In many Systems on Chips (SoCs), the cores are clustered in to voltage islands. When cores in an island are unused, the entire island can be shutdown to reduce the leakage power consumption. However, today, the interconnect architecture is a bottleneck in allowing the shutdown of the islands. In this paper, we present a synthesis approach to obtain customized application-specific Networks on Chips (NoCs) that can support the shutdown of voltage islands. Our results on realistic SoC benchmarks show that the re- sulting NoC designs only have a negligible overhead in SoC active power consumption (average of 3%) and area (average of 0.5%) to support the shutdown of islands. The shutdown support provided can lead to a significant leakage and hence total power savings.