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Résumé

Cette thèse est consacrée à l’étude du magnétisme dans les jonctions Josephson de type

supraconducteur–métal normal/ferroaimant–supraconducteur (SNS ou SFS). Les jonctions

SFS offrent en particulier une possibilité unique d’étudier l’interaction entre l’ordre ferro-

magnétique et la supraconductivité, séparant la source des corrélations supraconductrices

du ferromagnétisme, tandis que l’effet orbital d’un champ magnétique dans une jonction

SNS résulte dans l’apparition de phénomènes d’interférence entre les courants locaux.

Nous introduisons dans le Chapitre 1 le formalisme adapté à la description de l’effet de

proximité et passons en revue la physique des systèmes étudiés dans la thèse.

Dans le Chapitre 2, nous étudions l’effet Josephson entre deux supraconducteurs mis

en contact par un ferroaimant (jonction SFS) présentant une structure en domaines non-

collinéaires. La présence du champ d’échange [1] entrâıne une modulation des corrélations

supraconductrices dans le ferroaimant de par la brisure de la symétrie de renversement

temporel entre les électrons formant une paire de Cooper [2]. L’apparition d’une différence

de phase de π [3] entre les deux électrodes supraconductrices, et par conséquent d’un

courant spontané dans un anneau supraconducteur comprenant une jonction SFS résulte

de cette modulation. Comme modèle pour notre étude de l’effet de la présence de domaines

magnétiques sur la phase π nous considérons une jonction diffusive avec deux domaines le

long de la jonction dont l’aimantation est orientée de manière arbitraire. Nous calculons

une expression analytique pour le courant en fonction de l’orientation et de la taille des

domaines. En variant ces paramètres, la jonction se trouve soit dans la phase 0 (pas de

différence de phase entre les électrodes à l’équilibre) soit dans la phase π. La présence de

domaines entrâıne une réduction de la phase π dans l’espace des paramètres. Pour des do-

maines de taille égale, la phase π disparâıt complètement dès que l’angle entre l’aimantation

des domaines excède π
2 . A la fin du chapitre nous commentons sur les implications de nos

résultats pour les expériences sur les transitions 0-π dans les jonctions SFS.

Les réalisations expérimentales de jonctions SFS sont généralement basées sur des

couches ferromagnétiques déposées en film. Dans le Chapitre 3, nous étudions l’effet

de la présence d’une structure en domaines dans le plan de la jonction. Selon la taille

des domaines, comparée à la longueur de cohérence magnétique, nous observons deux com-

portements différents. Pour des domaines de grande taille, on observe des oscillations entre

la phase 0 et la phase π, comme dans une jonction SFS monodomaine. Pour des domaines

de petite taille, la jonction se comporte comme une jonction SNS: du fait d’un moyennage
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de l’effet du champ, les transitions dans la phase π sont absentes. Nous calculons la taille

critique séparant les deux régimes et montrons dans les deux cas comment réduire l’effet

des domaines à un taux de spin-flip effectif. Nous discutons enfin de la distribution des

courants locaux et montrons que proche des transitions entre phase 0 et π le courant a une

direction opposée au milieu des domaines par rapport au voisinage de la paroi de domaine.

Après avoir discuté d’effets paramagnétiques, nous nous concentrons dans le Chapitre

4 sur l’effet orbital d’un champ magnétique extérieur appliqué sur une jonction SNS. Nous

montrons que dans le cas d’une longue jonction, il existe une largeur critique (relative à

la longueur associée avec le champ magnétique) séparant un régime où le courant critique

présente des oscillations amorties en fonction du flux magnétique à travers la jonction d’un

régime où le courant décrôıt de manière monotone. Dans les deux régimes, la décroissance

est exponentielle. Pour une jonction large, la période des oscillations est identique à la

période des oscillations de Fraunhofer caractérisant le comportement du courant dans une

jonction tunnel. On montre finalement que dans cette limite les corrélations supraconduc-

trices et le courant sont concentrés proche des bords du système.

Mots clés : supraconductivité, effet de proximité, ferromagnétisme, effet Josephson,

jonctions π, courant critique, domaines magnétiques, effets orbitaux



Abstract

In this thesis we study various effects of magnetism in proximity structures, composed of

superconducting electrodes in contact with a normal metal. Magnetism can be present

in the system through the Zeeman and the orbital coupling. Proximity structures offer

in particular a unique opportunity to study the interplay between ferromagnetism and

conventional superconductivity, which can hardly coexist in bulk samples. The orbital

effect of an external magnetic field applied to a Josephson junction results in interference

effects between local currents.

In Chapter 1, we give an introduction to the main features of the proximity effect and

to the theoretical formalism used throughout the thesis.

In Chapter 2 we study the Josephson effect in a superconductor–ferromagnet–supercon-

ductor (SFS) junction with ferromagnetic domains of noncollinear magnetization. It is well

known [1] that as a consequence of the exchange splitting of the Fermi level [2] the Cooper

pair wave function shows damped oscillations in a ferromagnet, leading to the appearance

of the so-called “π state” in SFS junctions [3]. In the π state, the superconducting order

parameter is of opposite sign in the two S electrodes of the Josephson junction, and a

spontaneous non-dissipative current can appear in a ring containing such a junction. As

a model for our study of the influence of magnetic domains on the π state formation, we

consider a diffusive junction with two ferromagnetic domains along the junction. We find

analytically the critical current as a function of domain lengths and of the angle between the

orientations of their magnetizations. Varying those parameters, the junction may undergo

transitions between 0 and π phases. We find that the presence of domains reduces the range

of junction lengths at which the π phase is observed. For the junction with two domains

of the same length, the π phase totally disappears as soon as the misorientation angle

exceeds π
2 . We further comment on possible implications of our results for experimentally

observable 0–π transitions in SFS junctions.

Experimentally, π junctions are realized as thin films deposited in layers. In Chapter 3,

we study therefore the influence of in-plane magnetic domains on the Josephson current.

We find that the properties of the junction depend on the size of the domains relative to the

magnetic coherence length. In the case of large domains, the junction exhibits transitions

to the π state, similarly to a single-domain SFS junction. In the case of small domains, the

magnetization effectively averages out, and the junction is always in the zero state, similarly

to a superconductor–normal metal–superconductor (SNS) junction. In both those regimes,
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the influence of domain walls may be approximately described as an effective spin-flip

scattering. We also study the inhomogeneous distribution of the local current density in

the junction. Close to the 0–π transitions, the directions of the critical current may be

opposite in the vicinity of the domain wall and in the middle of the domains.

In Chapter 4, we discuss the orbital effects of an external magnetic field in a SNS

junction. In the limit of a long junction, we find that the properties of such a system

depend on the width of the junction relative to the length associated with the magnetic

field. We compute the critical width separating the regime of pure decay (narrow junction)

and the regime of damped oscillations (wide junction) of the critical current as a function

of the magnetic flux through the junction. We find an exponential damping of the current,

different from the well known Fraunhofer limit which corresponds to the limit of a tunnel

junction. In the limit of a wide junction, the superconducting pair correlations and the

critical current become localized near the border of the junction.

Keywords : superconductivity, proximity effect, ferromagnetism, Josephson effect, π

junctions, critical current, magnetic domains, orbital effects
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Chapter 1

Proximity effect and magnetism

1.1 Introduction

The study of hybrid structures made of superconducting and non-superconducting elements

in contact with each other, has started [4] only a few years after the development of the

microscopic BCS theory of superconductivity [5]. Recent technical progress has revived the

interest in the proximity effect and coherence at mesoscopic scale is theoretically better

understood [1, 6, 7]. Technological applications of proximity structures [8] include SQUID

Josephson magnetometers, which allow very sensitive magnetic field measurements (fields

in the attotesla range can be reached) and photodetectors. The sensitivity of SQUIDs

allows to measure the weak magnetic fields generated by the brain activity or to realize

the precise displacement sensors used in the detection of gravitational waves [9].

A superconductor S in contact with a normal metal N modifies the behavior of the

electrons in the normal region. The electrons in the adjacent normal metal exhibit su-

perconducting properties like the appearance of an energy gap in the density of states,

modifications of the conductance or screening of magnetic fields by Meissner currents.

Superconducting pairs can diffuse in a normal metal over mesoscopic lengths from a

contact with a superconductor. Mesoscopic systems contain a sufficient number of particles

to be studied by statistical methods but still show non-negligible phase coherence effects.

The presence of phase coherence makes proximity structures candidates for potential ap-

plications to spintronics [10] and to quantum computing [11, 12].

The interplay between ferromagnetism and proximity superconductivity results in phys-

ical effects which cannot be observed in bulk superconductors. Singlet superconductivity

and ferromagnetism can hardly coexist in bulk compounds: superconductivity favors the

arrangement of electrons in pairs with opposite spin while the paramagnetic effect of the

ferromagnetic exchange field destroys these pairs by aligning the spins [1]. In supercon-
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ductor/ferromagnet SF hybrid structures, the source of superconducting correlations and

ferromagnetism are spatially separated. Superconducting pairs can propagate in the ferro-

magnet from the interface with the superconductor over short distances. The decay length

for the superconducting pair correlations in the ferromagnet is of the order of one nanome-

ter due to the typically large ferromagnetic exchange field. Even if superconductivity is

strongly suppressed in the ferromagnet, SF hybrid structures present a rich physics. The

Cooper pairs acquire in the ferromagnet a momentum due to the splitting of the Fermi

level by the exchange field, resulting in a modulation of the pair amplitude. This modula-

tion will in turn lead to oscillations of the density of states in the ferromagnet and of the

critical temperature of thin SF bilayers or to the appearance of the so called “π phase” in

SFS Josephson junctions. The last-mentioned effect will be discussed in details in the next

chapters.

