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Abstract. Autonomous mobile robots are promising tools for opera-
tions in environments that are difficult to access for humans. When these
environments are dynamic and non-deterministic, like in collapsed build-
ings, the robots must coordinate their actions and the use of resources
using planning. This paper presents Planner9, a hierarchical task net-
work (htn) planner that runs on groups of miniature mobile robots.
These robots have limited computational power and memory, but are
well connected through Wi-Fi. Planner9 takes advantage of this connec-
tivity to distribute the planning over different robots. We have adapted
the htn algorithm to perform parallel search using A* and to limit the
number of search nodes through lifting. We show that Planner9 scales
well with the number of robots, even on non-linear tasks that involve
recursions in their decompositions. We show that contrary to JSHOP2,
Planner9 finds optimal plans.

1 Introduction

Autonomous mobile robots are promising tools for operations in environments
that are difficult to access for humans. In particular, groups of miniature low cost
robots are well suited for missions in hazardous environments; for instance to
do search and rescue in partially destroyed structures. Indeed, small robots can
pass through small holes to access most locations. Several robots can collaborate
to free a path, for instance by moving objects or by extinguishing fires. Multi-
ple physical robots provide redundancy against contingencies resulting from the
instability of the environment. As the robots are inexpensive, the loss of some
of them is acceptable. In this context of rescue operations, most of previous
works focused on reactive controllers, see for instance [1,2]. However, real-world
robotics tasks that involve manipulation of the environment cannot be performed
by reactive controllers only, because the actions of the robots might modify the
state of the world irreversibly into situations that prevent the completion of the
mission. For instance in a rescue scenario, robots must never irreversibly fill the
only passageway to humans trapped in a room, regardless of how this action
might help completing other tasks. To alter the world the right way, the robots
must reason about their course of action; the common way to do so is to use an
automated planner.
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This paper presents Planner9, a distributed hierarchical task network (htn)
planner [3, ch. 11] that runs on groups of miniature mobile robots. These robots
are good models of expendable field robots because they are affordable and all-
terrain [4]. They are built around a smartphone-level computer which provides
one tenth of the power for one twentieth of the energy consumption of a lap-
top computer. This computer runs Linux, and provides a Wi-Fi connection to
its peers. Planner9 takes advantage of this large bandwidth on cpu ratio to
distribute the planning over different robots.

In the results section, we show that Planner9 scales well with the number of
robots. We study how the planning durations vary when we change the complex-
ity of the environment. We compare Planner9 to JSHOP2, a free and an often
referenced htn planner.

2 Related Work

A vast literature exists on planning with multiple agents. However, the choice of
a particular algorithm is a trade-off between several factors such as planning ex-
pressiveness, distributivity, bandwidth consumption, and speed of execution [5].
In this section we focus on the approaches that are implementable on real robots
with limited resources.

To distribute planning among different agents, one can run an independent
planner on each agent. Works in simulated robotics soccer have used htn plan-
ning that way [6]. However, in general this solution cannot improve the time nor
reduce the memory required to solve a specific problem. In the direction of dis-
tributing the planning process, [7] has integrated the SHOP htn planner within
a distributed agent framework. The resulting A-SHOP planner uses the provided
infrastructure to query the state of the world, evaluate preconditions, apply ef-
fects, and estimate potential states from remote agents. However, in this work
the planning itself is still centralized. Theoretical works in multi-agent systems
have shown that it is possible to integrate the distributed aspect in the planning
algorithm [8,9]. For instance [10] has proposed a market-based approach where
and/or trees of tasks are exchanged between agents. These authors acknowledge
the interest of more expressive planning but address the issues of distributivity
and scalability first (“Further research will also investigate further generalization
of the tree structures and task constraints.” [11, p. 25]). Recent works in htn
have proposed stratified planning where remote agents plan subtasks and report
them to a master. In [12], finding the final plan is the result of the exchange
of proposals and counter proposals between agents. In [13], the child agents
are also responsible for execution, and interleave planning, execution, and re-
planning. These methods require a large number of synchronization messages.
On the contrary, Planner9 considers the different robots as a computer cluster
and distributes the planning of any task to any robot and thus takes advantage
of all the available computational power using simple synchronization.



