.77)). Finally, for longer times, N, reaches its asymptotic equilibrium
value, correspondingly to the fact that the condensate chemical potential approaches that of
the thermal cloud.

We just mention that the subjects related to the condensate dynamics can also be treated
by means of non-equilibrium field theories starting from the formalism resumed in the previ-
ous subsection. These theories essentially apply the Kadanoff-Baym [Imamovié¢-Tomasovié¢ 99,
Nikuni 99, Walser 00], or the Keldish [Stoof 92, Boyanovsky 02] techniques to the Beliaev
theory of condensation, resulting in coupled kinetic equations for the condensate and the non-
condensate fields. However, these approaches seem to be more appropriate to treat situations
where the system is not too far from local equilibrium [Imamovié-Tomasovié¢ 99].

Furthermore, the quantum kinetic theory developed by Gardiner et al. [Gardiner 97b,
Gardiner 98|, has the interesting property of adopting a Number-conserving approach, i.e.
an approach which guarantees that the total number of particles is conserved [Gardiner 97a,
Castin 98]. We point out that this property is lost when the condensate field is treated as a
pure classical field as in the Bogoliubov ansatz Eq. (2.97) and the U(1) symmetry is broken. In-
deed, in this latter case, the number of condensed particles is no longer defined (the condensate
represents a classical reservoir). Therefore the number of non-condensed particles is not con-
served by the Bogoliubov two-body Hamiltonian, imposing the adoption of the grand-canonical
statistical ensemble. We remind that already Bogoliubov introduced an alternative approach,
preserving the U(1) symmetry of the Hamiltonian and thus not requiring the adoption of the
grand-canonical ensemble [Bogoliubov 48, Zagrebnov 01]. Clearly the number-conserving ap-
proach is equivalent to the symmetry-breaking one, in determining the thermodynamic prop-
erties of the system at equilibrium, like the quasi-particle excitation spectrum [Castin 98].
Nevertheless, it is more suitable for a quantum kinetic treatment of the condensate growth,
because it allows a clear distinction between particles and quasi-particles, which can be created
or destroyed without a modification of the number of particles [Gardiner 97a]. Furthermore
Number-conserving approaches allow a very clear description of other non-equilibrium dynam-
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ical features of BEC. We focus in particular on the problems of phase spreading [Castin 98]
and condensate instabilities [Castin 97].

The Bogoliubov theory corresponds to linearize the fluctuations around the mean value
of the field operator (where the mean value represents the classical condensate field). As
shown by Lewenstein and You [Lewenstein 96], this linearization procedure is valid only for
times shorter than a characteristic time 7.. Indeed, the amplitude of quantum fluctuations
diverges in time and it is comparable to the amplitude of the condensate field already for
t ~ 71.. This behavior can be interpreted as the quantum phase spreading of the condensate
phase.® Indeed, the symmetry breaking approach defines the condensate state as a coherent
state. However, a coherent state cannot be stationary, because the number of particles is not
well-defined. We stress the point that this is in principle true also for an ideal, non-interacting,
system [Svidzinsky 06]. At zero temperature, the effect of phase spreading is expected to be
maximum, because the fluctuation of the number of condensed particles Ny is minimum. At
finite temperature, the effect is expected to be reduced, because the fluctuations of Ny are
increased [Lewenstein 96]. The role of interactions in determining the phase spreading can be
understood simply by considering the Gross-Pitaevskii equation (2.83). If we assume that the
phase of the classical field ¢, is fixed at every time, and its evolution is given by (we omit the
spatial dependence for simplicity)

Bo(t) = e~/ Py(t = 0), (2.118)

then we cannot define a fixed number of particles N = N(t) entering in the GPE and conse-
quently the value of u. In other words, we can only define a probability distribution for the
values taken by p and thus for the subsequent evolution of the phase. Number-conserving
theories allow for a more proper interpretation of this phenomenon [Castin 98, Sinatra 07].
In fact, in the Number-conserving approaches the mean value of the field operator is always
considered as vanishing, and the quantity defining the time coherence of the condensed system
is the time correlation g;(r,r’,t) = G(r,¢,r’,0). If the number of particles in the condensate is
fixed, this quantity remains finite for t — oo, its amplitude being proportional to the conden-
sate population. If, on the other hand, we admit a poissonian distribution of the number of
particles in the condensate, centered at N, the dependence on time turns out to be [Castin 98]

gi(r, ¥ 1)~ Nett/he=t/278 g5 (1) o (') | (2.119)

for t(du/dN) < 1. Here, ¢y is the condensate wave function, whose dependence on Ny has
been neglected, p has been linearized around the mean value N and

h
" R (2.120)

This relation shows that the time coherence is expected to be lost for times larger than the
collapse time 7.. Since for typical experiments on trapped gases the value of 7. is much
longer than the period of observation, the effect of phase spreading does not affect current
measurements [Hall 98, Shin 04]. On the other hand, for BEC confined in a 3-D optical
lattice (where in each potential well a coherent superposition of states with different number
of condensed particles can be prepared), this phenomenon is clearly visible, strongly affecting
the time dependence of the phase correlation [Greiner 02].

8We just mention that the phase spreading of BEC can also depend on the coupling with the environment
[Graham 98].
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Another interesting application of the Number-conserving approaches is in determining the
dynamical response of a real condensed system under a time-dependent excitation [Castin 97].
In particular, within symmetry breaking theories, it is difficult to distinguish the condensate
instabilities with a physical meaning, from the mathematical instabilities due to the introduc-
tion of a classical field. For this reason, Number-conserving theories are expected to better
predict under which perturbations the condensate will be robust or, conversely, it will be un-
stable and rapidly depleted. We remind that in the Number-conserving theory the fluctuation
operator is defined by [Castin 98]

A(r,t) = \/Lﬁaw(r,w, (2.121)

where N is the total number of particles, aq is the condensate Bose operator and 51& describes
the non-condensate field (orthogonal to the condensate wave function ¢g). To determine the
stability of the condensate we need to know the time evolution of the density of non condensed
particles, which can be written using Eq. (2.121) as

Sp(r,t) = (50T (r, 0)60(x, 1)) = (Af(r,t)A(r, 1)), (2.122)

having assumed Ny/N =~ 1. To this purpose, the fluctuation field is expressed in terms of Bose
quasi-particle operators & via a Bogoliubov transformation

A(r,t) = Z uj(r,t)a; + v (r, t)o?}, (2.123)
J

where the quasi-particle states |j) are orthogonal. It is interesting to remark that, in the atomic
BEC case, it is usually possible to assume that quasi-particles follow a Bose distribution also
in presence of a time-dependent perturbation. This kind of approximation, corresponding to
consider an instantaneous thermal rearrangement, allows to directly relate the time evolution
of 0p(r,t) to the time evolution of the modal functions u;, v;

5p(r,1) = 3 (u e, t)P + [y (e 0) s (Ey) + oy (. 6) (2.124)

J

We anticipate that this kind of approximation is not possible, in the case of microcavity
polaritons, due to their very long thermalization rate. For these reason, we will be adopt
a different, and in some respect opposite, approximation to study the polariton condensate
depletion in Chapter 4.

In this section we have reviewed the main concepts related to BEC and we have briefly
discussed the theories developed for the description of this phenomenon in the general case and
in the special case of trapped gases. We can now address the problem of BEC of microcavity
polaritons. In the next section, we will review the main experimental evidence, suggesting the
occurrence of this phase transition and we will discuss for which reasons polariton BEC is so
appealing from a theoretical point of view.
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2.3 Experimental evidence of polaritons BEC

The idea of BEC of excitons in solids was formulated about 40 years ago in the works by
Moskalenko [Moskalenko 62], Blatt [Blatt 62], and Keldysh and Kozlov [Keldysh 68]. Excitonic
BEC was investigated in several systems including bulk semiconductors [Griffin 95, Snoke 90,
Snoke 91, Fortin 93] (exciton molecules have also been considered for BEC [Peyghambarian 83,
Hasuo 93]), quantum wells [Lozovik 76, Zhu 95, Snoke 02a, Butov 02] and on more exotic
systems such as Hall bilayers [Eisenstein 04]. Excitons have basically two properties favoring
the possible occurrence of BEC. First, excitons have a very light effective mass, of the order
of the free electron mass. Provided thermal equilibrium can be obtained, according to (2.75)
this effective mass implies a very high critical temperature for BEC, i.e. T, ~ 2 K at typical
experimental densities n ~ 10'7 cm™ (for bulk excitons in CuyO crystals). Second, due to the
charge neutrality, the mutual repulsive interaction in the exciton gas is expected to be much
weaker than in the case of liquid systems like superfluid He [Ivanov 98]. Nevertheless, excitons
have a finite lifetime, ranging from a few picoseconds to microseconds, the longer lifetimes
being reached by orthoexciton in CuyO. As we have discussed in the previous subsection, BEC
requires a finite time for the long range correlations to build up, as observed in the atomic case
[Ritter 07]. In particular, the rate of formation of a quasi-condensate is proportional to the
mass and to the scattering length, as shown in Eq. (2.117). Therefore the light mass, allowing
a high critical temperature, has the disadvantage of resulting in a very long condensation time.
If this time is comparable or longer than the actual exciton lifetime, BEC cannot be achieved.
Exciton equilibrium BEC is therefore only expected in systems where excitons have a very long
lifetime, such as ortho- or para-excitons in CusO [Snoke 90, Snoke 91, Fortin 93] or indirect
excitons in coupled quantum wells [Snoke 02a, Butov 02].

We have seen in subsection 2.1.3 that, especially for bulk semiconductors, excitons cannot be
described without taking into account the strong coupling to the electromagnetic field, which
result in the polariton modes. In this respect, several authors have proposed the possible
occurrence of BEC of bulk polaritons [Hanamura 77, Comte 82, Griffin 95]. To discuss this
possibility, it is useful to consider the bulk polariton dispersion E} displayed in Fig. 2.1. The
energy-momentum dispersion of the lowest polariton branch deviates from a quasi-particle
behavior at low momentum, where the coupled modes show an anticrossing in the dispersion
curves. In this region of energy and momentum the polariton is almost totally photon-like
and the linear dispersion of photons holds. Consequently the group velocity of polaritons
approaches the light speed and the rate of polariton escape through recombination at the
system boundaries increases. A bottleneck effect thus arises at k ~ kg, as the rate of polariton
relaxation through acoustic phonon emission becomes slower than the radiative recombination
rate. In steady-state, a polariton population builds up around the bottleneck momentum region
k ~ ko, where photoluminescence is experimentally observed [Andreani 94]. It has been argued
by several authors [Keldysh 68, Hanamura 77| that the population buildup at the bottleneck
might give rise to BEC. At present, however, no experimental evidence of bulk polariton BEC
exists. At the same time, theoretical models of polariton dynamics and interactions seem to
suggest that the condensate depletion would occur in a too short time, thus preventing the
formation of coherence [Beloussov 96].

The situation is very different for microcavity polaritons, essentially for two reasons, as
suggested by the analysis carried out in subsection 2.1.4. First, the exciton amount of the
lowest energy polariton states (i.e. the amplitude of the Hopfield coefficients Xj) is non
vanishing even for & — 0 and it can be tuned by tuning the frequency of the cavity mode.
Second, the photon lifetime can be increased by increasing the quality of the mirrors. This
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two features make it possible to significantly reduce the relaxation bottleneck, thus allowing
the relaxation of the system up to the lowest energy polariton state. Starting from these
ideas, it was in 1996 that Imamoglu et al. [Imamoglu 96| first suggested that microcavity
polaritons might undergo BEC. In particular, this work was addressed to a possible realization
of an exciton laser, operating without population inversion. Indeed, while the realization of a
laser of photon-like polaritons requires to reach the usual population inversion regime, in the
opposite limit of exciton-like polaritons, the build up of the population in a single polariton
mode, with coherent single-mode emission, could be possible without population inversion.
The intermediate case was called the exciton-polariton laser. Although a rigorous definition of
this transition has never been given, it is considered the non-equilibrium BEC of polaritons.
The analysis made in subsection 2.1.4 also suggests that microcavity polaritons have other
advantages with respect to excitons as possible candidates for BEC. Indeed, the polariton
quasi-particle (quadratic) dispersion is consistent with an effective mass, close to k& = 0, of
the order of 107° times the free electron mass, i.e. much smaller than the effective mass of
excitons. Furthermore, the polariton mutual interaction is expected to be weaker than for bare
excitons, due to the photonic amount.

Before entering the discussion of the experimental findings, let us comment on the fact that
occurrence of polariton BEC is claimed exclusively when the system is nonresonantly excited
at high-energy. As we know, BEC is a process where a macroscopic quantum state exhibiting
long-range correlation spontaneously forms out of a (thermal) uncorrelated gas of particles. In
semiconductors, high-energy excitation of electron-hole pairs is followed by energy relaxation
through interaction with a thermal bath of phonons. The initial correlation induced by the
excitation laser is thus lost after interaction with the bath, and it can be reasonably assumed
that if a correlation is present after population buildup in the lowest energy levels, this is due
to the BEC mechanism. In particular, BEC requires the gas thermalization. In this respect, it
is important to point out that thermalization can be achieved in two ways, i.e. by the coupling
with a bath, and/or by two-body collisions. This latter mechanism is the most efficient for
polaritons, because the phase space available for final state in the process of absorption or
emission of phonons is very small in the low-energy region of the energy dispersion. As a
consequence, the observed polariton effective temperature (extracted by the occupation energy
distribution) is typically larger than the sample temperature [Deng 03, Kasprzak 06, Balili 07].

The resonant laser excitation of low energy levels can also be used to form and study
coherence properties of the polariton gas, which in this case can be considered as an example
of highly non-equilibrium Bose-FEinstein condensate. We will discuss this situation in subsection
2.3.1.

Just after the work by Imamoglu et al., it was generally accepted within the polariton
community that the required condition to observe polariton BEC would be the achievement of
bosonic final-state stimulation and the consequent population build up at £ = 0. In reality, as
we have seen in section 2.2.3, the population buildup is only the first step towards BEC, the
only clear signature of the occurred phase transition being the formation of long-range corre-
lations. Nevertheless, pioneering experiments have been addressed only to observe final state
stimulation and lowest energy occupation while only very recently the formation of coherence
has been experimentally investigated. For this reason, the existing experimental literature can
be classified in two categories:

e experiments reporting the transition to a strongly degenerate population distribution;

e experiments reporting the formation of coherence.
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Before discussing these experiments, we point out that all the experimental observations on
the polariton system are made optically. Indeed, the radiative decay of one polariton results in
the emission of one photon from the microcavity. Therefore, measuring the frequency and the
angle of emission of the outcoming photons directly gives the information about the polariton
energy and momentum, respectively. Furthermore, the spatial coherence of the emitted light,
which can be measured using an interference setup, is directly related to the coherence of the
decayed polaritons.

A clear evidence of final state stimulation has been reported by nonresonantly exciting the
system with a continuous pump both in the electron-hole continuum [Dang 98, Senellart 99,
Boeuf 00], and along the upper polariton branch [Bleuse 98]. In particular, in these experi-
ments, a nonlinear increase of the lower polariton emission as a function of pump intensity is
observed, above a threshold in the excitation intensity. This demonstrated that, in the steady
state regime, and above a density threshold, the relaxation mechanism becomes efficient enough
to provide a macroscopic occupation in the lowest energy state.

More recently, a first attempt to prove appearance of coherence was made by Deng et al.
[Deng 02, Deng 03]. This work, additionally to the nonlinear behavior shown in the previous
works, also reports on the simultaneous measurement of the polariton dispersion, the mo-
mentum and real-space profiles of the emission, and the second order time correlation of the
emitted field. The momentum and the spatial distribution of polaritons indicate a polariton
buildup at the lowest energy level and remind of the results obtained in the case of diluted atom
BEC [Anderson 95, Davis 95, Bradley 95]. When, however, the expected superfluid velocity
is estimated from the polariton-polariton interaction constant, consistent with the observed
blue-shift (see Eq. (3) of Ref. [Deng 03]), it turns out that the linear Bogoliubov dispersion
expected above BEC threshold would strongly deviate from the perfectly quadratic dispersion
which is actually measured up to a pump intensity 7.6 times its threshold value. This suggests
that polaritons recombine before the long-range order required for BEC is actually formed,
and a description in terms of a single-particle picture still holds. Moreover, results show that
above threshold the second-order time correlation at zero time delay slowly decreases from a
value of 1.8 slightly above threshold to 1.5 for a pump intensity 17 times larger than threshold.
On the other hand, in the case of BEC of a weakly interacting Bose gas, one might expect,
around the transition threshold, the rapid change of the second order time correlation from
the value of 2, expected for a thermal population, to a value slightly larger than 1, indicating
the formation of a coherent state, i.e. a behavior quite similar to that of a laser transition
[Mandel 95, Laussy 04].° For these reasons, the observations reported in these two papers are
not a clear signature of polariton BEC.

A first evidence of formation of coherence has been reported by Richard et al. [Richard 05b],
in a CdTe semiconductor based microcavity. In this case, however, the system does not relax
to the lowest energy state. Furthermore, the coherent emission originates from states with
an energy larger than the energy of the lowest-energy state and with a finite momentum.
Probably, the large amount of disorder of CdTe based microcavity and the use of a very
small excitation laser spot affect this result, inhibiting the relaxation towards the true energy
minimum and resulting in the formation of a quasicondensate at higher energy. The subsequent
work by Richard et al. [Richard 05a] seems to confirm this behavior. Indeed, by using a larger
excitation spot, and thus producing an initial population more homogeneous in space, the
system relaxes in the lowest energy state. Interestingly, the emission is peaked at k = 0
in the Fourier space while, in the real space, it is fragmented in several spots. In this case

9In the BEC of a trapped weakly interacting gas, the reaching of a value exactly equal to 1 would be
prevented both by the presence of interactions and by the confinement.
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however the coherence of the emitted light is not measured. Only very recently, again for
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Figure 2.10: Emission intensity in function of the wave-vector (i.e. the emission angle) and the
energy, for 3 values of excitation intensity. From the paper by Kasprzak et al. [Kasprzak 06].

a CdTe microcavity, the work by Kasprzak et al. [Kasprzak 06] has given the first evidence
for quantum degeneracy and formation of long-range correlations, in a steady state regime,
above a density threshold. In this experiment, polaritons simultaneously manifest an highly
degenerate energy distribution, and off-diagonal long range order over distances well exceeding
both the thermal length and the estimated healing length. As we will see in Chapter 4, all
the experimental findings are consistent with the occurrence of steady-state BEC in a weakly
interacting gas, where the effect of fluctuations on the condensate is enhanced by the non-
equilibrium regime. In particular, in Fig. 2.10 we report the measured emission intensity, as a
function of the light wave-vector and energy, for increasing excitation intensities. This quantity
is directly related to the photon population and thus it is given by the product of the photon
spectral function Im{(¢%$)"**(k, E)} (see Chapter 3) times the Bose distribution function. From
this measurement it is then possible to directly access the photon and the polariton spectral
function (see Chapter 3 for the relation between the two quantities).

Clearly, for a system manifesting a large amount of disorder, it is difficult to measure and to
give a quantitative account of the properties of the condensed system, like the spectral features.
However, just after this first clear signature of BEC, another experimental work by Balili et
al. [Balili 07] confirmed the same behavior for GaAs semiconductor based microcavity, i.e. a
system having a small amount of disorder and more promising in view of a full characterization
of the features of polariton BEC. In particular, GaAs based microcavities are very promising
for approaching true equilibrium condensation [Deng 06] and for realizing confined structures,
by trapping the photon field and thus polaritons in small, homogeneous regions [Daif 06,
Kaitouni 06, Bajoni 07].