1.2 Diffusive limit

In this thesis, we will focus on systems satisfying the diffusive (“dirty”) limit condition,

i.e., systems for which the motion of the electrons is governed by frequent scattering on

impurity atoms, as it is the case for example in alloys. Let us define le, the mean free path

between two elastic scattering events. In the diffusive limit, we assume that all the length

scales relevant to our system are much larger than le. The spatial extension associated

with diffusive motion occurring over a time interval t is

L =
√
Dt (1.1)

where for a three dimensional geometry the diffusion constant D is given by

D =
1

3
vf le. (1.2)

It is also possible to associate a characteristic length Lǫ with an energy ǫ by the relation

Lǫ =

√

~D

ǫ
. (1.3)

The diffusive limit is experimentally easier to reach than the clean limit, and physical

quantities averaged over the realizations of disorder in proximity systems are theoretically

often more tractable [13, 14]. Besides, scattering on non-magnetic impurities is harmless for

superconductivity resulting from a conventional pairing mechanism. Anderson’s theorem

[15] states that for a s-wave (singlet) pairing time-reversal symmetry breaking (for example

by applying a magnetic field or by scattering on magnetic impurities) will result in pair

breaking. Indeed, the electrons forming a Cooper pair are related by the time reversal

operation T̂

T̂ |k, ↑〉 = | − k, ↓〉 (1.4)



Proximity effect and magnetism 3

S N

e

h

e-e

Figure 1.1: Andreev reflection at the SN interface resulting in a non-zero pair amplitude

in the N region.

and therefore time reversal symmetry is needed to ensure the existence of available pairing

partners. Since elastic scattering preserves T̂ , it is not incompatible with the presence of

pairs. We will show later that the presence of disorder in the system is even required to

observe the opening of an energy gap in a proximity superconductor.

1.3 Andreev reflection

The microscopic mechanism resulting in the presence of a finite Cooper pair amplitude in

a normal metal in contact with a superconductor is a particular type of reflection at the

SN interface [16]. At low energy, the electrons in the N part with an excitation energy ǫ

below the superconducting gap ∆ cannot cross the interface since no single-particle states

are available in the superconductor below the gap. In a simple model of the SN junction,

we consider the case where there is no potential barrier at the interface between the two

materials: momentum conservation implies that incident electrons cannot be directly re-

flected either. However, an incident electron can be retro-reflected as a hole with energy

−ǫ, opposite spin and the excess charge transmitted as a Cooper pair through the interface.

The reflected hole acquires in addition a scattering phase of π/2 − ϕ with ϕ the phase of

the superconducting order parameter. The reflection of a hole is equivalent to the absorp-

tion of a second electron by the interface. This results in the diffusion of electron-hole

pairs (“Andreev pairs”) in the normal metal. These pairs are not due to the presence of

an hypothetical interaction in the normal metal but to the contact between the N region

(Landau quasiparticles) and the S region (Cooper pairs).

On Fig. 1.1 we draw a pair of Feynman paths contributing to the apparition of a non-

zero anomalous amplitude 〈ψ†(r)ψ†(r)〉 in the N region, i.e., a pair of paths where an
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electron is scattered from r, hits the SN interface and a retro-reflected hole is scattered

back at the origin of the trajectory r. The double average denotes an average over the

realizations of disorder in addition to the usual quantum average. The electron-hole pair

scattering from the interface is perfect only exactly at the Fermi level. The reflected hole

corresponding to an electron with wave vector ke = kF +q, has a wave vector kh = kF −q.

The resulting wave vector mismatch 2q will lead to an imperfect Andreev pairing, with

the dephasing between the correlated incoming electron and reflected hole growing with

the distance from the interface and destroying the correlation. For an electron with energy

EF +ǫ, the coherence length of the Andreev pairs Lǫ is given by relation (1.3). If we consider

a sample of length L, this relation gives us the corresponding characteristic correlation

energy (Thouless energy)

ETh =
~D

L2
. (1.5)

This simple description is valid as long as pair breaking effects (scattering on magnetic

impurities, for example) or inelastic scattering can be neglected. These types of scattering

become important if the spin-flip or the inelastic mean free path are smaller than the length

of the N part of the sample L.

1.4 Quasiclassical formalism

1.4.1 Model Hamiltonian

The formulation of the BCS theory in terms of Green functions derived by Gor’kov [17]

furnishes efficient tools to study proximity systems: relevant physical quantities can directly

be obtained once the electron Green function has been calculated.

We start from the general Hamiltonian describing the proximity systems (SN or SF

hybrid junctions) we will consider in the thesis. We take

H =

∫
∑

α,β

ψ†
α

[(

−∇2

2m
− µ

)

δαβ + h(r) · σ̂ + Uαβ(r)

]

ψβ

+
g(r)

2
ψ†

β(r)ψ†
α(r)ψα(r)ψβ(r) d3r (1.6)

where the ψ†
σ(r) are the usual field operators and σ̂ is the vector (σ̂1, σ̂2, σ̂3) with the

components given by Pauli matrices. This Hamiltonian includes, in addition to the usual

kinetic term, the presence of a ferromagnetic exchange field h(r) and of an external mag-

netic field (the Zeeman coupling can be included in the ferromagnetic exchange field), the

effect of scattering on impurity atoms through Uαβ and the pairing interaction responsible

for superconductivity. A system of units with ~ = kB = µB = 1 is chosen.

We consider a point-like pairing interaction between the electrons g(r)δ(r−r′). The use
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of this simple potential to model the complicated pairing mechanism (mediated by phonons

in conventional superconductors) is justified in the limit of a weak interaction (“weak-

coupling approximation”), when |g|ν0 ≪ 1 [14], with ν0 = mpF

2π2 the density of states per

one spin projection at the Fermi level in the normal state. The spatial dependence of g(r)

allows us to describe systems such as SN junctions: in the normal part, the interaction

responsible for the formation of Cooper pairs vanishes. We will treat in the following

the pairing interaction in the mean field approximation [18] and reduce the quartic term

to a quadratic form. In principle, the corresponding superconducting order parameter

∆(r) = |g(r)|〈ψ↓ψ↑〉 has to be determined self-consistently.

Ferromagnetism is also treated in the mean-field approximation, with the magnetic

order parameter h(r). We consider a metal where ferromagnetism results from the exchange

interaction between electrons. We further assume that conduction electrons, which are

responsible for the proximity effect, give the main contribution to the exchange energy. To

describe the presence of ferromagnetic domains, the exchange field h can be taken position

dependent. The magnetization M in ferromagnets leads to a correction to the exchange

field (due to the presence of the Zeeman term) h → h + 4πM and to orbital effects in

the ferromagnetic layers. However, the correction to the exchange field is typically several

orders of magnitude smaller (∼ 10−3) than the exchange field itself and orbital effects can

usually be neglected since the fields are really weak for the situations considered in this

thesis (for more details see the discussion in Ref. [1]).

The external potential Uαβ(r) accounts for the presence of random impurities in the sys-

tem. Since we want to include in this potential both the contributions from non-magnetic

and magnetic impurities, it can in general have a non-trivial spin-structure. In Sec. 1.4.4

we will explain in details how this term can be treated perturbatively. We can decompose

the impurity potential in a magnetic and a non-magnetic part (proportional to the unit

matrix in spin space σ̂0)

Uαβ(r) = V (r)σ̂0 + V ′(r)S · σ̂

2
. (1.7)

The orbital effect of an external magnetic field H can be included as usual in the

gradient term (∇ → ∇ − 2ieA
~

) and h comprises both the contributions of the Zeeman

coupling with the external magnetic field and the ferromagnetic exchange field.

1.4.2 Gor’kov equations

In order to describe finite temperature properties of the system, we work with imaginary-

time Matsubara Green functions [14]

Gαβ(r1, τ1; r2, τ2) =
〈

Tτψα(r1, τ1)ψ
†
β(r2, τ2)

〉

stat
, (1.8)
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where the imaginary time is introduced as t = −iτ . Working within the time interval

−1/T < τ < 1/T allows to unambiguously order the operators present in the Gibbs

average 〈. . .〉stat.

When studying superconducting systems, it is convenient to introduce the matrix Green

function in the particle-hole space (Nambu-Gor’kov space)

Ǧ(r1, τ1; r2, τ2) =

(

Gαβ Fαβ

−F†
αβ Ḡαβ

)

(1.9)

with the anomalous Green function

F
(†)
αβ =

〈

Tτψ
(†)
α (r1, τ1)ψ

(†)
β (r2, τ2)

〉

stat
(1.10)

and

Ḡαβ = −
〈

Tτψ
†
α(r1, τ1)ψβ(r2, τ2)

〉

stat
(1.11)

describing the propagation of a hole.

Let us first discuss the simple case of the spin structure of the Green function in the

absence of triplet correlations. This is the case when the exchange field h is zero. We can

then write

Gαβ(x1, x2) = δαβ G0(x1, x2). (1.12)

For an s-wave pairing (even parity in the orbital space), the pairing in Cooper pairs can

only occur between electrons with opposite spin into a singlet state

∆αβ = |g|Fαβ(x, x) = −∆βα. (1.13)

Therefore we write

Fαβ(x1, x2) = iσ̂
(2)
αβ F0(x1, x2). (1.14)

We use the notation σ̂i for the Pauli matrices in the spin space to avoid confusion with the

Pauli matrices in the Nambu space which we will denote τ̂i. We have also introduced the

compact notation x = (r, τ).

In experimental observations of superconductivity, the symmetry of the pairing is usu-

ally either of s-wave type (conventional pairing) or of d-wave type (unconventional pairing).

