
ar
X

iv
:0

80
5.

11
81

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  1
0 

M
ay

 2
00

8

Percolative properties of hard oblate ellipsoids of revolution with a soft shell
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We present an in-depth analysis of the geometrical percolation behavior in the continuum of ran-
dom assemblies of hard oblate ellipsoids of revolution. Simulations where carried out by considering
a broad range of aspect-ratios, from spheres up to aspect-ratio 100 plate-like objects, and with
various limiting two particle interaction distances, from 0.05 times the major axis up to 4.0 times
the major axis. We confirm the widely reported trend of a consistent lowering of the hard particle
critical volume fraction with the increase of the aspect-ratio. Moreover, assimilating the limiting
interaction distance to a shell of constant thickness surrounding the ellipsoids, we propose a simple
relation based on the total excluded volume of these objects which allows to estimate the critical
concentration from a quantity which is quasi-invariant over a large spectrum of limiting interaction
distances. Excluded volume and volume quantities are derived explicitly.

PACS numbers: 64.60.ah,72.80.Tm,05.70.Fh

I. INTRODUCTION

A central problem in materials science is the precise
evaluation of the percolation threshold of random parti-
cle dispersions embedded in a continuous medium. This
occurs typically in composite materials and is of impor-
tance for the prediction of relevant properties such as the
electrical conduction in insulator-conducting composites.
Practical examples include carbonaceous fillers like car-
bon fibers, graphite, carbon black, carbon nanotubes and
fullerenes, but also metallic and ceramic ones, while ma-
trices can be for instance polymeric, metallic or ceramic.
Despite that the most studied particle form is the sphere,
see e.g. [1, 2, 3, 4, 5, 6], a broad range of fillers in real
composites have forms which deviate consistently from
the sphere. Previous investigations have considered dif-
ferent particle shapes like e.g. sticks [7, 8, 9, 10, 11],wavy
sticks [12], plates [13, 14, 15] or ellipsoids [16, 17, 18, 19],
but always in the fully penetrable case, where the parti-
cles are allowed to freely overlap. Only in few cases were
hard sticks with a soft shell considered [4, 20, 21, 22],
and a recent paper [23] contemplated, as in the present
study, the case of hard ellipsoids of revolution, but in the
prolate domain.

The widespread use of composites containing fibrous
fillers has made the stick, or other elongated objects, the
favorite non-spherical shape in many studies. Neverthe-
less, some other fillers, notably graphite, have shapes
which are better assimilable to flattened ellipsoids or
platelets, and over a broad range of aspect-ratios i.e.
longer dimension to shorter dimension ratios. The ex-
ploration of the relatively uncharted terrain of the per-
colative properties of oblate objects as a function of their
aspect-ratio is then the aim of the present study.

In this paper we consider the special case of oblate
ellipsoids of revolution, usually called (oblate) spheroids,
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which are ellipsoids with two equal (major) axes and may
be obtained by rotation of a 2D ellipse around its mi-
nor axis. The reasons for this choice are twofold: first,
spheroids are characterized by a smaller number of pa-
rameters (7 against 9 of the general ellipsoid); second,
experimental measurement techniques of the filler par-
ticle size distributions are generally able to extract only
major and minor dimensions, making it difficult to quan-
titatively define a size distribution for the third axis.

Our model is defined by a dispersion of impenetrable
spheroids of identical dimensions with isotropic distribu-
tion of the symmetry axis orientation. Given any two
spheroids, a connectivity criterion is introduced by al-
lowing an upper cutoff distance beyond which the two
spheroids are considered disconnected. More precisely,
each spheroid is coated with a penetrable shell of constant
thickness, and two particles are connected if their shells
overlap. In a system of conducting spheroids dispersed in
an insulating continuum host, the shell thickness can be
physically interpreted as a typical tunneling length be-
tween the particles, governing the electrical connectivity
of the composite.

To carry out our investigation we exploit a simulation
algorithm, described in the following section, that allows
to determine the percolation behavior of a random dis-
tribution of impenetrable spheroids as a function of their
volume fraction, aspect-ratio, shell thickness and simula-
tion cell size.

II. THE SIMULATION ALGORITHM

Even if the ellipsoid is a sufficiently simple geomet-
rical form, much less simple is the construction of an
algorithm which involves random distributions of them,
since the computation of relevant functions like the parti-
cle inter-distance or the overlap criterion is far from triv-
ial, as opposed to the sphere. Now, if we want to build
an algorithm to carry out the proposed simulations, we
first need a routine that generates a distribution of el-
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lipsoids and that calculates the inter-distance between
them. In order to do that we require two functions, an
ellipsoid overlap criterion and the distance between two
ellipsoids, the first being needed of course only if it can
be computed in a time consistently shorter than the sec-
ond. None of these functions allows simple closed form
solutions, but some evaluation techniques are neverthe-
less available [16, 17, 24, 25, 26]. We have chosen the
approach proposed by Rimon and Boyd (R&B) [27, 28]
which was used for an obstacle collision detection pro-
cedure for robots, where short computational times are
essential. The R&B technique allows two key benefits:
1) A quick estimation procedure of the distance between
two ellipsoids that uses standard computation routines
and that can be made sufficiently precise. 2) An over-
lap criterion between two ellipsoids as an intermediate
result to the inter-distance computation that can be cal-
culated in about half the time needed for the complete
calculation. The computation is based on a formula for
the distance of a point from an ellipsoid which reduces
the problem to the calculation of the minimal eigenvalue
of an auxiliary matrix constructed from the geometrical
data.