Before concluding this short overview, let us briefly point out why polariton condensation
is so appealing from a theoretical point of view. First, since all the measurements are made
optically, the polariton gas would be an ideal system to study the evolution of the spectral
function across the transition, in particular to directly observe the appearance of the negative
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Bogoliubov poles. Second, for the same reasons, the correlation properties and the role played
by density and phase fluctuations could be explored in a very straightforward way. Third, since
the system is 2D, it would be an excellent candidate to analyze crossover between BEC and
Kosterlitz-Thouless transition, provided that BEC could be realized in homogeneous mesas of
various size [Kaitouni 06].

We have discussed the main experimental signatures of polariton BEC, considering exper-
iments where the excitation is produced nonresonantly, i.e. a kind of excitation for which it
is difficult to obtain an efficient relaxation of polaritons in the lowest excited-state. However,
in polariton systems, polariton formation can be made more efficient by means of resonant
excitation. The drawback of resonant excitation, however, is that any correlation observed
in the lowest polariton levels might be a residual of the coherent excitation, thus making the
interpretation in terms of BEC more ambiguous. Nevertheless the properties manifested by
the system are very interesting because, in such a regime, the coherence of the polariton gas is
obtained for much lower densities and in strongly nonequilibrium conditions. This phenomenon
is called Optical Parametric Oscillator (OPO) and it will be the subject of the next section.

2.3.1 Optical Parametric Oscillator

Resonant excitation gives rise to parametric polariton processes, which are strongly resonant
on the energy-momentum curve and display a nonlinear threshold in the polariton emission
[Stevenson 00, Houdré 00, Ciuti 01]. Parametric scattering is a driven wave-mixing process
and therefore does not directly relate to BEC in the thermodynamic sense.'® We should point
out, however, that the special case of parametric photoluminescence bears a strong analogy
with BEC. In a parametric process, two identical polaritons created by the pump resonantly
scatter to a pair of signal and idler polaritons, conserving the total energy and momentum. In
the case of parametric amplification, the process is stimulated by an external laser beam which
resonantly probes the signal polariton, and is fully described in terms of wave-mixing of classical
fields. In parametric photoluminescence, on the contrary, the process is driven by vacuum-
field fluctuations of the signal and idler polaritons, and the polariton is a quantum fluctuating
field with zero classical amplitude [Ciuti 01]. Recently Savona et al. described how the signal
polaritons involved in the parametric photoluminescence might undergo a symmetry-breaking
transition, driven by the quantum correlations, with the formation of an order parameter — the
polariton classical field amplitude — similar to BEC [Savona 05]. An analysis of this quantum
state in terms of the self-consistent mean-field theory [Carusotto 04, Carusotto 05] shows that
a collective behavior spontaneously arises above the parametric emission threshold, with the
polariton dispersion changing from the single-particle behavior to a Bogoliubov-like energy
spectrum. In particular, Carusotto and Ciuti derived in the mean field approximation the
analogous of the Gross-Pitaevskii equation [Pitaevskii 03] in the case of polaritons, aiming at
a generalized description of the parametric photoluminescence [Carusotto 04]. For a weakly
interacting Bose system, this equation is the first approximation describing the dynamics of the
condensate at zero temperature. For polaritons, the generalized Gross-Pitaevskii model should
describe the polariton condensate in the limit where quantum as well as thermal fluctuations are
negligible. With the inclusion of fluctuations, Carusotto and Ciuti investigate the spontaneous
formation of coherence above the parametric emission threshold [Carusotto 05], a phenomenon

10Tt is worth to mention that the polariton OPO is basically different from the standard OPO. In particular,
Wouters and Carusotto have shown that the behavior of polariton OPO is much richer than the one of standard
OPOs based on passive x(? material [Wouters 07a]. This is due to the x®) nature of the collisional polariton
nonlinearity, and thus to the interplay of optical bistability and optical parametric oscillation.
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that was previously predicted by a simplified three-mode approach [Savona 05].
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Chapter 3

Theory of polariton Bose-Einstein
condensation

In this Chapter, we formulate a theory of polariton BEC based on the extension of the standard
formalism developed for the equilibrium weakly interacting Bose gas. This theory will provide
a very clear and useful description of the polariton phase transition. Clearly, the assumption
that a full equilibrium can be reached during the lifetime of the metastable polariton regime
is not verified by present experimental conditions. However, giving an equilibrium description
of the phenomenon is crucial for two reasons. First, in order to assess for polariton BEC
(which differs from a laser, non-equilibrium, mechanism) it is necessary that the features
manifested by the system be interpreted as the result of a thermodynamic phase transition,
i.e. a mechanism taking place also when the equilibrium conditions are reached. Second,
our theoretical predictions (see section 4.3) and the recent experimental evidences [Deng 06]
suggest that in future experiments a full polariton thermalization will be possible.

Furthermore, we have seen in section 2.2 that all the main features predicted for the equi-
librium BEC are manifested also by trapped atomic condensates, i.e. systems which cannot
be considered exactly at equilibrium. Therefore an equilibrium theory of polariton BEC is
expected to be very helpful for the interpretation of present and future experimental evidence,
in particular highlighting the main differences between standard BEC and the BEC of the
polariton quasi-particles.

Before explaining the derivation of the theory and discussing the main results, let us give
a brief review of the previous theory adopted to describe the polariton problem.

3.1 Overview of the theoretical approaches

In this section, we briefly discuss how the problem of polariton BEC has been theoretically
treated in literature.

We have seen in section 2.3 that many experimental works have reported the evidence
of polariton quantum degeneracy [Deng 02, Deng 03, Deng 06] with formation of ODLRO
[Kasprzak 06, Balili 07].

Bose-Einstein condensation (BEC) is the most appealing way of interpreting these find-
ings. However, the two-dimensional nature of the system, the presence of disorder, the hybrid
exciton-photon composition of polaritons, and the composite nature of excitons, certainly call
for models that account for all the peculiar aspects of the polariton gas. Along this line, recent
theoretical works have been successful in describing many specific aspects of the system. Quite
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surprisingly, the existing theoretical descriptions prefer to adopt ad hoc models, while a field
theory in terms of BEC have never been developed to describe the polariton gas.

In particular, the polariton population buildup has been described by several authors in
terms of a simple Boltzmann equation including scattering via phonon absorption or emission as
well as mutual polariton scattering [Senellart 99, Tassone 99, Huang 00, Porras 02, Erland 01,
Cao 04, Shelykh 04, Doan 05]. These results, while predicting a population buildup arising
from final-state stimulation, cannot account for the actual collective behaviour of a conden-
sate, namely the collective Bogoliubov spectrum and the long-range correlations. More re-
cently, some authors have focused on the analogy between the polariton nonequilibrium BEC
and laser, proposing a simple polariton laser model based on the quantum theory of laser
[Rubo 03, Laussy 04]. This approach however, does not account for the important role played
by two-body interactions, in determining on one hand the spectral properties and the amount
of fluctuations and on the other hand in allowing the condensation growth. Other works
[Keeling 04, Marchetti 06, Szymanska 06] have treated the polariton Bose gas in the frame-
work developed to describe BCS transition in the Fermi-Bose mixtures [Ohashi 02]. In this
picture, the transition occurs as a direct consequence of the saturation of the Fermi field and
thus can only hardly be interpreted as a genuine BEC. For the same reason, a population of
polaritons is not well-defined in this formalism and it is thus unclear whether the thermody-
namic properties are correctly modeled. Moreover they assume strongly localized excitons,
thus overestimating the deviations from the Bose statistics.

All the existing theoretical works thus leave a basic question still unanswered. Are the main
experimental findings correctly interpreted in terms of a quantum field theory of interacting
Bose particles? Obviously, to derive such a theory it is necessary to account self-consistently
for the linear coupling between two Bose fields — photons and excitons — and for the Coulomb
and Pauli non-linearities arising from the composite nature of excitons.

In the next section, we will see how this problem can be solved, by generalizing the standard
Bogoliubov approach to the case of two linearly coupled Bose fields.

3.2 Theory of two coupled Bose fields

The physics of the polariton system is basically that of two linearly coupled oscillators, the
exciton and the cavity photon fields, as discussed in subsection 2.1.6. Considering the limit of
low density, the exciton field can be treated as a Bose field, subject to two kinds of interactions,
the mutual exciton-exciton interaction and the effective exciton-photon interaction, originating
from the saturation of the exciton oscillator strength. Therefore, to describe polariton BEC
we need a theory which extend to the case of two coupled interacting Bose fields the formalism
adopted in describing the BEC of a single Bose field, resumed in section 2.2.

It is useful to make some preliminary comments on the main consequences that the exciton-
photon coupling has on the manifestation of BEC in this system. First, since we are considering
two coupled Bose fields, the occurrence of BEC implies the formation of a condensed phase
for each of the two coupled fields. In other words, the polariton condensate can be seen as
the constructive superposition between the exciton condensate and the photon condensate.
Second, the normal modes of the system are polariton modes. Therefore, the only population
which has a thermodynamical meaning is the polariton population. This implies that the total
polariton population is well defined, if we can assume that the system is at equilibrium, while
the exciton and the photon populations are not individually defined. Furthermore, given a
temperature 7', the equilibrium regime imposes that the polariton excitations are thermally
occupied, following the Bose distribution ng(E,T"). On the other hand, the occupation of the
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uncoupled exciton and photon modes does not follow a defined statistical distribution. We
stress that, since polaritons simply arise as a consequence of the linear coupling between the
exciton and photon fields and thus they do not depend on the occurrence of condensation,
their quasi-particle nature and the subsequent statistical properties must hold both below and
above the condensation threshold.

In what follows, we will develop a theory that fulfills these requirements. This will be made
by generalizing the Hartree-Fock-Popov (HFP) [Griffin 96, Shi 98] description of BEC to the
case of two coupled Bose fields. The Coulomb interaction and the Pauli exclusion principle
will be treated by means of the effective bosonic Hamiltonian discussed in subsection 2.1.5
[Rochat 00, Ben-Tabou de Leon 01, Okumura 01], valid well below the exciton Mott density.
We will derive coupled equations for the condensate wave function and the field of collective
excitations. We will study the solutions for material parameters relative to recently studied
samples [Kasprzak 06, Balili 07]. In particular we will discuss the collective excitation spec-
trum, the density-dependent energy shifts, the onset of off-diagonal long-range correlations
and the phase diagram, by comparing the results to the experimental findings.

3.2.1 Coupling between two Bose fields

We express the exciton and photon field operators in the Heisenberg representation via the
notation

A

W, (r,t) = % zk: Ty (1) (3.1)

and

A

T (r,t) = % Ek: eXTe (1), (3.2)

where A is system area, while b and ¢ are Bose operators destroying a particle in the state
k and obey the commutation rules

[l;kv BL’] = [éka éL’] = 51(,1(’
bk, b | = ¢k, éw] =0
(b, el ] = 0. (3.3)

Notice that in this work we assume scalar exciton and photon fields. However, the theory
can be generalized to include their vector nature, accounting for light polarization and exciton
spin.!

The bosonic exciton-photon Hamiltonian, including the exciton non-linearities (see subsec-
tion 2.1.5), reads

H=H,+Hr+ H, + H,, (3.4)
where, in the wave-vector basis,
Hy =Y <E§BLBk + eﬁéf{ék> (3.5)
Kk

is the noninteracting exciton and photon term, while

k

IShelykh et al. [Shelykh 06] have recently studied the effects of polarization and spin at 7' = 0, within the
Gross-Pitaevskii limit restricted to the lower polariton field
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describes the linear exciton-photon coupling. The term

. 1 e me A a
— § : oot

k7k/7q

is the effective exciton-exciton scattering Hamiltonian, modeling both Coulomb interaction
and the non-linearity due to the Pauli exclusion principle for the electrons and holes that form
the exciton. The remaining term

A 1 A A A
— A T
H, = E vs(k, K/, q)(cLJrqbk,_qbk/bk + h.c.) (3.8)

kk',q

models the effect of Pauli exclusion on the exciton oscillator strength [Rochat 00, Okumura 01],
that is reduced for increasing exciton density [Schmitt-Rink 85].

In this work, we account for the full momentum dependence of v, (k,k’, q) and vs(k, k', q)
[Rochat 00, Okumura 01]. In particular, we point out that these potentials vanish at large mo-
mentum, thus preventing the ultraviolet divergence typical of a contact potential [Pitaevskii 03],
without introducing an arbitrary cutoff. However, in the present two-dimensional case an ad-
ditional problem arises. Indeed many-body correlations are known to affect significantly the
two-body scattering amplitude, eventually leading to a vanishing 7T-matrix at small collision
energy and in the thermodynamic limit [Lee 02]. In the HF approximation, it is then custom-
ary to replace the microscopic value of the interaction potential v(k,k’, q) by the many-body
T-matrix T'(k,k’, q, F') obtained by a self-consistent summation of ladder diagrams. Here, we
have generalized this approach and computed the many-body T-matrices T, (k,k’, q, E) and
Ts(k,k’,q, E). We find that, for typical values of the parameters, and taking into account both
the real and the imaginary part of the many body T-matrix, the correction to v, and v is only
of a few percent. We report the expression of the polariton T-matrices and the quantitative
estimation of their value in the Appendix A.

For clarity of notation, in the following equations we omit the momentum dependence (the
momentum dependent equations are reported in Appendix B). In particular, we use the limit
introduced in subsection 2.1.5, i.e. v,(k,k’,q) — v, = 6Eya? and vs(k, k', q) — A2z /n,, where
ns is the saturation density of the exciton oscillator strength [Rochat 00].

Two-body interactions and self-energies

Hamiltonian (3.4) contains three interaction terms. We can represent these interactions by
means of the diagrams in Fig. 3.1. The linear coupling induce the spontaneous scattering of
one exciton into one photon and the opposite. The exciton-exciton scattering is a standard
2-body interaction term, while the saturation of the exciton oscillator strength results in pe-
culiar 2-body scattering processes where two excitons scatter into one exciton and one photon.
Therefore we need to introduce four different thermal one-particle propagators

= Tr -eﬂ(Q_ﬁﬂ‘N)TT\i/x (r,7
(

= Tr _eﬂ(Q_ﬁJr”N)TT\ifc r,T

( ) )
( ) _ ) B

el x ) = T [POT (r 1)E, 7)| = (B, 7B, )
( ) ) | =<

= Tr -eﬁ(Q’H“‘N)TT@C(r, T
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X hQg ¢ : ! v \
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Figure 3.1: Diagrams representing the linear coupling and the two-body interactions. The
linear coupling and the saturation two-body term result in the scattering of one exciton into
one photon. These interaction terms enter in the one-particle self-energy.

where § = 1/kgT, € is the thermodynamic potential
e =T [e‘ﬁ(ﬁ_“m] : (3.10)

and (...), s is the compact notation that we adopt to represent the thermal average of the
imaginary-time ordered product. Here G, and G, are the usual one-exciton and one-photon
imaginary-time propagators while GG, and G, are mixed propagators accounting for the spon-
taneous scattering between the two species of particles. Notice that the thermal average is
taken within the grand-canonical ensemble. The chemical potential i represents the chemical
potential of polaritons and it will be explicitly defined later on. Therefore, the same chemi-
cal potential enters in the equations for the two fields?, as a consequence of the equilibrium
hypothesis.

The one-particle self-energy depends on both the linear coupling and the two-body inter-
actions. Accordingly with this picture, the Dyson equation for the one-particle propagators
can be represented by the diagrams displayed in Fig. 3.2. Notice that in the equations for the
mixed propagators G,. and G., an unperturbed term does not appear, because the exciton
and photon operators commute. Here, we are considering the Green’s functions of the total
field operator, thus the diagrams of Fig. 3.2 refer to the non-condensed regime. Analogously
to the theory for a single Bose field, when condensation occurs, the field operator has to be
separated in the condensate part and in the part describing excitations, in order to develop a
standard perturbation scheme. In the condensate regime, the Dyson equations in Fig. 3.2 will
be replaced by the Gross-Pitaevskii equations for the condensate and in the Beliaev equations
for the excitation field, as we will see explicitly below.

Bogoliubov ansatz

To describe the condensed system, we extend the Bogoliubov ansatz to both the exciton and
the photon Bose fields, i.e. we write each field as

A

\Ifx(c) (I‘, t) = (I):B(C)(I‘, t) + @Zx(c) (I‘, t) , (3.11)

2Uncoupled photons have not a defined chemical potential. The appearance of a well defined chemical
potential is due to the fact that the normal modes of the system are light-matter quasiparticles.
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Figure 3.2: Dyson equations for the one-particle propagators G. Gg(c) is the unperturbed
exciton (photon) propagator.

i.e. as the sum of a classical symmetry-breaking term ®,)(r,t) for the condensate wave
function, and of a quantum fluctuation field 1, (r,t), having zero thermal average, i.e.

(‘i’x(c)(l“, 1) = Do) (r,t). (3.12)

By taking the thermal expectation values of the Heisenberg equations of motion of \i/x(c)(r, t),
we obtain two coupled classical equations for the two condensate wave functions. In these
equations, the self-energy terms represented in Fig. 3.2 reduce to a density functional, whose
explicit expression depends on the approximation adopted.