As an exception we can cite the exotic p-wave superconductivity in Sr2RuO4 [19]. For s-

wave and d-wave superconductivity, the paired electrons form a singlet state and p-wave

pairing leads to a spin-triplet state. While Anderson’s theorem states that s-wave sin-

glet superconductivity is not affected by the presence of disorder, d-wave pairing requires

relatively clean samples so that superconductivity can be observed. The sensibility to

disorder is strong in the p-wave triplet superconductors: superconductivity exists only in

clean Sr2RuO4 samples. In other words, triplet correlations seem not to accommodate the

presence of disorder. For triplet correlations, the Pauli principle implies that

Fσσ′ (r, τ ; r′, τ ′) =
〈
ψσ(r, τ)ψσ′(r′, τ ′)

〉
(1.15)
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is an odd function upon permutation of r ↔ r′ at equal times. We introduce k and ω the

momentum and the frequency conjugated to the relative coordinate r− r′ and time τ − τ ′,

respectively. Going to the momentum-frequency representation we have that

∑

ω

〈
ψσ(r, t)ψσ′ (r′, t)

〉

k,ω
(1.16)

is either odd in the orbital momentum k (i.e., the orbital angular momentum L is odd)

or zero. The former possibility gives rise to a component sensible to the presence of

disorder (like triplet superconductivity in Sr2RuO4). The latter possibility, which can be

achieved if the correlation is odd in frequency ω to make the sum vanish, allows triplet

correlations to be even in orbital angular momentum. It is therefore possible to have a

triplet component, usually denoted “odd triplet component” [6], resistant to the presence

of disorder. This triplet component, in contrast to the triplet component in Sr2RuO4, has

an s-wave symmetry in diffusive systems. It can therefore accommodate the presence of

scattering on non-magnetic impurities.

In ferromagnets, singlet correlations of the type (1.14) are destroyed due to to the

alignment of spins in the exchange field h. We will see in Chapter 2 that a part of the odd

triplet component does not experience the pair breaking effect from the Zeeman coupling

with the exchange field. Usually the exchange field is the strongest source of decoherence

in ferromagnets: even in experiments with SFS junctions using weak ferromagnets, we

have h
Tc

& 100 (for more details, see the discussion in Chapters 2 and 3). Generating the

component resistant to the exchange field should therefore make it possible to observe long

range proximity effect in SF systems.

The definition of the Green function (1.9) is the one adopted in [14]. This is a practical

definition in the absence of the exchange field h. Usually, in works focusing on the effect

of non-trivial triplet correlations [6, 20] other conventions are adopted. We will follow for

now the conventions used in Ref. [6] and redefine the components of the 4x4 matrix Green

function as

Ǧ(n,α),(m,β) =
〈

Tτcn,αc
†
m,β

〉

stat
(1.17)

with n,m = 1, 2 the indices operating in particle-hole Nambu space and α, β = ±1 the

spin indices. We have introduced new creation and annihilation operators

cn,s =







ψs n = 1,

ψ†
−s n = 2.

(1.18)

In terms of the new operators the Hamiltonian (1.6) becomes

H =
1

2

∫

d3r
∑

n,n′,s,s′

c†n,s

(

−∇2

2m
− µ+ V

)

τ̂3 ⊗ σ̂0 + ∆̂ ⊗ σ̂3

+ hτ̂3σ̌ + V ′Sτ̂3
σ̌

2
cn′,s′ (1.19)
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with as usual τ̂α, σ̂α the Pauli matrices operating in Nambu and spin space, respectively. As

introduced in (1.7), V (r) and V ′(r) account for non-magnetic and magnetic impurities with

spin S (the impurity spin is treated as a classical vector) and we define σ̌ = (σ̂1, σ̂2, τ̂3σ̂3).

The order parameter is a matrix in Nambu space

∆̂ =

(

0 ∆(r)

∆∗(r) 0

)

. (1.20)

From the microscopic BCS Hamiltonian (1.19), we can compute the equations of motion

(“Gor’kov equations”) for the matrix Green function (1.17)

Ǧ−1(x1)Ǧ(x1, x2) = 1̌δ(x1, x2) (1.21)

Ǧ(x1, x2)Ǧ
−1

(x2) = 1̌δ(x1, x2). (1.22)

The variables xi include both imaginary time and space coordinates. The operators Ǧ−1

and Ǧ
−1

are given by

Ǧ−1 =
∂

∂τ
+ Ȟ + Ȟimp + Ȟferro, (1.23)

and

Ǧ
−1

= − ∂

∂τ
+ Ȟ + Ȟimp + Ȟferro. (1.24)

In the absence of impurities and exchange field we have only the term

Ȟ =

(

−∇2

2m
− µ

)

τ̂3 ⊗ σ̂0 + ∆̂ ⊗ σ̂3. (1.25)

The effect of the impurities is included in the matrix

Ȟimp =

(

V (r) + V ′(r)S
σ̌

2

)

⊗ τ̂3. (1.26)

Finally, the presence of the ferromagnetic exchange interaction leads to the term

Ȟferro = hτ̂3σ̌. (1.27)

We decompose as in (1.9) the matrix Green function in Nambu space (we introduce a

multiplication by τ̂3 ⊗ σ̂0 in order to retrieve Ḡ as the hole propagator)

Ǧ(x1, x2) = τ̂3 ⊗ σ̂0

(

G(x1, x2) F (x1, x2)

−F (x1, x2)
† Ḡ(x1, x2)

)

. (1.28)

The equations (1.21) and (1.22) are symmetrical in terms of particle-hole, the function

Ḡ describes the propagation of a hole. In (1.28) we have omitted the spin indices for

simplicity but the reader should keep in mind that the Green function Ǧ is a 4x4 matrix

(1.17). In the absence of the triplet component (h = 0) we have G ∝ σ̂0 and F ∝ σ̂3.
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In the following, we will often express the Green function in terms of its Fourier com-

ponents (momentum-frequency representation). In the frequency space we have

Ǧωn(r1, r2) =

∫ 1

T

0
dτeiωnτ Ǧ(r1, r2, τ), (1.29)

where ωn = (2n+1)πT are the Matsubara frequencies and τ = τ1−τ2. For the momentum

representation of the Green function we cannot assume homogeneity since we want to

describe hybrid structures. We write therefore

Ǧ(r1, r2) =

∫
d3p

(2π)3

∫
d3p′

(2π)3
Ǧ(p,p′)eipr1−ip′r2 . (1.30)

1.4.3 Real-time formulation

Until now, we have been working with imaginary time Matsubara Green functions to

derive the formalism. We make the link now between the imaginary time formalism and

the real time formalism (which allows to get time-dependent properties of the system).

The retarded and advanced real time (here x = (r, t)) Green functions are given by

ǦR
(n,α),(m,β)(x1, x2) = i

〈

Tτ

[

cn,α(x1)c
†
m,β(x2) + c†m,β(x2)cn,α(x1)

]〉

stat
t1 > t2

ǦR
(n,α),(m,β)(x1, x2) = 0 t1 < t2

and

ǦA
(n,α),(m,β)(x1, x2) = −i

〈

Tτ

[

cn,α(x1)c
†
m,β(x2) + c†m,β(x2)cn,α(x1)

]〉

stat
t1 < t2

ǦA
(n,α),(m,β)(x1, x2) = 0 t1 > t2.

Using these definitions and working in the frequency representation (1.29), one can show

that the real frequency Green functions Ǧ
R(A)
ǫ are the analytical continuation of the Mat-

subara Green function Ǧωn from the positive, respectively negative, imaginary axis

Ǧωn = ǦR
iωn
, ωn > 0 (1.31)

Ǧωn = ǦA
iωn
, ωn < 0. (1.32)

The retarded and advanced Green functions Ǧ
R(A)
ǫ=iωn

satisfy the same equations (1.21) and

(1.22) as the Matsubara Green function (1.17).

1.4.4 Scattering on impurities: self-energy

As mentioned in Sec. 1.2, we will focus in this thesis on systems containing a large amount

of random impurities. We explain here how electron scattering on random impurity atoms
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can be introduced in the Green function formulation of the BCS theory. The original

diagrammatic technique has been derived in [17, 21] and a detailed description of the

method can be found in [14, 22]. The theory we develop here can be applied to magnetic

or non-magnetic impurities. We make the following assumptions on the type of disorder

we consider:

• Scattering is elastic and can be described by an external potential U .

• The scattering potential U is small compared to the Fermi energy EF (Born approx-

imation).

• The physical properties can be obtained by averaging over the realizations of disorder.

Denoting the position of the impurities ra, we decompose the potential U into the sum

of the contributions of each impurity

Uαβ(r) =
∑

a

uαβ(r − ra). (1.33)

For impurity atoms distributed randomly, we can average over the positions of the impu-

rities substituting
∑

a

→ nimp

∫

d3ra (1.34)

with nimp the impurity concentration. Note that for simplicity we have considered only one

type of impurity. For impurities carrying a spin Sa, we further decompose the potential of

the impurity into a magnetic and a non-magnetic part

uαβ(r − ra) = v(r − ra)σ0 + v′(r − ra)Sa ·
σ̂

2
. (1.35)

Within this framework, it is possible to treat the interaction with the impurities (1.26)

perturbatively and to express the Green function Ǧ of the electrons interacting with the

random disorder as a Dyson series in powers of the impurity potential U starting from the

Green function Ǧ(0) of the clean system. Since we want to study systems like proximity

superconductors, we must do the perturbation expansion for a non-homogeneous system.

