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Abstract—

We present a clock-offset tracking algorithm for impulse-
radio ultra-wide band (IR-UWB) energy-detection receivers.
There is a complexity versus performance trade-off for the
design of IR-UWB energy-detection receivers: Extremely low-
complexity energy-detection receivers are built with a large,
constant integration duration; they are robust to clock drifts but
are sensitive to noise enhancement effects and cannot adapt to
channel variations. More sophisticated energy-detection receivers
use a shorter integration duration and combine several weighted
outputs of the energy collector; they are robust to noise enhance-
ment effects, can adapt to channel variations and offer a much
better performance than non-adaptive receivers. However, they
become sensitive to clock offsets. Hence, there is a need for low-
complexity clock-offset tracking solutions to support adaptive
energy-detection receivers. Our solution is constructed around
the Radon transform, an image processing tool traditionally used
to detect line features in images. Our solution is fully compatible
with the IEEE 802.15.4a standard, does not increase the hardware
complexity of the receiver and reduces the performance loss due
to clock offset to less than 0.5 dB.

I. INTRODUCTION

Energy-detection receivers are appealing for impulse-radio

ultra-wide band (IR-UWB) use when the focus is on low

complexity, low power consumption and inexpensive de-

vices. With a reasonable energy consumption and complexity,

energy-detection receivers can exploit the multipath resis-

tance of IR-UWB [1] and its ranging capabilities [2]. Hence,

energy-detection receivers fit perfectly the objectives of IEEE

802.15.4a [3], which is an amendment to the IEEE 802.15.4

standard for low data-rate devices with an emphasis on very

low complexity and power consumption. The amendment

specifies an IR-UWB physical layer that can operate over

several bands of 500 MHz (or 1.5 GHz) from 3 to 10 GHz.

The implementation of 802.15.4a devices is faced with

several challenges. First, the mandatory medium access control

layer (MAC) in the standard is based on Aloha and hence,

completely uncoordinated; receivers must be robust to oc-

casional interference. Further, with devices mainly operated

indoors, receivers should be able to adapt to a time-varying

environment and, in particular, a time-varying propagation

channel. Finally, with a strong focus on low-priced devices, the

underlying hardware can be of average quality. For instance,

because of possibly low-quality frequency oscillators used for
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clock generation, the standard allows for relative clock offsets

as large as 40 parts per million (ppm) [3].

These challenges exhibit the trade-off between robustness to

the environment and resilience to clock drifts for the design

of energy-detection receivers for IR-UWB physical layers.

Extremely low complexity energy-detection receivers are built

with a large and constant integration duration, on the order

of several tens of nanoseconds [1]; they are robust to clock

drifts but are sensitive to noise enhancement effects [4] and

cannot adapt to channel variations. More sophisticated energy-

detection receivers attempt to estimate the power delay profile

of the propagation channel. They use a shorter integration

duration and combine several weighted outputs of the en-

ergy collector according to the estimate of the power delay

profile [4], [5], [6]; they are robust to noise enhancement

effects, can adapt to channel variations and offer a much better

performance than non-adaptive receivers. However, because

of the shorter integration duration and consequently higher

sampling frequency, they become sensitive to clock offsets.

In packet based systems, such as IEEE 802.15.4a networks,

there is no global synchronization. For each received packet,

the reception of the payload is preceded by a packet detection

and timing acquisition phase: Its purpose is (1) to detect

the presence of the packet on the wireless medium, (2) to

synchronize the clocks of the transmitter and the receiver and

(3) to find out when the payload starts. Now, and especially

with cheap hardware, the clocks at the transmitter and the

receiver drift. For instance with clock drifts of −4 ppm at

the transmitter and 18 ppm at the receiver, the overall clock

offset is 22 ppm (clock drifts are measured with respect to a

global perfect clock.). With a clock frequency of 500 MHz,

the clock will be offset by one sample each 90 µs. As we show

in Section V, this can severely degrade the performance.

