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SUMMARY

Stem-like cells may be integral to the development
and maintenance of human cancers. Direct proof
is still lacking, mainly because of our poor under-
standing of the biological differences between
normal and cancer stem cells (SCs). Using the
ErbB2 transgenic model of breast cancer, we found
that self-renewing divisions of cancer SCs are more
frequent than their normal counterparts, unlimited
and symmetric, thus contributing to increasing
numbers of SCs in tumoral tissues. SCs with targeted
mutation of the tumor suppressor p53 possess
the same self-renewal properties as cancer SCs,
and their number increases progressively in the p53
null premalignant mammary gland. Pharmacological
reactivation of p53 correlates with restoration of
asymmetric divisions in cancer SCs and tumor
growth reduction, without significant effects on addi-
tional cancer cells. These data demonstrate that p53
regulates polarity of cell division in mammary SCs
and suggest that loss of p53 favors symmetric divi-
sions of cancer SCs, contributing to tumor growth.

INTRODUCTION

Tumors have been traditionally regarded as biologically homog-

enous populations of cells endowed with high proliferating

activity. This view is changing with the realization that many if

not all cancers are organized as abnormal tissues containing

a subset of cells with stem cell (SC)-like properties (cancer

SCs), which produce differentiated progeny with limited replica-

tive potential. Notably, cancer SCs are responsible for sustaining

tumor growth in model systems and are thought to drive growth

and metastasis of spontaneously occurring tumors (Clarke and

Fuller, 2006; Zhang and Rosen, 2006).
The notion of cancer SCs has important implications for

cancer treatment. Current therapies have been developed to

decrease tumor size and, though they may produce dramatic

responses, are unlikely to result in long-term remissions if the

rare cancer SCs are not targeted as well. A corollary of this

view is that the selective ablation of cancer SCs should lead to

the ‘‘sterilization’’ of the tumor and to its cure. There is, however,

little experimental evidence in support of this concept, largely

because of our scarce knowledge of cancer-SC specific biolog-

ical and molecular mechanisms.

SCs are defined by their ability to generate more SCs (‘‘self-

renewal’’) and to produce cells that differentiate. These two tasks

can be accomplished through a single self-renewing mitotic divi-

sion (‘‘asymmetric self-renewing division’’), in which one progeny

retains SC identity and the other (progenitor) undergoes multiple

rounds of divisions before entering a postmitotic fully differenti-

ated state. Two underlying mechanisms have been character-

ized in invertebrates: asymmetric partitioning of polarity and

cell fate determinants, and asymmetric placement of daughter

cells relative to external cues. The two cells generated by asym-

metric divisions differ markedly in their proliferative potential:

the SC remains quiescent or slowly proliferates, whereas the

progenitor cell divides actively. This ensures the production of

large numbers of differentiated progeny, while maintaining a rela-

tively small pool of long-lived SCs (Morrison and Kimble, 2006).

SCs, however, possess the ability to expand in number, as

occurs during development or, in the adult, after tissue injuries,

a property that cannot be accounted by asymmetric divisions.

Recent findings in invertebrates demonstrated that increased

numbers of SCs can be achieved through rounds of ‘‘symmetric

self-renewing divisions,’’ whereby each SC produces two new

cells with identical SC fate and proliferation potential (Morrison

and Kimble, 2006).

Emerging evidence suggests that asymmetric division

functions as a mechanism of tumor suppression in Drosophila

neuroblasts. Loss-of-function mutations of cell polarity and cell

fate determinants induce neuroblasts to divide symmetrically,

leading to number increase, tissue overgrowth, and, ultimately,
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transplantable tumors that resemble mammalian cancers (Gon-

zalez, 2007).

It is currently unknown whether in mammals there is also

a direct causal relationship between loss of SC polarity and/or

asymmetric division and tumor initiation. Unfortunately, the

machinery that drives asymmetry of adult tissue SCs in

mammals is largely uncharacterized, and whether self-renewing

divisions are aberrantly regulated in cancer SCs is also unknown.

Notably, some of the genes that control asymmetric cell divisions

in fly have an evolutionarily conserved role in the regulation of cell

polarity and in tumor suppression (Morrison and Kimble, 2006),

suggesting that polarity loss may contribute causally to cancer

in mammals. Here, we report on our studies on the regulation

of self-renewing divisions in cancer SCs of mammary tumors,

chosen as a model of epithelial cancer in mammals.

RESULTS

Increased SC Numbers in ErbB2 Mammary Tumors
As mammary cancer model, we used ErbB2 transgenic mice,

which express the activated ErbB2 oncogene in the mammary

epithelium (Muller et al., 1988). Transgenic ErbB2 mammary

tumors follow a cancer SC model (Figure S1A available online)

and recapitulate a frequent subtype of human breast cancers.

To investigate the growth properties of SCs, we cultured primary

cells from wild-type (WT) and tumor (ErbB2) mammary tissues in

nonadherent conditions, which allow cells to proliferate in

suspension as floating colonies (mammospheres) (Dontu et al.,

2003). Their preliminary characterization revealed that, as

reported, WT and ErbB2 tumor mammospheres derive from the

clonal expansion of single cells endowed with self-renewal

potential, are composed of epithelial cells, and are enriched in

multipotent cells capable of differentiating along different line-

ages (Figures S1B–S1E).

To determine numbers of SCs in mammospheres, we per-

formed limiting dilution transplantation of cell suspensions from

WT or ErbB2 tumor secondary (M2) mammospheres into cleared

fat padsor mammaryglands of syngeneicmice, respectively (from

105 to ten cells). Histology revealed that the epithelial outgrowths

obtained with WT mammospheres were morphologically indistin-

guishable from the normal mammary gland and contained both

luminal (cytokeratin 8 positive) and basal/myo-epithelial (cytoker-

atin 5 positive) cells (Figure 1A). Likewise, tumors obtained with

the ErbB2 tumor mammospheres were indistinguishable from

primary tumors (Figure 1B). The calculated frequency of SCs

was �1:300 in the WT mammospheres (Table 1). Since the aver-

age size of WT M2 mammospheres was�360 (362 ± 14; n = 15),

the expected frequency of SCs was approximately 1 in WT mam-

mospheres (confirmed by limiting dilution transplantation of intact

mammospheres; Table 1). In the ErbB2 tumor mammospheres,

instead, the frequency of SCs was �1:100 (Table 1), which

predicts approximately 5 SCs per sphere (average size 522 ±

14; n = 13). Notably, the transplantation efficiency of WT and

ErbB2 tumor M2 mammospheres (0.31% and 1.05%) was similar

to their sphere forming efficiency (SFE) (0.15% and 0.95%). Thus,

ErbB2 tumor mammospheres contain increased numbers of SCs.