We can distinguish different types of diagrams in the expansion:

• The diagrams of arbitrary order where scattering occurs on different impurities. The

contribution of those diagrams can be incorporated into the chemical potential.

• The diagrams of any order with two scattering per impurity atom.

• The diagrams of any order with more than two scattering per atom. It can be

shown that the contribution of those diagrams is of higher order in u/EF than the

contribution of the previous type of diagrams and can be safely neglected in the Born

approximation.
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Figure 1.2: Relevant fourth order diagrams of the expansion of the Green function Ǧ in

powers of the impurity potential. The solid lines represent Ǧ0(p,p
′) and the crosses ȟimp(k)

(1.38). The dashed lines connect scattering events occurring on the same impurity atom.

The upper diagrams are non-crossing diagrams while in the lower diagram the dashed lines

cross.

There is only one relevant diagram of order two after averaging over the position of the

impurity atoms. In Fig. 1.2 we represent the relevant diagrams of order four. We connect

the scattering events occurring on the same atom by a dashed line and distinguish crossing

from non-crossing diagrams. It can be shown [22] that the relative contribution of the

crossing diagrams compared to non-crossing ones is of the order of 1
pF le

, which is a small

factor for metals. We can reduce the summation of all the remaining relevant diagrams

(non-crossing with two scattering per impurity atom) to a self-energy Σ̌, and get the Dyson

equation for the matrix Green function

Ǧ(p,p′) = Ǧ(0)(p,p′) +

∫

Ǧ(0)(p,p1)Σ̌(p1,p2)Ǧ(p2,p
′)d3p1d

3p2, (1.36)

where we introduced the self-energy matrix Σ̌ given in the Fourier representation by

Σ̌(p1,p2) = nimp

∫
d3p

(2π)3
ȟimp(p1 − p) Ǧ(p,p − p1 + p2)ȟimp(p− p1), (1.37)

and

ȟimp =

(

v(r) + v′(r)S
σ̌

2

)

⊗ τ̂3 (1.38)

is the single impurity contribution to (1.26). In Fig. 1.3 we represent graphically the series

(1.36).

The Dyson equation (1.36) is equivalent to the Gor’kov equation in the momentum

representation

[(Ǧ−1
clean − Σ̌) ∗ Ǧ]p,p′ = (2π)3δ(p − p′)1̌ (1.39)

with

[Ǎ ∗ B̌]p,p′ =

∫
d3p1

(2π)3
Ǎ(p,p1)B̌(p1,p

′). (1.40)
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Figure 1.3: Graphical Dyson equation.

The structure of the self energy matrix depends on type of impurities we consider. The

simplest case is the situation where we only have non-magnetic impurities. In this case

ȟimp commutes with Ǧ in the spin space. We can introduce the scattering cross section

σ(p,p′) related to the impurity potential u by the relation (Born approximation)

|u(p1 − p)|2 =
2vF

ν0
σ(p1 − p), (1.41)

with ν0 = mpF/2π
2 the density of states per one spin projection in the normal state. In

the Born approximation we can write σ(p1 − p) = σ(θ) with θ = ∠(p1,p) since all the

momenta are in the vicinity of the Fermi surface. Finally we get for the self-energy matrix

Σ̌(p1,p2) = nimp

∫
d3p

(2π)3
σ(θ)τ̂3Ǧ(p,p − p1 + p2)τ̂3. (1.42)

We can introduce the scattering mean free time τe which satisfies

σtotnimp vF τe
︸︷︷︸

le

= 1. (1.43)

If we consider the Gor’kov equation (1.39) for a homogeneous material with s-wave

singlet pairing ∆ and only non-magnetic impurities, one can show that the gap equation

for a dirty alloy is the same as the gap equation for a clean superconductor (Anderson’s

theorem)

∆

|g| = ν02πT
nc∑

n=0

∆
√

ω2 + |∆|2
, (1.44)

where we have taken a cutoff in the summation over Matsubara frequencies at the Debye

frequency.

If we take as a second example the situation where the spin of the impurities is oriented

arbitrarily and where there is no correlation between them, we get the disorder averages

Sa = 0 and SaSb =
1

3
S(S + 1)δab. (1.45)

This assumption is fully justified only for low concentrations of paramagnetic impurities.

If the concentration is high, the interaction between the spins may result in some magnetic

ordering and therefore the averaging (1.45) is inapplicable. For simplicity, we restrict
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ourselves for now to the situation where we do not have triplet correlations. This is the

case in the absence of the exchange field h. The anomalous Green function (1.28) F is then

proportional to σ̂3 and G is proportional to σ̂0. We have to consider different scattering

amplitudes to compute the components of the self-energy matrix (defined in analogy with

(1.28))

Σ̌ = τ̂3 ⊗ σ̂0

(

Σ1 Σ2

−Σ†
2 Σ̄1

)

. (1.46)

We get

Σ1(p1,p2) = nimp

∫
d3p

(2π)3
|u1(θ)|2G(p,p − p1 + p2), (1.47)

and

Σ2(p1,p2) = nimp

∫
d3p

(2π)3
|u2(θ)|2 F (p,p − p1 + p2), (1.48)

with θ = ∠(p,p1). Using relation (1.37), we get

|u1(θ)|2 = |v(θ)|2 +
1

4
S(S + 1)|v′(θ)|2 (1.49)

and for the anomalous part

|u2(θ)|2 = −|v(θ)|2 +
1

4
S(S + 1)|v′(θ)|2. (1.50)

The corresponding scattering mean free times (1.43) are therefore different for the

normal and anomalous parts of the Green function. Generalization to an arbitrary spin

structure of the Green function is straightforward.

1.4.5 Quasiclassical theory

In conventional superconductors, the order parameter ∆ is much smaller than the Fermi

energy ( ∆
EF

∼ 10−3). For high temperature superconductors, this ratio is higher but still

lies between 10−1 and 10−2. The corresponding scale of variation for superconducting

properties, i.e., the coherence length ξS , is in turn much larger than the Fermi wavelength

1

pF ξS
∼ ∆

EF
≪ 1. (1.51)

We can take advantage of this situation and simplify the calculation of the Green

function. Solving the full Gor’kov equations (1.21) and (1.22) is often not a tractable

task: recall for example that the order parameter ∆ has to be determined self-consistently

from the solution and can therefore in principle show a complicated spatial dependence

on the Fermi scale. On the other hand (1.51) implies that superconducting properties

are related to the part of the Green function with momenta close to the Fermi surface.

The quasiclassical approximation has been developed to use this fact by separating and
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integrating out the fast dependence of the Green functions which is related to normal

properties of the system and occurs on the Fermi scale. The same method can be developed

when working within the quasiparticle wave functions formalism (wave functions solutions

of the Bogoliubov de Gennes equations [18]).

To separate the center of mass dependence from the relative coordinates, we introduce

the notation

Ǧ(p1,p2) = Ǧ(p +
k

2
,p− k

2
). (1.52)

Now we define the Green function g̃ integrated over the magnitude of the momentum p

g̃ωn(p̂,k) = τ̂3 ⊗ σ̂0

∫
dξp
πi

Ǧωn(p +
k

2
,p − k

2
). (1.53)

The integration is performed over ξp = p2/2m − µ near the Fermi surface and p̂ is a

unit vector in the direction of p. g̃ will be denoted in the following the “quasiclassical

Green function”. We have multiplied the green function by τ̂3 ⊗ σ̂0 to account for the

particle-hole symmetry ḡ = −g of the quasiclassical Green function [14]. The integration

over the magnitude of the momentum excludes the fast oscillations of the Green function.

In the coordinate representation, we only keep the slow dependence on the center of mass

coordinate r1+r2 which is related to superconducting properties of the system and exclude

the Fermi oscillations on the relative coordinate r1 − r2 related to normal properties.

The equation for the quasiclassical Green function can be derived from the Gor’kov

equation (1.39). Those equations were originally obtained by Eilenberger [23]. Working in

the momentum representation (1.53), we get as a result [14]

vF kg̃ − iωn(τ̃3g̃ − g̃τ̃3) −
[

(τ̂3 ⊗ σ̂3 ∆̂ − hσ̌) ∗ g̃
]

+
[

g̃ ∗ (τ̂3 ⊗ σ̂3 ∆̂ − hσ̃)
]

= Ǐ (1.54)

with σ̌ and ∆̂ as defined in (1.19). The square bracket denote the usual convolution product

in the Fourier representation and the collision integral Ǐ is given by

Ǐ =
[
τ̂3Σ̌τ̂3 ∗ g̃

]
−
[
g̃ ∗ τ̂3Σ̌τ̂3

]
. (1.55)

It is useful to introduce a mixed Fourier-coordinate representation to get rid of the

convolution products in the Eilenberger equation (1.54)

g̃ωn(p̂, r) =

∫
d3k

(2π)3 e
ikrg̃ωn(p̂,k). (1.56)

Finally, it is important to notice that the quasiclassical Green function g̃ =

(

g f

−f † ḡ

)

must satisfy, in addition to (1.54)

g̃g̃ = 1̌. (1.57)
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This will impose a constraint on the solution of the Eilenberger equation. The off-diagonal

part of this relation is related to the particle-hole symmetry (at equilibrium) of the theory

g + ḡ = 0, (1.58)

and the diagonal part is the so-called normalization condition

g2 − ff † = 1̂. (1.59)

Details on the derivation of (1.57) can be found in Ref. [14].

In the diffusive limit ( 1
τe

≫ Tc, h,ETh), it is possible to introduce a further simplification

to the Green function formalism. In dirty superconductors, strong scattering produces

averaging over momentum directions: the quasiclassical Green function g̃(p̂, r) becomes

isotropic. We can take advantage of this fact [13] by expanding g̃ in spherical harmonics.