For narrow-band physical layers, there are two well-known

solutions for addressing clock-offset issues: the phase-locked

loop (PLL) and early-late gate synchronizers [7]. However,

for energy-detection receivers, they both cannot be used: the

PLL cannot be used because of the absence of a carrier and

the early-late gate synchronizers cannot be used because they

require a correlator. In the specific case of coherent IR-UWB

receivers, [8], [9], [10] and [11] address the issue of clock

tracking. In [12] clock-offset estimation for coherent and non-

coherent IR-UWB receivers are addressed but not tracking.

Except for [11], all the previous work require the use of a

correlator and are therefore not applicable in our case. Interest-

ingly, [11] relies on the received signal power. However, their
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solution necessitates the addition of pilot symbols in between

modulated data symbols and is tailored for a coherent receiver.

Our main contribution in this paper is the development

and performance evaluation for IR-UWB energy-detection

receivers of (1) a clock-offset compensation solution and

(2) a clock-offset tracking algorithm. By tracking, we imply

both the estimation and correction of the clock offset. Our

tracking algorithm is constructed around the Radon transform

[13](Section IV-B), an image processing tool traditionally used

to detect line features in images. Our solution does not require

any additional pilot symbols, does not increase the hardware

complexity of the receiver and naturally takes advantage of the

multipath propagation channel for the estimation of the clock

offset. Our algorithms are directly applicable to the 802.15.4a

standard and the tracking algorithm reduces the performance

loss due to clock offset to less than 0.5 dB.

The remainder of this paper is organized as follows. We give

the system model and assumptions in Section II. We describe

our clock offset compensation and tracking algorithms in

Section IV, and we evaluate their performance in Section V.

We conclude the paper in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

Without loss of generality, we consider an IEEE 802.15.4a

IR-UWB physical layer [3]. We focus on non-coherent,

energy-detection reception with binary pulse position modula-

tion (BPPM). An IEEE 802.15.4a packet consists of two parts:

a preamble followed by a payload. The preamble is known to

the receiver and used for packet detection, timing acquisition,

channel estimation and clock-offset tracking. One peculiarity

of IEEE 802.15.4a is the different signaling format used in

the preamble and the payload. The preamble consists of a

sequence of single, amplitude modulated pulses. In contrast,

each symbol of the payload is composed of a short, continuous

burst of Lb pulses with pseudo-random polarity.

The main time unit of a packet is a chip of duration

Tc. During the preamble, pulses can only be sent at regular

intervals, every L-th chip. The received signal after filtering

with a bandpass filter of bandwidth B is then given by

r(t) =

Npre−1∑
i=0

si · h(t− (1 + ǫ)iLTc − τ) + w(t) (1)

where h(t) is the unknown channel response (including the

transmitted waveform, the response of the multipath channel

and the bandpass filter), w(t) is a zero-mean AWGN process

with power spectral density N0/2, Npre is the number of

pulses in the preamble, si ∈ {−1, 0, +1} is a ternary preamble

code used to modulate the preamble pulses, ǫ denotes the

relative clock offset between the transmitter and the receiver

and τ is the propagation delay. We assume both ǫ and h(t) to

be invariant for the duration of one packet.

During the payload, the received signal r(t) becomes

r(t) =

Npay−1∑
i=0

Lb−1∑
j=0

bij · h(t− (1 + ǫ)Ti,j − τ) + w(t) (2)

with Ti,j = iTf + ciLbTc + aiTf/2 + jTc and where Npay

is the number of symbols in the payload, Tf is the duration

of a symbol, ai ∈ {0, 1} is the i-th symbol of the payload,

ci denotes the time-hopping sequence and bij ∈ ±1 is the

pseudo-random polarity of the j-th pulse of the i-th symbol

specified by the scrambling sequence.