We are now going to briefly outline how the distri-
bution algorithm is constructed. First, a spheroid dis-
tribution is created inside a cubic cell of volume L3 by
random sequential addition: for every new particle, ran-
dom placing is attempted and accepted as valid only if
there is no overlap with any neighboring particle. To
speed up the search for neighbors the main cubic cell is
subdivided in discrete binning cells of size comparable
to the major dimension of the spheroids. Moreover, to
avoid unnecessary computations of the overlap function,
cases are discarded which unavoidably lead to overlap
or that can anyway not lead to overlap via simple geo-
metrical rejection criteria. Periodic boundary conditions
are imposed on the main cell. Second, the inter-particle
distance is computed. An interaction inter-distance is
chosen so that spheroids separated by a distance greater
than it are considered non-interacting. Again, the same
neighbor search and rejection criteria are used and, if it
is the case, the distance computation is performed. To
do this in an efficient way, a first R&B calculation is
executed and if the resulting first distance estimate is
clearly beyond the interaction range even when consid-
ering the worst possible error the calculation is stopped.
Otherwise, the computation is continued by performing
the R&B calculation with inverted spheroids, comparing
with the first calculation and retaining the shorter of the
two and finally reiterating part of the R&B procedure to
obtain a further correction. This procedure leads to a
distance estimate that has an average error of about +1
% on a wide range of distance to major spheroid dimen-
sion ratios (from 10-4 to 10), as obtained by comparing
the R&B results with a more accurate but much slower
distance evaluation procedure. Figure 1 shows one of
such distributions as it appears by loading the algorithm
output file in a viewer.

FIG. 1: Distribution of 3000 spheroids with aspect-ratio
a/b = 10.

Once the desired distribution has been created and
the neighboring particles inter-distances computed, the
distribution algorithm output data are fed into the part
of a program which isolates the connected cluster using
a modified version of the Hoshen-Kopelman algorithm
[29, 30, 31]. Finally, it is verified if the connected cluster
spans two specific opposite sides of the simulation cell.

III. SIMULATION RESULTS

To explore the percolative properties of hard oblate
spheroids surrounded with a penetrable shell of constant
thickness, we considered spheroids with an aspect-ratio,
i.e., spheroid major axis a to minor (simmetry) axis b ra-
tio a/b between 1 (spheres) and 100. The shell thickness
d to spheroid major axis ratio d/a was chosen to variate
between 0.05 and 4.0.

To extrapolate the percolation threshold from the sim-
ulation algorithm we followed finite-size scaling argu-
ments as described in Ref. [32], and briefly outlined be-
low. For a given size L of the cube, we obtained the span-
ning probability as a function of the spheroids volume
fractions by recording the number of times a percolat-
ing cluster appeared over a given number of realizations.
The resulting spanning probabilities were then plotted
against the volume fraction and fitted with the sigmoidal
function

f =
1

2

[

1 + tanh

(
φ − φeff

c

∆

)]

, (1)

where φeff
c is the percolation threshold for a given value

of L and corresponds to the hard particle volume fraction
at which the spanning probability is equal to 1

2 , while ∆
represents the width of the percolation transition. Both
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FIG. 2: Percolation width variation with the increase of the
simulation cell size for the aspect-ratio 1 and 2 cases. d/a =
0.1111.

φeff
c and ∆ depend on the size L of the system and, by fol-

lowing the scaling arguments of [32], allow to deduct the
percolation threshold φc for the infinite system through
the following scaling relations:

∆(L) ∝ L−
1
ν , (2)

φeff
c (L) − φc ∝ L−

1
ν , (3)

where ν is the correlation length exponent. By repeat-
ing the simulation procedure for different cell sizes it is
possible, via the percolation transition widths ∆ and the
inversion of Eq. (2), to extract ν and consequently, from
Eq. (3), the percolation threshold φc for L = ∞. We
choose to simulate ten different cell sizes, L = 10, 13, 15,
17, 20, 23, 25, 27, 30 and 35 times the major spheroid
dimension, i.e., twice the major axis a. For thick shells
(d/a ≥ 1.0) the cell sizes were increased further. The
spheroid number was in the order of thousands for the
smallest cells up to about 70′000 for the largest. The
number of realizations per volume fraction step varied
from 50 for the smallest shell thickness up to 400 for the
thicker ones. Higher realization numbers did not show
appreciable improvements. In all cases, the correlation
length exponent ν had a value around 0.9, in good agree-
ment with previous results on spheres [2, 29, 32]. How-
ever, sometimes the fluctuations of the φeff

c where too
large and a simple average of the results provided a more
significative result that the one obtained from the finite
size analysis.