Before deriving the equations for the isotropic part of the Green function, we introduce the

unitary transformation U = (1 + iτ̂3σ̂3)(1 − iσ̂3)/2 following the conventions of [20] and

define

ǧ = U g̃ U †. (1.60)

This convention will allow us to have a Green function ǧ proportional to σ̂0 in spin-space

in the absence of the exchange field.

We denote the isotropic part 〈ĝ〉 and the first order correction ǧ

ǧ ≈ 〈ǧ〉 + vFǧ (1.61)

〈ǧ〉 =

∫
dΩp

4π
ǧ(p̂, r).

Averaging the Eilenberger equation (1.54) over the momentum directions, one gets the

so called Usadel equations

D∇̂
(

〈ǧ〉∇̂〈ǧ〉
)

− ω [τ̂3σ̂0, 〈ǧ〉] − i [τ̂3 (h · σ̂) , 〈ǧ〉] −
[

∆̂σ̂0, 〈ǧ〉
]

= 0 (1.62)

and

ǧ = −le〈ǧ〉∇̂〈ǧ〉, (1.63)

with

∆̂ =

(

0 ∆eiχ

∆e−iχ 0

)

. (1.64)

We have included the orbital effet of external magnetic fields through

∇̂ǧ =

(

∇g
(
∇− 2ie

~
A
)
f

−
(
∇ + 2ie

~
A
)
f † −∇g

)

. (1.65)

The normalization condition (1.57) gives

ǧǧ = 1̌ (1.66)

⇒ 〈ǧ〉〈ǧ〉 = 1̌ and ǧ〈ǧ〉 + 〈ǧ〉ǧ = 0.
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The equations (1.62) and (1.63) have been derived originally by Usadel in [13]. We

presented here their generalization [6] which is adapted to the case of interest in this thesis

where the matrix Green function (1.28) can have an arbitrary structure in spin-space due

to the presence of the ferromagnetic exchange field h. The quasiclassical equations can be

further generalized to include the description of nonequilibrium situations. One works then

with Green functions in the Keldysh representation [24]. Following a procedure similar to

the derivation of the equilibrium equations described in this chapter, one obtains equations

equivalent to the Eilenberger equation (1.54), the “Eliashberg equation” [25], and to the

Usadel equation (1.62).

In the rest of the thesis we will always work in the diffusive limit and therefore use the

simple notation ǧ for the isotropic part of the quasiclassical Green function 〈ǧ〉.

The components (in the Nambu space) g and f of the quasiclassical matrix Green

function ǧ are defined in analogy with (1.28)

ǧ =

(

gασ̂
α fασ̂

α

−f †ασ̂α −gασ̂
α

)

. (1.67)

Note that we have made use of the particle-hole symmetry ḡ = −g of the quasiclassical

Green function at equilibrium [14]. In the spin space, we will in the following denote

the component with α = 0 “scalar component” and the components with α = 1, 2, 3 will

constitute the “vector component”. We prefer the definition of [20] because it will lead

to a Green function in the absence of the exchange field with only the scalar component

and in the presence of a uniform exchange field with the vector component collinear to the

exchange field.

It is important to notice that the collision integral Ǐ which was introduced with the

Eilenberger equation (1.54) vanishes after averaging over momentum direction only if there

is no spin-flip or inelastic (electron-phonon) scattering. In Appendix A we compute the

contribution of isotropic magnetic disorder to the Usadel equation (1.62) via the collision

integral.

From the solution of the Usadel equation (1.62) one can easily get the physical quantities

of interest (recall that for simplicity we denote the isotropic part of the Green function ǧ

and drop the 〈. . .〉 in the following). The current density is given by

J = ieν0DπT

∞∑

ω=−∞

1

2
Tr
(

τ̂3σ̂0ǧ∇̂ǧ
)

, (1.68)

while the density of states can be obtained from the scalar component α = 0 of the normal

part of the retarded (1.31) Green function gR = gR
α σ

α

ν(ǫ, x) =
ν0

8
Tr
[
τ̂3σ̂0

(
ǧR − ǧA

)]
= ν0ℜ

[
gR
0

]
(1.69)

with ν0 = mpF

2π2 the density in the normal state (per one spin projection).
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The Usadel formalism often allows to simplify the description of systems where the

diffusion occurs in three dimensions by reducing them to a “quasi-one-dimensional” geom-

etry. For examples where such a simplified description can be applied see Sec. 1.5.2 and

Sec. 2.

1.4.6 Quasiclassical boundary conditions

The appropriate boundary conditions for the quasiclassical equations (1.54) and (1.62) can-

not be derived starting from the quasiclassical theory. Indeed, the presence of an atomic

sharp interface between two electrodes requires a description based on the Gor’kov equa-

tions (recall that the quasiclassical approximation is valid to describe slow variations of the

Green function). The boundary conditions for the Eilenberger equation have been derived

by Zaitsev [26]. They impose that the part of the quasiclassical Green function (1.53)

g̃ωn(p̂,k) antisymmetric in p̂ is continuous at the interface between two materials (this

condition implies the conservation of the current) while the symmetric part experiences

a jump in the case where the interface is not transparent. Those conditions have been

simplified in the diffusive limit by Kupriyanov and Lukichev [27]. For an interface without

spin-dependent scattering, we get as a result the boundary conditions for the isotropic part

of the quasiclassical Green function ǧ

σ(−)ǧ(−)(n · ∇̂)ǧ(−) = σ(+)ǧ(+)(n · ∇̂)ǧ(+) (1.70)






σ(±)ǧ(±)(n · ∇̂)ǧ(±) = GT
2 [ǧ(+), ǧ(−)] low transparency

ǧ(+) = ǧ(−) high transparency
(1.71)

GT is the tunnel conductance of the junction (as defined in [28]), n denotes a normal to

the interface, the gradient operator ∇̂ was introduced in (1.65) and σ± are the metallic

conductance on both sides of the interface. In the limit of a transparent interface, the

second boundary condition results in the continuity of the Green function at the interface.

In the thesis we will often simplify the boundary conditions (“rigid boundary condi-

tions”) between a superconductor and a normal metal imposing at the interface between

the two materials the Green function of a bulk superconductor

ǧ =
1√

ω2 + ∆2

(

ω ∆e±iχ

−∆e∓iχ −ω

)

Nambu

⊗ σ̂0 , (1.72)

where ∆ is the superconducting order parameter. Formally, we see from (1.70) that rigid

boundary conditions are justified for high transparency of the interface, when the condition

σN ≪ σS is fulfilled. This is the case if the normal electrode is much more disordered than

the superconducting electrode.

We will apply the boundary conditions described above that were derived in the absence

of the exchange field for SN and SF junctions. In principle one would need to take into
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Figure 1.4: Cooper pair in a superconductor S and in a ferromagnet F. In the F region

the Cooper pairs acquire a momentum 2δk = 2h
vF

due to the presence of the ferromagnetic

exchange field h.

account the jump of the exchange field at the interface between a superconductor and a

ferromagnet. Several works have studied effects related to SF interfaces or magnetically

active interfaces [29–31], but, to our knowledge, a general theory of the boundary conditions

for SF interfaces is lacking. However, as long as the condition h≪ EF is satisfied, we can

safely apply the conditions (1.70) and (1.71) derived for SN junctions. The typical value of

the ferromagnetic exchange field h is of the order of 1000K while the characteristic Fermi

temperature for metals is usually two orders of magnitude higher, justifying the use of

(1.70) and (1.71) for SF interfaces.

1.5 Features of the proximity effect in the presence of mag-

netism

1.5.1 Interplay between magnetism and superconductivity

In principle, magnetic and conventional superconducting order are competing orders. There

are two mechanisms for the destruction of s-wave superconductivity by magnetism. Firstly,

the orbital effect of a magnetic field may destroy the pairs. Secondly, the paramagnetic

effect provides another mechanism for the destruction of superconductivity by lifting the

degeneracy between the electrons forming Cooper pairs. In general, both mechanisms

are present but the importance of their relative contribution to depairing varies. The

orbital mechanism plays for example the most important role in the case of an applied

external magnetic field in a large sample while the paramagnetic mechanism gives the
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main contribution to depairing in systems with magnetic impurities or in the presence of

ferromagnetism.

As an illustration of the paramagnetic mechanism one can discuss how scattering on

magnetic impurities leads to the destruction of singlet superconductivity. The exchange

interaction between the spin of the electrons and the magnetic impurities breaks the time

reversal symmetry between the electrons in Cooper pairs and reduces the superconducting

correlations. Scattering on magnetic impurities can be described in terms of a spin-flip

scattering rate Γsf = 1
2τsf

via the collision integral (A.7). In the Born approximation

[22, 32] Γsf is proportional to the impurity concentration. The energy gap Eg in the

electron density of states (DoS) of a bulk s-wave superconductor is lowered by spin-flip

scattering

Eg = ∆

[

1 −
(

2Γsf

∆

)2/3
]3/2

(1.73)

and closes for the critical concentration of magnetic impurities [21] Γbulk
sf = ∆

2 . Here, the

order parameter ∆ itself, which has to be determined self-consistently with the anomalous

part of the Green function, depends on Γsf .