To investigate whether also ErbB2 primary tumors contain

increased numbers of SCs, we performed limiting dilution trans-
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plantation of primary cells from normal or tumor mammary

glands. The calculated frequency of SCs in the normal mammary

gland was �1:30,000 (Table 1 and Figure S2A), consistent with

recent reports using fractionated mammary cells (Shackleton

et al., 2006) (Table S1). The calculated frequency of SCs was

instead �1:4000 in the ErbB2 tumors (Tables 1 and S2 and

Figure S2B), indicating that the number of SCs is increased in

ErbB2 tumor tissues.

Increased Self-Renewal of ErbB2 Tumor Mammary SCs
To investigate whether increased numbers of SCs in the ErbB2

tumor mammospheres were due to increased frequencies of

self-renewing divisions, we purified different mammosphere

cell subsets according to their proliferation history (using PKH-

26) and then investigated their SC identity by mammosphere

formation and transplantation assays. PKH-26 is a fluorescent

dye that binds to cell membranes and segregates in daughter

cells after each cell division, such that intensity of staining corre-

lates inversely, at single cell level, with the number of previous

cell divisions (Lanzkron et al., 1999).

Primary mammary cells from WT mice were stained ex vivo

with PKH-26 and cultured to obtain primary (M1) and M2 mam-

mospheres (Figure S1F). After the initial staining >99% of cells

were PKH-26 positive (PKHpos), as evaluated by fluorescence-

activated cell sorting (FACS). In M2 mammospheres, instead,

PKHpos cells were �60% and distributed over a wide interval

of fluorescence intensity (Figure 1C), suggesting that the prolifer-

ation activity of individual cells during the growth of WT mammo-

spheres was highly heterogeneous.

WT M2 mammospheres were then FACS sorted into PKHhigh

(slowly dividing), PKHlow (rapidly dividing), and PKHneg (very

rapidly dividing) cell subsets. PKHhigh cells were defined as the

0.5%–1% most brilliant PKHpos cells (corresponding to the

calculated frequency of SCs in WT mammospheres). PKHlow

cells consisted of all the remaining PKHpos cells (�40%). Replat-

ing of WT PKHhigh cells led to the formation of tertiary (M3) mam-

mospheres (SFE �11%), which formed new mammospheres

upon reseeding (data not shown). PKHlow cells, instead, formed

aggregates of <50 cells that could not be further cultured (data

not shown). PKHneg cells did not grow at all (Figure 1D).

To analyze SC frequencies in the PKH subsets, we performed

limiting dilution transplantations. Strikingly, injection of cell dilu-

tions corresponding to one PKHhigh cell reconstituted the cleared

fat pad in ten out of 26 injections, while no mammary reconstitu-

tion was observed with up to 105 PKHlow, PKHneg, or PKHlow+neg

cells (Figure 1E), indicating that PKHhigh cells are highly enriched

in mammary SCs (�1:3) and the sole cell subset capable of

reconstituting the mammary gland (Table 1). Notably, PKHhigh

cells could be serially transplanted (Figure 1F) and coexpressed

the mouse mammary SC-specific markers CD49f and CD24

(Stingl et al., 2006) (Figure S3), i.e. they contain bona fide

mammary SCs. Thus, cells with the lowest proliferation potential

are the sole ones, within WT mammospheres, with self-renewal

activity in vitro and in vivo, suggesting that WT mammary SCs

undergo limited self-renewing divisions.

In the ErbB2 tumor M2 mammospheres, both the percentage

of PKHpos cells (�60%) and the mean fluorescence (MF) of PKH

subsets showed values comparable to those of the WT (Table



Figure 1. Regenerative Potential of Cultured SCs from WT and ErbB2 Tumor Mammary Tissues

(A) Left: carmine-stained whole mount of typical outgrowths after injection of 100 cells from WT M2 mammospheres (‘‘Transplanted’’; fat pad filling: 50%). Right:

anti-K5/K8 staining of paraffin-embedded tissues from the same outgrowths or the normal mammary gland (‘‘Primary’’).

(B) Hematoxylin and eosin staining of paraffin-embedded tissues from one tumor derived from the injection of 100 cells from ErbB2 tumor M2 mammospheres

(‘‘Transplanted’’) and one spontaneous ErbB2 tumor (‘‘Primary’’).

(C) FACS distribution of PKHhigh, PKHlow, and PKHneg cells as indicated.

(D) M3 mammospheres obtained after replating of PKHhigh, PKHlow, and PKHneg cells.

(E) Whole mount (left) and anti-K5/K8 staining (right) of typical outgrowths after injection of cell dilutions corresponding to one WT PKHhigh cell (fat pad filling:

50%).

(F) GFP whole mount of M2 outgrowth (‘‘Transplant II’’; fat pad filling: 25%) after injection of 105 primary cells from a primary transplant of ten GFPposPKHhigh cells

derived from the mammary gland of FVB GFP transgenic mice (‘‘Transplant I’’; fat pad filling: 30%).

(G) Hematoxylin and eosin staining of primary tumors or tumors obtained after injection of PKHhigh, PKHlow or PKHneg cells.
S3). At variance with the WT, however, replating of the ErbB2

tumor PKHhigh, PKHlow, and PKHneg subsets led to mammo-

sphere formation in all cases, though with decreasing SFEs

(�45%, �1%, and <1%, respectively; Figure 1D). Likewise,

transplantation experiments showed tumor formation with all

PKH subsets, with a calculated SCs frequency of �1:1, �1:60,

and�1:350 in the PKHhigh, PKHlow, and PKHneg subsets, respec-

tively (Table 1 and Figure 1G). Together, these data demonstrate

that, within the ErbB2-mammospheres, SCs undergo increased

numbers of self-renewing divisions.

Increased Symmetric Divisions of ErbB2 Tumor
Mammary SCs
Increased numbers of self-renewing divisions do not necessarily

result into increased numbers of SCs, if they are accomplished

through asymmetric mitotic divisions. We investigated modes
of self-renewing divisions by time-lapse video microscopy.

PKHhigh cells from M2 mammospheres were seeded in methyl-

cellulose and monitored for 7 days, at 1 hr intervals (same

SFEs in methylcellulose or liquid culture; Figure S1G). Only

PKHhigh cells that formed a full-sized mammosphere at the end

of the incubation time (mammosphere-initiating cells [MICs])

were considered in the analysis. The first division was defined

as asymmetric if one of the first-generation daughter cells

remained quiescent, whereas the other divided further, giving

rise to a total of five cells by day 3. It was defined as symmetric

when both daughter cells continued to divide, giving rise to eight

cells with dim fluorescence at 3 days (Figure 2A).