In Fig. 2 we report the obtained spanning probabil-
ity as a function of φ for a/b = 1 and a/b = 2 and for
selected values of the cell size L. The shell thickness d
to major axis ratio was set equal to d/a = 0.1111. From
the figure it is clear that increasing the aspect-ratio from
a/b = 1 (spheres) to a/b = 2 leads to a lowering of the

FIG. 3: Percolation threshold φc variation a a function of the
aspect-ratio for different shell thicknesses.

percolating volume fraction. This trend is confirmed in
Fig. 3, where the critical hard particle volume fraction
φc is plotted as a function of a/b and for several val-
ues of the penetrable shell thickness. For the thinnest
shells we find that φc can be reduced by about one or-
der of magnitude in going from a/b = 1 up to a/b = 100.
This result is fully consistent with the frequently reported
trend that assemblies of oblate objects with high aspect-
ratios entail a lower percolation threshold. For example,
several studies of graphite-polymer composites reported
a consistent lowering of the electrical conductivity per-
colation threshold when very high aspect-ratio graphite
nanosheets [13, 33, 34] or graphene flakes [35] were used.

Besides φc, another quantity characterizing the perco-
lation threshold is the reduced critical density ηc defined
as

ηc = ρcVd = φc

Vd

V
, (4)

where ρc is the number density at percolation and Vd is
the total object volume, comprising the volume of the
hard spheroid, V , plus that of the penetrable shell. Vd

is explicitly calculated in the appendix, see Eq. (A25).
The behavior of ηc, plotted in Fig. 4 as a function of
the penetrable shell thickness d/a and for several aspect-
ratios, accounts for the dependence of the percolation
threshold on the geometry of the total object (hard-core
plus penetrable shell). Indeed, for d/a = 4 the reduced
critical density is almost independent of the aspect-ratio
a/b while, for thinner penetrable shells, ηc acquires a
stronger dependence on a/b. This is due to the fact that,
for large d/a values, the form of the total object does not
deviate much from that of a sphere, so that ηc ≃ 0.34 as
for fully penetrable spheres. On the contrary, for smaller
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values of d/a, the geometry of the total object is more
similar to that of an oblate ellipsoid, with a consequently
stronger dependence of ηc on the aspect-ratio.

FIG. 4: ηc as a function of the shell thickness for different
aspect-ratios.

IV. QUASI-INVARIANTS AT THE

PERCOLATION THRESHOLD

In continuum percolation, an important quantity pro-
viding information on the local topology of the percolat-
ing cluster is the average number Bc of objects connected
to a given particle. For fully penetrable objects, and since
in this case there is no spatial correlation, Bc is simply
given by [10]:

Bc = ρcVex, (5)

where Vex is the excluded volume defined by the vol-
ume around an object where the center of another object
cannot penetrate if overlap is to be avoided. For pene-
trable spheres each of volume V , the excluded volume is
Vex = 8V and, by using ρc = ηc/V with ηc ≃ 0.34, the
resulting connectivity number is Bc ≃ 2.74, which agrees
well with the evaluation of Bc from a direct enumera-
tion of connections in assemblies of penetrable spheres at
percolation [1, 4]. Indeed, for fully penetrable spheres,
for which the sphere centers are distributed randomly,
Eq. (5) simply states that Bc is equivalent to the aver-
age number of centers found within an excluded volume,
irrespectively of the spatial configuration of the perco-
lating objects. However, for semi-penetrable spheres, the
presence of hard-core introduces a spatial correlation (see
below), so that Bc is expected to deviate from the un-
correlated case of Eq. (5). In particular, Bc is found to
decrease as the hard-core portion of the sphere increases,
reaching Bc ≃ 1.5 for very thin penetrable shells [1, 4], as
a result of the repulsion of the impenetrable hard-cores.

Let us now consider the case of assemblies of oblate
ellipsoids. In Fig. 5 we plot the computed values of Bc