At the same time, as in the one-field theory (see subsection 2.2.2), the Bogoliubov ansatz
imposes to introduce anomalous propagators for the excited particles, describing processes
where a pair of particles is scattered to or from the condensate reservoir [Shi 98]. We write the
resulting 16 thermal propagators in the matrix form (in the energy-momentum Fourier space,
assuming a uniform system)

. [ ™ (kiiw,) g%k, iwy)
G<k7 an) _ < gcm(k’ an) gcc(k’ an) ) (313>

where the elements of each 2 by 2 matrix block are (7,1 =1,2; x,& =z, ¢)
R N .
G (ki) = — / dre=r™ (01 (k,7) O (k,0)"), 5. (3.14)
0

and hw, = 2mn/B,n = 0,+£1,... are the Matsubara energies for bosons. Here we have intro-
duced the useful compact notation

0, =b,0.=¢, (3.15)



to represent the exciton and the photon fields.
Within the Bogoliubov ansatz, also the generalized one-particle density

Nye = NS + Tiye (3.16)

with y,& = z,¢, is separated in the contribution of the condensate n?& = @7 P¢ and in the
contribution of the excited particles

fixe = ) _me(k) = Y (03 (k)0 (k) . (3.17)

k#£0 k#£0

This latter quantity represents the excited-state density matrix, expressed in the exciton-
photon basis, and it is directly related to the corresponding normal propagator via the well
known relation [Shi 98]

~ 1 : W . dw re
el = =5 lim Y380 i) = = [ Cm{(@f) Uk )pna(@), (319

where the retarded Green’s function is the analytical continuation to the real axis of the
imaginary-frequency Green’s function [Shi 98|

(911) (k,w) = g1t (K, iw, — w +i07) (3.19)
The propagator matrix G(k, iw,) obeys the Dyson-Beliaev equation
G (k,iw,) = G° (k,iw,) [1 + 2 (k, iw,) G (k,iw,)] , (3.20)

where G is the matrix of the unperturbed propagators, which is diagonal (because the exciton
and the photon field commute) and reads

GOk, iw,) = 1- [ gi(k,iwn) gi(—k, —iwn) g5k iwn) g§(—k,—iw,) ], (3.21)

with ,
13 ; _
gO(k> an) - ©)

. (3.22)
Wy — 6. + 1

The general form of the 4 x 4 self-energy matrix is

S (K, iwy) 5 (k, iw,) ) | (3.2

2k, dwn) = ( Ser(k, iwn)  S(k, iwy)

here written in a (2 x 2)-block form. The explicit expression of the self-energy also depends
on the approximation used. In a consistent theory, the self energy (3.23) and the density
functional entering in the equation for the condensate wave functions are written within the
same level of approximation. To guarantee that the excitation spectrum be gapless, the self-
energy must fulfill the Hugenholtz-Pines condition extended to the present two-field case. The
most simple approximation accounting for thermal populations and giving a gapless spectrum
is, also in this case, the Popov approximation.
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3.2.2 Popov approximation

We have seen in subsection 2.2.2 that the mean field theories for bosons which fulfill all the
conservation laws result in a nonphysical one-particle spectrum with an energy gap. Indeed,
only the second order Beliaev theory satisfies simultaneously these two physical requirements.
Since our present purpose is to describe the one-particle properties of the polariton BEC,
we prefer to adopt the simplest gapless theory valid at finite temperature, i.e. the Hartree-
Fock-Popov approximation [Griffin 96, Shi 98|. Furthermore, this approximation seems to be
the most suited for a possible extension to nonuniform systems and to treat deviations from
equilibrium. As explained in subsection 2.2.2, the Popov limit corresponds to totally omitting
the contribution of the anomalous correlations in the self-energies, i.e. to neglecting the terms

mye(k) = hmz wnn g X (K i) . (3.24)

Generalized Gross-Pitaevskii equation

Within the Popov approximation, for a uniform system, the two coupled equations for the
condensate amplitudes are

. hQ
ihb, = leg—z L

S

Re {n:pc + ﬁmc} + Uy (nmm + ﬁmm)] (I):Jc + hQR (1 - nmm) (I)C

Ns
ihb, = e, + (1 - M) o,
N

(3.25)

We look for the condensate eigenstates. This means that we assume that both the condensate
fields evolve with the same characteristic frequency E/h, i.e.

i E
Do) (1) = €7 1 Py (0) (3.26)

By replacing this evolution into (3.25), we obtain a generalized set of two coupled time-
independent Gross-Pitaevskii equations, which can be formally written in the matrix form

E XO Gg + Uy (n:m: + ’Fl:m:) - thLz_fRe {nmc + ﬁa)c} hQR (]_ — "%:) XO
( CO ) a hQR <1 — _nlz;liﬁzz) 68 ( CO ) 9
(3.27)
where we have defined the normalized Hopfield coefficients of the condensate state
(bc - CO@
1 Xo|* + |Co* = 1, (3.28)

and ng = |®|? is the actual density of the polariton condensate. The two solutions E = E'P(u»)
of (3.27) give the lower and upper polariton condensate modes

Dipup) = XD, + CF D, (3.29)

The lower energy solution Eép represents the actual condensate state, because it corresponds
to the minimal energy of the polariton gas. In the present U(1) symmetry-breaking approach,
it also represents the chemical potential of the polariton system, i.e. Eép = i, thus entering in
the grand-canonical thermal averages.
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Equations for the excited states

Within the HFP theory, the self-energy elements in Eq. (3.23) are independent of frequency
and read

hQ
Ef:f = Egg =92 [anmx — R (ncx + nmc>:| s
hQ)
ng; = (232616)* = vil?q)?: —2 R(I)zq)ca
it = g5 = it (1- 227,
Ns
zc TC\* hQR
E12 - (221) = CDQ
E“ = E?f,
Ejf =0. (3.30)

The solutions of Eq. (3.20) can be written analytically in terms of the self-energy elements and
the unperturbed propagators. For example we obtain

g (k,iwn) [1 — g8 (—k, —iw,)Nj(k, iw,)]

911 (k, iw,) = : : : : : (3.31)
. 11— g5 (k, iwn) Np (K, iw,)[* — |5 (k, iw,) Np (K, iw,)|”
where
Np(k,iwy) = X7 4 g5k, iw,)| ST + g6 (—k, —iw, ) |S{5]?
NB(k’ iwn) = X5+ [g(c)(kv iwn) + g(c)(_k7 _iwn)] EPNE (332)
and F ke i \NE (K
921 (k an) _ gO(_ ) _an) B( ,an) $$(k, an) ) (333)

[1— gt (—k, —iwn) N} (K, iw,)] T

For each value of k, the analytic continuation of each Green’s function gxg(k z) shares the
Ip(up)

same four simple poles at z = £E, ", i.e.
s ) (Xrk)? , XPE&P XEEP XK
gt = 2 Er(k) 2+ Er(k) | z— Bw(k) | 2+ Ew(k)
g5 (K, 2) Xk Xpk) | Xpk)Xpk) Xprk)XpP(k) | XpP(k)XpP(k)
12 z — Er(k) 2+ Elr(k)* z — Euw (k) 2+ B (k)*
G (k)| CF (k)|? |CaP (k)| |CyP (k)|
971 (k, z) 1 + 1 ¥ u u *
z—FE?k) z+ EPk) z-—Ewk) z+ Ew(k)
g7 (k. 2) Xpk)Ccrk)  Xpk)Ccrk) Xk Ok  XpPk)Cprk)
1 z — E'(k) z + E'P(k)* z — Ew(k) z+ Ew(k)*
and so on.> The poles of the propagators represent the positive and negative Bogoliubov-

Beliaev eigen-energies of the lower- and upper-polariton modes. The residual in each pole
depends on the corresponding generalized Hopfield coefficients.

3Here we write the general expression with the complex conjugates of the energies Elp(“p)(k). Within such
a notation, the formulas can be in principle extended to include a phenomenological imaginary part to the
energies, in order to account for the finite radiative lifetime of polaritons.

65



We point out that the polariton excitation modes for a given k can be also obtained by
directly diagonalizing the problem

X € — U+ 247 e} DN X1 Xu
u 11 12 €k — H 0 Cu
(3.34)

The components of the 4 eigenvectors h;(k) = (X, X,, Cy, Cy);(k) (j = 1,...,4) are again the
generalized Hopfield coefficients corresponding to the normal (X, C,) and anomalous (X, C,)
components of the polariton field, in analogy with the one-field HFP theory. They obey the
normalization relation

(X317 = X2+ (O~ (Ol =1, (3.35)
a condition which guarantees that the operator destroying the lower (upper) polariton excita-
tion with wave vector k,

7ﬂ{p(up) . le (up) (k)b + le(up)( )b Clp up) ( )Ck + Cip(’up) (k)éT_k
= PP (K)py + o) ()Pl (3.36)

obey Bose commutation rules. Here we have defined the lower (upper) polariton one-particle

Alp(up)

operators py and the normal and anomalous polariton coefficients

w)(k) = [[XP0) (k) + ) (k)]
) =

(k [le up)<k) + Cf)p(up) (k)} 1/2 ,

|ulp<w> () = [P ()2 = 1. (357)

The excitation states, i.e. the normal modes, are thermally populated via the Bose distribution

_ 1
N = #'#)) = ——— (3.38
k < k k> eﬁEk - 1 )

while the lower- and upper-polariton one-particle densities are given by

i = 5 (WP + [ (0P) B + o/ ()] (339

Therefore, for a fixed total polariton one-particle density n,, the density of the polariton
condensate is given by

=0 =n, — Y _[Af + ). (3.40)

k#£0

Notice that this equation is analogous to Eq. (2.96) for a single Bose gas. From nyg, the exciton
and the photon condensed densities are finally obtained via Eq.(3.28).

Hence, for a given polariton density n, and temperature 7', a self-consistent solution can
be obtained by solving iteratively Eqs. (3.20), (3.27), (3.18), and (3.40), until convergence of
the chemical potential ;¢ and the density matrix ny(k) is reached. From this self-consistent
solution, we obtain the exciton and photon components of the condensate fraction as well as
the spectrum of collective excitations and the one-particle populations. We point out that the
self-consistent solution must be independent on the initial condition used in Eq. (3.20) and
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(3.27). An advantageous® initial condition is provided by the ideal gas solution, i.e. the solution
obtained by neglecting the two-body interactions, and considering the resulting polariton states
occupied accordingly to the Bose distribution.

Single-particle states

Since the microcavity polariton system is intrinsically two-dimensional, an analysis in terms of
BEC is possible only for finite size geometries, because, in the thermodynamic limit, thermal
fluctuations would prevent the occurrence of BEC. In literature the problem of BEC in con-
fined systems is usually addressed by introducing a trap potential (commonly the harmonic
potential) [Bagnato 91, Ketterle 96]. However, for microcavity polaritons, the confinement is
physically due to both the intrinsic disorder [Langbein 02, Richard 05a] and to the finite size
of the exciting laser spot [Deng 03, Richard 05b] and thus realistic conditions would be only
approximated by using a regular trap potential. Furthermore, for GaAs based microcavity,
the finite size region where polaritons are created results to be homogeneous enough to practi-
cally preserve the wave-vector as a good quantum number [Langbein 02]. In this respect, the
simplest way to model the effect of confinement is by adopting exciton and photon modes in a
finite box of fixed area A with periodic boundary conditions. For equilibrium BEC, the energy
spacings between the lowest-lying states determine the effect of fluctuations. We will show
in Appendix C that the density of states at low-energy, resulting from a typical disordered
potential, is well modeled by a finite box with area A ~ 10? — 103 pm?. While for equilibrium
BEC, within this realistic range of size the results are weakly affected by the actual value of A
(see Fig. 3.11 for example), in presence of important deviations from equilibrium, the actual
value of A has a strong influence on the occurrence of BEC, as we will see in Chapter 4.

3.3 Predictions of the theory

In this section, we present the main results of the present equilibrium theory, by adopting re-
alistic parameters describing the CdTe semiconductor based microcavity studied by Kasprzak
et al. [Kasprzak 06]. As we will see in subsection 3.3.4, the main predictions of the theory
weakly depend on system parameters and thus also apply to the case of GaAs based micro-
cavities studied by Deng et al. [Deng 02, Deng 03, Deng 06] and by Balili et al. [Balili 07].

In particular, for the numerical calculations (with the exception of subsection 3.3.4), we
assume the linear coupling strength 22 = 13 meV, the photon-exciton detuning § = € —€f =
5 meV and exciton parameters of a CdTe quantum well. We study the results as a function of
the system area A, ranging from 100 pum? to 1 cm?. For the interaction potentials v, (k,k’, q)
and vy(k, k', q), we use momentum-dependent values following Ref [Rochat 00]. Where not
differently specified, we assume a temperature T" = 20 K, consistent with the estimated effective
temperature [Kasprzak 06|

3.3.1 Excitation spectrum

We start our analysis from the spectral features manifested by the polariton condensate. In Fig.
3.3 we show the energy-momentum dispersion of the collective excitations, j:Ell(p and £E,",
as obtained for two different values of the total polariton density n, above the condensation

4With the term advantageous we refer to the efficiency of the iteration procedure in reaching the self-
consistent solution.
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threshold. The curves correspond to the positive- and negative-weight resonances for the lower-
and the upper-polariton.

Close to zero momentum the dispersion of the lower polariton branch, above threshold,
becomes linear, giving rise to phonon-like Bogolubov modes, as in the standard single-field
Bogolubov theory [Pitaevskii 03].> This feature is highlighted in the inset, where the small
momentum region is magnified. We further notice that, for the largest value of n,, the polari-
ton splitting decreases, due to both the exciton saturation, decreasing the effective exciton-
photon coupling 277, and to the change in the exciton-photon detuning produced by the exciton
blueshift, given by %77. For the largest value of density, n, = 400 pm~2, in Fig. 3.4 we display

Figure 3.3: The dispersion of the normal modes of the system for polariton density n, =
15 pm~2 (solid) and n, = 400 pm~2 (dashed). The uncoupled photon (dash-dotted) and
exciton (dotted) modes are also shown. Inset: detail of the low-energy region, showing the
onset of the linear Bogolubov dispersion (the blue line is a guide to the eye).

the generalized Hopfield coefficients for the positive-weight lower polariton resonance. In panel
(a) of this figure, we plot the coefficients on a linear scale. At small momentum, the lower po-
lariton modes have about the same amount of photonic and excitonic character, while for wave
vectors larger than 5 um~! they becomes exciton-like, as expected. The anomalous exciton
and photon components are comparable at small momentum, while they become vanishingly
small for £ > 2 um~!. For the given density, we can thus estimate a generalized healing length
for the polariton gas close to £ ~ 0.5 um. We can thus argue that our assumption of a uniform
condensate wave function is justified by the fact that this value of £ is much smaller than the
assumed system size A2 = 10 ym. In panel (b) of Fig. 3.4, we show the same quantities, but
on a double logarithmic scale. We can appreciate how the excitonic anomalous component X,

5Recent theoretical works have suggested that deviations from equilibrium would result in a modification
of the expected gapless Bogoliubov spectrum, giving rise to the appearance of a diffusive mode of excitation
[Boyanovsky 02, Szymanska 06, Wouters 07b]. By means of the present equilibrium theory we obtain a phonon-
like behavior at low momenta. It is interesting to mention that, within the Bogoliubov limit of our theory,
we can model non-equilibrium simply by imposing a different chemical potential for the condensed and the
non-condensed particles. In that case, we obtain an energy gap or a diffusive mode close to zero momentum.
Results are shown in Appendix D.

68



o — X, 0l°
£ X 01|
..g - - -|C K
o = = -1C ()
o
(@)
I
P —— : = o e e
3 4 5 6 7
2 -
[&) -1
ch 10 - \
© TSN
.% 10° SN\
N
N
(@)
I 10-5 (b.) PP | \.\. ..\....I NP PP |
10 100 1000
K (um™)

Figure 3.4: Hopfield coefficients for the lower positive polariton branch, for polariton density
n, = 400um~2. The exciton and photon anomalous components are non vanishingly small
only for wave vectors smaller than £~! = 1 — 2um~!. The value £ can be interpreted as the
generalized healing length of the polariton system at the given density.

remains larger than 1072, and about constant, up to wave-vectors larger than 100 gm~!. This
behavior is due to the characteristic energy plateau of the exciton-like part of the dispersion of
the lower polariton, and to the slow momentum dependence of the two-body interaction matrix
elements. This result highlights the crucial role played by the very small effective mass of po-
laritons at £ = 0, which strongly reduces the amplitude of quantum fluctuations with respect
to case of the exciton gas. In Fig. 3.5 we also display the resulting spectral function of the
normal one-particle photon propagator A(k, E) = —2Im{(¢%)"(k, E)}, for n, = 100 pm™2.
We see that for the negative-energy polariton resonances E < 0, the photon spectral function
is negative, as expected. This should give rise to light amplification (gain) which however was
never observed to our knowledge.

We now return to the modification of the energy splitting between the lower and the upper
polariton branch. This feature was accurately characterized in recent experiments (see e.g.
the supplementary online material of Kasprzak et al. [Kasprzak 06]). The interplay between
exciton saturation and interactions in determining the energy shifts has no counterpart in
the BEC of a single Bose gas, where interactions simply determine the value of the chemical
potential. Here, the two effects produce an independent energy shift of the two polaritons.
To characterize this trend, we plot in Fig. 3.6 (a) the energy shifts of the two polariton
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Figure 3.5: Spectral function of the normal one-particle photon propagator A(k, E) =
—2Im{(¢{5)"“ (k, E)}, for n, = 100 pm—2.

modes at k£ = 0, as a function of the density. Exciton saturation and interactions result in a
global blue-shift of the lower polariton and a red-shift of the upper polariton. The shifts are
linear as a function of the density, but their slope varies close to threshold by a factor two,
as highlighted in the inset, because the contribution of the condensed populations n_, n?_ is
one half the contribution of the thermal populations 7.y, i, as shown in Eq. (3.25).5 This
trend and the magnitude of the shifts reproduce fairly well the experimental observations (see
online supplementary material in Ref. [Kasprzak 06]). To explain the origin of the opposite
shifts of the two polaritons, we plot in Fig. 3.6 (b) the density dependence of the exciton
energy B = €f + X{T and of the exciton-photon coupling ¥{{. The two quantities vary by a
comparable amount. This suggests that, within the adopted model for the exciton saturation
and interaction potentials v, and v,, the two effects contribute equally to the deviations from
the picture of non-interacting Bose gas. The reduction of the polariton splitting, according to
our theory, is very small up to the largest polariton density estimated from the experiments.
This supports the idea that polaritons — as hybrid exciton-photon quasiparticles — are stable
up to densities above the BEC threshold.

3.3.2 Thermodynamical properties

We now turn to study the thermodynamical properties of the system. We stress the point that
only the polariton population is well defined from a thermodynamical point of view, because the
density matrix is diagonal only in the polariton basis. On the other hand, in experiments, only
the photon population (which is related to the photon normal propagator ¢¢5 via Eq. (3.18))

5The predicted change in the slope is only qualitative. In real situations, two effects can affect this result.
First, in current experiments the rate of the relaxation mechanisms (basically due to final state stimulation)
and thus the occupation of the polariton states, increases exponentially around the threshold (as we will see
in Chapter 4). This clearly results in an analogous non-linear increase of the blue-shift close to threshold.
Second, here we are neglecting the exciton spin and the polarization of the photon field. The inclusion of these
degrees of freedom would modify the factor 2, arising from the exchange term. In any case, above threshold
the progressive accumulation of particles in a macroscopically populated state, is expected to reduce the slope
of the blue-shift increase.
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Figure 3.6: (a) Lower (solid) and upper (dashed) polariton energies at £k = 0 vs polariton
density n,. Inset: Double logarithmic plot of the lower polariton energy. The thin dotted
lines highlight the two different slopes below and above threshold. (b) Bare exciton energy E§
(solid) and effective exciton-photon coupling %3¢ (dashed). All quantities were computed for
T =20 K.

is directly measured. For this reason, it is important to have a theory predicting both these
populations. In Fig. 3.7, we show the one-particle populations of polaritons ny, excitons
ny’ and photons nf’, as a function of the wave-vector k, below and above the BEC density
threshold. The trend of the three populations is very similar, except at large momentum, where
the populations of excitons and polaritons obviously coincide. In particular, for wave vectors
k € (10 — 100)um™1, the polariton population is weakly k-dependent, related to the weak k-
dependence of the energy dispersion of polariton in the exciton-like region. On the other hand,
at small wave vectors, the photon population is close to the polariton population, both below
and above the density threshold. In particular, thermal long-wavelength fluctuations of the
photon occupation are important also above threshold. We just mention that the momentum
distribution of the photon population is experimentally measured via the detection of the
angle distribution of the emitted light. To characterize the phase transition, it is more useful
to study the energy distribution of the populations, because this is directly determined by the
Bose distribution. Fig. 3.8 shows the total polariton population n,(E)+mn.,,(E) for three values
of the total density n,, below, above and far above the density threshold. Below threshold,
polaritons are distributed according to a Maxwell-Boltzmann curve. Above threshold, the
distribution becomes strongly degenerate, with a macroscopic occupation of the lowest-energy
state, and a saturation of the population at high-energy. For large densities, due to two-body
interactions, the energy distribution of the one-particle population differs from the ideal Bose
function (while the Bogoliubov quasi-particles are distributed accordingly to the BE function).
We have seen in subsection 2.2 that this discrepancy is due to quantum fluctuations (see
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Figure 3.7: Populations of the lower polariton k-states below (n, = 3 pum~?) and above
(n, = 100 pum~?) the density threshold. The photon and the exciton populations are also
shown for comparison. Upper panel: double logarithmic scale. Lower panel: semi logarithmic
scale.