As a second illustration, we briefly discuss the coexistence of superconductivity and

ferromagnetism in the same material. In bulk compounds, singlet superconductivity can-

not accommodate easily the presence of the ferromagnetic exchange field. The inhomo-

geneous superconducting FFLO state proposed in Refs. [33, 34] can only be observed in

a small region of the (h-T) phase diagram of a three-dimensional superconductor [1] and

is suppressed in the presence of impurities. This state shall therefore not be relevant

for the dirty compounds considered in this thesis. On the contrary, proximity struc-

tures can accommodate the presence of both ferromagnetism and superconductivity. In

superconductor-ferromagnet junctions (SF), ferromagnetism is separated from the source

of superconducting correlations (bulk superconductor). Remarkably, the Cooper pair wave

function does not decay monotonically in the ferromagnet when the distance from the SF

interface is increased but shows a damped oscillatory behavior. The damping originates in

the paramagnetic effect described above while the oscillations result from the momentum

acquired by Cooper pairs in the ferromagnet. In Fig. 1.4, we illustrate how the pairs get

a momentum in a ferromagnet F. For simplicity we consider a one-dimensional situation.

In the F region, the electron with spin up projection (we take the quantization axis along

the ferromagnetic exchange field h) of the spin will have its energy raised by the exchange

energy h and its pairing partner will have its energy lowered by the same amount. The

corresponding kinetic energy modification leads to a resulting center of mass momentum

2δk for the Cooper pair. This mechanism is at the origin of a modulation of the order

parameter in the ferromagnet.

Finally, for an example of a situation where orbital effects of an external magnetic field

are dominant, we refer the reader to Chapter 4.
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1.5.2 Closing of the minigap in the presence of magnetic impurities

We introduce in this section an important feature of the proximity effect: the appearance

of the minigap in a normal metal connected to a superconductor. As a consequence of

Andreev reflection and its interplay with disorder, a gap is opened in the spectrum of the

N region (see for example [28, 35–37] and references therein). This minigap does not depend

on the position in the junction and is of the order of magnitude of the Thouless energy

ETh = ~D
L2 , with D the diffusion constant and L the length of the normal wire. Recently,

a detailed experimental study was performed by le Sueur et al. [38] on the local density

of states in Al-Ag-Al SNS junctions showing very good agreement with the predictions of

the quasiclassical theory.

It is important to stress that disorder is required to observe a minigap. If we consider

for example a clean metallic film in contact with a superconductor, there exist [16, 28]

Andreev levels with arbitrarily small energy corresponding to trajectories close to parallel

with the SN interface. In the ballistic regime, the density of states is thus zero only exactly

at the Fermi level. It can be shown in general that the minigap is a feature of systems with

non-integrable classical dynamics [39].

To illustrate the effects of magnetism in proximity structures and as an introduction

to the use of quasiclassical methods, we present here a simple analytical study [40] of the

minigap in the presence of magnetic impurities. We will first explain how the opening of

the minigap can be described within the quasiclassical theory. Then, we will show that

the minigap closes when the impurity concentration reaches a critical value and derive a

relation similar to (1.73) for the minigap. Understanding the effect of magnetic impurities

will also be useful since magnetic domains in ferromagnets can under certain conditions be

reduced to an effective spin-flip scattering rate [20, 41, 42].

We consider a finite size normal metal N, of length L connected to a semi-infinite

superconducting terminal S by a transparent interface. We assume that electronic motion

is diffusive in both the normal and superconducting parts. We restrict our discussion to

a quasi one-dimensional geometry/wire or to a thin film and neglect any dependence on

transversal coordinates. The origin of the coordinate x is fixed at the SN interface. In the

absence of any magnetic anisotropy (exchange field h), only the scalar (1.67) component

of the Green function is present. Introducing the angular parametrization [35] to satisfy

the normalization condition (1.66) gR = cos θ, fR = sin θ for the normal, respectively the

anomalous component of the retarded Green function, the Usadel equation in the N-region,

where the pairing interaction vanishes, becomes

D∂2
xθ

2
+ iǫ sin θ − 2Γsf cos θ sin θ = 0. (1.74)

The proximity angle θ is a function of the energy ǫ and the position x. The spin-flip

scattering rate is given by Γsf = 1
2τsf

with τsf as introduced in (A.7). The electron DoS
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(1.69), in units of the normal state bulk value ν0 =
mpf

2π2 , is given in terms of the proximity

angle by
ν(ǫ, x)

ν0
= Re [cos θ(ǫ, x)] . (1.75)

The boundary conditions for the quasiclassical equations were introduced in Sec. 1.4.6. At

the interface with vacuum, the conservation of the quasiparticle current (1.70) yields

∂xθ(x = L) = 0. (1.76)

We will study these equations analytically using simplified boundary conditions at

the SN interface, where we impose the superconducting bulk value at zero energy of the

proximity angle

θ(x = 0) =
π

2
. (1.77)

This boundary condition is justified for energies much smaller than the superconducting or-

der parameter ∆ and if the normal part is much more disordered than the superconducting

part (see the discussion of Sec. 1.4.6).

Since the scale of the superconducting order parameter ∆ does not appear in the rigid

boundary condition (1.77), we will write in the following the energies and the length in

units of the only other relevant scale for our system: the Thouless energy ETh, respectively

the width of the N-region L.

The boundary conditions (1.76), (1.77) and the calculations presented here for the SN

junction can also be applied to describe SNS junctions with no phase difference between

the superconducting terminals [43]. It is important to pay attention to the choice of the

energy scale ETh. A SNS junction of length unity is equivalent to a SN junction of length 1
2 .

Therefore all the energies must be multiplied by a factor four if we consider SNS junctions.

To study the presence of solutions where the electronic DoS (1.75) vanishes we introduce

a new notation for the proximity angle θ below the minigap and write θ = π
2 + iβ with β

real. The minigap Eg is, by definition, the maximal energy compatible with a real β and

can be obtained [43, 44] using a first integral of (1.74)

∂xβ = 2
√

f(β 1) − f(β), (1.78)

where the superscript 1 denotes the value at x = 1 and f(β) = ǫ sinhβ + Γsf sinh2 β.

Integrating equation (1.78) over the junction, we get

∫ β 1

0

dβ

2
√

f(β 1) − f(β)
= 1. (1.79)

Without spin-flip, we recover with this relation the well-known value [43] of the minigap

E0
g ≈ 0.78. The critical value of the spin-flip at which the minigap in the DoS closes is (see

the discussion in Appendix B)

Γc
sf =

π2

16
≈ 0.62. (1.80)
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Figure 1.5: Numerical gap curve (solid line): comparison with asymptotic expressions

(dashed lines).

For energies ǫ < E0
g and Γsf = 0 equation (1.79) is solved for two different values of β 1.

One of these solutions leads to a diverging β 1 when the energy goes to zero and we reject

it using a continuity argument. This continuity argument is commonly accepted in the

quasiclassical approximation, but the diverging branch may play an important role in the

discussion of the presence of a non-zero subgap DoS resulting from mesoscopic fluctuations

[45]. Considering a finite spin-flip scattering rate Γsf , we find that the second branch of

the solution no longer diverges at zero energy. If we increase the spin-flip rate up to a

critical value the two zero energy solutions merge at Γc
sf . The critical value can therefore

be determined taking the limit β 1 → 0 of the integral in the l.h.s. of equation (1.79) at

zero energy.

The complete dependence of the minigap on the spin-flip rate (Fig. 1.5) can be obtained

by a simple numerical integration of equation (1.79). But it is possible to derive the

asymptotic form of the gap curve for Γsf → 0 and for Γsf → Γc
sf .

In the limit of a small spin-flip rate, we can expand the integrand in (1.79) in the small

parameter Γsf

ǫ . Denoting β̂ 1 ≈ 1.421 the value of the proximity angle corresponding to the

zero spin-flip value of the minigap E0
g , we find the resulting correction

Eg ≈
(
E0

g − C1Γsf

)
, (1.81)

where the coefficient C1 is given by

C1 =

∫ β̂ 1

0
(sinh β̂ 1+sinh β)

(sinh β̂ 1−sinh β)
1/2 dβ

∫ β̂ 1

0
dβ

(sinh β̂ 1−sinhβ)
1/2

≈ 3.09. (1.82)
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The minigap decreases linearly with increasing spin-flip scattering rate. From the magni-

tude of C1, we can see that even a small spin-flip rate strongly affects Eg.

To obtain the analytic behavior close to Γc
sf is more tricky as all δΓsf = Γc

sf −Γsf , β and
ǫ

Γsf
are small. Following the procedure detailed in Appendix B we obtain the asymptotic

dependence of the minigap near the closing point

Eg ≈ 2

[
2 δΓsf

3

]3/2

. (1.83)

In Fig. 1.5, we compare the asymptotics (1.81) and (1.83) with the numerical gap curve.

Dimensions are reintroduced in the graphs for clarity.

For Γsf > Γc
sf the DoS in the N-region is finite at any energy. In Appendix C we

study the zero-energy density of states above the spin-flip scattering rate using the exact

zero-energy solution of the Usadel equation (1.74).

To summarize, we have shown how the opening of an energy gap in a long diffusive SN

junction with transparent interface can be explained within the quasiclassical theory. As a

first illustration to magnetic effects in proximity structures, we have calculated the critical

value of the spin-flip scattering rate at which the minigap closes and given the dependence

of the minigap on the spin-flip rate. The relevant energy scale for the minigap and the

critical spin-flip rate is the Thouless energy, and not the superconducting gap.

1.5.3 Josephson effect

We discuss here the basic features of the Josephson effect and the consequences of the

modulation of the order parameter in the ferromagnetic region of a diffusive SFS Josephson

junction. We have seen in the previous section that it is necessary to solve the full nonlinear

Usadel equations to study the minigap. The study of the Josephson effect can however

be performed solving equations linearized around the normal-state solution. The main

features, or at least the main features accessible experimentally, of the Josephson current

are indeed captured studying weakly coupled superconductors [46, 47]. The limit of weak

superconducting correlations corresponds to temperatures close to Tc or to poor electric

contact between the electrodes.