In the WT PKHhigh MICs, the first division (42 ± 8.2 hr after

seeding) was asymmetric in the majority of cases (80.4%; n =

103). Of the remaining, it was symmetric in 7.8% and in 11.8%

could not be defined. Based on the observed inverse correlation
Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc. 1085



Table 1. Frequency of SCs in Different Mammary Cell Populations

Cell Number SC Frequency p Value

Mammosphere

Cell Suspensions 105 104 103 5 3 102 102 50 25 10 1 Estimate

Upper and

Lower Limits Fit Diff.

WT 7/7 11/11 6/6 6/8 5/17 1/8 0/6 0/6 1:322 (1:191–1:542) 0.58

ErbB2 6/6 2/2 6/6 2/2 4/6 0/2 1:95 (1:36–1:251) 0.50 0.03

P53�/� 2/2 2/2 2/2 6/6 6/10 5/10 0/8 0/12 0/6 1:118 (1:69–1:205) 0.12 0.01

Primary Mammary

Cells 105 5 3 104 104 5 3 103 103 5 3 102 102 50 10 Estimate

Upper and

Lower Limits Fit Diff.

WT (FVB) 2/2 4/4 1/8 1/8 0/4 0/4 0/5 0/2 1:30,775 (1:14,709–

1:64,390)

0.11

ErbB2 (FVB) 2/2 2/2 4/4 3/4 2/8 0/8 0/8 0/4 0/4 1:3,914 (1:1,935–

1:7,919)

0.22 3 3 10�4

WT (C57) 2/2 1/2 2/8 0/4 0/2 0/2 1:45,890 (1:18,127–

1:116,174)

0.69

P53�/� (C57) 2/2 2/2 5/6 5/8 1/6 1/8 0/6 1/4 1:4,787 (1:2,617–

1:8,758)

0.22 2 3 10�5

PKH26 Subsets 105 5 3 104 104 5 3 103 103 5 3 102 102 10 1 Estimate

Upper and

Lower Limits Fit Diff.

WT high 2/2 4/4 5/5 13/15 10/26 1:3,4 (1:1.9–1:5.7) 0.06

WT low 0/1 0/2 0/3 0/2 0/2 <1:80,782 1 3 10�160

WT neg 0/1 0/2 0/2 0/2 <1:76,776 1 3 10�112

WT low + neg 0/10 0/6 <1:433,951 2 3 10�258

ErbB2 high 4/4 2/2 4/4 12/12 7/14 1:1.4 (1:0.7–1:2.9) 0.88

ErbB2 low 4/4 2/2 2/2 2/2 4/4 2/2 0/4 0/4 1:60 (1:15–1:238) 0.12 3 3 10�7

ErbB2 neg 4/4 2/2 2/2 2/2 4/4 0/2 0/4 0/6 1:351 (1:105–

1:1,179)

0.17 1 3 10�18

Nutlin3 Treatments

(Primary Mammary

Cells) 105 5 3 104 104 5 3 103 103 102 Estimate

Upper and

Lower Limits Fit Diff.

WT DMSO 2/2 3/4 1/6 0/4 0/2 0/2 1:41,814 (1:17,996–

1:97,156)

0.31

WT Nutlin3 2/2 3/4 2/8 0/4 0/2 0/2 1:37,172 (1:16,745–

1:82,521)

0.51 0.84

ErbB2 DMSO 2/2 4/4 8/8 2/6 1/4 0/2 1:5,038 (1:2,647–

1:9,588)

0.41

ErbB2 Nutlin3 1/2 3/6 0/6 0/8 0/2 1:54,563 (1:17,448–

1:170,635)

0.36 3 3 10�5

Sphere Number Sphere Frequency p Value

10 5 1 Estimate

Upper and

Lower Limits Fit

Intact WT

Mammospheres

6/6 3/3 11/18 1:1.1 (1:0.6–1:2.0) 0.82

Mammosphere cell suspensions, primary mammary cells, PKH26 subsets, and primary mammary cells from N3-treated mice or intact WT mammo-

spheres were injected into the cleared fat pads (for WT or p53�/� samples) or the mammary gland (for ErbB2 tumor samples) of syngeneic mice

(number of injected cells as indicated). PKHlow+neg cells were obtained after single-step FACS separation of PKHhigh and the remaining PKHlow+neg

cells. Results are shown as the number of outgrowths or tumors per number of injections. SC frequencies and frequency of outgrowths per trans-

planted sphere (estimates and upper/lower limits) were calculated by limiting dilution analysis, as described in the Experimental Procedures. Fitting

to a single-hit model is indicated by p values > 0.05 (‘‘Fit’’). Differences in SC frequencies are calculated for each sample against the WT, PKHhigh, or

DMSO-treated samples. Their significance is indicated by p values < 0.05 (‘‘Diff.’’).
between proliferation potential and SC fate during mammo-

sphere growth, these findings suggest that the replicative

asymmetry of WT MICs generates daughter cells with different

developmental fate.
1086 Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc.
We thus investigated whether replicative asymmetry corre-

lates with asymmetric partitioning of cell fate determinants,

analyzing the intracellular localization of Numb after the first

mitotic division in WT PKHhigh cells. Specificity of anti-Numb



staining in mammospheres was confirmed by RNA interference

(Figure S4). To analyze Numb distribution immediately after

mitosis, we treated PKHhigh cells with blebbistatin, a small

molecule that arrests cytokinesis and leads to the formation of

binucleated cells (Straight et al., 2003). In �60% (n = 82) of the

WT PKHhigh cells, the anti-Numb staining was weakly cyto-

plasmic and formed a clear crescent at the cell membrane,

whereas in �25% Numb was uniformly localized around the

cell cortex (Figures 2B and S5). Together, these data demon-

strate that the first mitotic division of WT PKHhigh cells is most

frequently asymmetric.

In contrast, time-lapse and Numb localization analyses of

ErbB2 tumor PKHhigh cells revealed symmetry of the first division

(42.1 ± 6.2 hr after seeding) in 78.2% of cells (n = 156; Figure 2A)

and uniform distribution around the cortex in 74.5% (n = 47;

Figures 2B and S5). Altogether, these findings suggest that

Figure 2. Frequencies of Asymmetric and

Symmetric Divisions of WT, ErbB2 tumor,

or p53�/� PKHhigh Cells

(A) Top: schematic representation of the divisional

history of a single PKHhigh cell that divides asym-

metrically or symmetrically. Bottom: time-lapse

microscopy images of the first divisions of WT,

ErbB2 tumor, p53�/�, or N3-treated ErbB2 tumor

PKHhigh cells. Elapsed time (from seeding) is indi-

cated. The pie charts show the relative frequen-

cies of asymmetric and symmetric divisions.