On the receiver side, the signal r(t) is squared and inte-

grated. The output of the integrator is sampled at rate 1/T ,

where T = L
M

Tc and M is a divisor of L. Let γn = nLTc

during the preamble and γn = nTf + cnLbTc during the

payload, this yields the discrete time signal

ym,n =

∫ (m+1)T+γn

mT+γn

[r(t)]2 dt, m = 0, 1 . . . , M − 1. (3)

Our receiver employs a traditional synchronization algo-

rithm based on a correlation with the known preamble se-

quence. After a coarse synchronization, usually achieved on

the strongest multipath component, the receiver undergoes

a verification phase. If successful, fine synchronization is

performed using a back-search algorithm, to obtain a better

estimate of the beginning of the signal. The receiver then

performs a period of channel estimation where it estimates

the energy-delay profile of the channel. At the same time it

also begins to look for a special signal sequence called start-

frame-delimiter (SFD). The SFD is used to designate the end

of the preamble and the beginning of the payload.

For the demodulation of the n-th data bit an of the payload,

the receiver may use the optimum decision rule from [5], [6]

M−1∑
m=0

ym,n · pm

an=0
≷

an=1

M−1∑
m=0

y
m+

Tf
2Tc

,n
· pm (4)

where the weighting coefficients pm are derived from the

energy-delay profile of the channel. A traditional energy-

detection receiver with an integration window of fixed duration

TInt = L
MInt

Tc can also be used. Then

pm = 1 if m ≤MInt, and 0 otherwise. (5)

III. WINDOW EXPANSION: CLOCK DRIFT COMPENSATION

A very simple and natural way of addressing clock drift

is to gradually expand the length of the integration window

of traditional energy-detection receivers at a fixed rate ǫr.

The integration window is increased by one sample every

1/ǫr samples. Hence, as the signal drifts, the major part of

its energy stays within the window. Assuming we know the

precision of the oscillators used in our system, ǫr is typically

chosen to be roughly the expected clock drift. A clock-drift

estimation is then not required. We call this method Window

Expansion. The drawback of this method is noise enhancement

due to the increasing integration duration.

Window Expansion can be generalized to receivers applying

a weighting function such as the one in (4): To expand the

window, we smooth the weighting function employed in the

decision rule by convolving it with a time-varying window

function that increases over time at rate ǫr.

Increasing the integration time of traditional energy-

detection receivers is then equivalent to convolving the rect-

angular weighting function given by (5) with a rectangular

window of increasing length. For the receiver employing the

optimum decision rule in (4), we found a triangular window

to yield better results than a rectangular one.
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Fig. 1. A relative clock offset ǫ leaves a distinctive pattern resembling parallel
lines at an angle φ = arctan(Mǫ) in the energy matrix of an M−periodic
signal. In Radon space the maximum is off the right angle by φ.

IV. RADON TRACKING: A CLOCK OFFSET TRACKING

ALGORITHM BASED ON THE RADON TRANSFORM

In this section, we present a clock-offset tracking algorithm,

called Radon Tracking, which allows for more sophisticated

clock-offset compensation than Window Expansion.

A. The Estimation of the Slope of a Line in a Gray-Scale

Image is Equivalent to Clock Drift Estimation

During the preamble, the samples ym,n can be rearranged

in an “energy matrix”, Y = [ym,n]M×N [14], [15]. The n-th

column contains the M consecutive samples corresponding

to the n-th pulse of the preamble. This energy matrix is

then equivalent to a gray-scale image where ym,n is the

intensity of the pixel at coordinate (m, n). Our clock-offset

tracking algorithm relies on the following observation: the

estimation of the clock drift is equivalent to finding the slope

of parallel lines in this gray-scale image. With perfect clock

synchronization (ǫ = 0), the signal in (1) is LTc-periodic.

Consequently, the discrete signal given by (3) is M -periodic.

Accordingly, the energy matrix displays a pattern resembling

parallel horizontal lines. These parallel lines correspond to

the multi-path components of the signal. Figure 1A shows a

discrete signal with 40 samples per frame (M = 40) and two

multi-path components. Figure 1B shows the gray-scale image

of the corresponding energy matrix. We can observe the two

parallel lines corresponding to the two multi-path components.