as a function of the penetrable shell thickness d/a and
for selected values of the aspect-ratio a/b. For a/b = 1
we recover the results for the spheres: Bc ≃ 2.7 for large
values of d/a while Bc ≃ 1.5 for d/a = 0.0526. For
a/b > 1 and thick penetrable shells, Bc remains close to
the spherical case also for larger aspect-ratios because, as
said before, for large d/a values the entire object (hard-
core plus penetrable shell) is basically a semi-penetrable
sphere with a small hard-core spheroid. However, by de-
creasing d/a, we find that Bc continues to remain very
close to the a/b = 1 case also for the thinnest pene-
trable shells, irrespectively of the aspect-ratio. This is
well illustrated by the inset of Fig. 5 where the calcu-
lated Bc for d/a = 0.0526 does not show appreciable
variations over a two-order of magnitude change of a/b.
This result is rather interesting in view of the fact that a
quasi-invariance of Bc with respect to the aspect-ratio in
oblate spheroids is in striking contrast to what is found
in prolate objects such as the spherocylinders studied in
Refs.[4, 22]. For example, for spherocylinders made of
hard cylinders on length H and diameter D capped by
hemispheres and with penetrable shells of thickness 0.1D,
Bc is found to decreases from Bc = 1.61 for H/D = 4
down to Bc = 1.29 at H/D = 25 [22], consistently de-
viating therefore from Bc ≃ 1.76 obtained for spheres
of diameter D and the same penetrable shell thickness
[1]. Different behaviors of quasi-impenetrable oblate and
prolate objects noted here are also found in the fully pen-
etrable case. Indeed Bc of prolate objects decreases as
the aspect-ratio is increased and is expected to approach
unity in the extreme prolate limit as a consequence of the
vanishing critical density [8], while Bc of oblate objects
remains close to Bc ≃ 3 all the way from the moderate-
to extreme-oblate regimes [17].

Now, we can write a general relation between the aver-
age connection number Bc at percolation and the critical
number density ρc. If we consider hard spheroids with
penetrable shell and with an isotropic distribution of ori-
entations, then Bc reduces to:

Bc = ρc

∫ 2π

0

dθ

∫ π

0

dϕΦ(θ, ϕ)

∫

Vexd(θ,ϕ)

d3
r g(r, θ, ϕ),

(6)
where θ and ϕ are the angles between the major axes of
two spheroids separated by r and g(r, θ, ϕ) is the radial
distribution function: given a particle centered in the
origin, ρc g(r, θ, ϕ) represents the mean particle number
density at position r with an orientation θ, ϕ. The inte-
gration in r is performed over the total excluded volume
Vexd(θ, ϕ) (hard-core plus penetrable shell) centered at
the origin and having orientation θ, ϕ.

We observe that all the information about the presence
of a hard core inside the particles is included in the radial
distribution function, which will be zero in the volume
occupied by the hard core of the particle centered at the
origin. However, g(r, θ, ϕ) is a rather complex function
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FIG. 5: Bc as a function of the shell thickness from simula-
tion for different aspect-ratios. The results are obtained from
the simulations by counting the connections number of each
spheroid with its neighbors and averaging.

and even for the case of spheres there are only approxi-
mate theoretical expressions [36]. Also the construction
of a fitted expression to simulation data may result to be
excessively complicated when the respective orientation
of the particles has to be taken into account.

The lowest order approximation which we may then
consider, and which is exact in the case of fully pene-
trable particles, is the one where g(r, θ, ϕ) = 1. This is
equivalent to neglect all contributions of the radial dis-
tribution function which spur from the presence of the
hard core. The resulting connectivity number, which in
this approximation we denote by B̄c, is then given by:

B̄c = ρc

∫ 2π

0

dθ

∫ π

0

dϕΦ(θ, ϕ)

∫

Vexd(θ,ϕ)

dr = ρc〈Vexd〉,

(7)
where 〈Vexd〉 is the orientation averaged total ex-
cluded volume. Given the averaged excluded volume of
spheroids surrounded with a shell of constant thickness
〈Vexd〉 (A29), together with the hard spheroid excluded
volume expression (A28) or (A30), we can calculate B̄c

from the percolation threshold results obtained from the
simulations:

B̄c = ρc〈Vexd〉 = φc

〈Vexd〉
V

, (8)

where we have used the hard core volume fraction φc.
The full details of the calculation of the excluded volume
quantities can be found in the appendix A. The resulting
values of B̄c are plotted in Fig. 6 as a function of the
penetrable shell thickness and for several aspect-ratios.

Comparing Fig. 6 with Fig. 5 we note that for d/a >
1, i.e., for thick penetrable shells, B̄c does not deviate
much from Bc, indicating that the effect of the hard-
core is, in this regime, rather weak. On the contrary, for
thinner shells, B̄c increasingly deviates from Bc because
the correlation driven by the hard-core is stronger.

FIG. 6: B̄c as a function of the shell thickness for different
aspect-ratios.

Despite that B̄c overestimates the number of connected
particles, its behavior is nevertheless rather intriguing.
Indeed the dependence of B̄c on the penetrable shell
thickness d/a appears to be universal with respect to
the aspect-ratio, for all d/a values larger than d/a > 0.1.
Furthermore, in this region of d/a, B̄c has a rather weak
dependence on the shell thickness, not deviating much
from B̄c ≃ 2.8. This must be contrasted to Bc which,
from d/a = 4 down to d/a = 0.1, decreases from about
2.8 to only 1.6. The quasi-invariance of B̄c has therefore
some practical advantages since, by using Eq. (8), the
percolation threshold φc can be estimated from 〈Vexd〉
and B̄c ≃ 2.8, in a wide interval of d/a and aspect-ratio
values.