(B) Numb confocal immunofluorescence. PKHhigh

cells from M2 WT, ErbB2 tumor, or p53�/� mam-

mospheres were plated in the presence of 25 mM

blebbistatin for 36 hr, fixed for 10 min in paraformal-

dehyde, and stained with anti-Numb and DAPI.

DIC, differential interference contrast; Merge,

merged channels. The pie charts show the rela-

tive frequencies of asymmetric and symmetric

divisions.

symmetric and asymmetric divisions

coexist in both WT and ErbB2 MICs, but

in different proportions: WT MICs mainly

divide asymmetrically, whereas ErbB2

tumor MICs divide symmetrically.

Increased Replicative Potential
of ErbB2 Tumor SCs
We then investigated the replicative

potential of WT and ErbB2 tumor SCs

by serial replating of M1 mammospheres.

In WT cultures, the total number of mam-

mospheres decreased progressively at

each passage, until exhaustion after five

to six passages (Figure 3A). The cumula-

tive mammosphere number approxi-

mated an exponential curve (R2 = 0.99)

with a growth rate (GR) of�0.3, indicating

a similar decrease rate (�70%) at each

passage. Notably, total cell number

revealed identical patterns of variation

(GR�0.3; Figure 3B). Accordingly, the average size of WT mam-

mospheres remained constant throughout the passages

(Figure 3C), thus suggesting that WT SCs, once committed to

clonal expansion, maintain the same growth potential.

The number of ErbB2 tumor mammospheres instead

increased at every passage, with a constant �5-fold expansion

(GR �5; Figures 3A and 3B), suggesting that ErbB2 tumor SCs

are nearly immortal (up to 36 passages in selected experiments).

As for the WT mammospheres, the total cell number revealed

identical patterns of variation, with a GR of �5 and constant

mammosphere size during culture (Figures 3B and 3C).

Together, these findings demonstrate that WT SCs rapidly

lose self-renewal potential in culture, whereas ErbB2 tumor

SCs are nearly immortal, and suggest that these different

behaviors reflect intrinsic properties of WT and ErbB2 tumor

SCs. Furthermore, these data suggest that the two observed
Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc. 1087



Figure 3. Replicative Potential of p53�/� Mammary SCs

(A and B) Five thousand cells/well from WT or ErbB2 tumor M1 mammospheres were plated in quadruplicate in 24 well plates and counted (mammospheres and

cells) after 6 days (SFE of WT mammospheres is not influenced by the number of plated cells; Table S4).

(A) Cumulative sphere and cell number (±SD of quadruplicates) of one experiment representative of three.

(B) Semilogarithmic plotting of cumulative sphere and cell number obtained from the experiments shown in (A). Trend lines (light lines) that best approximate the

curves were obtained by regression analysis. GR, growth rate; R2, coefficient of determination.

(C) Average size of mammospheres (±SD) during serial replating of WT or ErbB2 tumor mammospheres (same experiment as in A), calculated as the ratio of total

cells to sphere numbers.

(D) Q-PCR analysis of Nanog mRNA during growth of WT, ErbB2 tumor and p53�/�M2 mammospheres (means ± SD of three independent experiments). Nanog

expression was normalized against the 18S and expressed as arbitrary units relative to day 0 WT samples (assigned equal to 1).

(E) FACS distribution of PKHhigh, PKHlow, and PKHneg cells and images of M3 mammospheres obtained after replating.

(F) Semilogarithmic plotting of cumulative sphere and cell number (±SD of quadruplicates) obtained from of one representative serial replating experiment of WT

or p53�/� mammospheres.

(G) Top: whole-mount outgrowths after injection of 100 cells from p53�/�M2 mammospheres (‘‘Transplanted’’; fat pad filling: 80%). Bottom: anti-K5/K8 staining

of paraffin-embedded tissues from the same outgrowths and from the p53�/� mammary gland (‘‘Primary’’).

(H) Frequency of MICs in the mammary glands of WT and p53�/�mice of different ages. Primary cells isolated from the third or fourth pair of mammary glands of

four to five mice (per genotype and time point) were plated in triplicates in 6-well plates at 20,000 cell/ml. The number of MICs per mammary gland was calculated
1088 Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc.



properties of ErbB2 tumor SCs, increased replicative potential

and frequency of symmetric self-renewing divisions, are at the

basis of their ability to grow indefinitely and to expand geometri-

cally in culture.

Correlation between ErbB2 Levels and Self-Renewal
Potential of Mammary SCs
We wondered whether alterations of the self-renewal properties

of ErbB2 tumor SCs were the consequence of ErbB2 expression.

Thus, we examined SC self-renewal in premalignant mammary

glands of ErbB2 transgenic mice of different age. Expression

of ErbB2 was first detected at 6 weeks of age, in the apparently

normal mammary gland, and increased progressively with the

appearance of histological signs of tumor progression: hyper-

plasia, in situ ductal carcinomas (DCIS), and invasive tumors

(Figures S6A and S6B). The replicative potential of mammo-

spheres derived from the apparently normal mammary glands

of ErbB2 transgenic mice decreased progressively during

passages (Figure S6C), as expected (GR = 0.61). In contrast,

mammospheres derived from the hyperplasic, DCIS, and

tumoral mammary glands did not lose replicative potential

upon serial replating (Figure S6C). GR, however, differed

significantly among the three samples (�1.1, �2.5, and �4.8,

respectively; Figure S6D). Together, these results show a direct

correlation between levels of ErbB2 transgene expression and

replicative potential of mammary SCs, suggesting that ErbB2

increases self-renewal. We cannot exclude, however, that accu-

mulating genetic alterations cooperate with ErbB2 to determine

the phenotypic changes of ErbB2 tumor SCs.