Eq.(2.95)), whose amplitude in the present case is determined by the amplitude of the exciton
and photon anomalous Hopfield coefficients, as shown by Eq. (3.37) and Eq. (3.39).

The appearance of a quantum degenerate distribution manifests itself also in the correlation
properties. In particular, according to the Penrose-Onsager criterion [Pitaevskii 03], the main
feature of BEC of an interacting gas would be the occurrence of ODLRO (see subsection 2.2.1).
However, this is a good criterion only if the thermal decay of the one-body spatial correlation
function g (r) takes place over much smaller distance than the localization length. Differently,
the thermal de Broglie wavelength Ay would approach the system size and the concept of
ODLRO would be ill-defined. For polaritons this is not obvious in principle. In Fig. 3.9 we
display the simulated one-body spatial correlation function, for increasing density, both for the
polariton field
(0 (1) ¥ (0))

[ (1)n,(0)]1/2 (3.41)

g (r) =

and for the photon field

W gy - (e ()Te(0)) (959)7(0. )
9ec () = fo OO ~ [ (e ) (g5)< (0.0 2 (3.42)
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Figure 3.8: Polariton population vs. energy for n, = 3 pm=2, n, = 15 yum~? and n, = 100pm 2.
For the larger density, we also display the ideal BE distribution.

where (¢59)<(0,r) = ¢{5(0,t;r,t"). The photon correlation function gt (r) is the quantity mea-

sured in an optical experiment, via the observation of an interference pattern [Kasprzak 06,
Balili 07]. Fig. 3.9 shows however that the photon correlation is a good mirror of the polariton
correlation function ¢, although we predict that the actual polariton coherence is system-
atically lower than the measured photon coherence. Fig. 3.9 predicts the clear observation
of ODLRO for the polariton system. Below threshold, spatial correlations extend only over
the thermal wavelength Ay ~ 1 um which is well below the typical localization length. This
value is in agreement with what measured in experiments [Kasprzak 06]. On the other hand,
just above the density threshold, spatial correlations extend over the whole system size. At
twice the density threshold, the amount of photon correlation is expected to exceed 80%. Also
this result is in qualitative agreement with the experiment by Kasprzak et al. [Kasprzak 06],
although in the experiment the correlation pattern is shaped by interface disorder and the
maximal distance over which the correlation can be measured is lower than 10 ym. However,
the measured amount of photon correlation is never larger than 40%, as compared to 80% of
our prediction. We will see in Chapter 4, by means of a kinetic model [Sarchi 06, Sarchi 07a],
that this discrepancy is the main result of deviations from thermodynamical equilibrium, with
enhanced quantum fluctuations that deplete the condensate in favor of excitations. Further-
more, we will see that these deviations should become negligible for polariton lifetimes above
10 ps [Sarchi 07b]. In fact, the amount of spatial correlation is directly related to the conden-
sate fraction. The predicted condensate fraction at equilibrium is shown in Fig. 3.10, where
we report the density dependence of the three quantities

\If 2
fp = ’ ’ )
T
U.|?
fc = ‘ ’ >
nCC
U, |2
fo= V" (3.43)
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Figure 3.9: One-body spatial correlation function g()(r) for both the polariton and the photon
fields.

Clearly, due to the large excitonic amount of the lower polariton modes, the increase of the
photon condensate fraction is faster than the increase of the polariton condensate fraction (the
only quantity which is physically meaningful), and it reaches about the 80% already at twice
the density threshold. However, all the quantities increase with density and also the exciton
condensate fraction is expected to become very large for the present system parameters. This
feature confirms the formation of a condensate of matter degrees of freedom, thus suggesting
the possible manifestation of superfluidity [Nozieres 89].

3.3.3 Phase diagram

For current experiments, the temperature of the system is not a real tunable parameter, be-
cause, to achieve BEC, it is necessary to optically excite the system above an intensity thresh-
old, thus heating up the sample. In addition, due to the weak coupling to the phonon thermal
bath, it is very difficult for polaritons to reach equilibrium at the temperature of the crystal
lattice (only one evidence has been recently reported [Deng 06]). For this reasons, we can only
refer to an effective temperature for the polariton system. Furthermore, it is presently impossi-
ble to reach very low effective temperatures, i.e. temperatures lower than 7' = 10 K. However,
a future improvement of the quality of the microcavity mirrors is expected to allow achieving
polariton BEC close to thermal equilibrium and at very low temperatures (see section 4.3)
[Sarchi 07b]. Therefore, a systematic study of the BEC phase diagram is of some interest. In
Fig. 3.11(a), we report the density-temperature phase diagram, as computed for A = 100 ym?.
The phase boundary in the calculations has been set by the occurrence of a finite fraction of
polariton condensate larger than 1%. In the plot, a few values of the quantity |Xo|? along the

74



1. i .—.-0-0-0-0-0-0-0-
- - C
(]

condensate fraction

0 20 40 60 80 100
-2
n (um?)

Figure 3.10: Polariton condensate fraction (solid line) computed at 7" = 20 K, as function of
the polariton density. We display also the photonic (dash-dot line) and the excitonic (dashed
line) condensate fractions, whose definition is given and discussed in the text.

phase boundary are indicated. This quantity represents the exciton amount in the polariton
condensate. It decreases for increasing density, due to the exciton saturation and the change
in detuning. For very large densities this quantity eventually vanishes, corresponding to the
crossover to a photon-laser regime. However, for the studied CdTe sample, the variation of
the exciton amount in the condensate field remains very small up to densities far above the
experimentally estimated polariton density.

Fig. 3.11(b) shows a detail of the low-T" region of the phase diagram, computed for different
system areas A. In the same plot, we also display the boundary for the normal-superfluid
transition, i.e. the transition to a quasicondensate, as obtained from an extension of the Landau
formula [Pitaevskii 03] to the present two-field case (see Appendix E). In a homogeneous
two-dimensional system, in the limit of infinite size, a true condensate cannot exist due to
the divergence of low-energy thermal fluctuations. The transition to a superfluid state is
instead expected, giving rise to the Berezinski-Kosterlitz-Thouless crossover with spontaneous
unbinding of vortices. The divergence of the condensate fluctuations has however a logarithmic
dependence on the system size. Fig. 3.11(b) shows this behaviour as a slow increase of the
critical density for increasing A. Quantitatively, the critical density varies by no more than a
decade, for A increasing from 100 ym? to 1 cm?, and is comparable to the value predicted for
the superfluid transition. This variation is even smaller, at the polariton temperature T = 20
K reported in experiments [Kasprzak 06]. As anticipated, the predicted dependence on the
system size could be experimentally verified only in samples with improved interface quality
and manifesting thermalization at a lower polariton temperature [Sarchi 07b].

The thin lines in Fig. 3.11 (b) are the result of the Bogoliubov approximation, obtained
by neglecting the contribution of the excited particles in the self-energy. This approximation
overestimates the group velocity of the excitations, thus underestimating dramatically the
critical density at low temperature. This comparison shows that the adoption of the Popov
approximation is required to give realistic predictions at low temperature.
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Figure 3.11: (a). Phase diagram of the polariton condensation, computed for the parameters
of Ref. [Kasprzak 06], and A = 100 um?. The exciton fraction in the condensate | Xy|?, along
the phase boundary, is indicated in boxes. (b) Detail of the low-T" region. HFP denotes
the result of the present theory at varying A. MF is the mean-field result. QC denotes the
quasi-condensate transition, corresponding to the onset of a superfluid density.

3.3.4 Dependence on system parameters

All the predictions reported up to now are relative to a very specific set of parameters. We
now apply our analysis to other samples, like the GaAs based microcavities [Deng 03, Deng 06,
Balili 07], where quantitative differences are expected. In particular, we argue that the crucial
parameters of the theory are the ratios

~ RQR(1 = nge/ns)
B kT ’

Ry (3.44)

and
RQR(1 — ngy/ns)

Eint ’
where the quantity AQr(1 —n,,/n,) gives an estimate of the effective exciton-photon coupling,
kyT is the thermal energy while

Ring (3.45)

Eint = vanpy — 20QrRe{n,.} /ng (3.46)

gives an estimate of the interaction energy. The first quantity determines the actual effect of
thermal fluctuations, which eventually deplete the condensate in favor of excited states in the
exciton-like region of the lower polariton dispersion. The second quantity fixes the amplitude of
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Figure 3.12: BEC phase diagram for GaAs parameters. The excitonic amount in the condensate
is also shown for some values of the density threshold.

quantum fluctuations at a given density and the subsequent condensate depletion. Notice that
a small ratio Ry and/or R;,; can be the result of the reduction of the effective exciton-photon
coupling, due to exciton saturation. This latter effect would strongly reduce the excitonic
amount of the condensate already at moderate densities, and the photon-laser transition would
eventually occurs in place of BEC.

To highlight this feature, we display in Fig. 3.12 the phase diagram obtained for system
parameters of a sample constituted by a single quantum well embedded in a GaAs microcavity,
with a linear exciton-photon coupling A2z = 2 meV and zero exciton-photon detuning.” We see
that in this case the exciton amount in the condensate decreases faster for increasing density.
However, up to polariton densities close to 10° ym™2, the exciton amount in the condensate
remains finite and larger than 30%, implying that the phase transition can be interpreted as
polariton BEC. This result suggests that, if the polariton system can be prepared very close
to the equilibrium regime, polariton BEC could occur at sufficiently low densities, where the
weakly Bose gas description still holds. We further analyze the dependence on the exciton-
photon linear coupling, by plotting in Fig. 3.13 a different phase diagram, where the density
threshold curves are now displayed as a function of 2A{2g, i.e. the vacuum-field energy splitting
between the lower and the upper polariton modes. Since the increase of Al results in the
suppression of both thermal and quantum fluctuations, the equilibrium density threshold is
expected to decrease. We predict the same behavior for CdTe and GaAs samples, and very
small quantitative differences. We just anticipate that increasing the energy splitting between
lower and upper polaritons has also a negative counterpart. Indeed, we will see in Chapter
4 that the deviations from equilibrium are larger for increasing h{)lg, basically because it is
necessary to produce a very large incoherent population in the exciton like part of the lower
polariton dispersion before the relaxation mechanisms become effective.

"We can consider this case as a limiting case for realistic samples, because GaAs manifests an exciton-photon
linear coupling smaller than CdTe. In addition, the linear exciton-photon coupling scales as y/Ng, where Ng
is the number of embedded quantum wells, and in typical samples the microcavity contains several quantum
wells.

7



T=20K —e—CdTe '

—=—GaAs

Condensed phase

e~ ]
Normal phase T \51

0 100 200 300 400
n, (km)

Figure 3.13: BEC threshold line on a hflr — n, phase diagram for the parameters relative to
CdTe and GaAs.

3.4 Conclusions and outlook

In conclusion, we have generalized the Hartree-Fock-Popov theory to the case of two coupled
Bose fields at thermal equilibrium. The theory allows modeling the BEC of polaritons in
semiconductor microcavities in very close analogy with the BEC of a weakly interacting gas
[Pitaevskii 03]. In particular we are able to treat simultaneously both the linear exciton-
photon coupling and the effect of interactions. In this way, the polariton modes are density
dependent, i.e. they are not simply obtained by the diagonalization of the non-interacting limit
of the exciton-photon problem. Within this description we are able to predict the modification
of the spectral functions for increasing density. An important property of this theory is that
the exciton and the photon propagators share the same poles, which correspond to the positive
and the negative lower and upper polariton branches.

Our treatment allows to describe simultaneously the properties of the polariton, the photon
and the exciton fields. This is particularly important because, while the physical field is the
polariton field, all the typical optical measurements catch the properties of the photon field.
Thanks to the inclusion of the excited non-condensed population, the present Popov theory
can be applied at finite temperature.

In particular the predicted critical density is in good agreement with the very recent ex-
perimental estimate [Kasprzak 06]. Our analysis thus supports the interpretation of the recent
experimental findings in terms of a transition to a quantum degenerate fluid. In particular, we
show that the observed occurrence of photon spatial correlations is, also from a quantitative
point of view, closely related to the spatial correlation of the polariton field.

Open questions remain, basically related to the role of disorder and localization. In par-
ticular, the effect of dimensionality and fluctuations and the possible crossover between BEC
and BKT transitions need further analysis.

The present theory can be generalized to non homogeneous systems, and then applied
to study condensation in new artificial polariton traps, like the polariton mesas [Daif 06,
Kaitouni 06] or pillars [Bajoni 07]. The formalism developed in this chapter can also be
extended in order to include non-equilibrium features by means of the Kadanoff-Baym (or
Keldish) treatment.
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Chapter 4

Polariton condensation in the
non-equilibrium regime

As discussed in section 2.3, the polariton gas is realized and evolves within an intrinsic non-
equilibrium regime. Qualitatively, this is also the case of trapped atomic gases, where BEC is
made possible only because the cooling mechanisms are efficient enough to relax the system
into thermal equilibrium within the lifetime of the metastable gas. However, in the polariton
case, the relaxation mechanisms are so poorly effective that it is not clear if the equilibrium
regime can be approached in realistic experimental conditions.

To answer this question, we develop in this Chapter a non-equilibrium approach, describ-
ing the condensate formation and growth, in order to investigate the possible occurrence of
polariton BEC, and to clarify if, under typical experimental conditions, the transition takes
place close to or far from the equilibrium regime. The present non-equilibrium model will also
predict possible deviations from the equilibrium behavior described by the theory developed
in Chapter 3.

4.1 Kinetic model: theory

In this section we develop a kinetic model for the description of the polariton system within
the condensed regime. To this purpose, we derive kinetic equations in terms of the density
matrix formalism. Since we address the specific problem of polariton relaxation and conden-
sation, we will adopt approximations specific for the polariton system, in order to include the
coherent field dynamics, driven by the presence of a condensate, and the incoherent relaxation
mechanisms.

In particular, we develop a kinetic theory for polaritons in the lower polariton branch,
subject to mutual interaction, in which the field dynamics of collective excitations is treated
self-consistently along with the condensation kinetics. We start from a number-conserving Bo-
golubov approach [Gardiner 97a, Castin 98] that describes the collective modes of a Bose gas
properly accounting for the number of particles in the condensate. This is required in order
to develop kinetic equations for the description of condensate formation. We then derive a
hierarchy of density matrix equations, including polariton-phonon scattering via deformation-
potential interaction [Tassone 97] and exciton-exciton scattering in the exciton-like part of the
lower-polariton branch [Tassone 99]. This latter mechanism follows the model recently devel-
oped by Porras et al. [Porras 02]. The hierarchy is truncated to include coupled equations for
the populations in the lower polariton branch and for the two-particle correlations between the
condensate and the excitations. For the truncation, we assume that higher-order correlations
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evolve much faster than the relaxation dynamics. The kinetic equations obtained in this way
are solved numerically, assuming a steady-state pump at high energy within the exciton-like
part of the polariton branch. The solution is carried out by accounting self-consistently for the
density-dependent Bogolubov spectrum of the collective excitations of the polariton gas. We
will show how this model predicts an enhancement of quantum fluctuations that result in a sig-
nificant condensate depletion under typical excitation conditions. In particular, we will discuss
the role of quantum confinement in a system of finite size and show how ODLRO manifests itself
in typical experimental conditions. Our results will provide a clear explanation of the partial
suppression of ODLRO that characterizes the experimental findings [Kasprzak 06, Balili 07].

4.1.1 Lower-Polariton Hamiltonian

We restrict to consider polaritons in the lower branch of the dispersion. Obviously, this restric-
tion implies the approximation of structureless polaritons. In other words, we are assuming
that the Rabi splitting and the Hopfield factors do not change within the range of densities
considered. The results of Chapter 3 (in particular the results shown in Fig. 3.11(a)) suggest
that this assumption is quantitatively justified for typical systems. However, since in the non-
equilibrium regime the condensation density is larger than the equilibrium prediction, we have
also checked its validity by evaluating, for each considered excitation intensity, the resulting
density-renormalized lower /upper- polariton Rabi splitting

hQp = hQp (1 - @) : (4.1)

s

where n, is the resulting total exciton density.
The lower-polariton field py describes a Bose quasi-particle in two dimensions. The polari-
ton operator thus obeys the Bose commutation rules

[Pk, D] = dac - (4.2)

The corresponding lower polariton effective Hamiltonian, in presence of two-body interaction
(see subsection 2.1.6) and polariton-phonon scattering [Tassone 97] is

H=Hy+ HP, + H,, (4.3)
where, in the momentum representation,

Hy =Y huplpe + > hwaD}Dy (4.4)
k q

is the free Hamiltonian for polaritons and acoustic phonons (ﬁk represents the Bose operator
destroying a phonon with wave-vector k),

A 1
l A~ ~ A A
Hij = 5 D 0P abo—abie i (4.5)
kk’q

is the effective two-body interaction for lower polaritons, and

= 3" g0 (Dl + Dog) (bl + Pl (46)
kk’q
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is the Hamiltonian describing the coupling between polaritons and the bath of acoustic phonons.
This Hamiltonian describes processes where one phonon is absorbed or emitted while one po-
lariton scatters between two energy states.

We have seen in subsection 2.1.6 that the quantity US?/ arises from the exciton-exciton inter-
action between excitons v, and from the oscillator strength saturation due to Pauli exclusion
vs [Rochat 00, Ben-Tabou de Leon 01, Okumura 01], as

2|”S’
A

Here the Xy, Cy are the Hopfield coefficients representing the excitonic and the photonic
weights respectively, in the lower polariton field, i.e.

Uy
vl(((l]()’ = ZXk+qu/,quXk/ +

Xie—a(|Cretal Xic + Xicq| Ocl) Xier - (4.7)

e = Xichie + Cieéxe (4.8)

where, as before, b and é represent the exciton and the photon destruction Bose operators
respectively. Notice that, in the present approximation, we neglect the density dependence
of the Hopfield coefficients (in Chapter 3 we have seen that they weakly depend on density
for typical experimental conditions) and consequently their time dependence during the time
evolution. In Eq. (4.7) we have written the interaction matrix elements in the small-momentum
limit Egs. (2.59,2.60) [Rochat 00, Porras 02, Doan 05]. Indeed the full momentum dependence
is neglected in the present approach, because we are restricting to the lower polariton branch
and, in the numerical calculations, we will include the states with large momentum only in an
effective way.

The polariton-phonon matrix element gl(:il(), is derived from the deformation potential inter-
action with acoustic phonons, [Tassone 97, Doan 05] which is expected to dominate at low
temperature, but could also include other electron-phonon coupling mechanisms. In terms of
the electron and hole deformation potentials we have

| hlq]
9 = 1\ 517, 00 et (lan DI (a:) = ) (ay I3 (a2)| (4.9)

where |q| = |k — k| because of the in-plane momentum conservation. Here, p and u are the
density and the longitudinal sound velocity in the semiconductor, respectively, L. is the quan-
tum well width and a.() are the electron (hole) deformation potentials. The terms I!(h)(|q||\)

and [ j(h)(qz) are the superposition integrals of the exciton envelope function with the phonon
wave function (plane wave) in the in-plane and z-directions, respectively, and read

1 ey l) = 11+ (aolaymeqmy /2(me +my))?) =2

Lan(a:) = / d2| fe(m (2)]%€"7, (4.10)

where me(y) is the electron (hole) mass while f.()(2) are the electron/hole envelope functions
along the growth direction, according to the exciton envelope function picture (see Eq. (2.29))
[Tassone 97].

