Doctoral School in Manufacturing Systems and Robotics

Learning and Control of UAV Maneuvers Based on **Demonstrations**

Seved Mohammad Khansari Zadeh and Aude Billard¹

Learning Algorithms and Systems Laboratory École Polytechnique Fédérale de Lausanne {Mohammad.Khansari, Aude.Billard}@epfl.ch

 $[s^r; v^r]$

Objective

The aim is to develop an algorithm based on statistical approaches to learn any arbitrary maneuver from a given set of demonstrations.

Motivation

- X For aerial vehicles, it is difficult to specify accurately how to perform a task by hand.
- X Difficulties arise when considering the complexity of the aircraft's dynamics during the task design.

Approach

❖ State Variables:

$$s = \left\{ \begin{bmatrix} velocity & Angular Velocity & Euler Angles \\ [u,v,w] & ; & [p,q,r] \\ \end{bmatrix}; & [\varphi,\theta,\psi] \right\}$$

❖ Control Variables:

$$\upsilon = [\delta E; \delta A; \delta R; \delta T]$$

. The i-th data point of the n-th demonstration:

$$\xi_i^n = \{t_i^n, s_i^n, v_i^n\}$$

❖ Aircraft's Dynamics²:

Correcting the

$$\dot{s} = f(s, \upsilon)$$

The model of the underlying maneuver is estimated using a Gaussian Mixture Model (GMM). Such statistical encoding of the data encodes the most relevant aspects of the training data.

> Given a GMM, each data point ξ_i^n is associated with a probability density function:

$$p(\xi_i^n) = \sum_{k=1}^K \pi_k \frac{1}{\sqrt{(2\pi)^d \left| \Sigma^k \right|}} e^{-\frac{1}{2} \left(\left(\xi_i^n - \mu^k \right)^n \left(\Sigma^k \right)^{-1} \left(\xi_i^n - \mu^k \right) \right)}$$

> The GMM is trained using a standard Expectation Maximization (EM) algorithm.

Inferring the Reference Trajectory

Final Tuning

- $\Rightarrow \dot{s}^r \neq f(s^r, \upsilon^r) \xrightarrow{Optimization} \dot{s}^* = f(s^*, \upsilon^*)$
- ➤ Optimization Problem:

$$\min_{v} J = \int_{t_0}^{t_f} \{ [v(t) - v^r(t)]^T R[v(t) - v^r(t)] + \dots$$

$$+[s(t)-s^{r}(t)]^{T}Q[s(t)-s^{r}(t)]dt$$

Using GMM to

Encode the Motion

 $\{\pi^{k}, \mu^{k}, \Sigma^{k}\}_{k=1}^{K}$

(1)
$$\dot{s}(t) = f(s(t), \upsilon(t))$$
 $t_0 \le t \le t_f, s(t_0) = s^r(t_0)$

$$|\delta E| \le \delta E_{\text{max}}$$

(3)
$$\left| \delta R \right| \leq \delta R_{\text{max}}$$

(4)
$$|\delta A| \leq \delta A_{\text{max}}$$

(5)
$$0 \le \delta T \le 1$$

The optimization problem is solved using the Direct Sequential Method.

 $= \hat{\Gamma}(t) = \sum_{i=1}^{n} h_k(\mathbf{x}) \left(\mu_o^k + \sum_{i=1}^{k} \left(\sum_{t=1}^{k} \right)^{-1} (t - \mu_t^k) \right)$

Extracting the

Statistically Optimal

Trajectory

 $[s'; \mathcal{O}] = \widehat{\Gamma}(t)$

Results

- The performance of the algorithm was examined via 6DOF simulation for a conventional UAV for different acrobatic maneuvers. The model of each maneuver was generated from 3-5 demonstrations. Maneuvers were performed by the user on the simulator using a Joystick.
- > Currently, we work on implementing the algorithm on a micro flying air vehicle in collaboration with the Laboratory of Intelligent Systems (LIS) - EPFL.

Footnote

- micro flying air vehicle, and Antoine Beyeler and Jean-Christophe Zufferey for piloting the
- based approaches. In this work, we used the general form of the dynamics given by [2]. We are currently working on a statistical approach to learn the dynamics from a given set of data points.

Reference

- We would like to acknowledge the Laboratory of Intelligent Systems for providing us with the [1] S. Calinon, F. Guenter and A. Billard, "On Learning, Representing and Generalizing a Task in a Humanoid Robot," IEEE transactions on systems, man and cybernetics, Part B. Special issue on robot learning by observation, demonstration and imitation, 37 (2007) 286-298.
- ² The aircraft's dynamical model can be 1) provided by the user or 2) estimated using statistical [2] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle dynamics, AIAA education