Increased Frequency of Symmetric Divisions
and Replicative Potential of p53 Null SCs
To investigate underlying molecular mechanisms, we analyzed

expression of genes implicated in self-renewal regulation and

found increased expression of Nanog (Figure 3D), a transcription

factor that regulates self-renewal in embryonic stem cells (ESCs),

in ErbB2 tumor mammospheres. Notably, Nanog expression is

downregulated by the tumor suppressor p53 during ESC differ-

entiation (Lin et al., 2005) and is increased in mammospheres

from the p53�/�mammary epithelium (Figure 3D).

p53 was reported to impose an asymmetric proliferative fate in

fibroblasts and epithelial cells (Rambhatla et al., 2001). To inves-

tigate frequency and modes of self-renewing divisions in p53�/�

SCs, primary cells from the premalignant p53�/� mammary

gland were analyzed with the PKH-26 assay. As in the WT and

ErbB2 tumor cultures, PKHpos cells were >99% after the initial

staining and �60% in the M2 mammospheres. FACS-sorted

PKHhigh, PKHlow, and PKHneg subsets were all capable of sphere

formation, though with decreasing frequency (�60%, �1%, and

<1%, respectively; Figure 3E). Time-lapse microscopy of
C

PKHhigh cells showed high proportions of symmetric divisions

(74.9%; n = 190; Figure 2A). Strikingly, Numb was weakly cyto-

plasmic and uniform around the cortex in the majority of the

p53�/� PKHhigh cells (74.4%; n = 43; Figures 2B and S5), sug-

gesting that p53 regulates polarity of cell division in mammary

SCs. Thus, like ErbB2 tumor SCs, p53�/� mammary SCs

undergo increased numbers of self-renewing divisions, mainly

of symmetric type, during mammosphere expansion.

Serial replating experiments showed that p53�/� mammo-

spheres increased in number at every passage (GR�5, identical

to that of the ErbB2 tumor mammospheres; Figure 3F) and could

be propagated continuously. Similar results were obtained after

RNA interference of p53 in WT mammospheres (Figure S7A).

We then investigated whether increased replicative potential

and frequency of symmetric divisions of p53�/� SCs led to their

expansion in vitro and in vivo. The number of SCs in the p53�/�

mammospheres was markedly increased, as revealed by limiting

dilution transplantation (1:118 cells; Table 1 and Figure 3G).

The average size of p53�/� mammospheres was �600 (595 ±

17; n = 12), thus predicting a frequency of approximately five

SCs per mammosphere, as in the ErbB2 tumor mammospheres.

An increased number of SCs in the p53�/�mammary gland was

also shown by limiting dilution transplantation of mammary cells

from p53�/� and control mice (�1:4800 and �1:46,000, respec-

tively; Table 1 and Figure S2C) and by the 5-bromo-20-deoxyur-

idine (BrdU)-label retaining assay (Figure S2D). Thus, p53�/�

mammospheres and mammary glands also contain increased

numbers of SCs.

Finally, we examined whether the frequency of SCs in the

mammary gland of p53�/� mice increased over time, using the

mammosphere assay. As shown in Figure 3H, the number of

MICs in the mammary glands of 4-, 6-, or 9-week-old p53�/�

mice was higher than in WT controls at any time point, and

increased progressively, following an apparently geometric

pattern of expansion (104 ± 10, 225 ± 32, and 483 ± 148). Alto-

gether, these data demonstrate that p53 regulates self-renewal

of mammary SCs and that loss of p53 favors their continuous

expansion, in vitro and in vivo.

Reduced Symmetric Divisions and Replicative Potential
of ErbB2 Tumor SCs after p53 Restoration In Vitro
The p53 gene is not mutated in ErbB2 transgenic tumors (data

not shown). p53 activity, however, is frequently attenuated in

tumors carrying WT p53, including mammary tumors, because

of alterations of genes that control p53 activation. Thus, we

analyzed DNA damage-induced p53 activation in ErbB2 tumor

mammospheres. p53 was low or undetectable in untreated

WT or ErbB2 cells and accumulated between 4 and 8 hr after

treatment, when its phosphorylation was also evident. The

extent of p53 stabilization and phosphorylation was, however,
as the ratio of counted spheres to plated cells multiplied by the number of freshly isolated cells obtained per each gland pair. Data are expressed as mean ± SD of

the number of MICs for mammary gland (data from the third or fourth pair of mammary glands were pooled).

(I) p53 response in WT and ErbB2 tumor mammospheres. Cells from M1 mammospheres were treated with adriamycin (2 mg/ml) or UV rays (50 J/m2) 2 days after

replating and collected at the indicated time points. Levels of p53 and extent of p53 serine-18 phosphorylation were analyzed by western blotting with specific

antibodies. Numbers above the blots refer to the densitometric analysis of the anti-p53 and anti-phS18p53 signals normalized against the corresponding anti-

vinculin values and expressed (at each time point) as ErbB2/WT ratio. A representative blot of three independent experiments that gave similar results (t test in

Figure S8) is shown.
ell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc. 1089



Figure 4. Effects of In Vitro Nutlin3 Treatment on Mammosphere Growth

Five thousand cells from M1 mammospheres were plated in quadruplicates in the presence of increasing concentrations of N3 (0.1–10 mM) to obtain M2 mammo-

spheres. After 6 days of culture, M2 mammospheres were counted and disaggregated, so that the total cell number could be counted. Sphere size was calculated

as ratio between cell number and number of mammospheres. Five thousand cells from M2 mammospheres were replated in the presence or absence of N3 to

obtain M3 mammospheres.

(A) Western blots of p53 expression in N3-treated M2 mammospheres (top) or in M3 mammospheres grown in the absence of N3 (bottom). Values above the blots

indicate density of anti-p53 signal normalized with the untreated WT samples.

(B–D) Relative sphere number and sphere size of WT, ErbB2 tumor, or p53�/� mammospheres. Data for M2 mammospheres cultured in the presence of N3

(0: DMSO) (B) and M3 mammospheres grown in the absence (C) or presence (D) of N3 are shown. Sphere number and sphere size values (mean ± SD of three

experiments) of WT, ErbB2, and p53�/� cultures are expressed as arbitrary units relative to DMSO control-treated WT, ErbB2, and p53�/� samples, respectively.

(E) Cumulative sphere number (±SD of quadruplicates) of one representative experiment of WT, ErbB2, and p53�/� mammospheres treated with N3 (added at

each passage at the indicated concentrations) or DMSO (control).
significantly reduced in the ErbB2 tumor samples (Figures 3I and

S8). Thus, p53 signaling is attenuated in mammospheres derived

from ErbB2 tumors.