4.1.2 Number-conserving approach

We have discussed in subsection 2.2.3 the advantages of the Number-conserving approaches
in describing the non-equilibrium features of BEC, and in particular the condensate growth.
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This kind of approach is useful also in the polariton case. Indeed, Hamiltonian (4.3) conserves
the number of particles because of the y® nonlinearity.! Therefore the chemical potential is
well defined for polaritons, also in presence of the non-equilibrium input/output regime, due
to the external pump and to the finite escape probability through the mirrors. We remind that
the situation is different for a laser, where photons have not a well defined chemical potential
because of the x(?) nonlinearity (i.e. one photon can scatter into two photons)[Mandel 95]. As
discussed in subsection 2.2.3, the description of the condensate as a classical field would result
in an unphysical kinetic equation for the condensate, in which the spontaneous in-scattering
term vanishes.? Moreover, at any fixed time the number of particles is well defined in the
real system and the scattering of a particle between the condensate and the excited state
conserves the total number of particles. In particular, the energy eigenvalues of the excited
states depend self-consistently on the actual number of condensed and non-condensed particles
[Gardiner 97a, Gardiner 98]. When including relaxation mechanisms, this dependence also
affects the energy relaxation rates. Here, we adopt the formalism developed by Castin and
Dum [Castin 98] and, in an equivalent way, by Gardiner [Gardiner 97a] and we will derive
kinetic equations by following the Hartree-Fock-Bogoliubov scheme. We remind however that
already Bogoliubov introduced a Number-conserving version of his theory, predicting the same
thermodynamical properties of the U(1) symmetry breaking approach [Zagrebnov 01].
In the number-conserving approach, the polariton Bose field is expressed as

Px = PG+ pi (4.11)

i.e. the sum of a condensate part Pia and a one-particle excitation operator pyx. The condensate
part is the product of the condensate wave function (in the wave vector space) Py times the
Bose operator a, destroying one particle in the condensate. Obviously a obeys

[a,a"] =1. (4.12)
Considering the normalization relation

S IR =1, (4.13)

k

the condensate population is simply given by the average N. = (a'a). The one-particle exci-
tation field py is orthogonal to the wave function of the condensate, i.e.

> Bl =0 (4.14)
k
and, since
[ a'] =0, (4.15)

it obeys the modified Bose commutation rule

[ﬁk,ﬁlz] = 0w — PPy, (4.16)

1We point out that, in real systems, a x(? nonlinearity is also present, but, for typical samples like GaAs
based microcavities, it is very small due to symmetry reasons and thus it is safely neglected in the system
Hamiltonian (4.3).

20One way to overcome this problem within a symmetry-breaking approach consists in writing a separate
semi-classical Boltzmann equation for the condensate density and introducing a stimulation term scaling as the
inverse of the area, as was done by Doan et al. [Doan 05].
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where the deviation from the exact Bose commutation rule depends on the wave function of
the condensate.®> By using these definitions, and by assuming that there is not first order
coherence between the condensate and the one-particle excitations, i.e. (a'py) = 0, the total
population at momentum k is

Ny = (pipr) = | Pul*Ne + N, (4.17)

where )
Ny = (pli) (4.18)
is the population of non-condensed particles.

Within the number conserving approach, the fluctuation field is defined by the operator
[Castin 98]

o 1

that promotes a particle from the condensate to the excited states. In Eq. (4.19) N = )", Nx
is the total number of particles. This quantity is conserved in each process where a particle
scatters between the condensate and the excited states.* Within the definition (4.19), the
fluctuation field has obviously a vanishing expectation value

(AL = %Nmﬁb 0, (4.20)

while its amplitude scales as the square root of the one-particle population N, because

(4.21)

and the condensate fraction f, = N./N is of the order of 1 for a condensed system. The
fluctuation composite operator obeys quasi-Bose commutation rules

[Ak,[\q} —0 (4.22)
and
Ael] = [0~ AP e - ]
e N, Ngc+ PR, |
N N

where in the second line we have approximated the product of operators with one-particle
densities and Ngi = (plpk). It is useful to define the formal Bogoliubov transformation,

(4.23)

J

3This relation is particularly important when the formalism is applied to describe the time evolution of the
condensate wave function in space. However, in what follows, we assume a constant uniform condensate wave
function, i.e. Px ~ dxo, and the one-particle field obeys the exact Bose commutation rule.

4Recently, Gardiner and Morgan have suggested a different definition of the fluctuation field in the Number
conserving approach [Gardiner 07]. Indeed they replace the total number of particles with the number of
condensed particles at a given time. This has been done to avoid the assumption N.(t) ~ N in the derivation
of the dynamical equations. However, for the polariton case, as we will see later on, basically due to the fact
that the relaxation rates are slow with respect to the frequencies of the fluctuations A, it is more convenient
to scale the fluctuations with the total number of polaritons in the coherent energy region at a given time (we
will define the coherent region later on).
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which allow to express the fluctuation with wave-vector k in terms of the exact Bose operators
&; representing the collective excitations of the system with energy E; (j is the time reversal of
the state j) [Pitaevskii 03, Castin 98]. The modal functions Ujx and V7 obey the conditions

UixViq = UjaVix (4.25)

7,9

imposed by the commutation rule (4.22), and

. . N, N+ PiPcN.
Uj,qu,k - Viqvj,—k = 5kqﬁ - Nq )

(4.26)

imposed by the commutation rule (4.23). The explicit expression of the modal functions U, x
and Vj*w within the Hartree-Fock-Popov limit, is given below, in Eq. (4.45).
In particular, for a uniform system,

P = €0xo
Nk = (i) = ka Vi, (4.27)

the commutation rule (4.23) reduces to

N N.— N,
|:Ak, A:r:l] >~ 5quk = 5kq£k . (428)

In the uniform case, the collective excitations have a well-defined wave-vector, and the Bogoli-

ubov transformation is simply R
Ay = Ul + Vi alt (4.29)

where now the normalization of the modal functions Uy and V*, reduces to
|Ol* = [VidJ* = & (4.30)

Using Eqs (4.29) and (4.19), we obtain a direct relation between the population in the collective
modes
kK = <dek> ; (4.31)

and the one-particle population

(Pliw) = [(6x + 2IVA?) N + V] - (4.32)

1+ N,
We point out that, while at thermal equilibrium the populations Ny are fixed by the Bose
distribution, in the non-equilibrium regime the populations evolve in time, during an initial
transient, eventually reaching steady state if the pump intensity is constant over time. There-
fore, in a non-equilibrium regime, it is difficult to apply relation (4.32), where the populations
and the modal functions are in principle time dependent. For this reason, in our approach we
will introduce two different time scales (an approximation justified by the physics of polaritons)
and we will use Eq.(4.32) only to evaluate the actual occupation in the collective modes during

the relaxation and, consequently, evaluate the two-body correlations.

84



4.1.3 Two-body interaction

The two-body interaction H?, in Eq. (4.3) has two main effects. First, it introduces the
collision processes which contribute to the thermalization of the gas. Second, it modifies the
spectrum of the system, in particular when condensation occurs. Indeed, we have seen in
section 2.2 that, already in the mean-field limit, for a condensed system, the spectrum is
strongly modified with respect to the single-particle one, and the actual eigenmodes of the
system are collective excitations with a phonon-like dispersion at low-momenta. In addition,
and due to the spectrum modifications, in the condensed system two-body interaction also
triggers the coherent scattering processes responsible for quantum fluctuations [Leggett 01].

Initially we totally disregard the effect of the incoherent collisions [Gardiner 98| driving
the relaxation dynamics, and we treat the mutual interaction term by means of an Hartree-
Fock-Bogoliubov approach. We will see later on how to address the problem of the incoherent
collisions.

Hartree-Fock-Bogoliubov approximation

Within the Hartree-Fock-Bogoliubov (HFB) approximation, Hamiltonian H.?, is written in the
truncated form

~ 1 0) ot . 1 k—K' (k—K')
Hypp = 5 E Ulik)/prka/pk + 5 E Ul(d{/ )pkpk/pkpkf + = E Ukk/ pkp WDrP-x, (4.33)
Kk’ k#A+k/ k;ék’

where the first and the second terms correspond to the direct and the exchange terms of the
HF approximation (and are equal in the limit where the matrix interaction does not depend
on the exchanged wave vector), while the third term arises from the presence of anomalous
correlations [Schmitt 01]. By separating the operator p in the condensate and non-condensate
contributions accordingly with the Number-conserving expression Eq. (4.11), and specializing
to a uniform system, Hamiltonian (4.33) reads

. 1 ot A
Hyrp = 51)00 Tataa + Z Uko kO pkpka a+ = Z UkO (pltpik,aa + h.c.> (4.34)
1 O faf ~ -~ 1 k—K') - ~ k—K') f <t =
+ 2 Z Ul(d(),prka/pk + B Z Ul(d(/ )pkpkfpkpk’ + B Z Ul(d(/ )p;r(p KPPk
Kk’ kALK KAk

where the prime means that k = 0 is excluded from the sum. Clearly this Hamiltonian results
in the self-energy diagrams displayed in Fig. 2.9.
From the Heisenberg equation of motion

ihpy = [ﬁk,ﬁHFB] (4.35)

we derive the kinetic equations for the populations in the condensate and in the one-particle

excited states
. 2 K) ~
N. = 3Im { Ek vl((o)mk} , (4.36)

- 2 B
Ny = —ﬁvl((lg)lm{mk}, (4.37)
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where we have defined the scattering amplitude
i = (afalprp_i) = N(ARA_L) . (4.38)

This quantity describes the scattering of two particles between the condensate and the excited
states and it represents the main effect of quantum fluctuations. These processes do not con-
serve energy and could not be described in terms of Boltzmann equations for the populations
of the single-particle states. They are made possible only because, in a condensed system,
the actual eigenstates are collective modes and differ from the single-particle states. As a
consequence, the quantities (_/A\kf\_k) are finite. Clearly, their amplitude decreases for increas-
ing wave vector k, because only the phonon-like long wavelength collective excitations differ
significantly from the corresponding single-particle excitations, as suggested by the discussion
in section 2.2 and explicitly shown later on. In particular, we will verify this trend in Fig. 4.5,
where we will show that the amplitudes my vanish at large k. We point out the fact that, at
thermal equilibrium, the amplitudes my would be given by the value

ke = NUV_k (2N + 1), (4.39)

where we have used the definitions (4.29) and (4.31) and the modal functions can be chosen
as real. Therefore, at thermal equilibrium, my is a real quantity and, from Eqs. (4.36) and
(4.37), the system is in a steady state as expected. In this case, the quantity in Eq. (4.39)
represents the fluctuations of the number operator N, around its mean value. On the other
hand, in the non-equilibrium regime, the amplitudes /my are not given by Eq. (4.39), because
the actual expectation values N., Ny can be far from the equilibrium solution. Therefore we
need an additional kinetic equation to establish the actual values of the amplitudes m,. Again
from the Heisenberg equations we obtain (see Appendix F for the derivation)

- . ? ~ -
M = —2 {zwk + ﬁvl((%)(Nc — Ny — 5/2)] M

! (1+ 2N)

=~

[Z oDy 1+ 2N (N, — 1)
q

? T
+ 25 (1+2N) v (BLp Prpx) - (4.40)
q

In deriving Eq. (4.40) we have adopted the following two simplifications. First, the higher
order three-body correlations, arising as the next level of the correlation hierarchy, have been
factored into products of one- and two-body correlations. Second, we have assumed the identity

(a'ataa) = N.(N, — 1) (4.41)

to hold, as expected for a macroscopic condensate occupation, N. > 1. In the resulting
equation, the two-body correlation function between one-particle excitations,

Crq = (PLP qPrh—x) (4.42)

is written in an implicit way. This quantity is strongly affected by the presence of collective
excitations and thus it cannot be simply factored into products of one-particle densities. We
can estimate the effect of the modified spectrum, by expressing C’kq in terms of the modal
functions U, and V*,, obtained by diagonalizing the Bogoliubov problem in the Popov limit
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at each time step in the kinetics. To this purpose, we write the dynamical equation of the
fluctuation field in the mean-field limit (i.e. by performing the same factorizations in terms of
the particle densities, used to derive Eq. 4.40)

Ak = (wk + Ul(c%)gk)[\k + Ul({lgfk[ﬂk . (443)
From there, we derive the eigenvalues
Bie = [+ v 60)” — (030 6] (4.44)

and the modal functions

[Ek — (wk + vl({[z,)fk)] ’

Vil* = & . (4.45)
(vl G) — [Ek — (wk + Ul(g))ﬁk)]
In this limit, we can replace in (4.40) C’qu ~ C’igpw, with
Clorov — Al {UNEULVG (1 + 2Ny ) (1 + 2Ny)
el (Nc + 1)(Nc + 2) k“q'q q
+ Oiq [20 Vi (N + 2 [Vie?) + 2 [Va'] ), (4.46)

where i = & + 2 |Vk|2 and Ny can be expressed in terms of the one-particle population via
Eq. (4.32). This finally brings to a closed set of kinetic equations for the amplitudes 1y, and
the populations N, N.

We have derived the kinetic equations within the HFB limit, but, at the same time, we have
computed the time-dependent spectrum of collective excitations, within the Popov limit. This
might seem contradictory. However, this procedure is motivated by the purpose of fulfilling two
physical requirements, by means of a consistent mean-field approach. Indeed, while the kinetic
equations are derived accordingly to a conservative theory like the HFB approximation, the
spectrum is determined within a gapless approximation, thus without introducing any artificial
energy gap between the condensate and the excitations (in this way the actual energy gap only
depends on the system size and it correctly goes to zero for A — o0). These two properties
would be simultaneously fulfilled only within the second order Beliaev theory, whose applica-
tion in a non-equilibrium regime is however problematic and requires several approximations
[Imamovié-Tomasovi¢ 99]. From a quantitative point of view, we remind that, at thermal
equilibrium, the Popov collective spectra result to be in good agreement with the measured
excitation spectra of a weakly interacting Bose gas, when the temperature is not too close to
the critical temperature, i.e. T" < 0.57,.. This condition corresponds to a density considerably
above the critical density [Dodd 98, Liu 04]. Therefore, within the present model, we expect to
correctly account for the effect of collective excitations above the condensation threshold, i.e.
when ODLRO becomes detectable. At the same time we notice that, close to threshold, the
polariton relaxation dynamics and the coherent scattering processes are expected to be only
marginally affected by the presence of collective excitations, because the populations in the
condensate and in the low-lying excited states are small, as argued by Porras et al. [Porras 02].

We have already highlighted the importance of spatial confinement in the physics of mi-
crocavity polaritons. In a kinetic treatment, it is however difficult to introduce a realistic
confinement potential and thus to account for a nonuniform, time-dependent density profile.
Therefore we assume a finite-size homogeneous system of square shape and area A with pe-
riodic boundary conditions, resulting in spatially a uniform condensate wave function, i.e.
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Pe = €“5po. In a realistic condensate, this assumption is valid everywhere, except within
a distance from the boundary equal to the healing length ¢ = h/v/Muvn [Pitaevskii 03]. For
polaritons, we find £ ~ 1 um for the estimated non-equilibrium density threshold (in agree-
ment with the equilibrium estimate reported in Chapter 3). As discussed in Chapter 3 such
a confinement can model both finite size polariton traps [Daif 06] and the situation close to a
local minimum of the disorder potential in extended systems [Richard 05b, Langbein 02]. In
particular, the finite size results in a discrete energy spectrum, with an energy gap between
ground and first excited state A = h?(27)?/(MpnA) [Doan 05].

Collision terms

Clearly, within the HFB limit, the incoherent collision terms are totally neglected. Indeed, the
collision self-energy terms should appear only beyond the mean-field limit. However, they can
be simply treated by means of semiclassical Boltzmann equations [Tassone 99]. Unfortunately,
such a procedure would be inconsistent with the mean field approach just developed. The
typical dispersion of the lower polariton will allow to solve this problem, by suggesting a net
separation between a coherent low-energy region where incoherent collisions can be neglected
and an incoherent high-energy region where the semiclassical approach can be adopted. We
will discuss this separation later on. Here, we simply report the relaxation rates, as obtained
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Figure 4.1: Polariton-polariton in-scattering rates for the lowest energy state W, (k = 0, ks, k;)
as a function of the energy of the initial and the final states. The energies are evaluated with
respect to the bare exciton resonance. The rates are displayed on a logarithmic grey-scale.
The dashed line indicates the position of the bare exciton resonance. The dotted line in the
color bar indicates the value of the typical polariton radiative time. Parameters model the
CdTe microcavity studied by Kasprzak et al. [Kasprzak 06].

according to the semiclassical Boltzmann equations and having neglected the mean-field effect
of the interaction. The resulting in-scattering rates for the lowest energy state k = 0 are
displayed in Fig. 4.1. These results suggest that the main contribution to the relaxation
dynamics arises from processes where three of the four states involved in the scattering lie in
the energy region above the bare exciton resonance. Moreover, the scattering rates relative
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to scattering processes inside the energy region below the bare exciton resonance, are much
smaller than the typical range of the radiative decay rate 77 ~ 0.1 —1 ps~!. Therefore, we can
safely approximate the relaxation dynamics by only retaining the contributions arising from
processes where two exciton-like polaritons scatter into another exciton-like polariton and into
one polariton at low energy, as made by Porras et al. [Porras 02].

Within the developed procedure, the effect of two-body interactions is treated separately for
the two energy regions, above and below the bare exciton resonance. At low energy, we account
for the mutual interaction within the HFB limit and we describe the coherent effect induced
by the presence of the condensate. At high energy, we neglect the effect of the condensate (i.e.
we only account for the density dependent energy blue-shift) while we account for the collision
processes within the semiclassical Boltzmann equations. The treatment of this contribution
follows the model introduced by Porras et al. [Porras 02] and it will be explained in the next
subsection.

4.1.4 Kinetic equations

In this subsection we derive the closed set of dynamical equations accounting for the one-
particle self-energies within the HFB limit and for the relaxation mechanisms.

To this purpose we have introduced two key-assumptions. First, as explained in previous
subsection, we separate the single-particle energy spectrum into a lower energy coherent part
and an incoherent part at higher energies. This is depicted in Fig. 4.2 (a) for the typical energy-
momentum dispersion of the lower polariton branch. This is possible because, as discussed in
subsection 4.1.3, and more generally in section 2.2, the lower energy part of the spectrum
is expected to be strongly modified by the presence of collective excitations, whereas in the
higher energy part the actual excitations basically correspond to blue-shifted single-particle
states. Correspondingly, it is mostly in the coherent region that quantum fluctuations will
affect the condensate kinetics. In fact, only the lowest energy states, modified by interactions,
can contribute to the scattering processes my triggering quantum fluctuations. It is therefore
customary in the BEC literature [Gardiner 98] to restrict the quantum kinetic treatment to
the coherent region, describing the dynamics within the incoherent region in terms of a simple
Boltzmann population kinetics. Such a separation, for the lower polariton branch, naturally
coincides with that between the strong-coupling region and the exciton-like part of the disper-
sion, as illustrated in Fig. 4.2(a). In addition, in the polariton case, as shown in the previous
subsection, the incoherent two-body collisions can be neglected within the low-energy region.