Now, let’s assume for a sample ym,n that the integration

window is aligned with the received signal such that it captures

the entire energy of a pulse. If the clocks of the transmitter and

the receiver exhibit a relative positive (respectively negative)

clock drift of ǫ, the alignment of the integration window for

the sample ym,n+1 is no longer perfect: Some of the energy

“leaks” into the sample ym−1,n+1 (ym+1,n+1, respectively).

In consequence, the energy matrix displays now a pattern

resembling parallel lines at a given angle φ. There is a one-

to-one relationship between φ and the clock drift ǫ:

φ = arctan(Mǫ) (6)

Figure 1D shows our example signal with the two multi-

path components but this time subject to a clock offset1 of

ǫ = 1e−3. Figure 1E shows the corresponding energy matrix.

The signal drifts by one samples every 25 columns (= 1000
samples at M = 40), leading to φ = arctan(1/25) =
arctan(40 · 1e− 3).

B. The Radon Transform: a Tool for Line Detection

The (two-dimensional) Radon transform2 is widely used

in image processing for line feature detection. We use the

common ρ, θ parametrization [16] where the Radon transform

R(ρ, θ)[I(x, y)] of the two-dimensional image I(x, y) is

R(ρ, θ)[I(x, y)]=

∫ ∞

−∞

∫ ∞

−∞

I(x, y)δ(ρ−x cos θ−y sin θ) dxdy

(7)

where ρ is the distance from a line to the origin and θ is the

angle of the vector from the origin to the closest point on the

line. We refer to the (ρ, θ)-parameter space as Radon space.

Every point (ρ, θ) in the Radon space corresponds to the

integral along the line y = − cos θ
sin θ

x+ ρ
sin θ

in the original image

I(x, y). Finding lines in a gray-scale image corresponds to

finding points with high intensities in Radon space. The basic

idea of our algorithm is to apply this principle to our problem

of clock-drift estimation. This is illustrated in Figures 1C and

1F that show the Radon transforms of our example signals.

Note that the Radon transform can be computed iteratively

(see the algorithm in Section IV-D). Hence, we do not need

to accumulate the complete energy matrix. In our simulations,

we calculate the Radon transform by blocks of M samples.

In principle, it can even be calculated sample by sample.

C. Pre-Processing to Denoise the Input

The Radon transform is already quite robust to noise. How-

ever, we further increase this robustness with a pre-processing

on the energy matrix before the calculation of the Radon

transform. First, we take into account the preamble code by

only considering samples ym,n where the corresponding code

symbol sn 6= 0. Then, along the rows of Y, we apply a moving

average filter over the last G pulses, yielding a matrix Ỹ with

elements ỹm,n. Finally, the elements of Ỹ below a threshold

ν are set to zero3. This yields the matrix Ȳ with elements

ȳm,n. Because the noise approximatively follows a chi-square

distribution, we calculate a threshold ν to reject samples with

a probability of more than 5% to consist of noise only:

ν =
N0

2
F−1

χ2
2BT ·G

(1 − 0.05) (8)

where N0/2 is the (estimated) noise power spectral density

and Fχ2
2BT ·G

(x) is the cumulative distribution function of the

chi-square distribution with 2BT ·G degrees of freedom.

1This value is illustrative only; relative clock offsets found in oscillators
are usually two orders of magnitude lower.

2For discrete binary input images it is often referred to as Hough transform.
3This also speeds up the algorithm as zero valued entries of Ȳ do not have

to be processed in the subsequent steps.