3 Materials and Methods
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Fig. 1. Search and rescue scenario (left) with abstract representation (right).
The robots are dropped into a damaged building. They must bring a medical kit
to the humans trapped in the lower left room. To do so, they must extinguish
the fires in the right order; otherwise they would fail the rescue operation as
there are not enough extinguishers readily available to put out all fires.

To measure the performances of Planner9, we have developed a small search
and rescue scenario (Fig. 1). In this scenario, groups of robots are dropped into
a damaged building and must bring a medical kit to humans trapped in a room.
Multiple fires block the ways; robots can use fire extinguishers to put them
out, but an extinguisher can put out only one fire. It is a typical situation where
reactive controllers would fail because there are not enough extinguishers directly
available to put out all fires. The robots must use the right extinguishers on the
right fire in the right order and thus need a plan (Fig. 2). We believe that this
scenario is representative of the complex tasks that would require a planner. Here
we suppose that the robots know the locations of fires, extinguishers, objects,
and people. To discover them in a real-world situation, we can imagine to deploy
exploration robots that would map the environment.

We conceived Planner9 to run on our latest generation of miniature mobile
robots, which comes down from the S-bot robot [4]. Only one prototype is cur-
rently available, yet dozens of robots are in production. We have compiled, run,
and benchmarked Planner9 on this prototype. To simulate more robots, we then
run multiple slave processes of the planning algorithm on a multi-core computer
while another computer runs a master control program. We use cpulimit1 to only

1 http://cpulimit.sourceforge.net/
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take(r0, e0) a0, a1, a2, a3, a4, a5 : rooms

extinguish(a1, a0, r0, e0)

take(r1, e1) r0, r1 : groups of robots initially

extinguish(a2, a1, r1, e1) in a0 and a1 respectively

move(a2, r0)

take(r0, e2a) e0, e1, e2a, e2b : extinguishers

move(a1, r0) initially in a0, a1, a2, and a2

extinguish(a4, a1, r0, e2a) respectively

move(a2, r0)

take(r0, e2b) o0 : medical kit, initially in a0

move(a4, r0)

extinguish(a5, a4, r0, e2b)

move(a0, r1)

take(r1, o0)

move(a5, r1)

drop(r1, o0)

Fig. 2. Solution plan for the scenario presented in Fig. 1. take lets a group of
robots pick up an object. extinguish puts out a fire between two rooms. move
displaces a robot group to a room. drop puts down the object the robots hold.

allow as much processing power as available on the robot, which corresponds to
5 % of an Intel Core2 at 2.83 GHz. Thanks to ulimit2, we limit the memory to
100 MB, which is the amount available on the robot. Finally, we divide the avail-
able Wi-Fi bandwidth (19 Mbps using IEEE 802.11g) by the number of slaves
and limit the network bandwidth using trickle3. This way, our measurements
are representative of the expected performances on the robots. This approach
works as long as all slaves plan for a long duration. When we increase the num-
ber of slaves, the time to find a solution decreases which is a problem. Indeed,
cpulimit and trickle impose limitations by pausing and restarting execution and
data transmission. They interfere with our measurements when slaves find so-
lutions in the same order of magnitude of time as these tools operate. We have
observed such interferences starting from 8 slaves. Therefore, we limit our scal-
ability measurements to 7 slaves.

We perform two experiments. First we measure the scalability of Planner9 by
varying the number of planning slaves (simulated number of robots), as explained
in the previous section. We perform 100 runs for each point, and show the average
and the standard deviation. Second, we vary the difficulty of the planning by
adding elements to the world that are useless to the robots, as show in Fig. 3.
We first add two empty rooms, then we add extinguishers in these rooms and a
medical kit in a3. These elements add more branches to the search tree without
affecting the solution. For each case, we perform 100 runs using 1 and 7 slaves. We

2 http://www.linuxhowtos.org/TipsandTricks/ulimit.htm
3 http://monkey.org/~marius/pages/?page=trickle
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also solve the same problem using JSHOP24 [14], a free and an often referenced
htn planner implemented in Java. As JSHOP2 is a depth-first search planner, we
add bookkeeping actions that prevent infinite recursions. We do not count these
actions when comparing plans sizes. We substract the startup time of JSHOP2
(time to decompose an empty task) to put it on an equal basis with Planner9.
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Fig. 3. Scenarios with additional elements useless to the robots. These elements
add more branches to the search tree without affecting the solution.