To investigate whether partial inactivation of p53 is respon-

sible for the increased self-renewal of ErbB2 tumor SCs, we

overexpressed p53 in ErbB2 tumor mammospheres. p53-over-

expressing mammospheres, however, showed only a modest

yet statistically significant decrease in number during serial

passages (Figure S7B), suggesting the presence, in these cells,

of active mechanisms of p53 inhibition. Notably, ErbB2 overex-

pression was reported to induce downregulation of p53 in

mammary epithelial cells (Zheng et al., 2004). Thus, we decided

to restore p53 function with Nutlin3 (N3), a small molecule that

induces p53 stabilization by inhibiting MDM2-dependent p53
1090 Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc
degradation (Vassilev et al., 2004). M1 WT and ErbB2 mammo-

spheres were disaggregated and replated to obtain M2 mammo-

spheres, in the presence of increasing concentrations of N3.

Western blots showed increased p53 levels in both WT and

ErbB2 tumor samples (Figure 4A, upper panels). QRT-PCR

analysis of Nanog RNA expression revealed an �3-fold reduc-

tion in the ErbB2 tumor cells (Figure S9A). Surprisingly, however,

N3 did not induce apoptosis (Figure S9B), nor it exerted signifi-

cant effects on the number or size of M2 WT or ErbB2 tumor

mammospheres (Figure 4B).

We then investigated the effects of N3 on the frequency of

self-renewing divisions by measuring numbers of SCs in WT or

ErbB2 tumor M2 mammospheres at the end of a 6 day treatment.

N3-treated M2 mammospheres were replated in the absence of
.



N3 to obtain M3 mammospheres. In the M3 mammospheres,

p53 levels returned to basal levels in both WT and ErbB2 tumor

samples (Figure 4A, lower panels). Strikingly, while the number of

WT M3 mammospheres was comparable to that of untreated

controls at all drug concentrations, that of ErbB2 tumor M3

mammospheres was markedly reduced (�14 folds with 10 mM

N3; Figure 4C, upper panel). Notably, absolute numbers were

comparable, at the highest concentrations of N3 (2.5, 5, and

10 mM) to those of untreated WT M3 mammospheres (Fig-

ure S9C). Again, N3 treatment did not affect the size of WT or

ErbB2 tumor mammospheres (Figure 4C, lower panel). Reseed-

ing of N3-treated M2 mammospheres in the presence of N3 did

not further decrease the number or size of M3 mammospheres in

either WT or ErbB2 tumor samples (Figure 4D), despite high

levels of p53 protein (data not shown). Finally, N3 exerted no

effect on the growth of p53�/� mammospheres, showing the

absence of off-target effects (Figures 4B and 4C).

Together, these results demonstrate that N3 induces p53

stabilization in both WT and ErbB2 tumor mammospheres and

reduces the frequency of self-renewing divisions only in the

Figure 5. Effects of Nutlin3 on Tumor Growth In Vivo

(A–C) ErbB2 tumor M2 mammospheres were treated with the

indicated concentrations of N3 for 48 hr after seeding,

analyzed by anti-p53 western blotting (A), and injected

(10,000 cells) into mammary glands of syngeneic mice (eight

injections per concentration). Tumor volume (±SD of eight

tumors) (B) and histology (hematoxylin and eosin and anti-

Ki67 staining) (C) were analyzed after 2 months. Ki67-positive

cells, % inside panels (>1000 cells counted).

(D and E) Two-month-old WT or ErbB2 transgenic mice were

treated with DMSO or N3. Three mice per group were sacri-

ficed immediately after treatment to evaluate apoptosis or

proliferation (by anti-Ki67 or anti-activated caspase3 staining)

on paraffin-embedded mammary sections (D). Inguinal and

thoracic tumor volumes (mm3 ± SD) of four mice per group

sacrificed 2 months after treatment are shown (E).

latter. This is consistent with our observation that

p53 directs asymmetric divisions in mammary

SCs and suggests that N3 reduces the frequency

of self-renewing divisions selectively in ErbB2

tumor SCs by switching their mode of division

from symmetric to asymmetric, without affecting

cell viability. To demonstrate it directly, we evalu-

ated the effects of N3 treatment on the frequency

of symmetric/asymmetric divisions of ErbB2 tumor

SCs by time-lapse microscopy. The first division of

N3-treated ErbB2 tumor PKHhigh cells was asym-

metric in the majority of cases (70.5%; Figure 2A).

We next investigated the effects of N3 treatment

on mammosphere replicative potential, by serial re-

plating (Figure 4E). Increasing N3 concentrations

had little effect on the growth of WT mammo-

spheres, whereas they progressively reduced that

of ErbB2 tumor mammospheres. At the highest

N3 concentrations, ErbB2 tumor mammospheres

exhausted, similarly to untreated WT samples. N3

exerted no effect on the replicative potential of

p53�/� mammospheres. In conclusion, N3 reversed both

properties of ErbB2 tumor SCs to divide symmetrically and

extensively.

Reduced SC Numbers and Tumor Size after p53
Restoration In Vivo
First, we investigated the effects of N3 on the ability of ErbB2

tumor mammospheres to form tumors in vivo. Cell suspensions

from N3- or dimethyl sulfoxide (DMSO)-treated M2 mammo-

spheres were analyzed by western blotting to monitor p53 stabi-

lization (Figure 5A) and transplanted in the absence of further N3

treatment. After 8 weeks, the size of tumors originated from the

N3-treated ErbB2 tumor mammospheres was �8-fold smaller

(Figure 5B), in the absence of significant differences in the

frequency of proliferating (Ki-67 positive) or apoptotic (caspase3

positive) cells (Figure 5C and data not shown).

We then investigated the effects of N3 on spontaneous ErbB2

tumors. Two-month-old ErbB2 transgenic mice were treated

with N3 or DMSO for 2 weeks (one intraperitoneal injection every

2 days). One group of mice was sacrificed at the end of the
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treatment to measure SC numbers (by transplantation), and

a second group was sacrificed after 2 months to measure tumor

size. N3 treatment decreased SC numbers to WT levels (Table 1)

without altering proliferation or viability of bulk tumor cells

(Figure 5D) and decreased tumor size by approximately 3- to

4-fold (Figure 5E). Notably, N3 had no detectable effects on

WT mammary glands (Table 1 and Figure 5D). Thus, N3 treat-

ment reduced the frequency of tumor SCs and delayed tumor

growth, with negligible antiproliferative effects on additional

cancer cells, suggesting that the increased self-renewal of

ErbB2 tumor SCs contributes to tumor growth in vivo.