536



D. Computation of the Discrete Radon Transform

The Radon transform in (7) is defined for a continuous

input. Therefore, we transform the discrete matrix Ȳ =
[ȳm,n]M×N into a continuous “image” I(x, y) via nearest-

neighbor interpolation, i.e. I(x, y) = ȳ⌊x⌉,⌊y⌉ where ⌊·⌉ de-

notes the nearest-integer function. Further, as we cannot store

the continuous output of the Radon transform, we discretize

the Radon space as follows

ρi = i ·∆ρ, θj = j ·∆θ. (9)

where ∆ρ is defined with respect to the size of a pixel in the

energy matrix i.e., ∆ρ = 1/8 means that we have 8 discrete

values per pixel. Hence, we calculate a discrete version R =
[Ri,j ] of the Radon transform according to

Ri,j =

∫ ρi+1

ρi

R(ρ, θj)[I(x, y)] dρ. (10)

Because the function I(x, y) is piecewise constant, (10) is

actually simple to compute. Algorithm 1 shows an outline of

the algorithm we use. Furthermore, as the precision of the

oscillators is known, the range of interest of both θ and ρ
is known. Therefore, the Radon transform can be calculated

for only the points of interest, limiting both processing and

memory requirements. The Radon matrix that we store has a

constant size independent of the length of the observation. The

Radon transform is akin to a compression scheme: Instead of

the energy matrix, it yields an alternative matrix of a smaller

dimension, which still captures all the signal information that

is necessary to perform clock-drift estimation.

Algorithm 1: Calculates Radon Transform as in (10)

Input: Pixel ȳm,n of Ȳ

Output: For each ρ, θ an updated entry Rρ,θ of discrete

Radon transform.

if ȳm,n 6= 0 then

foreach θ do

foreach ρ do
f ← fraction of pixel with center ym,n lying

between lines parametrized by (ρ, θ) and

(ρ + ∆ρ, θ);
Rρ,θ ← Rρ,θ + f · ym,n;

end

end

end

E. Angle Estimation by Detection of Maxima in Radon Space

As explained in Sections IV-A and IV-B, an estimation

of the clock drift is equivalent to finding the estimate φ̂
of the angle φ. Thus, we have to look for maxima in the

Radon matrix R. Naturally, we should find them around the

true angle φ. Due to multipath, there will be more than one

such maximum at different values of ρ. We want to take

advantage of this property by combining the contributions of

several multipath components. However, the column sums of

the Radon transform matrix are all equal to a constant value

i.e. the integral over the whole image I(x, y). Therefore, the

naive approach of choosing φ̂ to be the θj with the highest

intensity averaged over all ρ does not work. Instead, we use the

following method to determine φ̂: First, we smooth the matrix

R by convolving each column with a rectangular window of

length W = 2/∆ρ, thus combining the values corresponding

to two pixels in the original gray-scale image. Then, we square

each entry of the smoothed matrix and compute the column

sums. Finally, we set φ̂ to the θj corresponding to the column

with maximum column sum, i.e.

φ̂ = ∆θ · argmax
j

∑
k

((rectW ∗R.,j)[k])2 (11)

where rectW is the rectangular window and R.,j denotes the

j-th column of R.

F. Continuous Tracking of the Transmitter Clock

We are not only interested in the estimation of the clock

drift. We also want to continuously compensate for it in order

to stay aligned with the packet. Tracking of the transmitter

clock is commonly done by adjusting the frequency of the os-

cillator at the receiver. However, new observations are obtained

with an updated sampling frequency after the adjustment of

the frequency of the oscillator. This implies a change of the

pattern in the energy matrix and a modified Radon transform.

A priori, this makes a block by block operation necessary

where after each update of the receiver clock: (1) the Radon

transform is discarded, (2) a large block of new samples is

collected in order to obtain a new Radon transform and (3) the

current clock drift is re-estimated on the new Radon matrix.