4 Planner9
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Fig. 4. Methods for going to a room by recursively putting out fires on the way.

Planner9 is a htn planner. A htn planner decomposes a goal task into sub-
tasks until it finds a sequence of actions that the robots can perform. The planner
knows the available methods and their possible decompositions, like in Fig. 4.
When given the goal task and the initial state of the world, the htn planner
seeks an admissible sequence of actions. The actions can affect the state of the
world; so the planner records these alterations.

4 http://sourceforge.net/projects/shop
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Planner9 plans partially-ordered graphs of tasks using forward decomposi-
tion, as in [3, p. 243]. It keeps track of each possible decomposition in a different
search node. Planner9 starts planning with a single node containing the goal
task and the initial state of the world. When visiting a node, Planner9 iterates
through all tasks that have no predecessor. If the task is an action, it applies
this action to the current state of the world and stores the action as part of the
plan. Otherwise, Planner9 instantiates the different possible decompositions of
the task. This process goes on until there is no more node left or until Planner9
has found a node with no more task to decompose.

The state of the world consists of a set of n-ary relations over a set of values.
The application of an action affects these relations. The values represent things
from the real world, like rooms or robots in Fig. 4. In the latter, the move action
will update the isIn relation between the robots and the rooms. The planner
creates variables when decomposing tasks. For example in Fig. 4, the goto task
can be decomposed using the fire on the way alternative. This decomposition
introduces new variables: the extinguisher to use and the room where the extin-
guisher is located. The decomposition has preconditions over these variables that
the state of the world must satisfy. For instance, the extinguisher must be located
in an accessible room. When Planner9 decomposes a task, it performs lifting :
it accumulates its preconditions for delayed check. Planner9 assigns a value to
a variable only when an action changes a relation this variable appears in. For
every variable assignations allowed by the accumulated preconditions, Planner9
updates the state and creates a new search node. To do so in an efficient way,
it assigns values using dpll [15]. The use of lifting is one of the improvements
of Planner9 over the basic htn algorithm. It results in fewer search nodes and
more processing per node, which is desirable for parallelization.

Planner9 chooses the node to visit by selecting the least expensive one using
A* [16]. As cost it adds the total cost of the decomposition so far (path-cost
in A*) and the number of remaining tasks to be decomposed (heuristic-cost in
A*). One advantage of A* with respect to a depth-first search is to allow free
recursions in the definition of the planning domain. This is useful in robotics
because real-world problems are often expressed in a recursive way, like in Fig. 4.
Moreover, as each node is independent, Planner9 can distribute the A* search
over the network using a master/slave architecture.

The slaves run the algorithm described in the previous paragraphs and re-
port periodically the cost of their cheapest nodes to the master. When the cost
differences between slaves are significant, the master requests nodes from the
slave with the lowest cost. It then transfers them to the slave with the highest
cost. As our results show, this load-balancing algorithm is simple yet efficient.
Slave robots can appear on and disappear from the network dynamically, for
instance when they boot or because their batteries are discharged. The mas-
ter discovers available slaves dynamically using the Zeroconf protocol5, which
is based on broadcast announcing. Thanks to it, Planner9 does not require any
central registry and can use any robot available on the local network.

5 http://www.zeroconf.org/
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Planner9 is implemented in C++, is open source6, and runs on embedded
Linux. It only depends on the C++ standard library, the boost library7, and
Qt Embedded8, which are all open source. Planner9 is thus easy to embed in
any robot running a modern Linux board.

5 Results
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Fig. 5. The scalability of Planner9 with respect to the number of slaves. The
scenario is shown in Fig. 1. The error bars show the standard deviation over
100 runs. In the second plot, npsps represents the number of nodes visited per
second per slave, renormalized.

Fig. 5 shows the measures of the scalability of Planner9. The first plot shows
that the performances scale nicely with the number of slaves. The speedup, which
is the planning time using n slaves divided by the time using 1 slave, is even
super linear. We analyse this using the second plot, which shows the number of

6 One can access the source tree using git; to retrieve it, type: git clone

git://gitorious.org/planner9/planner9.git. We performed the experiments us-
ing revision a501cfd704e4c759a0d83ea27dfcc85be53929ef.