The second approximation is made possible by the remark that, given the macroscopic
occupation of the condensate above threshold, the field dynamics of collective excitations
takes place much faster than energy relaxation mechanisms, made slow by the steep polariton
energy-momentum dispersion that reduces the space of final states available for scattering
processes (see Fig. 4.1).

The kinetics is thus described in terms of a density-matrix hierarchy whose time-evolution
is obtained from the Heisenberg equations of motion.

Relaxation rates: Exciton-exciton scattering

The two-body interaction terms within the incoherent region are treated consistently with the
Boltzmann picture, as was done by Porras et al. [Porras 02]. In particular, we assume that,
in the incoherent region, the population of the exciton-like polaritons is thermally distributed
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Figure 4.2: (a) Energy-momentum lower-polariton dispersion. Notice the logarithmic horizon-
tal scale. (b) Energy-momentum plot of the discrete lower-polariton states in the coherent
region, as used in the simulations for A = 100 pm?.

with an effective temperature defined by
kT, = e,/n., (4.47)

where kp is the Boltzmann constant, n, is the total particle density inside the incoherent
region, and e, is the total energy density in the incoherent region (as shown below, these
two quantities are determined self-consistently during relaxation, via Boltzmann equations).
Within this picture, the processes of two particles in the incoherent region scattering into one
particle in the incoherent region and one in the coherent region, result in an effective energy
relaxation mechanism towards the bottom of the polariton branch.

The expressions derived are formally identical to what obtained in Ref. [Porras 02] (for
exciton-exciton scattering), with an important difference: in the present case, the actual HFB
Popov spectrum Ej, replaces the non-interacting single-particle spectrum, because we make
the approximation

e~ fY2R, = f12 (dek + Vi‘@h) ~ FY2U Gy (4.48)

and we assume that at the given time the HFB Hamiltonian is diagonalized by the collective
excitation modes, i.e.

Hypp =Us+ Y By, (4.49)
k
Therefore, the resulting expressions for the relaxation terms are [Porras 02]
Ny lxx = WiSn2(1+ Ny) — WEEn, Ny, (4.50)
and
: 1 XX, 2 XX
e Lex = = 3 W20+ M) = Wi, ], (@51
kEUcoh
where
nA = [(me 4+ mp)kgT,|A/21h? (4.52)
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is the Qumber of states in the incoherent region, and U, denotes the coherent region. Here,
Ny = Nx for k # 0 and Ny = N,.. Note that we use the fact that n,/n < 1 and that |k| < k.,
where k, is the absolute value of the wave vector averaged in the incoherent region i.e.

V2
ky = / deNer/KBTE$. (4.53)

The rates appearing in the equations are given by

W = o | [ o, 54
Big
and 5
Wy = et mn) | ) | g2 ot st (4.55)

In all these expressions, consistently with our assumption, the spectrum in the incoherent
region is the single-particle spectrum, only accounting for the overall density-induced blue
shift of the polariton branch Epg = vN. Besides the set of equations (4.50,4.51), the model is
completed by the introduction of an equation describing the evolution of the energy density in
the incoherent region e,. Following the procedure of Ref. [Porras 02|, this equation reads

E N
b= -3 [ngng (1 n Nk) - w,gg;nmjvk]
keUcoh
— 7 (kgTy) ng + (kpTy) f — w". (4.56)

Here, the first term represents the heating of the incoherent population, produced by the
exciton-exciton scattering process and imposed by energy conservation; the second term is
the cooling due to the exciton radiative recombination; the third term is originated by the
assumption that the incoherent population is created at the lattice temperature 717 ; the fourth

term represents the cooling induced by exciton-phonon coupling and it is evaluated as in
Eq. (21) of Ref. [Porras 02].

Relaxation rates: Polariton-Phonon coupling

The polariton-phonon scattering is treated within a shifted-pole Markov approximation, re-
sulting in standard Boltzmann contributions [Tassone 97]. Notice that in this case, we evaluate
the relaxation terms along all the lower polariton dispersion, i.e. both in the incoherent and
in the coherent regions. Using again the approximated relations (4.48,4.49), the expressions of
the relaxation rates are [Doan 05]

. Ny
Ni |y = A{WfiknAHNk)—W,ﬁ’ixNk(m j>]+

> W N +

kleUcoh
— WP N1+ Ny, (4.57)
and
el = D [WER N+ mg) = W2 (1 4+ N) (4.58)
keUcoh
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2LZ = 2 |Ek- — Ek’|
h h
Wk]:?—>k’ = T }g%k/’ W [nﬁk/ + 9 (Ek: - Ek’) 9

gl = VIk = ¥'*+ @ = | By — Eyl|/hu, (4.59)

The population of phonons at the energy F = Ej — Ej. is thermally distributed at the lattice
temperature, i.e.

1
ph __
Ny = (BB FoTr — 1 (4.60)

In principle, phonon-assisted correlations also enter the kinetic equations for the amplitudes
my, resulting in a complicated expression which cannot be solved analytically because two-
body interaction couples different values of the wave vector. However, since in the present
case the amplitudes my, evolve with characteristic frequencies much larger than the relaxation
rates, we can safely neglect the phonon contribution in the kinetic equations for my.

Kinetic equations

Collecting Eqs.(4.36,4.37,4.40,4.46,4.50,4.51,4.57) we finally obtain the kinetic equations:

) ) . ) B
Ne = =yoNe+ Nl + Ne | + 7 S ol Im{in}
k
X ~ X X 2 (k) B
Nk = —’yka + Nk |ph + Nk: |XX - ﬁvkﬁklm{mk}
- . { - -
mey = —2 [vo + twy + ﬁv,i?())(]\fc — N, — 5/2)} My,
l k—q) ~ k -
-5 [Z v Dy + 2007 NN, — 1) | (1 + 2N;)
q
i _
+ 25 (142N ) o O
q

Ne = —Yala + N |y, + 10 [xx + T (4.61)

Here we have added the phenomenological polariton radiative lifetime v, = 7.|Cy|?, |Ck|?
being the photon fraction in the polariton state and . being the cavity photon lifetime, and
the exciton lifetime 7,. The quantity f denotes the pump intensity producing a population in
the incoherent region.

This finally brings to a closed set of kinetic equations for the amplitudes m, the populations
N., N, and the total density n, in the incoherent region. In the next section, we will discuss the
numerical solutions of these equations for parameters modeling typical experimental conditions.

4.2 Predictions of the kinetic theory

In this section we discuss the numerical solution of the set of kinetic equations (4.61), computed
in the time domain.

Before discussing the condensation kinetics, however, we point out that Eqgs. (4.61) repro-
duce the equilibrium results in the limit where the lifetimes are infinite (yx, v, — 0) and the
continuous source is substituted by a pulsed source or by an initial condition. The results for
the equilibrium limit are shown in Fig. 4.3. In particular, the asymptotic occupation of the
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Figure 4.3: Stationary solutions of Eqs.(4.61), for infinite radiative times and lattice temper-
ature T, = 20K, obtained by imposing an initial condition. (a) Stationary populations of
collective excitations Ny displayed as a function of the energy Ei, compared with the Bose
distribution at the given temperature. (b) Asymptotic value of the time-dependent coherent
scattering amplitudes N ~1ry = (/A\k/ALk>, compared with the equilibrium prediction Eq. (4.39),
computed by using the Popov spectrum corresponding to the populations shown in panel (a).

collective excitations tends to the thermal Bose distribution, while the amplitudes my simply
reduce to the equilibrium limit Eq. (4.39). Therefore, our kinetic model reduces to the Popov
approximation, in the case of equilibrium. Consequently, any predicted deviation from the
Popov result is a consequence of deviations from thermal equilibrium.

We now discuss the main predictions for the non-equilibrium regime. To this purpose,
we assume a steady state pump and parameters modeling the CdTe microcavity studied by
Kasprzak et al. [Kasprzak 06]. In particular, we consider a Rabi splitting 2AQ2z = 26 meV
and cavity photon-exciton detuning 6 = 5 meV, at the lattice temperature T" = 10 K. The
quantization area is assumed everywhere A = 100 um?, unless specified, consistent with the
estimates of the polariton localization length, [Richard 05b] and gives rise to the discrete set
of polariton states plotted in Fig. 4.2(b). For this system we obtain from Egs. (2.59,2.60)
vy = 3.3 x 107° meV, vy = —0.5 x 107° meV and the resulting polariton-polariton interaction
matrix element is v(()?g =6 x 107" meV.

Time evolution

The solutions always display steady-state long-time values after an initial transient, as shown
in Fig. 4.4. In panel (a), we display the time evolution of the populations of the condensate
and of the first excited state. Correspondingly, in panel (b), we display the time evolution of
the amplitude of the scattering processes between the condensate and the first excited state.
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Figure 4.4: Time dependent results for the populations of the condensate state N, and of the
first excited state N and for the imaginary part of the coherent scattering amplitude m., for a
given value of the excitation pump f above condensation threshold. After an initial transient,
all the quantities reach a stationary value.

We notice that, during the early stages of the condensate growth, the scattering processes
favor condensation, through the positive values taken by Im{m;}. Immediately afterwards,
when a large condensate population is reached, the quantity Im{my } changes sign and coherent
scattering terms start depleting the condensate. In Fig. 4.4, it is also clear that the relaxation
dynamics takes place over a time of the order of hundreds of ps. On the other hand, for the
same parameters, the typical period of the collective excitations, is of the order of ps, thus
confirming that the field dynamics occurs over a time scale much shorter than the time scale of
the population dynamics. In particular, the predicted fast field dynamics is expected to assure
that the spectrum of the system be close to the estimated quasi-stationary Popov spectrum,
thus confirming our a priori assumption.

Population distribution

We now discuss the steady state solutions, as a function of the pump intensity. In Fig. 4.5 (a),
we plot the steady-state populations per state, for varying pump intensity. A pump threshold
is found at about f = 12 ps™! um~2, corresponding to a polariton density in the coherent
region n = N/A ~ 10 um~2 and a total exciton density (including the incoherent density n,
and using the renormalized exciton-photon coupling in Eq.(4.1)) 7 o~ 100um=2. We point
out that the system studied in Ref. [Kasprzak 06] is composed by 16 quantum wells. Since
the polariton modes are expected to extend quite homogenously over all the quantum wells, in
experimental literature the exciton density per quantum well is usually estimated by simply
dividing the total exciton density for the number of quantum wells [Deng 03, Richard 05b]. In
the present case, following this prescription, the obtained exciton density per quantum well is
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Figure 4.5: (a) Steady state populations for increasing pump intensity f. Open squares:
equilibrium HFB Popov solution for (n,T) corresponding to the steady-state solution for f = f.
Thin line: B-E distribution fitted to the high-energy tail and to the condensate population for
f = f3. (b) Energy dispersion below and above threshold (same legend as above). The dashed
line is a guide to the eye to highlight the linear part of the dispersion.

two orders of magnitude lower than the CdTe saturation density 1., ~ 5 x 103um=2. This fact
confirms that our treatment of the polariton field in terms of a weakly interacting Bose field is
well justified. Below threshold, the relaxation bottleneck results in an energy distribution very
far from a thermal distribution, with a maximal occupation in excited states. In this regime,
the population in the lowest energy state is a vanishingly small fraction of the total population
and consequently the system is expected to be incoherent. Above threshold the condensate
population becomes macroscopic. Its growth for increasing f is however suppressed by the
corresponding increase of the population of low energy excitations, i.e. excitations below
E = 0.5 meV (on the other hand, the one-particle population in the higher energy states
is predicted to saturate above threshold, consistently with the picture of BEC of a weakly
interacting gas). Consequently, the population distribution cannot be fitted by a Bose-Einstein
function at low-energy. The discrepancy is partly due to the presence of the collective phonon-
like spectrum — characterizing an interacting Bose gas at thermal equilibrium — and partly to
amplified quantum fluctuations. In order to distinguish the two contributions, we compare the
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kinetic result to a distribution computed for an equilibrium interacting Bose gas in the HFB
Popov limit [Griffin 96], accounting for spatial confinement. For this equilibrium distribution,
we assume the same density as obtained from the kinetic model for the given pump f, while
the temperature is extrapolated from the slope of the high-energy tail of the same kinetic
model distribution. In Fig. 4.5 (a), the result for f = 50 ps™' um™2, is compared to the
equilibrium HFB Popov distribution with n = 100 gm™2 and 7' = 20 K. As expected, the
equilibrium result already deviates from the ideal distribution, due to the modified spectrum
of the interacting system. However, equilibrium and kinetic results differ significantly in the
low-energy region. In particular, the kinetic model predicts a larger condensate depletion. The
difference is due to the dominant role played by quantum fluctuations (see also Fig. (4.10)
below), whose amplitude deviates from the equilibrium prediction and has to be evaluated by
means of a proper kinetic treatment like the present one. We point out that these results are
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Figure 4.6: Measured energy distribution of populations, for increasing excitation intensity.
From Kasprzak et al. [Kasprzak 06].

in good agreement with energy distribution data measured in the experiment by Kasprzak
et al. [Kasprzak 06], which are shown for a direct comparison in Fig. 4.6. In particular, the
predicted polariton density threshold is close to the experimental estimate. Moreover, above
the threshold, a clear increase of the population at low energy is also reported. We point
out that the energy broadening in this experiment is too large to extract from this behavior
an estimate of the condensate depletion predicted by our model. However, we will see later
on that small deviations from the thermal occupation result in a significant change for the
one-particle spatial correlation function at long distance, which is also measured in the same
experiment.

Also in the kinetic model, the energy dispersion, evaluated within the Popov approximation
Eq. (4.44), is modified by the presence of the condensate because of the two-body interaction,
displaying the linear spectrum of collective excitations at low momenta, [Steinhauer 02] as
shown in Fig. 4.5 (b). Here, the dashed line highlights the linear part of the spectrum. Recent
works have proposed that, in the non-equilibrium regime, the spectrum of collective excitations
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could show a diffusive behavior at low momenta in place of the equilibrium phonon-like behav-
ior [Boyanovsky 02, Szymanska 06, Wouters 07b]. Clearly, with the present non-equilibrium
model, we cannot predict if this typical behavior would possibly arise, because we are assuming
a priori that the finite polariton lifetime only affects the kinetics of populations and correla-
tions, while it does not enter in the determination of the spectrum Eq. (4.44).°. However, our
approximation, also adopted in other non-equilibrium approaches [Imamovié-Tomasovié 99],
is expected to be realistic for densities sufficiently above the density threshold, where the
contribution of the mutual interaction in determining the rate of the field dynamics (this
contribution is responsible for the linear behavior at small momenta) is quantitatively larger
than the typical polariton decay rate. This idea seems to be confirmed for the polariton sys-
tem, by the non-equilibrium Gross-Pitaevskii approach recently developed by Wouters and
Carusotto [Wouters 07b]. In particular, as can be estimated from equations (8)-(10) of Ref.
[Wouters 07b], the excitation spectrum should tend to the equilibrium one (a part for values
of momentum well below the experimental resolution), for lifetimes 7 > 3 ps.

Spatial correlation function

We now turn to discuss how the deviations from the thermal occupation affect the one-body

spatial correlation
g (r,x") = n(r,x')/y/n(r)n(r) (4.62)

As seen in subsection 2.2.1, the one-body density matrix n(r,r’) is the direct expression of
ODLRO that characterizes BEC [Penrose 56, Ritter 07]. The function g") depends on the
distance |r — r'| for a uniform system and can be computed in terms of the Fourier transform
of the population Ny. The density in the denominator renormalizes the shape of the condensate
wave function, hence we expect the averaged quantity gV (r) = 1/A [ dRgM (R, R + 1) to be
scarcely affected by the assumption of a uniform condensate. In Fig. 4.7, we plot g(l)(r) below
and above the condensation threshold. Below BEC density threshold, spatial correlations
vanish for distances larger than 1 — 2um, as predicted by both the present kinetic model and
by the equilibrium Popov approximation. On the other hand, above the density threshold, the
correlation length increases and ¢(!)(r) remains finite over the whole system size. However,
for all values of the pump, the value of g("(r) predicted by the kinetic model remains smaller
than 0.5 at large distance, whereas the value predicted by the equilibrium HFB Popov is
significantly larger, due to a larger condensate fraction, as seen in Chapter 3. This effect is
due to the larger amount of population in the low energy excited states with respect to the
equilibrium prediction. Therefore the non-equilibrium, enhanced quantum fluctuations turn
out to strongly affect the formation of ODLRO. The quantity ¢ (r) can be optically accessed
in an experiment. Indeed, the light emitted by a spatial region of the sample is originated
by the radiative recombination of polaritons in this region. Therefore the interference pattern
formed by the light emitted by different positions on the sample corresponds to the interference
pattern formed by the polariton field evaluated in different positions. For such an experiment,
we therefore predict the increase of the spatial correlation length (i.e. the largest distance for
which interference is visible) as a signature of BEC, also when deviations from the thermal

SHere we express the coupling with the environment in a phenomenological way, i.e. by the introduction of a
finite lifetime for the populations and the non-diagonal correlations m. A more correct description of the decay
in terms of the coupling with a bath has been recently adopted by Szymanska et al. [Szymanska 06] within the
Keldish non-equilibrium formalism. In this case however the Coulomb two-body interaction (responsible for
the phonon-like behavior) is neglected and so it is not clear if the predicted diffusive behavior is robust against
the presence of a realistic two-body interaction.
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Figure 4.7: First order spatial correlation function below and above threshold, compared to
the same quantity resulting from the equilibrium Popov approximation.

equilibrium are present. On the other hand in this case, due to enhanced quantum fluctuations,
we predict a correlation (i.e. the amount of contrast for the fringes) well below the equilibrium
prediction. In particular, for the typical conditions of the current experiments, we predict
correlations below 0.5 even far above the threshold. This estimate turns out to be in very good
agreement with the experimental measurement realized by Kasprzak et al. [Kasprzak 06],
reported in Fig. 4.8. In the experiment, the density distribution is determined by the disorder
potential, and thus there is not a regular profile for the spatial correlation. However, it is
evident that, while below threshold correlations disappear for distances larger than 2 ym, above
threshold correlations extend over distances larger than 12 pum (with a profile that follows the
condensate spatial wave function), but never exceed 40%. Another clear evidence of this trend
has been recently reported for a GaAs microcavity sample, i.e. a system where the amount
of disorder is small, by Balili et al. [Balili 07]. In that case the interference pattern is more
uniform, correlations extend over the whole area of trapping, i.e. over a distance r ~ 20um,
while the amount of correlation at large distance never exceed 25%.

Dependence on system size

As discussed in Chapter 2.2, the occurrence of BEC in a confined 2-D system depends on the
size of confinement, because, for large area, the BKT transition is expected to be the relevant
transition (on the other hand, for a 3-D system, in principle, the nature of the transition remains
the same also in the thermodynamic limit). However, for a system at thermal equilibrium, the
dependence on the system size is very weak (as shown for the polariton case in Chapter 3),
because the critical density is expected to increase as the logarithm of the area.