However such a costly approach can be avoided. It is possible

to maintain a single Radon matrix by applying a coordinate

transform to the Radon space before the update of the receiver

clock. This allows for the conservation of the entire signal

history and for a continuous estimation and correction of the

clock drift. The coordinate transform after k clock frequency

adjustments (whose derivation is left out here because of space

restrictions) is given by

θj(k) = θj(0) +
k∑

l=1

∆l (12)

ρi(k) =
ρi(0) sin(θj(k)) −

∑k

l=1 xl sin ∆l

sin θj(0)

≈ ρi(0)−

k∑
l=1

xl sin∆l (13)

where ∆l is the angle adjustment corresponding to the l-th
clock frequency adjustment, ρi(k) and θj(k) are the trans-

formed coordinates after k adjustments, and xl is the column

index of the matrix Ȳ corresponding to the l-th point in time

where the adjustment occurs. The approximation is possible

because θj(m) ≈ π/2.

In our simulations we start filling the Radon matrix once a

coarse estimate of the signal arrival time is available. During

the verification phase and fine synchronization, we do not

enable tracking but attempt to get a better first estimate of

the clock offset. After fine synchronization, we track the

transmitter clock until the SFD is found.
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G. Handling the Residual Clock Drift

The signaling format change between the preamble and

the payload in IEEE 802.15.4a makes it extremely difficult

to maintain a consistent Radon matrix. Hence, we perform

clock-drift estimation and tracking only during the preamble

of a packet. However, the preamble is long enough such that

the residual drift is small. Nevertheless, we find a performance

increases if we compensate for this residual drift by employing

Window Expansion over the payload (Section III).

V. PERFORMANCE EVALUATION

To evaluate the effect of clock drift on energy-detection

receivers and the performance of our algorithms, we use

a packet-based Matlab simulator. We simulate a full IEEE

802.15.4a system with coarse and fine synchronization, es-

timation of the energy-delay profile of the channel, SFD

detection [3], and data decoding with the (63, 55) Reed-

Solomon code. For all simulations, the mandatory frequency

band 3 low-pulse-repetition-frequency (LPRF) mode is used

[3]. The propagation channel is modeled according to the

IEEE 802.15.4a residential NLOS channel model [17]. Our

main performance metric is the packet error rate (PER) and

we simulate the maximum allowable packet length of 1016
bits per packet. We use the default length of the preamble

of 72 code repetitions (including 8 for the SFD). The signal-

to-noise ratio (SNR) is defined as SNR =
Ep

N0
where Ep is

the received energy per pulse (after the convolution of the

pulse with the impulse response of the channel). The physical

layer is simulated with an accuracy of 100 ps (a simulation

sampling frequency of 10 GHz). We assume oscillators with a

drift ǫ uniformly distributed in the range of ±20 ppm, resulting

in relative clock offsets between transmitters and receivers of

up to ±40 ppm. For the receiver, we mainly focus on the

optimal receiver (EDopt) detailed in [6] with T = Tc = 2 ns

resulting in a 500 MHz sampling frequency. For comparison

purposes, we also simulate two reference receivers: one with

a fixed integration time Tint = 128ns (EDfix), and one

with an integration time that was optimized for our scenario

(EDvar). Without drift, this optimized integration time was

found to be 56 ns, which is roughly the channel spread of the

residential NLOS model. Further, EDvar may use Window

Expansion to increase the integration time at a constant rate

ǫr (but not EDfix). Note, that for both EDvar and EDfix,

we do not simulate the preamble. Instead, we assume that a

perfect synchronization puts the integration window such that

it captures a maximal amount of energy.

Figure 2 shows the performance degradation due to a

relative clock offset up to ±40 ppm when no clock-offset

compensation is used. We can clearly see the trade-off between

noise enhancement and robustness to clock drift. With perfect

clocks, EDopt outperforms the other receivers, even though

the curves for EDfix and EDvar were obtained with a perfect

synchronization. On the other hand, EDopt is very sensitive to

clock drifts: Indeed they cause misalignments of the weights

pm (see (4)) that strongly degrade the performance. Interest-

ingly, EDvar is also severely affected by clock drift, although

to a lesser extent than EDopt. EDfix, on the other hand, is

barely affected due to its long integration time.