V. CONCLUSIONS

The geometrical percolation threshold in the contin-
uum of random distributions of oblate hard ellipsoids of
revolution surrounded with a soft shell of constant thick-
ness has been investigated. Simulation results spanning
a broad range of aspect-ratios and shell thickness values
have been reported. It is found that larger aspect-ratios
entail lower percolation thresholds, in agreement with the
behavior observed experimentally in insulator-conductor
composites where the conducting phase is constituted by
oblate objects, such as graphite nanosheets. Further-
more, the number Bc of connected object at percolation is
a quasi-invariant with respect to the aspect-ratio, in con-
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FIG. 7: Two identical oblate spheroids in contact (2D repre-
sentation).

trast with what has been previously reported for prolate
objects. Finally, we have derived an additional quasi-
invariant based on the excluded volume concept which
allows to infer the system percolation threshold.
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APPENDIX A: EVALUATION OF EXCLUDED

VOLUME QUANTITIES

We report in the following the derivation of the ex-
cluded volume of two oblate spheroids, the excluded vol-

ume of two oblate spheroids surrounded with a shell of
constant thickness and their angular averages. We follow
a route due to the pioneering work of Isihara [37] which is
somehow more laborious than the one used by the same
author [38] and the authors of [39] to derive the widely
used Isihara-Ogston-Winzor spheroid excluded volume
formula. The advantage is that it is possible to obtain,
albeit in a series expansion form, the excluded quanti-
ties with their full angle dependence. The average on
the spheroid angle distribution function is performed in
a second time and can be easily extended to non-isotropic
cases. Let us consider the case of two identical spheroids
of major axis a and minor axis b in contact as illustrated
in Fig. 7.

We then have that the geometrical quantities H and K,
which represent the distances from the spheroid centers
to the tangent plane to the two spheroids in the contact
point, may be written as

H(α) = a
√

1 − ǫ2 cos2 α, (A1)

K(α′) = a
√

1 − ǫ2 cos2 α′, (A2)

where ǫ represents the eccentricity (for oblate spheroids)

ǫ ≡
√

1 − b2

a2
. (A3)

Furthermore, we have

cos2 α′ = [sinϕ sin α(cos θcosβ + sin θ sin β) + cosϕ cosα]2

= [sinϕ sin α cos (β − θ) + cosϕ cosα]2, (A4)

where θ and ϕ are the angles which define the rotation
that transforms the symmetry axis vector b of spheroid
A in the one of B, b

′.

We can then write the excluded volume of two identical spheroids, or more generally two identical ovaloids, as
[37, 38]:

Vex = 2V +

∫

K(H, H)dω = 2V +

∫ 2π

0

dβ

∫ π

0

dα sin αK(H, H), (A5)

where dω is the infinitesimal surface element of the unit sphere centered in the origin which, by using the reference
frame choice of fig. 7, takes the form

dω = sin αdαdβ. (A6)

Furthermore, in Eq. (A5) we have introduced the differential operator on the unit sphere which for two equal scalar
quantities F takes the form

(F, F ) ≡ 2

{(

∂2F

∂α2
+ F

)(

1

sin2 α

∂2F

∂β2
+

cosα

sin α

∂F

∂α
+ F

)

−
[

∂

∂α

(

1

sin α

∂F

∂β

)]2}

, (A7)
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while V is the volume of the spheroid.
With the explicit form of H , Eq. (A1), K, Eq. (A2), and relation (A4) we can write for the excluded volume (A5)

in the case of the two spheroids the integral form:

Vex(θ, ϕ) = 2V + 2a3(1 − ǫ2)

∫ 2π

0

dβ

∫ π

0

dα sin α

√
1 − ǫ2 cos2 α′

(1 − ǫ2 cos2 α)2

= 2V + 2a3(1 − ǫ2)

∫ 2π

0

dβ

∫ π

0

dα sin α

√

1 − ǫ2(sin ϕ sinα cosβ + cosϕ cosα)2

(1 − ǫ2 cos2 α)2
︸ ︷︷ ︸

I

, (A8)

where we have used the fact that

∫ 2π

0

dβ
√

1 − ǫ2[sin ϕ sin α cos (β − θ) + cosϕ cos α]2 =

∫ 2π

0

dβ
√

1 − ǫ2(sin ϕ sinα cosβ + cosϕ cosα)2, (A9)

because of the 2π periodicity of the integrand and which means that Vex is θ-independent.
We now may expand the 1 − ǫ2(sin ϕ sin α cosβ + cosϕ cosα)2 square root:

√

1 − ǫ2(sin ϕ sin α cosβ + cosϕ cosα)2 = 1 − 1

2
√

π

∞∑

k=1

Γ(k − 1

2
)
ǫ2k

k!
(sin ϕ sin α cosβ + cosϕ cosα)2k

= 1 − 1

2
√

π

∞∑

k=1

Γ(k − 1

2
)
ǫ2k

k!

k∑

i=0

(
k

i

)

(sin ϕ sin α cosβ)2i(cosϕ cosα)2k−2i.