7 http://www.boost.org
8 http://www.qtsoftware.com/products/
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Fig. 6. The scalability of Planner9 with respect to the complexity of the envi-
ronment. The scenario are shown in Fig. 3. The error bars show the standard
deviation over 100 runs. JSHOP2 fails to find a plan when we add rooms, but
sometimes succeeds when we further add objects, as we explain in the main text.

nodes visited per second per slave, renormalized. When we increase the number
of slaves, each can processes more nodes per second. The cause of the super
linearity is a combination of the structure of the problem [17] and a memory
cache effect. Indeed, by distributing the planning, each slave holds fewer search
nodes in memory. Saving memory reduces the strain on the cpu cache and on
the memory allocator, which results in a better performance. When the number
of slaves grows further, the performance deteriorates. We attribute this effect to
the load balancing, which increases the average time to find a solution because
it moves low-cost nodes around.

Fig. 6 shows the measures of the ability of Planner9 and JSHOP2 to cope with
environments of increasing difficulty. On the basic environment, Planner9 with 1
slave is faster than JSHOP2; using 7 slaves, it is one order of magnitude faster.
Moreover, Planner9 uses both groups of robots while JSHOP2 extinguishes all
fires with r0, which adds one more move action to the plan. Adding two empty
rooms does not disturb Planner9 much, but JSHOP2 cannot cope: it exhausts its
memory before finding any solution, even if we give it 2 GB instead of the 100 MB
available on the robot. When we add useless objects in the empty rooms, the
planning time of Planner9 increases but does not explode. In this environment,
JSHOP2 either finds a solution quickly or exhausts its memory, depending on
the order of appearance of the new elements in its initial state of the world. If
we declare the new elements (rooms and objects) before the basic environment,
JSHOP2 finds a solution. If we declare them after, it fails. Moreover, when it
finds a solution it is a long plan with a lot of useless actions, such as using one
extinguisher to access a room to get another one.



These results show that Planner9 scales well with the complexity of the en-
vironment, compared to JSHOP2. We attribute these excellent performances to
the lifting which keeps different values assignments in a single node by abstract-
ing them using a variable. Planner9 assigns a value later, when it has collected
more constraints on this variable. On the contrary, JSHOP2 assigns values early
and performs depth-first search. If by chance the first search branches lead to
the solution, JSHOP2 finds it quickly. But otherwise, it must explore an expo-
nentially large number of branches before finding a solution.

6 Future Work

The next step is of course to run Planner9 completely on our robots and confirm
its scalability. Then, we will integrate Planner9 with the perception subsystem to
create the initial state of the world and implement the execution of plans using
the robots’ actuators. We want to study the expectations and the limitations of
using Planner9 to bring reasoning to collective robotics.

Planner9 is currently a basic htn planner and does not provide any extension
such as probabilistic planning or conditional actions. The rationale is that plan-
ning real-world scenarios is computationally intensive and we want it to run live
on the robots themselves. Moreover, we can make good use of the availability of
multiple robots to reduce the uncertainty of the world perception through con-
current sensing from different locations. Merging these would produce a robust
estimation of the state of the world for planning at symbolic level. Nevertheless,
the parallelization capabilities of Planner9 would work with extensions as well
so we can implement them should the need arise.

7 Conclusion

We have presented Planner9, a htn planner that dynamically distributes its pro-
cessing to multiple mobile robots by considering them as a computer cluster. To
do so we have enhanced the htn algorithm with an A* search and with the lifting
of the tasks’ preconditions. Previous works have explored how to distribute the
decomposition of a particular subtask, but Planner9 distributes the processing of
any task and thus benefits from all available computational power. Albeit simple,
this mechanism is efficient as our results show. When compared to JSHOP2, a
milestone in htn research, Planner9 always finds optimals plans; while JSHOP2
only sometimes finds plans, and they are sub-optimal. Because Planner9 runs on
inexpensive robots, we believe that it is a firm step towards bringing intelligence
to autonomous mobile robots in non-industrial environments.
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