Figure 3 shows the improvement achievable through Win-

dow Expansion. We found ǫr = 32 ppm to give best perfor-

mance for EDvar and ǫr = 40 ppm for EDopt. With drift-

ing clocks, EDvar with Window Expansion performs hardly

better than EDfix, which amounts to a loss of about 2 dB

with respect to the optimum curve for perfectly synchronized

clocks. EDopt with Window Expansion, on the other hand,

still shows an error floor. Although Window Expansion gives

some improvement, it is definitely not sufficient.

Figure 4 shows the performance of Radon Tracking. We

show results for different values of the discretization step ∆ρ.

The angular resolution ∆θ is fixed to the angle corresponding

to a 1 ppm drift. To increase robustness against noise we

combine G = 32 preamble pulses and to account for residual

drift we set ǫr = 2 ppm. We also show reference curves

for EDopt with perfect clocks, and EDvar with Window

Expansion and drifting clocks. The results show that our

algorithm performs extremely well with a loss of only 0.5 dB

with ∆ρ = 1/8 with respect to the optimal curve for perfect
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Fig. 5. Left: Median and 95% confidence intervals of the (absolute) residual
drift of Radon Tracking at the end of the preamble. Finer discretization leads
to a better clock drift estimate. With ∆ρ = 1/8 we do almost as good as we
theoretically can at 12 dB considering that we only use a resolution of 1ppm.
Right: Distribution of absolute residual drifts of packets after the preamble
with Radon Tracking. Distribution shown is for ∆ρ = 1/8 and SNR = 12 dB.
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Fig. 6. Synchronization error rate accounting for false alarms and missed
detections for EDopt. With clock-offset tracking enabled, the error floor
disappears and performance is within 0.3 dB of the one with perfect clocks.
With only Window Expansion we interestingly have similar performance.

clocks. For ∆ρ = 1/4 the performance is still similar. If we

further increase ∆ρ we get an additional loss of 0.5 dB at

∆ρ = 1/2. A finer discretization yields a better estimate of

the clock drift. This is confirmed by Figure 5 (Left), where

we show the median of the absolute value of the residual drift

at the end of the preamble. At 12 dB the median is as low as

0.65 ppm which is not far from the optimal value considering

that our algorithm has a resolution of 1 ppm.

Figure 5 (Right) shows the corresponding distribution of

the absolute values of the residual clock drift for ∆ρ = 1/8 at

12 dB. Only a few packets have a residual drift of more than

2 ppm. This justifies our choice for ǫr = 2 ppm.

For both ranging and communication, synchronization is

the most crucial part for the reception of a packet. Figure 6

shows the effect of clock drift on the synchronization error

rate (SER, false alarm and missed detection) for EDopt. If

the receiver does not use tracking, we can see an error floor at

about 30% packets lost due to synchronization errors, mainly

because the estimated channel energy-delay profile used in

SFD detection is now misaligned due to drift. With Radon

Tracking (here shown for ∆ρ = 1/8, results for other values

of ∆ρ were practically identical), the error floor disappears

and the performance is only 0.3 dB worse than with perfectly

synchronized clocks. Interestingly, the same is true for a

receiver that only employs Window Expansion. We attribute

this mostly to the fact that we continuously update the estimate

of the channel energy-delay profile during the preamble. Large

misalignments of the weights pm are therefore not possible

during the preamble and the small ones are recovered through

Window Expansion. In contrast to data decoding, clock-offset

tracking is thus not strictly required for synchronization alone.

Even in ranging applications, however, this is only of limited

interest because one might need to determine the clock offset

in order to account for it in the range calculations.

VI. CONCLUSION AND FUTURE WORK

We have shown that to prevent a considerable performance

loss, clock drifts need to be addressed for energy-detection

receivers. We analyzed two solutions: Window Expansion

and Radon Tracking. The latter is a clock-offset tracking

algorithm based on the Radon transform that yields excellent

performance. For future work, we believe that this algorithm is

even more versatile and could be used for channel estimation

and synchronization purposes. We also want to analyze and

improve its performance with multi-user interference.
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