(A10)

Substituting this in integral I of (A8) and integrating in β in the first resulting term we obtain:

I =2π

∫ π

0

dα
sin α

(1 − ǫ2 cos2 α)2

− 1

2
√

π

∞∑

k=1

Γ(k − 1

2
)
ǫ2k

k!

k∑

i=0

(
k

i

)

sin2i ϕ cos2k−2i ϕ

∫ 2π

0

dβ cos2i β

∫ π

0

dα
sin2i+1 α cos2k−2i α

(1 − ǫ2 cos2 α)2
. (A11)

The integration follows then with the aid of formulas 2.153 (3.), 3.682, 3.681 (1.) of [40] obtaining with (A8) the
expression for the excluded volume of two identical oblate spheroids:

Vex(ϕ) =2V + 2a3(1 − ǫ2)

[

4πF (2 , 1
2

, 3
2

, ǫ2)

−
√

π
∞∑

k=1

Γ(k − 1

2
)ǫ2k

k∑

i=0

sin2i ϕ cos2k−2i ϕ

2i(k − i)!(i!)2
B(i+1 , 2k−2i+1

2
)F (2 , 2k−2i+1

2
, 2k+3

2
, ǫ2)

]

. (A12)

Let us now consider the situation depicted in fig. 8 which represent two (identical) spheroids surrounded with a
shell of constant thickness d. We are again interested in evaluating the excluded volume of these objects, which,
because of the constant shell offset, will not be anymore ellipsoids. Nevertheless, we see that in this case we can again
construct geometrical quantities like H and K of the two spheroids of Fig. 7 and that these, which we will call H ′

and K ′ are parallel to the old H and K respectively. Then it follows:

H ′(α) = H(α) + d (A13)

K ′(α′) = K(α′) + d, (A14)

and H and K will be given by (A1) and (A2). Now, also in this case expression (A5) holds true and, observing that
the volume of an ovaloid may be written as [37, 38]

V =
1

6

∫

G(G, G)dω, (A15)
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FIG. 8: Two oblate spheroids surrounded with shells of constant thickness which are in contact (2D representation).

where G is a geometric quantity constructed like H, K, H ′, K ′, we are able to write for the excluded volume of the
two spheroids with shell:

Vexd =2V ′ +

∫

K ′(H ′, H ′)dω

=Vex +
4d

3

∫

(H, H)dω

︸ ︷︷ ︸

I1

+2d

∫ (
H

3
+

4d

3

)(
∂2H

∂α2
+

cosα

sinα

∂H

∂α
+ 2H + d

)

dω

︸ ︷︷ ︸

I2

+ 2d

∫

K

(
∂2H

∂α2
+

cosα

sinα

∂H

∂α
+ 2H + d

)

dω

︸ ︷︷ ︸

I3

, (A16)

and Vex is the excluded volume of the two spheroids (A12).
Integrals I1 and I2 are straightforward and may be solved with the aid of formulas 3.682, 2.583 (3.), 2.584 (3.) and

2.584 (39.) of [40]:

I1 = 2a2(1 − ǫ2)

∫ 2π

0

dβ

∫ π

0

dα
sin α

(1 − ǫ2 cos2 α)2
= 8πa2(1 − ǫ2)F (2 , 1

2
, 3

2
, ǫ2), (A17)

I2 =

∫ 2π

0

dβ

∫ π

0

dα sin α

(
a
√

1 − ǫ2 cos2 α

3
+

4d

3

)[
a√

1 − ǫ2 cos2 α
+

a(1 − ǫ2)

(1 − ǫ2 cos2 α)
3
2

+ d

]

=
4π

3
(a2 + 4d2) + 6πad

(
√

1 − ǫ2 +
arcsin ǫ

ǫ

)

+
4π

3
a2(1 − ǫ2)

arctanh ǫ

ǫ
. (A18)

Regarding I3 we have, using Eq. (A2), Eq. (A4) and Eq. (A9):

I3 =a

∫ 2π

0

dβ

∫ π

0

dα sinα
√

1 − ǫ2(sin ϕ sin α cosβ + cosϕ cosα)2

×
[

a√
1 − ǫ2 cos2 α

+
a(1 − ǫ2)

(1 − ǫ2 cos2 α)
3
2

+ d

]

, (A19)

and we can again expand the 1 − ǫ2(sin ϕ sin α cosβ + cosϕ cos α)2 square root obtaining

I3 =a

∫ 2π

0

dβ

∫ π

0

dα sinα

[
a√

1 − ǫ2 cos2 α
+

a(1 − ǫ2)

(1 − ǫ2 cos2 α)
3
2

+ d

]

− a

2
√

π

∞∑

k=1

Γ(k − 1

2
)
ǫ2k

k!

k∑

i=0

(
k

i

)

sin2i ϕ cos2k−2i ϕ

∫ 2π

0

dβ cos2i β

×
[

a

∫ π

0

dα
sin2i+1 α cos2k−2i α√

1 − ǫ2 cos2 α
+ a(1 − ǫ2)