For a non-equilibrium system, the dependence on the area of confinement is more dramatic.
This is basically due to the fact that, for increasing system size, the density of states just above
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Figure 4.8: Measured one particle spatial correlation function g(*)(r) for an excitation intensity
below (c) and above (d) the intensity threshold, from Kasprzak et al. [Kasprzak 06]. Notice
that in this plot a merror correlation is displayed and the length should be multiplied by 2 in
order to relate to the actual correlation length [Kasprzak 06].

the condensate state increases. This results in larger non-equilibrium quantum fluctuations,
and consequently in a larger condensate depletion. In Fig. 4.9, we show the condensate frac-
tion in the steady-state regime for increasing system area A, and a fixed excitation intensity.
This quantity decreases for increasing area, because coherent scattering is favored by a smaller
energy gap A. For a system area larger than 1000 pm?, non-equilibrium quantum fluctua-
tions dominate, eventually resulting in a full condensate depletion (this is required also in the
thermodynamic limit, by the Hohenberg-Mermin-Wagner theorem). We can conclude that po-
lariton condensation (and, more generally, non-equilibrium condensation of a 2-D gas) occurs
thanks to the locally discrete nature of the energy spectrum, induced either by artificial con-
finement or by disorder. In a realistic system [Langbein 02, Kasprzak 06, Daif 06, Kaitouni 06,
Balili 07, Bajoni 07], localization could therefore affect the polariton BEC, independently of
other parameters like Rabi splitting and exciton saturation density.

Role of quantum fluctuations

To better understand the role played by non-equilibrium quantum fluctuations, in Fig. 4.10
we show the values of the coherent scattering rates vl({liklm{mk} as a function of the energy
of the corresponding states. As expected, like in the equilibrium limit shown in Fig. 4.3, they
decrease dramatically for increasing energy and their contribution to the dynamics vanishes
for states outside the coherent region, thus confirming our initial assumption of separation
into two energy regions. We see also that, for an increasing excitation intensity the values
of the coherent scattering terms increase, resulting in an increased amplitude of quantum
fluctuations. This increase counterbalances the fact that the relaxation becomes more efficient
due to stimulated scattering. Therefore, increasing the excitation intensity does not imply that
the system approach equilibrium.

We will see in the next section that the only possible way to approach thermal equilibrium
is in increasing the polariton lifetime.
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Figure 4.9: Condensate fraction as a function of the system area for f = 30 ps~! pum~2.

Dependence on parameters

Before discussing the comparison between equilibrium and non-equilibrium predictions, we
point out that we have also applied the kinetic model for system parameters modeling a GaAs
microcavity with Rabi splitting 2AQ2z = 7 meV and cavity photon-exciton detuning 6 = 0 meV,
at the lattice temperature 7' = 10 K and for A = 100pum?. In this case vxx = 6 x 107° meV,
Vsqr = —0.15 x 107° meV and the resulting polariton-polariton interaction matrix element is
v(()?o) = 1.5x107° meV. Also for this system we observe the occurrence of polariton condensation
and the partial suppression of the ODLRO because of quantum fluctuations. Quantitatively,
we notice that in this case the total exciton density at threshold results higher than in the
previous case, n, ~ 500um 2. Nevertheless, considering that in a realistic system the number of
quantum wells needed to reach the assumed Rabi splitting is Now = 4, the exciton density per
well is one order of magnitude lower than the saturation density for GaAs, n,, = 2x10% pm=2.
Therefore, also in this case, the treatment of the polariton field in terms of a weakly interacting

Bose field is well justified.

4.3 Comparison between equilibrium and non-equilibrium
results

For several aspects, GaAs microcavities are the most promising system for future studies and
applications of the polariton BEC. In this system, due to the small amount of disorder, it would
be possible to study the spectral properties of a condensate, in particular the occurrence of the
negative energy branch of excitation. For the same reason, the size dependence of the transition
could be investigated, possibly observing the BEC-BKT crossover. Furthermore they are the
ideal candidate for the fabrication of artificial structures [Daif 06, Kaitouni 06, Bajoni 07]
where observing Josephson phenomena and studying correlations and transport properties
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Figure 4.10: Coherent scattering contributions vl(:iklm{mk}, for two values of the excitation

pump f.

[Balili 07]. However, to make these systems appealing for fundamental studies, it is crucial to
reach thermal equilibrium.

For this reason, in this section, we focus on the GaAs based microcavity, comparing the
equilibrium results with the results of the kinetic model, obtained assuming different polariton
lifetimes. We will show the dependence of the effective temperature and of the critical density
as a function of the polariton lifetime. In particular we will see that equilibrium is expected for
large but realistic values of the polariton lifetime, as also suggested by a recent experimental
evidence reported by Deng et al. [Deng 06].

The main predictions of the equilibrium theory have been presented in Chapter 3. In partic-
ular, the HFP theory allows computing a phase diagram for polariton BEC and corresponding
density-dependent energy shifts in quantitative agreement with the results of the recent mea-
surements [Kasprzak 06, Balili 07]. The kinetic model, applied on the same systems, shows the
importance of quantum fluctuations in partially suppressing the off-diagonal long-range order,
a trend which is in good agreement with the measured one-body spatial correlation function.

For the numerical calculations, we use GaAs parameters for the exciton and photon effective
mass [Doan 05], for the deformation potential coupling to acoustic phonons [Tassone 97|, and
for the Coulomb and Pauli exclusion terms [Rochat 00]. We assume zero detuning and a typical
quantization area A = 800 ym? [Balili 07]. Where not specified, the vacuum field Rabi splitting
is 20 = 7 meV and the lattice temperature is 7' = 10 K. This parameter represents the
temperature of the phonon bath in the kinetic model, whereas it fixes the polariton temperature
in the HFP theory. For the kinetics, we assume a stationary pump intensity f, whereas the
total polariton density n is used as an input for the HFP theory. We denote by f. and n. the
threshold intensity for the kinetic model and the critical density in the HF'P theory respectively.
Fig. 4.11 shows the polariton distribution N(F) simulated from the kinetic model at two
different values of the polariton lifetime 7,,, = /70, and f = 1.5 f.. For comparison, the
distribution obtained from the HFP theory at the same temperature and n = 1.5 n,. is plotted.
The kinetic result for 7,,; = 3 ps has a high-energy exponential tail displaying a significantly
larger effective temperature than the temperature of the phonon bath. At still shorter lifetime,
the kinetic result displays a considerable deviation from a single exponential, corresponding
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Figure 4.11: Population distribution of polaritons, as obtained from the kinetic model at
f = 1.5f., for two different values of the polariton lifetime. For comparison, the distribution
predicted by the HFP theory at T'= 10K and polariton density n = 1.5n., is shown. The gap
in the two topmost curves indicates the separation between the polariton and the exciton-like
regions of the dispersion.

to a strong departure from full thermalization. We point out that the estimated polariton
lifetime was 7,, >~ 1.5 ps for the sample of Kasprzak et al. [Kasprzak 06|, and 7,, ~ 4 ps
for the sample of Deng et al. [Deng 03, Deng 06] and of Balili et al. et al. [Balili 07]. To
explore in detail how the polariton lifetime affects the predictions of the kinetic model, we
display in Fig. 4.12 the effective temperature T,¢¢ at the BEC threshold (Fig. 4.12(a)), and
the corresponding exciton density per quantum well ngw (Fig. 4.12(b)), as a function of the
polariton lifetime 7,,. The density per QW is given by nogw = n/Ngw, where Ngw is the
number of QWs in the sample and n is the total density in the model, accounting for both the
polariton population and the exciton reservoir. This is indeed the density produced in each
QW and is the relevant quantity to be compared to the exciton saturation density [Deng 03].
For short polariton lifetimes, the main contribution to the relaxation is given by the scattering
processes originating from the exciton reservoir. Relaxation within the strong-coupling is
slow, compared to the lifetime, and thus not very effective. As a consequence, thermalization
at the temperature of the phonon bath cannot be reached. In this regime, condensation is
achieved only when the average exchanged energy in a scattering processes is sufficiently large.
Consequently, at the condensation threshold, the effective temperature is significantly higher
than the lattice temperature [Balili 07] and a polariton density at threshold ngw ~ 10%um?
results, which is one order of magnitude larger than the critical density n. predicted by the
equilibrium theory. When the polariton lifetime is increased, phonon relaxation becomes more
effective, favoring thermalization and a lower threshold density. Quantitatively, the effective
temperature approaches the lattice temperature for lifetimes larger than 10 ps. The total
density per QW at threshold then approaches the equilibrium value ngy ~ 10 um?. We notice
that this result is qualitatively confirmed, although under different experimental conditions,
by the experiment by Deng et al. [Deng 06], where the energy distribution of polaritons,
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Figure 4.12: Predictions of the kinetic model for the effective temperature in the exciton-like
reservoir (a) and exciton density per quantum well (b), computed at the BEC threshold as
a function of the polariton lifetime. For comparison, the equilibrium temperature and the
corresponding critical density as obtained within the equilibrium HFP theory are also shown.

measured 50 ps after that a pulsed laser pump has excited the system quasi-resonantly, turns
out to be very close to the Bose distribution at the lattice temperature. In Fig. 4.13 we report
the predictions of the kinetic model for the effective temperature T, ¢ (Fig. 4.13(a)), and the
corresponding exciton density per quantum well ngw (Fig. 4.13(b)), computed at the BEC
threshold as a function of the Rabi splitting 2h€2r. For these calculations we have assumed a
polariton lifetime 7,,; = 3 ps. In Fig. 4.13(b) the corresponding quantity obtained from the
equilibrium HFP theory, for temperature 7" = 10 K and T" = 20 K is also plotted. Increasing
the Rabi splitting actually suppresses phonon relaxation along the strong coupling region of
the polariton branch. Hence, a higher effective temperature is required for condensation. On
the other hand, the density per quantum well decreases, simply due to the increase of the
number of quantum wells, as vacuum field Rabi splitting scales as /Now [Savona 95]. By
assuming that 2h{Q2z = 4 meV holds for a single QW in the cavity, then a Rabi splitting of 16
meV requires Now = 16, in agreement e.g. with the sample in Ref. [Deng 03]. At large Rabi
splitting, the simulated value of ngw at threshold strongly deviates from the corresponding

103



4 6 8 10 12 14 16
10° ;—(b; ' —a—Kinetic model (z =3 ps) |
o, - @=- equilibrium Popov (T=10 K)
102 o, O --0-- equilibrium Popov (T=20 K) ]
.\.\ ‘5?;\.\
< e, \\\o —
§. 101 E -\.\ \\\o 3
N - N \NN
:g I .\"- e
10°t AN o ]
o_.
10-1 | \.\‘\- i
1 1 1 N 1 \ , .\-\!
4 6 8 10 12 14 16
20, (meV)

Figure 4.13: Effective temperature T.;; (a) and exciton density per QW ngw (b) as a function
of the Rabi splitting, as obtained from the kinetic model at the BEC threshold. In (b), the
corresponding values obtained from the equilibrium HFP theory, for temperature 7" = 10 K
and T = 20 K, are plotted for comparison.

value obtained at thermal equilibrium. The two results, at 7' = 20 K and 22z = 16 meV differ
by a factor 200. The kinetic value of ngw is in this case equal to that obtained at 2Qp = 7 meV
and 7,, = 10 ps, as seen in Fig. 4.12.

It is important to point out that the amplitudes of the scattering processes my, responsible
for increased quantum fluctuations and suppression of off-diagonal long-range order, turn out
to be strongly suppressed for increasing lifetimes. Hence, samples with increased polariton
lifetime should also be characterized by a larger two-point spatial correlation function at long
distance, as compared to the value measured for samples with large Rabi splitting and short
lifetime [Kasprzak 06].

Is it really possible to achieve a polariton lifetime close to 20 ps? A common feature of
MBE-grown microcavity samples is that the measured cavity-mode linewidth does not improve
further, as the number of pairs in the distributed Bragg reflectors (DBRs) is increased above
20-22 pairs. This has led to the common belief that the polariton lifetime cannot be improved
by growing more pairs. This is however a misconception. In reality, the measured cavity
mode is mostly inhomogeneously broadened, as a consequence of long-range disorder present
both at the cavity interfaces and in the mirrors. This fact was pointed out by several groups
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[Stanley 94, Gurioli 01, Langbein 04, Savona 07]. Indeed, if the photon mode is probed on a
small enough sample area, quite different results are obtained. As an example, microcavity
pillars of 4 pym diameter [Loffler 05] display linewidths as small as 60 eV, and the linewidth
constantly decreases when bringing the number of pairs in the DBR to 27. The reason is that
a narrow pillar samples a small homogeneous area of the sample and only the homogeneous
linewidth — the one directly related to the photon lifetime — emerges. A similar conclusion
can be drawn by recent measurements of polariton photoluminescence spectrum in patterned
mesa structures [Kaitouni 06]. There, the measured cavity-mode linewidth in wide regions is
200 peV, whereas the polariton linewidth measured in a 3.6 um wide mesa is 70 peV (with a
cavity-exciton detuning of approximately -3 meV). For the parameters of this sample, we have
performed a transfer matrix calculation that resulted in a cavity mode linewidth of 80 ueV,
significantly smaller than the value measured on the extended structure and in good agreement
with the value in the mesa, obtained by accounting for the Hopfield factor in the ground
polariton state. This strongly supports the idea that the polariton lifetime is locally determined
by the nominal reflectivity of the DBRs. A simple transfer matrix calculation predicts a
polariton lifetime 7,,; > 20 ps already for a cavity similar to the one in Ref. [Kaitouni 06],
with 26 (substrate) and 24 (top) pairs in the DBRs. Several experimental studies lead to
similar conclusions [Stanley 94, Richard 05b, Sanvitto 05, Oesterle 05, Bajoni 07].

4.4 Conclusions and outlook

In conclusion, we have developed a kinetic model for the condensation of polaritons under a non-
resonant stationary optical excitation. This model accounts for both the field dynamics induced
by two-body interaction and the relaxation mechanisms. In particular, since we describe the
coherent dynamics of quantum fluctuations within a time-dependent Hartree-Fock-Bogoliubov
approach, we expect that the present kinetic model is valid also when condensation occurs.

The present theory reduces to the equilibrium Popov approximation, for infinite lifetimes.
On the other hand, when the system is far from equilibrium, the result shows that the dynamics
of quantum fluctuations significantly affects polariton BEC and the formation of ODLRO in a
polariton condensate. In a typical case, quantum fluctuations partially deplete the condensate,
already slightly above threshold. Quantitatively, the effect depends on the locally discrete
energy spectrum, due to trapping or to disorder. We predict that the observation of BEC and
ODLRO should be favored by smaller polariton size, as in recently studied polariton artificial
structures [Daif 06, Kaitouni 06, Bajoni 07], or in local minima of the disorder potential. This
suggests that, for a given sample, a study of the polariton localization length in the lowest
energy states [Langbein 02] could give deeper insight into the BEC mechanism.

We have compared the predictions of the kinetic model for the BEC of microcavity po-
laritons with the results obtained within the equilibrium HFP theory developed in Chapter 3.
The results prove that the system can reach thermal equilibrium when the polariton lifetime
is sufficiently large, i.e. 7,, > 10 ps, even in samples with a reasonably small Rabi splitting (7
meV, that is obtained by embedding 3 or 4 QWs in a microcavity). The critical density, in this
case, is expected to be well below the exciton saturation density. GaAs-based microcavities
should display this value of 7, for realistic microcavity geometries, in particular if the number
of Bragg reflectors is sufficiently large (N > 24).

Some aspects of the non-equilibrium regime remain unclear, basically related to the general
problem of the condensate formation and stability. In particular, we cannot describe satisfac-
torily the evolution of the spectral function during the condensate growth. Consequently, it
is not clear if a system in a steady-state regime would manifest the phonon-like collective
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excitation spectrum, predicted at thermal equilibrium and resulting in the superfluid behav-
ior [Bogoliubov 47]. To solve this problem satisfactorily, a non-equilibrium many-body field
theory would be required, accounting microscopically for the coupling with the external elec-
tromagnetic field, for two-body interactions and for the non-radiative dephasing mechanisms.
Although such a treatment would be prohibitive for describing the polariton condensate for-
mation under non-resonant excitation, it could be perhaps applied to the description of the
steady-state limit in the case of resonant excitation.
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Chapter 5

Conclusions and perspectives

In this thesis, we have presented a theoretical description of the BEC of microcavity polari-
tons. The recent experimental observations of high quantum degeneracy with formation of
off-diagonal long-range coherence seem to confirm that microcavity polaritons are the first
example of BEC in a solid state device [Kasprzak 06, Balili 07]. However, we have seen that
the description and the interpretation of this phase transition is made difficult basically for
two reasons. First, polaritons have a peculiar composite nature, because they are mixed light-
matter quasiparticles originated by the coupling between the exciton (matter) and the photon
(light) fields. Second, because of the short polariton lifetime and the inefficient relaxation
mechanisms, the deviations from thermal equilibrium are much more important than in other
Bose gases. Due to these features, the existing theoretical frameworks rather interpret the
phenomenon in strict analogy either with the laser physics or with the BCS transition of Fermi
particles. These theoretical descriptions however leave two basic questions still unanswered.
Are the experimental findings correctly interpreted in terms of a quantum field theory of inter-
acting bosons? Could the achievement of polariton BEC give new insights into the fundamental
physics of interacting Bose systems?

In this work we have answered these two questions in three steps. First, we have shown that
polaritons can be modeled borrowing from the theory of interacting Bose particles. This is the
main result of the bosonic theory developed in Chapter 3. In particular, we have generalized the
Dyson-Beliaev formalism to the case of two coupled Bose fields, thus describing self-consistently
the linear exciton-photon coupling and the exciton y(®-nonlinearities. We have treated the
problem at thermal equilibrium, within the Hartree-Fock-Popov limit. In this way, we have
computed the density-dependent energy shifts and the phase diagram, obtaining a very good
agreement with the recent experimental findings [Kasprzak 06]. We point out that our theory
has four important properties:

e the resulting polariton modes are density dependent and thus we can predict the modi-
fication of the spectral functions as a function of density;

e as the poles of the exciton and the photon propagators correspond to the positive and
the negative lower- and upper-polariton branches, the thermodynamics is properly de-
termined by the actual polariton dispersion;

e the polariton, the photon and the exciton fields are simultaneously described, thus al-
lowing to make a clear connection between the coherence properties of the polariton field
and the typical optical measurements (which can measure only quantities directly related
to the photon field).
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e the non-condensed population in the excited states is accounted for in the Popov limit,
and thus the theory can be applied at finite temperature.

Second, we have investigated how the intrinsic deviations from the equilibrium regime
could affect the formation of off-diagonal long-range order. To this purpose, in Chapter 4 we
have developed a kinetic theory of the polariton condensation, where the time evolution of
populations and the dynamics of the excitation field are solved self-consistently. This model
accounts for both the relaxation mechanisms and the coherent dynamics of quantum fluctu-
ations, which is solved within a time-dependent Hartree-Fock-Bogoliubov approach. Within
this framework, we have studied the typical experimental conditions where polaritons condense
under a non-resonant stationary optical excitation. We have shown that the role of quantum
fluctuations is amplified in this non-equilibrium regime, resulting in a significant condensate
depletion, confirmed by experiments [Kasprzak 06, Balili 07]. In particular, we have seen
that this effect quantitatively depends on the locally discrete energy spectrum, due to trap-
ping or to disorder. Therefore, we expect that the observation of BEC and ODLRO should
be favored by smaller polariton size, as in recently fabricated polariton artificial structures
[Daif 06, Kaitouni 06, Bajoni 07], or in local minima of the disorder potential.

Third, by comparing the predictions of the kinetic model with the results obtained within
the equilibrium HFP theory, we have studied how the deviations from thermal equilibrium
can be reduced by increasing the polariton lifetime. In particular, our results suggest that
the system can reach thermal equilibrium when the polariton lifetime is sufficiently large, i.e.
Tpol > 10 ps, a condition which is expected to hold for high-quality GaAs-based microcavity
structures [Stanley 94, Sek 07].