The Josephson current flowing between two superconductors is a 2π-periodic function

of the phase difference ϕ between the two S electrodes. It can in general be decomposed

into a Fourier series

IJ =

∞∑

n=1

I(n)
c sin(nϕ) + I ′(n)

c cos(nϕ). (1.84)

In the case of weak coupling and when both superconductors have the same symmetry,
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only the first harmonic is present [7] and we can write the current phase relation in the

form

IJ = Ic sin(ϕ+ ϕ0). (1.85)

As long as time reversal symmetry is not broken we have I
′(n)
c = 0 to ensure that reversal of

the phase difference is equivalent to changing the direction of the current IJ(−ϕ) = −IJ(ϕ)

and therefore the dephasing ϕ0 in (1.85) is zero.

The free energy of the junction is given by the integral

EJ =
~

2e

∫ ϕ

0
J(χ)dχ+ const. (1.86)

For a sinusoidal current phase relation, this result in

EJ = −~Ic
2e

cos(ϕ+ ϕ0) + const. (1.87)

In SNS junctions, the critical current Ic is positive and since time reversal symmetry

is preserved we have ϕ0 = 0. This leads to a minimal energy for a phase difference

ϕ = 0 and a current equals to zero at thermodynamic equilibrium. In the presence of a

ferromagnetic exchange field (SFS junction) we can observe a different equilibrium phase

difference. In Sec. 1.5.1 we have seen that, in addition to the expected destruction of

pairs by the exchange field, we can observe a modulation of the order parameter due to the

mechanism described on Fig. 1.4. We will see in the next chapter that in SFS junctions this

modulation of the pair amplitude will lead to the possibility of having a dephasing ϕ0 = ±π
in the current phase relation [1, 3] which is equivalent to a negative Ic in (1.85) and (1.87).

For negative critical currents, the minimal energy will be for ϕ = π (“π junction”) which

will result in the presence of spontaneous non-dissipative currents at equilibrium through

a SFS junction with annular geometry, even if for a phase difference of π one gets a zero

Josephson current from (1.85). These spontaneous currents result from the gradient of

phase in the superconducting part of the ring necessary to ensure a difference of phase of

π between the contacts with the F region.

The fact that the minimum of the energy (1.87) is degenerate for a π junction corre-

sponds to two possible directions for the spontaneous current in a ring comprising such a

junction. The existence of the double-degenerate ground state makes devices based on π

junctions candidates for flux qubits. The two states would constitute the computational

basis while the readout and the manipulation of the qubit is achieved by applying an ex-

ternal magnetic flux through the ring. An important difficulty in the implementation of

the qubits resides in minimizing the decoherence originating from the interaction with the

environment [12].

In the case of low temperatures and good electric contact, the higher harmonics in the

current-phase relation (1.84) cannot be neglected anymore. In this situation, an arbitrary
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equilibrium phase can in principle be obtained, depending on the sign and relative weight

of the harmonics. Such junctions are usually denoted ϕ junctions in the literature, for

a review see Ref. [48]. Although several theoretical works have studied the possibility of

realizing such junctions, clear experimental observation has not been yet achieved.
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Chapter 2

SFS junction with two noncollinear

ferromagnetic domains

2.1 Introduction: π junctions

The interest in proximity structures made of superconducting and ferromagnetic layers

(denoted in the following respectively S and F) in contact with each other has been recently

renewed due to their potential applications to spintronics [10] and to quantum computing

[11, 12]. The interplay between superconductivity (which tends to organize the electron

gas in Cooper pairs with opposite spins) and ferromagnetism (which tends to align spins

and thus to destroy the Cooper pairs) leads to a variety of surprising physical effects (for

a review, see Sec. 1.5 and Ref. [1]). We study in this chapter the influence of magnetic

domains on the appearance of the π phase.

We have seen in Sec. 1.5.1 that as a consequence of the exchange splitting of the Fermi

level [2], the Cooper pair wave function exhibits damped oscillations in a ferromagnet. We

show in the following how one can explain the appearance of the so-called “π state” in

diffusive SFS Josephson junctions [3] within the framework of the quasiclassical theory. In

the π state, the superconducting order parameter is of opposite sign in the two S electrodes

of the junction, and thus a macroscopic superconducting phase difference of π appears in

the thermodynamic equilibrium. This phase difference should lead to spontaneous non-

dissipative currents in a Josephson junction with annular geometry [49, 50]. As shown in

Sec. 1.5.3, a possible signature for the appearance of the π state is a cancellation of the

Josephson critical current (1.85) followed by a reversal of its sign as a function of the junc-

tion length or the temperature [1]. A negative critical current will give a minimal Josephson

energy (1.87) for a phase difference of π between the superconducting electrodes. The re-

cent observations of critical-current oscillations in experiments [51–54] have demonstrated

such 0–π transitions as a function of the ferromagnet thickness and temperature.
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As explained in the previous chapter, the appropriate formalism to deal with mesoscopic

S/F junctions has been derived by Eilenberger [23]. The equations of motion for the

quasiclassical Green function (averaged over the fast Fermi oscillations) can be further

simplified in the diffusive regime, i.e., when the motion of the electrons is governed by

frequent scattering on impurity atoms: the Green functions can then be averaged over the

momentum directions. This averaging is justified as long as the elastic mean free path le is

much smaller than the relevant length scales of the system, namely the size of the layers, the

superconducting coherence length, given in the diffusive limit by ξS =
√

D/2πTc, and the

length characterizing the Cooper pair wave function decay in the ferromagnet ξh =
√

D/h.

Here and in the following, D denotes the diffusion constant, Tc the superconducting critical

temperature, h the magnitude of the exchange field, and the system of units with ~ = kB =

µB = 1 is chosen. The diffusive limit is reached in most of the experimental realizations

of SF heterostructures. In this limit, the Green functions can be combined in a 4×4

matrix in the Nambu ⊗ spin space, and this matrix obeys the Usadel equation (1.62). SFS

Josephson junctions with homogeneous magnetization have been studied in detail within

this framework [1].

We shall not derive at this point in details how the appearance of the π coupling in SFS

junctions can be explained within the quasiclassical formalism. We refer for this the reader

to Sec. 2.3.1 where the critical current for a SFS junction with a homogeneous ferromagnet

is computed. The critical current Ic shows a damped oscillatory dependence on the F-layer

thickness (this was first pointed out in Refs. [55] and [56]). Close to Tc or in case of poor

electric contact between the S and F electrodes we can linearize the Usadel equations in

the deviation from the normal state solution. For linearized equations and rigid boundary

conditions (see the discussion in Sec. 1.4.6), we get as a result a sinusoidal current-phase

relation

IJ = Ic sinϕ , (2.1)

where ϕ is the superconducting phase difference across the junction and the critical current

is given by

Ic = eν0DSπT
∑

ω,σ=±

∆2

ω2

[
λσ

sinh(λσdF )

]

(2.2)

with

λ± =

[

2
|ω| ∓ ihsgn(ω)

D

]1/2

(2.3)

dF is the thickness of the F layer and S the section of the layer. From (2.2) we see

that the critical current can change its sign when either the temperature, recall that the

Matsubara frequencies are given by ω = (2n + 1)πT , or dF are varied. The observation of

temperature induced 0− π transitions [52] has constituted the first experimental evidence

for the existence of the π phase. Later works have also studied oscillations induced by

a variation of the F-layer thickness, see for example [54] and Fig. 2.1. The combined

observation of temperature and thickness induced transitions allows to improve the fitting
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Figure 2.1: Oscillations of the critical current density jc as a function of the ferromagnetic

layer thickness dF in a Nb − Cu0.47Ni0.53 − Nb SFS junction. The two lines represent

theoretical fits based on the Usadel equation made with and without taking the high field

limit. Adapted from [54].

of the experimental data with the theoretical model. However, due to the large number of

adjustable parameters in the model there remain different possible ways of understanding

the data at hand. The exchange field itself is determined from the fit based on the Usadel

equations. The strength and the type of spin-flip scattering also plays an important role.

Uniaxial spin-flip scattering is usually considered in SF structures due to the presence of

the strong magnetic anisotropy resulting from the ferromagnetic exchange field but little is

known about its precise origin. In [57], for example, experimental data is fitted equally well

using different types (uniaxial and isotropic) of spin-flip scattering on top of the uniform

exchange field. Other relevant parameters include the transparency of the interfaces and

the elastic mean free path le which is related to the diffusion constant D.

In the high field limit h≫ Tc, we have λ± ≈ 1∓i√
D/h

and we can perform the summation

over Matsubara frequencies in (2.2) analytically. In this limit, the critical current will

show a damped oscillatory dependence on dF with same oscillation and decay length given

by ξh =
√

D/h. The problem is that for strong ferromagnets this length is very short

resulting in a very fast decay of the current. The early experimental works on π junctions

have made use of diluted ferromagnetic alloys to get measurable currents. Even for the

diluted ferromagnet Nb − Cu0.47Ni0.53 − Nb used in [54], the exchange field has been

estimated to be of the order of 850K and the ratio h/Tc ≈ 100. For pure Nickel, its value

is about four times larger [58, 59] resulting in very short decay and oscillation lengths (of

the order of one nanometer).
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Understanding the effect of a nonhomogeneous magnetization is of crucial interest for

obtaining a good quantitative description for the critical-current oscillations in SFS junc-

tions. Indeed, it is known that real ferromagnetic compounds usually have a complex

domain structure. Strong ferromagnets (such as Ni or Fe) consist of domains with ho-

mogeneous magnetization pointing in different directions whereas the magnetic structure

of the weak ferromagnets (Cu-Ni and Pd-Ni alloys) used in the experiments reported in

Refs. [51–54, 60] is still unresolved. Theoretical fits of the data yield the addition of consid-

erable spin-flip scattering rates to the model and the presence of a substantial magnetically

dead layer at the SF interfaces. In [54] the data is fitted with a spin-flip scattering rate

larger than the exchange field 1/τsf ≈ 1.33 h. It is conjectured that the strong spin-flip

scattering could originate from the presence of clusters in the alloy where the concentration

of Nickel is higher. Recently Veshchunov et al. [61] have shown that thin films made of

Nb − Cu0.47Ni0.53 − Nb (the weak ferromagnet used in [54]) contains magnetic domains

with a size of the order of 100 nm. However, the resolution of the experiment does not allow

to exclude the existence of smaller inhomogeneities: the decoration method applied in [61]

was realized with particles of ten nanometers average size. Furthermore, incorporating the

film in a SFS junction may reduce the size of ferromagnetic domains as suggested in [62].