DISCUSSION

Symmetric Divisions and Increased Numbers
of Cancer SCs
We have demonstrated that the PKH-26/mammosphere assay

allows for the isolation to near purity of bona fide mammary

SCs. Direct imaging of the initial self-renewing division of WT

SCs revealed that, in most cases, it generates two daughter cells

with different proliferative fates: one that is quiescent and

another that proliferates actively. Evaluation of the correlation

between proliferation potential and SC fate during mammo-

sphere growth showed that the less proliferating cell subset

(PKHhigh) was highly enriched in SCs (one out of three) and the

only subset containing SCs, suggesting that the observed repli-

cative asymmetry of WT SCs generates daughter cells with

different developmental fate. This was confirmed by analysis of

the intracellular localization of the cell fate determinant Numb

after the first mitotic division of WT PKHhigh cells, which showed

that cell divisions are intrinsically asymmetric. The behavior of

the ErbB2 tumor MICs was remarkably different: each produced

two cells with identical proliferation potential and uniform distri-

bution of the cell fate determinant Numb. In the formed mammo-

sphere, SCs were found also within the most proliferating cell

subset (PKHneg), indicating that they underwent multiple rounds

of cell divisions without losing self-renewal potential. Thus, one

relevant feature of cancer SCs is their acquired property to divide

symmetrically and, as consequence, to increase their numbers.

Consistently, we found that during clonal expansion in vitro (as

occurs during mammosphere formation) cancer SCs increase

in number, whereas WT SCs do not, and that primary tumors

contain increased numbers of SCs.

Alternate Usage of Asymmetric versus Symmetric
Divisions in Cancer SCs
Though increased in numbers, the ErbB2 tumor SCs remain

minor cell subpopulations within cultured mammospheres or in

the primary tumors, which are mainly composed of SC progenies

at different stages of differentiation. These observations imply

that ErbB2 tumor SCs can increase in number without, however,

losing their developmental potential. In principle, this can be

achieved, in a pool of SCs, by the alternate use of symmetric

and asymmetric divisions. This is consistent with our observation

that cancer SCs could divide either asymmetrically or symmetri-

cally, though with inverted relative frequencies as compared

to WT SCs. We noticed, however, an apparent discrepancy

between the numbers of SCs found in the formed ErbB2 tumor
1092 Cell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc.
mammosphere (5–8; �1%) and the theoretical number (�400;

�80%) that is obtained if one assumes that the frequency of

symmetric divisions of the mammosphere-initiating cells

(�80%) remains the same during its expansion in the growing

mammosphere. Notably, the frequency of SCs in the primary

ErbB2 tumors is even lower than in the formed mammosphere

(<0.1%). To address this issue, we modeled the proliferative

history of SC proliferation during mammosphere formation.

The resulting model (Figure 6) indicates that the relative

frequency of symmetric divisions adopted by ErbB2 tumor

SCs decreases progressively during mammosphere growth,

suggesting that the mammosphere or the tissue environments,

through as yet unidentified mechanisms, influence the binary

fate decision of mammary ErbB2 tumor SCs in favor of the

asymmetric divisions.

Extended Replicative Potential of Cancer SCs
Although SCs have an enormous self-renewal capacity, there is

evidence that the number of times that a SC replicates is

restricted, suggesting that self-renewal of SCs is intrinsically

limited. In fact, WT mammary SCs rapidly lose self-renewal

potential in culture (data not shown), and the whole mammary

tissue can be serially transplanted less than six to seven times

(Daniel et al., 1968). On the contrary, ErbB2 tumor SCs are nearly

immortal, and the potential of ErbB2 tumors to be serially trans-

planted is virtually unlimited. Thus, extended replicative poten-

tial, together with increased frequency of symmetric divisions,

might be responsible for the continuous and geometric expan-

sion of cancer SCs. ErbB2 tumor SCs, however, can also divide

asymmetrically, a property that might account for their ability

to originate differentiated progeny, thus maintaining tumor cell

heterogeneity and leading to the continuous expansion of the

tumor mass.

Regulation of SC Polarity by p53
Like the ErbB2 tumor SCs, p53 null SCs are near immortal

in culture and undergo symmetric self-renewing divisions, two

properties that are consistent with their ability to expand

geometrically in culture. Most notably, in the mammary gland

of p53 null mice, numbers of SCs are increased and expand

progressively over time, thus indicating that p53 null SCs divide

symmetrically also in vivo. It has been reported that the

mammary epithelium of mice with increased WT p53 activity

(p53+/m mice) has decreased regenerative capabilities upon

serial transplantation, suggesting early stem cell exhaustion

(Gatza et al., 2008). Together, these data suggest that one phys-

iological function of p53 is to maintain a constant number of SCs

in the mammary gland by imposing an asymmetric mode of self-

renewing divisions. Interestingly, loss of p53 increases self-

renewal of neural SCs (Meletis et al., 2006), suggesting that

this might represent a general function of p53 in SCs of different

tissues.

The molecular mechanisms underlying this effect of p53 on

self-renewal are unclear. We found increased levels of Nanog

expression in both p53�/� and ErbB2 tumor mammospheres,

which were reverted after N3 treatment. RNA interference of

Nanog expression in p53�/� or ErbB2 tumor mammospheres,

however, did not affect their growth kinetics, suggesting that,



Figure 6. Modeled Kinetics of SC Divisions

within Normal and ErbB2 Tumor Mammo-

spheres

The models represent the kinetics of cell divisions

during the clonal expansion of one normal (A) or

ErbB2-tumor (B) mammosphere-initiating cell

(MIC). Each (WT or ErbB2) scheme reports the

proliferative history of one MIC (upper part), the

projected cellular composition of the formed mam-

mosphere (middle part), and the progressive

decrease of PKH fluorescence intensity (PKH

gradient). The mathematical model was based on

the assumptions that (1) WT mammospheres

contain 1 PKHhigh SC (through at least one prior

division) and (2) ErbB2 tumor mammospheres

contain seven SCs, of which: two in the PKHhigh

subset (via at least two prior cell divisions), four in

the PKHlow (via at least four to seven prior divi-

sions), and one in the PKHneg (via at least nine

to 11 prior divisions), as obtained by elaborating

experimental data (Table S5). The mathematical

model predicted that, in WT mammospheres, the

PKHhigh SC underwent at least one asymmetric

division, as expected. For cancer SCs, instead, it

predicted (1) one symmetric division of the ErbB2

tumor MIC (red arrow) to generate two daughter

SCs with equal proliferative potential (D1 and D2;

only the expansion of D1 is shown in the graph);

(2) one symmetric division of D1 (red arrows) to

generate one PKHhigh SC and one SC that divides

further to generate PKHlow and PKHneg SCs; (3)

alternation of two symmetric and three asymmetric

(black arrows) divisions to generate two PKHlow

SCs and one SC that proliferate further; and (4)

three additional rounds of asymmetric divisions

to generate one PKHneg SC. Pr, progenitor.
in this system, p53 role in self-renewal is independent of Nanog

(P.G.P., unpublished data).