Our analysis thus supports the interpretation of the recent experimental findings in terms
of polariton BEC, showing that all the observed features are described by means of a bosonic
theory of the polariton gas. In fact, the observed deviations from the behavior expected for a
weakly interacting Bose gas at thermal equilibrium are explained as the result of the intrinsic
non-equilibrium regime of the present experimental conditions. Furthermore, we predict that
the artificial trapping of the polariton gas and the increase of the polariton lifetime would lead
to thermal-equilibrium polariton BEC in realistic samples. This would make the polariton
system an ideal tool for studying many fundamental aspects of the BEC physics, thanks to
the ease of optical measurements. In particular, it would be possible to investigate

e the effect of dimensionality and fluctuations and the possible crossover between BEC of
a trapped gas, and BKT transitions;

e the evolution of the excitation spectrum from the single-particle to the collective one;
e the coherence properties in space and time and the connection to the BEC laser;

e the condensate formation and stability.

The formalism developed in Chapter 3 represents the starting point for a future theoretical
investigation of these issues. To this purpose, it would be particularly interesting to work
in three directions. First, to generalize the formalism to nonuniform system and to apply it
to the study of condensation in new artificial polariton traps, like polariton mesas [Daif 06,
Kaitouni 06] or pillars [Bajoni 07]. Second, to extend the theory beyond the HF limit, in
order to study higher order correlation functions. Third, to include non-equilibrium features,
by adopting the Kadanoff-Baym (or Keldysh) treatment, in order to investigate the interplay
between the relaxation mechanisms and the field dynamics driven by nonlinearities, in the
spirit of the simplified analysis performed in Chapter 4.
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Appendix A

Polariton T-matrix

We discuss here in detail to the problem of the 2-D T-matrix for polaritons, mentioned in
Chapter 3.

We point out that a self-consistent evaluation of the polariton T-matrices would require
the inclusion of diagrams mixing the exciton-exciton interaction and the exciton-saturation
term. However, since we are only interested in a qualitative evaluation of the correction with
respect to the bare potentials, we consider independently the two contributions. Within this
simplification, the equation for the exciton-exciton many-body T-matrix has the usual form

[Shi 98]

T, (kX q,iw,, +iw,,) = (kK. q Z v (kK q)giT (k+ d',iwy, +iw,) (A1)

qzw

Xgle(k/ - q/7 iwnk/ - an)TI<k + q,> k, - q/> q-—- qla iwnk + Z‘Wnk/) )

where gi{ is the normal exciton propagator. On the other hand, the exciton-photon two-body
interaction defines the corresponding many-body T-matrix

Ty(k, K, d,iwn, +iw,,) = vs(k, kK, q Z v (K, K, gk + o, iwn, +iw,) (A.2)
q Z"Jn

X gll (k/ q/7 Z.Cdnk, - an)Ts(k + q/7 k, - q/7 q— q/y ank + ank/)

1 / /
+ W Z vs(k k', q')

X g1t (k + ' iwn, +iwn)gii (K = dyiwy,, —iw,)

x Z vk+q. kK -q,q" —q)
q’iwy
giT(k+q" iw,, + iw, + zwl)gff(k' —q", iwy,, — iw, — iw)
Ts(k + q”7k/ - q 7q - q 7zwnk + ank/)

q’iwn

(A.3)

We see that the normal photon propagator and the exciton-photon propagator contribute to
T,. Although the second term can be apparently considered as an higher order term, the two
contributions to T turn out to be quantitatively equivalent. We have solved numerically these
two equations up to convergence, by using the one-particle propagators ¢g**, ¢g* and ¢*¢

obtained by solving the Popov equations with the k-dependent interaction matrlx elements Vg
and v,. Therefore we do not solve self-consistently the T-matrix equations. We only aim at
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comparing the value of the T-matrix at the collision energy with the value of the corresponding
bare potential. The resulting T-matrices, in the limit of zero wave vector, are shown in Fig.
Al (T,) and Fig. A.2 (Tj), for several values of the system area A. As expected, the T-
matrix has a minimum at the collision energy (in this case at z = 0), and it would vanish in
the thermodynamic limit [Shi 98]. However, up to system size much larger than the typical
polariton confinement, the difference between the many-body T-matrix and the corresponding
bare potential matrix element is lower than 5%. This result quantitatively justifies the use of
v, and vs.
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Appendix B

Equations of the HFP theory with the
full k-dependence

In Chapter 3, Egs. (3.27-3.30) are synthetically written omitting the k-dependence of the
interaction potentials. For completeness, we now write the same equations in the k-dependent
form. We stress that all the results shown in Chapter 3 are obtained starting from the k-
dependent equations written in this Appendix, i.e. by accounting for the full momentum
dependence of the interaction potentials.
For the condensate amplitudes, the two coupled Gross-Pitaevskii equations are
(e — u) P, = [—2Re{vs(0,0)nge + 2% vs(k, 0)ng’
+ (v2(0,0)ng” + 25 kv, (k, 0)n”)] P
(hQR - Zkvs(k 0) ) (I)C
(66 - :u) (I)c (hQR - US(O 0) - 22’1(1}5(1(, O>T~Ziz) q)am
(B.1)
where ¥y = Sizo and v, 4(k, q) = (1/2)(ves(k, q, 0)+v,.(k, q, k—q)). Here n}® = <Oi(k)0§(k))/A,
where &, x = z, ¢. In our notation OA% (k) = Oc(k) while Og(k) = Og(k)
We remind that we have introduced the 4 x4 matrix propagator G(k, iw,) = {gﬂ (k, @wn)};‘f:&’c,
whose elements are the thermal propagators of the excited particles, [Shi 98] written in terms
of the Matsubara frequencies for bosons w,, and that the propagator matrix G(k,iw,) obeys
the Dyson-Beliaev equation
G (k,iw,) = G (k,iw,) [1 4+ 2 (k, iw,) G (K, iw,)] (B.2)
where we have introduced the matrix of the non-interacting propagators G° = {9 (k, iwn)};(f =
Oyedjil(—)iw, — el(f) + u]7! and the 4 x 4 self-energy matrix
oy Rk wy) Xk wy)
Yk, iw,) = ( Yk, iwy,) Xk, iw,)
Within the HFP theory, the self-energy elements are independent of frequency and read
S =2 [us(k,@)ng — vk, q) (ng +ng)]
q
Yi(k) = (5" = v.(k, 0)®2 — 2v,(k, 0)P,P,,
> q Us(k, @)ng”
hQR ’
Bisk) = (255 (k)" = —v, @3, (B.4)

(B.3)

se(k) = 555(k) = Qg (1 i
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while 257 = X% and X% = 0.

114



Appendix C

Low-energy density of states

We discuss here our choice of modeling artificial confinement and structural disorder by adopt-
ing single-particle states in a box with periodic boundary conditions. We point out that the
polariton localization length is only determined by disorder at the interfaces, resulting in a
confinement for the photon field [Langbein 02]. A realistic disorder potential for the polariton
field is displayed in Fig. C.1. We compare the eigenstates obtained for this disorder potential

y (Lm)

U1

0 5 10 15 20 25
X (m)

Figure C.1: Typical disorder potential for the polariton field.

with the eigenstates obtained for a square box of area A = 100 pym? in Fig. C.2. Although
at high energy the density of states is obviously larger for the disorder potential, we see that
the density of state at low energy, i.e. for £ < 1 meV, is very similar in the two cases. Since
the main effect of confinement in 2-D is in preventing the divergence of long wavelength fluc-
tuations, the choice of adopting a box is sufficient to model the presence of a weak structural
disorder.
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Figure C.2: Number of states at a given energy for a disorder potential (a) and for a box
A =100 pm? (b).
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Appendix D

Simple picture of the non-equilibrium
regime

We have shown in Chapter 3 that the Hartree-Fock-Popov theory developed for the polariton
gas satisfies the Hugenholtz-Pines theorem, i.e. it predicts a gapless one-particle spectrum.
This property is due to the fact that the condensate chemical potential, determined by the
Gross-Pitaevskii equations, also represents the chemical potential of the excited particles, i.e.
it defines the unperturbed Green’s functions GGg. This condition is automatically guaranteed at
thermal equilibrium. On the other hand, it has been suggested that deviations from equilibrium
could manifest themselves via the presence of a new quasiparticle chemical potential differing
from the local chemical potential of the condensate [Imamovié-Tomasovié 99]. Basically, this
feature would originate from the different rate of relaxation into the condensate and into the
thermal cloud.

Starting from this idea, we naively introduce non-equilibrium effects by assuming the exis-
tence of two different chemical potentials for the condensate, pi.nq, and the excited particles,
Hexc:

Hexc — Heond = 0 7& 0. (D]')

We point out that, while the condensate chemical potential pi.onq is fixed by the interaction
energy, the quantity ... determines the statistical weight of the excitations and thus, within
this simple picture, it is a free parameter. In particular, by restricting to the Bogoliubov
limit our model (i.e. by neglecting the non-condensed population in the self-energy terms),
we study how the excitation spectrum depends on the energy difference §.! The real part of
the excitation spectra are shown in Fig. D.1, while the imaginary part for § = 0.2,0.3 are
shown in Fig. D.2. The spectrum is gapless and phonon-like only if 6 = 0, corresponding
to the Hugenholtz-Pines condition. On the other hand, if § > 0, the spectrum is diffusive at
small momentum, as predicted in a more rigorous way by Boyanovski et al. [Boyanovsky 02],
Szymanska et al. [Szymanska 06] and Wouters and Carusotto [Wouters 07b]. We point out
that the condition § > 0 means that the creation of an excitation is favored with respect to the
creation of a condensed particle, and thus it corresponds to the typical case where the relaxation
into the condensate is slower than the relaxation into the thermal cloud [Wouters 07b].2 On

!'Notice that, for the present analysis, we are obliged to restrict to the Bogoliubov limit, because the
population in the excited states cannot be fixed by the thermodynamics but a kinetic evaluation would be
required [Boyanovsky 02].

2In a symmetry-breaking approach, this fact is due to the absence of a spontaneous scattering term into the
coherent state, which is represented by a classical field. It is not clear if this feature remains valid also when
the condensate is treated as a quantum field.
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Figure D.1: Excitation
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Figure D.2: Imaginary part of the excitation energies for 6 = 0.2,0.3, showing a diffusive
behavior at small momentum.

the other hand, for < 0, the spectrum has an energy gap at zero momentum, corresponding
to the fact that creating an excitation is energetically more difficult. This condition occurs
when the relaxation into the coherent state is artificially forced, as in the case of polariton
parametric process, where the appearance of an energy gap has been predicted by Carusotto
and Ciuti [Carusotto 05].
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Appendix E

Landau criterion for polariton
superfluidity

In analogy with the Landau criterion for a single Bose gas, we can define the normal density
of excitons and photons (having defined an effective mass my( for the two species) by means

of _
1 AN, (E)
w(e) — _ 2 Z p2g2 2\ E.1
Pr 34 dE |y (E.1)

where
No(Bw) = (Bl = (XA = [XPR)P) N = (|XP 1)) — [XP(K)P) np(EY),  (E:2)

defines the occupation of the exciton quasiparticles

P = ubi + 05, b0 (E.3)
with
, X0r(k)
e = ! ! 1/2
(1IXFaR)P — X))
, Xtk

(1P - [xPK)2)

while N.(Ey) is the photon quasiparticle population and is defined via
Ne(Ex) = (afax) = (ICPR)P = [CP&)P) N = (ICP W)~ [CF&)[°) np(EY) . (E.5)

defines the occupation of the exciton quasiparticles

Gne = g éye + 00 8l (E.6)
with
: Cir(k)
Ug = ! ; 1/2
(k)P - 1cr)P)
: Clr(k
Ul( — ( ) 1/2 . (E?)

(k)P — |cr)P)
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We point out that in our model the total densities of excitons and photons are directly
obtained from the normal exciton and photon propagators, respectively. We can thus extract
the superfluid exciton and photon density simply by subtracting the expression (E.1) from the

total density
pi(C) = mx(c)nxx(m) - pz(C) : (ES)

Notice that the superfluid densities of excitons and photons depend on the actual polariton
spectrum and in particular are affected by the features of the lower polariton dispersion. To
evaluate the quasi-condensate phase diagram, we define the polariton system as superfluid if
both the exciton and the photon superfluid densities are finite. Indeed, only in this case we
expect a superfluid response to either an optical or a mechanical perturbation.
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Appendix F

Factorizations in the kinetic model

The equations (4.61) are derived factoring higher order correlation terms in single-particle
or Bogoliubov quasi-particle population terms. In this appendix we give the details of the
derivation of the dynamical equations of the scattering amplitudes my. From the Heisenberg
equation and neglecting either the phonon coupling and the contribution of the states lying in
the incoherent region, we obtain the expression

il = z(hwk—vffg)m +o(atal(@la + aa")pipo)

4 Z Uk,() AT ATﬁTqﬁq];k]; k>

k
+ vf(l (a'a TGG(P WPk + Piy))
e
+ § T(BL oy 1P + PuPlys oy i) Paber)

- quﬁq aa +a+d)ﬁgﬁiqﬁkﬁ—k>- (F.1)

To rewrite this relation in terms of the populations of the condensate and of the excitations,
we use the following factorizations (notice that the condensate wave function corresponds to a
single particle eigenstate at k = 0):

(a'atatapep 1) ~ (N, — 2)m; (F.2)
<ATdTﬁLﬁqﬁkﬁ k) =~ (Ngq — 0q1 Nk — 0q,—k Nk )

+N, akMq—k + Ngq—kMqx;

—
=
=~ W
S~—

(@' aplp! qph-x) = No(BLp! oPrh-xk);

(a'ataapl i) ~ Ne(Ne — 1) Ny; (F.5)

<aTa’qu+q ik P-kPaPa’) == 2Ngiq kMg, —k

+N q+q’—k,—kmq,q’
— S0t e Vi nc). (F.6)

From here, within the assumption of a spatially homogeneous system, we recover the relation
of Eq. (4.61).

As explained in the text, the two-body correlation <}5£]5T_q15k15_k> between excitations is
evaluated in a quasi-stationary limit, by using the actual solution of the Bogoliubov problem.
Using again the fact that the condensate wave-function corresponds to a single state, we rewrite
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this quantity in terms of the excitation field Ay, defined in Eq. (4.19), as:

aaatatpt 5t mep
ot~ ~ _ <aaa' apqp,qpkp_k> F
<pqpqpkp—k> (Nc+ 1)(Nc+2) ( 7)
N2 AU
- AFAT ALA ).
(NC+1)(NC+2)< a\ i)

The correlation amplitude for the fluctuation field is written by means of the Bogoliubov
transformation Ay = Updy + Vj‘kdik. All the resulting terms are factored as product of the

Bogoliubov quasi-particle populations Ny = (d;r(dk>, as:
<dLOAéL(35kOAéq> ~ Nk (Nq — 5k,q) . (F8)

Collecting all the terms in a compact way, we finally recover Eq. (4.46). The final expression
can be written in terms of the single-particle population using the expression

<]5Lﬁk> ~

g U + VAP B+ Vi (F.9)
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Appendix G

Semiclassical Boltzmann equations

In deriving the equations of the kinetic model developed in Chapter 4, we have only retained
the collision processes describing two exciton-like polaritons scattering into another exciton-like
polariton and into one low-energy polariton. This choice was justified by the fact that these
processes give the dominant contribution to the relaxation kinetics (see Fig. 4.1). In addition,
we have assumed that, in the exciton-like energy region of the lower-polariton dispersion,
the population distribution follows a Boltzmann distribution characterized by an effective
temperature T),. In this Appendix, we show the validity of these approximations, by comparing
the results of our simplified kinetic equations with the results obtained by solving the full set
of semiclassical Boltzmann equations. To derive these latter we follow the derivation made by
Tassone and Yamamoto [Tassone 99], i.e. we adopt the cylindrical symmetry and we choose a
grid uniformly spaced in energy with an energy step Ag. Within this choice, the semiclassical
Boltzmann equations for the populations in the lower polariton states read [Tassone 99]

N = Feo— i
> W e NaNg (14 Nig) (1 + Niw) = Wi MieNie (1 4+ No) (1 + Nyy)]
kl7q7q/

+ 3 [Wlf,’;kjvk,a +Ni) — WP L N(1 + Nk,)] . (G.1)

k/
The rates of the phonon-mediated scattering processes are given by (see Eq. (4.9,4.59))

weh o= 2t X2XL R N (Fw — E oo
= )R D] apau” ek e N (e = B (G-2)
where Ny (E) = np(E) + 6(E),
emaac 2A 2
R, =2 /0 dehuqk [aelj(qz)fy(Ak”) _ahz,j(qz)f,!@k“)] : (G.3)

¢ = AL = A}, AF = K+ K? = 2kk'cost, Ay = | B — Ex|/hu and

k2 4 k% — A2
~ Tk 4
2]{:]{:, C? (G )

oS0, 0 =

if |c| <1 while cosb,,q, = Sgn(c) if |¢| > 1.
On the other hand, the rates of the polariton-polariton collision processes are

2 2
W’PP — Z A |U(q_k)|2 AE R (G 5)
kk'—aqq’ = (op)a kK | 0BT ToET B | fHekhad :
Ok2 |k! 9k?|q Ok? Iq
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where

1 dx
Rk,k’, q = —/ , (GG)
2 Ikt 0 = el = (k= Pl [F + ¢ = alfr = (W = ¢)?]
and the integral is performed over the interval
I=[(k—q)? (k+q)] N [(K ~d) K +d)] . (G.7)

Notice that the density of states along the energy dispersion enters into these expressions via
the derivative %. We mention that, since the thermalization in the exciton-like region is fast,
the steady-state solution of Eqs. (G.1) weakly depends on the peculiar k-dependence of the

pump terms

Fe=fCx Y Cpi=1 (G.8)
k

(f corresponds to the analogous quantity in Eq. (4.61)) provided that the pump populates
only high energy states, i.e. states in the exciton-like energy region.

As an example, in Fig. G.1, we compare the steady-state energy distribution predicted
by the kinetic model (already displayed in Fig. 4.11) and by Egs. (G.1), for 7,,, = 3 ps and
pump intensity f = 1.5f,.! The two energy distributions are very similar and they differ from

= = kinetic model (t
pol

=3 ps)

Boltzmann Eq. (rpol =3 ps)

------- equilibrium Popov (T=10 K) -

polariton population N(E)

energy E (meV)

Figure G.1: Energy distribution of populations in the condensed regime. We compare the result
of the kinetic model developed in Chapter 4, with the result of the semiclassical Boltzmann

equations (G.1), for 7,, = 3 ps and 77, = 10 K. We also show the prediction valid at thermal
equilibrium.

the distribution expected at thermal equilibrium. This result confirms, also quantitatively,
the non-equilibrium features discussed in section 4.3, in particular the heating of the exciton
reservoir with respect to the lattice temperature.

'In fact, we expect that the contributions arising from the scattering processes inside the low-energy region
(neglected in the kinetic model) could possibly be relevant only when the occupation of the lower energy
states is sufficiently large. On the other hand, we notice that, far above the condensation density threshold,
the incoherent collisions within the lower-energy part of the dispersion cannot be treated by means of the
semiclassical Boltzmann equations because the single-particle spectrum is modified by the presence of the
condensate, and a field theory formalism beyond the HFB approximation would be required.
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