Effect of the scattering by phonons on the temperature dependence of the free QW exciton radiative lifetimes.

We calculate scattering rates of QW excitons by acoustic phonons using realistic deformation potentials for electrons and holes in structures based on GaAs. We use these rates in order to reproduce the exciton dynamics in a time-resolved photoluminescence experiment. Rise time and decay time of the luminescence signal are studied as a function of temperature and QW size. The exciton distribution function reaches a stationary shape after the luminescence passes through its maximum. This shape shows strong deviations from the thermal-equilibrium distribution, at least for temperatures below 50 K. As a consequence, exciton radiative recombination is slower than the usually expected thermal average of the radiative rate. We discuss the dependence of this effect on the well width.

Published in:
Nuovo Cimento Della Societa Italiana Di Fisica D-Condensed Matter Atomic Molecular And Chemical Physics Fluids Plasmas Biophysics, 17, 1663-1667
Presented at:
IV International Conference on Optics of Excitons in Confined Systems, CORTONA, ITALY, AUG 28-31, 1995

 Record created 2009-09-22, last modified 2018-03-17

Rate this document:

Rate this document:
(Not yet reviewed)