∫ π

0

dα
sin2i+1 α cos2k−2i α

(1 − ǫ2 cos2 α)
3
2

+ d

∫ π

0

dα sin2i+1 α cos2k−2i α

]

. (A20)
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These integrals may be solved again with the use of the formulas 2.153 (3.), 3.682, 3.681 (1.), 2.583 (3.), 2.584 (39.)
and 3.621 (5.) of [40], yielding

I3 =4πa

(
a arcsin ǫ

ǫ
+ a
√

1 − ǫ2 + 2d

)

− a
√

π

∞∑

k=1

Γ(k − 1

2
)ǫ2k

k∑

i=0

sin2i ϕ cos2k−2i ϕ

2i(k − i)!(i!)2

× B(i+1 , 2k−2i+1

2
)

[

aF ( 1
2

, 2k−2i+1

2
, 2k+3

2
, ǫ2) + a(1 − ǫ2)F ( 3

2
, 2k−2i+1

2
, 2k+3

2
, ǫ2) + d

]

. (A21)

We can then combine all these results together with property [41]

F (2 , 1
2

, 3
2

, ǫ2) = 1
2

(

1
1−ǫ2

+ arctanh ǫ
ǫ

)

(A22)

and Eq. (A16) to write the excluded volume of two oblate spheroids surrounded with a shell of constant thickness Vexd:

Vexd =Vex +
8π

3
d(3a2 + 4d2 + 3ad) + 4πad(2a + 3d)

(
√

1 − ǫ2 +
arcsin ǫ

ǫ

)

+ 8πa2d(1 − ǫ2)
arctanh ǫ

ǫ
− 2ad

√
π

∞∑

k=1

Γ(k − 1

2
)ǫ2k

k∑

i=0

sin2i ϕ cos2k−2i ϕ

2i(k − i)!(i!)2

× B(i+1 , 2k−2i+1

2
)

[

aF ( 1
2

, 2k−2i+1

2
, 2k+3

2
, ǫ2) + a(1 − ǫ2)F ( 3

2
, 2k−2i+1

2
, 2k+3

2
, ǫ2) + d

]

. (A23)

We note that the above procedure allowed to obtain an expression for Vexd with an angular dependence only upon ϕ.
However, the orientation of the surface enclosing this volume will be dependent also on θ, which is why it is needed
e.g. in (6).

The above results can also be easily used to compute the total volume of the spheroid with the shell starting from
Eq. (A15) with Eq. (A13):

Vd = V +
d

6

∫

(H, H)dω +
d

3

∫

(H + d)

(
∂2H

∂α2
+

cosα

sin α

∂H

∂α
+ 2H + d

)

dω, (A24)

which is very similar to the first part of Eq. (A16) and can be integrated alike, obtaining

Vd = V +
2πd

3

[

3a2(1 − ǫ2)
arctanh ǫ

ǫ
+ 3ad

(
√

1 − ǫ2 +
arcsin ǫ

ǫ

)

+ 3a2 + 2d2

]

. (A25)

We now want to calculate the averaged excluded volume starting from the angle distribution functions which arise
in the spheroid distributions of the simulation algorithm. For axially symmetric objects the angle distribution function
Φ(ϕ) is dependent only on the angle between the symmetry axes ϕ. In the case of an isotropic (or Poissonian) angle
distribution, where any orientation is equally probable, it is easy to find

Φisotr.(ϕ) =
sin ϕ

4π
. (A26)

To verify that this situation occurs unbiasedly in the simulations we used a modified version of the spheroid distribution
creation algorithm where, after the distribution was realized, for every spheroid it was searched for neighbors which
lied within a certain radius from its center and the angles between their symmetry axis were recorded. We then fitted
the function to the simulated angle distribution results and, although we may expect that this distribution function
will deviate from the purely isotropic case when highly packed assemblies are realized due to local orientation, we
obtained no deviation for all binning radiuses and all volume fractions considered in the present research. The averaged
excluded volume of the two spheroids will then be

〈Vex〉isotr. =

∫ 2π

0

dθ

∫ π

0

dϕΦisotr.(ϕ)Vex(ϕ) =
1

2

∫ π

0

dϕ sin ϕVex(ϕ). (A27)

This easily leads with (A12) and 3.621 (5.) of [40] to the averaged excluded volume of two oblate spheroids:

〈Vex〉 =2V + 8πa3(1 − ǫ2)F (2 , 1
2

, 3
2

, ǫ2)

−
√

πa3(1 − ǫ2)

∞∑

k=1

Γ(k − 1

2
)ǫ2k

k∑

i=0

[B(i+1 , 2k−2i+1

2
)]2

2i(k − i)!(i!)2
F (2 , 2k−2i+1

2
, 2k+3

2
, ǫ2), (A28)
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and with Eq. (A23) and the same formula of [40] to the averaged excluded volume of two oblate spheroids surrounded

with a shell of constant thickness :

〈Vexd〉 =〈Vex〉 +
8π

3
d(3a2 + 4d2 + 3ad) + 4πad(2a + 3d)