Loss of p53, Increased Frequency of Symmetric
Divisions, and Tumor Initiation
A role for p53 loss in mammary carcinogenesis is suggested by

the high proportion of breast cancers with p53 mutations and the

prevalence of breast tumors in women with germline mutations

of p53. Although the mammary gland of p53 null mice is appar-

ently normal (Jerry et al., 1998) and p53 null mice rarely develop

mammary tumors (probably because of the early occurrence of

lymphomas), high incidence of mammary tumors develops after

somatic inactivation of p53 (Liu et al., 2007) or transplantation

into WT fat pads of the p53 null mammary epithelium (Jerry

et al., 2000; Kuperwasser et al., 2000). Thus, the p53 null

mammary epithelium contains increasing numbers of SCs and

is highly susceptible to tumor development, suggesting that

increased frequency of symmetric divisions might contribute to

mammary tumorigenesis in the p53 null mice by expanding the

pool of putative tumor target cells. Notably, the mammary gland

mass, which is likely to correlate with the number of mammary

SCs, is an important breast cancer risk factor (Trichopoulos

et al., 2008). Since p53 is a potent suppressor of mammary

transformation, an intriguing possibility is that inhibition of SC

symmetric divisions by p53 is one mechanism of tumor suppres-

sion in the mammary epithelium.
C

Loss of p53, Increased Frequency of Symmetric
Divisions, and Tumor Growth
We found that p53 signaling is attenuated in the ErbB2 tumor

mammospheres and that restoration of p53 by N3 provokes

the rapid exhaustion of cultured mammospheres and reduces

tumor growth in vivo. Analysis of biological mechanisms

suggests that the antitumor activity of N3 is due to a selective

effect of the drug on the self-renewing divisions of ErbB2 tumor

SCs. First, N3 converted the prevailing mode of division of

ErbB2 tumor SCs from symmetric to asymmetric. Consistently,

the frequency of ErbB2 tumor SCs decreased dramatically in

cultured mammospheres and primary tumors after N3 treatment.

Furthermore, N3 did not induce apoptosis in either ErbB2

mammospheres or primary tumors, nor did it reduce the fraction

of proliferating cells. Together, these data imply that increased

frequency of symmetric divisions and extended replicative

potential of ErbB2 tumor SCs contribute to tumor growth in vivo.

Therapeutic Efficacy of p53 Restoration in Cancer SCs
Three groups have recently reported that re-expression of p53

causes regression of different p53 null tumors, including

lymphomas, sarcomas, and hepatocellular carcinomas (Martins

et al., 2006; Ventura et al., 2007; Xue et al., 2007). We show that

this can be achieved also with drugs that target p53 in tumors

carrying WT p53 alleles and attenuated p53 signaling, a situation

that is common to �50% of human cancers. Our findings,
ell 138, 1083–1095, September 18, 2009 ª2009 Elsevier Inc. 1093



however, suggest that restoration of p53 by N3 selectively

affects the self-renewal of cancer SCs. This is surprising, since

re-expression of p53 in p53 null tumors promoted senescence

or apoptosis (depending on the tumor cell type) and a rapid

reduction of the tumor mass (within days). To resolve this issue,

it would be important to determine treshold and targets (cellular

or molecular) of p53 restoration in different tumor types.

EXPERIMENTAL PROCEDURES

Mammosphere Cultures and Mouse Studies

Mammosphere cultures and transplantation assays were performed as

described (Dontu et al., 2003; Sleeman et al., 2006) (also see the Supplemental

Experimental Procedures). Outgrowths were quantified as percent of fat pad

filling after whole mount analysis (range, 25% to 80%). Nutlin3 was either

purchased from Cayman Chemicals or generously supplied by M. Varasi

(Department of Chemistry, DAC s.r.l., Milan, Italy) and prepared as previously

reported (patent WO2003051359A1, 2003), apart from the synthesis of

intermediate meso-1,2-bis-(4-chloro-phenyl)-ethane-1,2-diamine (Kise and

Ueda, 2001).

PKH26 Assay

Primary mammary cells were stained for 5 min with 1:250 PKH-26 dye (Sigma),

blocked with 1% BSA, washed twice, and plated to obtain primary and M2

mammospheres. Single-cell suspensions from M2 mammospheres were

FACS sorted with a FACS Vantage SE flow cytometer (Becton & Dickinson)

equipped with a 488 nm laser (Enterprise Coherent) and a band-pass 575/

26 nm optical filter (FL2 channel). An average sorting rate of 1000 events per

second at a sorting pressure of 20 PSI was maintained.

Intracellular Localization of Numb

PKHhigh cells were fixed with 4% paraformaldehyde, permeabilized with 0.1%

Triton X-100 and 3% BSA and stained with anti-Numb (Colaluca et al., 2008)

followed by anti-mouse Alexa 647 (Jackson Laboratories) antibodies.

Confocal analysis was performed with a Leica TCS SP2 AOBS microscope.

For each cell, 15–20 adjacent 0.5 mm optical sections were collected.

Time-Lapse Microscopy

Time-lapse microscopy was performed with a Scan̂R screening station

(Olympus-SIS) equipped with a microscope incubation chamber (Evotec).

Five hundred to 1000 PKHhigh cells were resuspended in Methyl Cellulose in

complete medium, plated in glass bottom dishes, and observed through

a 10 3 0.4 NA objective. Both DIC and PKH red fluorescence images were

collected with auto-focusing procedures and compensated for focal shift.

Different focal planes were recorded to prevent loss of image contrast due

to axial cell movement. Images were captured every hour for 7 days, starting

14 hr after plating, and reconstructed with ImageJ software.

Statistics

Limiting dilution data were analyzed with the ‘‘statmod’’ software package

for the R computing environment (http://www.r-project.org/). SC frequencies

were estimated by a complementary log-log generalized linear model. Two-

sided 95% Wald confidence intervals were computed. In cases of zero

outgrowths, one-sided 95% Clopper-Pearson intervals were computed. The

single-hit assumption was tested as recommended (Bonnefoix et al., 1996)

and was not rejected for any dilution series (p > 0.05).

Western Blot, Immunohistochemistry, and QRT-PCR Analysis

See the Supplemental Experimental Procedures.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, nine

figures, and five tables and can be found with this article online at http://

www.cell.com/supplemental/S0092-8674(09)00840-X.
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