(
√

1 − ǫ2 +
arcsin ǫ

ǫ

)

+ 8πa2d(1 − ǫ2)
arctanh ǫ

ǫ
− ad

√
π

∞∑

k=1

Γ(k − 1

2
)ǫ2k

k∑

i=0

[B(i+1 , 2k−2i+1

2
)]2

2i(k − i)!(i!)2

×
[

aF ( 1
2

, 2k−2i+1

2
, 2k+3

2
, ǫ2) + a(1 − ǫ2)F ( 3

2
, 2k−2i+1

2
, 2k+3

2
, ǫ2) + d

]

. (A29)

The quantities involved in Eq. (A28) and Eq. (A29) can then be easily evaluated with a mathematical software like
Maple [41] .

The averaged excluded volume of the hard spheroids (A28) is of course equivalent to the Isihara-Ogston-Winzor
expression [38, 39]:

〈Vex〉I.O.W. =
4

3
πa2b

{

2 +
3

2

[

1 +
arcsin ǫ

ǫ
√

1 − ǫ2

][

1 +
(1 − ǫ2)

2ǫ
ln

(
1 + ǫ

1 − ǫ

)]}

. (A30)

These expressions have then been successfully verified through simulation by generating a great number of randomly
placed spheroids couples with fixed reciprocal orientation and seeing how many times their shells overlapped. The
ratio of overlaps to the total trial number will then be equal to the ratio of the excluded volume to the volume of the
simulation cell. Convergence tests on the series were also performed.

It is then interesting to observe that the behavior ratio between 〈Vexd〉 and the spheroid volume V is roughly linearly
dependent upon the spheroid aspect-ratio and deviates slightly from it only close to the sphere case. The same holds
true for the averaged excluded volume 〈Vex〉, showing that interpreting the influence of the spheroid aspect-ratio as
an excluded volume effect is a consistent approach.
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and J. F. Marêché, Phys. Rev. B 53, 6209 (1996)
[14] E. Charlaix, J. Phys. A: Math. Gen. 19, L533 (1986)
[15] E. Charlaix, E. Guyon and N. Rivier, Solid State Com-

mun. 50, 999 (1984)

[16] Y. B. Yi and A. M. Sastry, Proc. R. Soc. Lond. A 460,
2353 (2004)

[17] E. J. Garboczi, K. A. Snyder, J. F. Douglas and M. F.
Thorpe, Phys. Rev. E 52, 819 (1995)

[18] E. M. Sevick, P. A. Monson and J. M. Ottino, Phys. Rev.
A 38, 5376 (1988)

[19] A. S. Skal, B. I. Shklovskii, Sov. Phys. Semicond. 7, 1058
(1974)

[20] L. Berhan and A. M. Sastry, Phys. Rev. E 75, 041120
(2007)

[21] A. A. Ogale and S. F. Wang, Comp. Sci. Technol. 46,
379 (1993)

[22] T. Schilling, S. Jungblut and M. A. Miller, Phys. Rev.
Lett. 98, 108303 (2007)

[23] S. Akagawa and T. Odagaki, Phys. Rev. E 76, 051402
(2007)

[24] A. Donev, S. Torquato and F. H. Stillinger, J. Comp.
Phys. 202, 765 (2005)

[25] J. W. Perram and M. S. Wertheim, J. Comp. Phys. 58,
409 (1985)

[26] J. Vieillard-Baron, J. Chem. Phys. 56, 4729 (1972)
[27] E. Rimon and S. P. Boyd, J. Intelligent Robotic Syst. 18,

105 (1997)
[28] E. Rimon and S. P. Boyd, Tech. Rep. ISL, Stanford Univ.

(1992)
[29] N. Johner, C. Grimaldi, I. Balberg and P. Ryser, Accepted

for pubblication on Phys. Rev. B

[30] A. Al-Futaisi and T. W. Patzek, Physica A 321, 665



11

(2003)
[31] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438

(1976)
[32] M. D. Rintoul and S. Torquato, J. Phys. A: Math. Gen.

30, L585 (1997)
[33] W. Lu, J. Weng, D. Wu, C. Wu and G. Chen, Mater.

Manuf. Proc. 21, 167 (2006)
[34] G. Chen, C. Wu, W. Weng, D. Wu and W. Yan, Polymer

44, 1781 (2003)
[35] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M.

Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T.
Nguyen and R. S. Ruoff, Nature 442, 282 (2006)

[36] A. Trokhymchuk, I. Nezbeda, J. Jirsák and D. Hender-
son, J. Chem. Phys. 123, 024501 (2005)

[37] A. Isihara, J. Chem. Phys. 19, 1142 (1951)
[38] A. Isihara, J. Chem. Phys. 18, 1446 (1950)
[39] A. G. Ogston and D. J. Winzor, J. Phys. Chem. 79, 2496

(1975)
[40] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals,

series, and products (Academic Press, 2000)
[41] Maple software by MapleSoft, a division of Waterloo

Maple