In a recent work by Bannykh et al. [58] on 0-π oscillations in SFS junctions with

a strong ferromagnetic interlayer (pure Nickel), it has been suggested that the magnetic

structure of the ferromagnet may strongly depend on the size of the layer. Junctions

thinner than the dead layer thickness dF < ddead ≈ 2 nm are believed not to show any

magnetic ordering. In this region the decay of the critical current as a function of dF is

slow (decay length given by the thermal length ξT =
√

D/2πT ). For ddead < dF < dc the

faster decay of the critical current and the observation of a 0 to π transition is connected

to the appearance of the ferromagnetic exchange field. When the junction becomes thicker

than dc ≈ 3.5 nm a net magnetization appears in the F layer. The presence of this net

magnetization leads to shifted Fraunhofer patterns in the dependence of Ic on the flux

of an external magnetic field through the junction. It is therefore believed that for thin

junctions the ferromagnetic layer contains random domains whose magnetizations average

out while for larger junctions a magnetic anisotropy appears. For more details on magnetic

interference patterns in Josephson junctions we refer to Chapter 4.

The problem of SFS junctions with inhomogeneous magnetization has been theoreti-

cally previously addressed for spiral magnetizations [63] and in the case of domains with

antiparallel (AP) magnetizations [64, 65]. In the latter case, the critical-current oscilla-

tions (and thus the π state) are suppressed in the symmetric case where the F layer consists

of two domains of the same size. This can be explained by a compensation between the

phases acquired by the Andreev reflected electrons and holes, of opposite spins, in the two

domains [64].

In the present chapter, we extend that analysis to the case of a SFF′S junction close to
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Tc, with the two magnetic domains F and F′ of arbitrary length and relative orientation

of the magnetizations. To emphasize the effect of the misorientation angle between the

magnetizations of the two domains, we choose to minimize the number of parameters

in the model. The interfaces are then chosen to be perfectly transparent, and spin-flip

scattering is neglected in both S and F layers. Furthermore, we assume that the diffusive

limit is fully reached, that is we do not take into account corrections due to a finite mean

free path (note that for strong ferromagnets the magnetic coherence length ξh may become

comparable to le).

The main result of our calculation is that, in the symmetric case where the two domains

have equal thicknesses, we obtain a progressive reduction of the π-state region of the

phase diagram as the misorientation angle increases. Surprisingly, the π state completely

disappears as soon as the misorientation angle θ exceeds π
2 .

The chapter is organized as follows. In Sec. 2.2 we solve the linearized Usadel equa-

tions and give the general expression for the Josephson current. In Sec. 2.3 we discuss

the simplest cases of parallel and antiparallel relative orientation of magnetizations with

different domain sizes d1 and d2. We obtain analytically the full phase diagram in d1–

d2 coordinates. In agreement with Ref. [64], the π state is absent in the symmetric case

d1 = d2 for domains with antiparallel magnetizations. In the asymmetric case, the critical

current oscillates as d2 is varied while keeping d1 constant. For sufficiently thick layers

(d1,2 ≫ ξh), the critical-current oscillations behave like in a single domain of thickness

|d1 − d2| + (π/4)ξh. In Sec. 2.4, we discuss the case of an arbitrary misorientation angle

in the symmetric configuration d1 = d2 = d. In the limit when the exchange field is much

larger than Tc, we derive analytically the 0–π phase diagram of the junction depending on

the junction length d and and on the misorientation angle θ. We show that the π state

disappears completely for θ > π
2 . In the last Sec. 2.5, we discuss possible implications of

our findings for experimentally observed 0–π transitions in SFS junctions.

2.2 Model

We study a diffusive SFF′S Josephson junction with semi-infinite (that is, of thickness

much larger than ξS) superconducting electrodes, as shown in Fig. 2.2. The phase difference

between the S layers is denoted ϕ = 2χ, the thicknesses of the two ferromagnetic domains d1

and d2. In the following we consider a quasi-one-dimensional geometry where the physical

quantities do not depend on the in-plane coordinates. For simplicity, we assume that the

SF and FF′ interfaces are transparent. We further assume that the temperature is close to

Tc so that ∆ ≪ T , and this allows us to linearize the Usadel equations.

In the case of superconductor–ferromagnet systems, the proximity effect involves both

the singlet and the triplet components of the Green’s functions (1.67). The Usadel equation
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Figure 2.2: SFF′-S junction with noncollinear magnetization.

(1.62) in the ferromagnetic layers takes the form (we follow here and in the next chapters

the conventions used in Ref. [20])

D∇ (ǧ∇ǧ) − ω [τ̂3σ̂0, ǧ] − i [τ̂3 (h · σ̂) , ǧ] = 0. (2.4)

The Green function ǧ is a matrix in the Nambu ⊗ spin space, τ̂α and σ̂α denote the

Pauli matrices respectively in Nambu (particle-hole) and spin space, ω = (2n+ 1) πT are

the Matsubara frequencies, and h is the exchange field in the ferromagnet. The Usadel

equation is supplemented with the normalization condition for the quasiclassical Green

function

ǧ2 = 1̌ = τ̂0σ̂0. (2.5)

For simplicity, we assume that the superconductors are much less disordered than the

ferromagnets, and then we can impose, as discussed in Sec. 1.4.6, the rigid boundary

conditions at the S/F interfaces

ǧ =
1√

ω2 + ∆2

(

ω ∆e±iχ

−∆e∓iχ −ω

)

Nambu

⊗ σ̂0 , (2.6)

where ∆ denotes the superconducting order parameter and the different signs refer respec-

tively to the boundary conditions at x = −d1 and x = d2.

Close to the critical temperature Tc, the superconducting correlations in the F region

are weak [1], and we can linearize the Usadel equations (2.4) and (2.5) around the normal

solution ǧ = τ̂3σ̂0sgn(ω). The Green function then takes the form

ǧ =

(

σ0sgn(ω) fασ
α

−f †ασα −σ0sgn(ω)

)

, (2.7)

where the scalar f0 (respectively f †0) and vector f (respectively f †) components of the

anomalous Green functions obey the linear equations

∂2f
(†)
±

∂x2
− [λ±]2 f

(†)
± = 0

∂2f
(†)
⊥

∂x2
− [λ⊥]2 f

(†)
⊥ = 0 (2.8)



SFS junction with two noncollinear ferromagnetic domains 33

with

λ± =

[

2
|ω| ∓ ihsgn(ω)

D

]1/2

, λ⊥ =

[

2
|ω|
D

]1/2

. (2.9)

The projections of the anomalous Green function on the direction of the exchange field

(“parallel” components) are defined as f
(†)
± (x) = f

(†)
0 ±f (†) ·eh where eh is the unit vector in

the direction of the field. The “perpendicular” component f
(†)
⊥ refers to the axis orthogonal

to the exchange field. Generally, this component is a two-dimensional vector. In our

system, however, f lies in the plane spanned by the magnetizations in the two domains,

and therefore f
(†)
⊥ has only one component.

It follows from Eqs. (2.8) that the decay of the “parallel” and the “perpendicular”

components is governed by two very different length scales. The parallel component decays

on the length scale ξh, while the perpendicular component is insensitive to the exchange

field and decays on the typically much larger scale ξS = ξh

√
h

2πTc
(experimentally, h may

be more than 100 times larger than Tc, see, e.g., Ref. [54]).

In the absence of the exchange field, fσ and f †σ components are related by complex

conjugation. The exchange field h breaks this symmetry, and the relation between fσ and

f †σ becomes

f †σ(χ) = fσ(−χ). (2.10)

The solutions to the equations (2.8) in each of the ferromagnetic layers are given by

f j
±,⊥(x) = Aj

±,⊥ sinhλ±,⊥x+Bj
±,⊥ cosh λ±,⊥x, (2.11)

where the 12 coefficients Aj
±,⊥ and Bj

±,⊥ (j = 1, 2 denotes the layer index) must be deter-

mined using the boundary conditions at each interface. Note that it is enough to solve the

equations for the functions f j
σ: the functions f j†

σ can be then obtained from the symmetry

relation (2.10).

As we assume transparent S/F interfaces and rigid boundary conditions, we impose

(linearizing (2.6))

f1
±(x = −d1) =

∆

ω
eiχ,

f2
±(x = d2) =

∆

ω
e−iχ,

f1
⊥(x = −d1) = f2

⊥(x = d2) = 0 . (2.12)

At the (perfectly transparent) FF′ interface, the standard Kupriyanov-Lukichev boundary

conditions (1.70) and (1.71) provide the continuity relations

f1
α(x = 0) = f2

α(x = 0)

∂f1
α

∂x
|x=0 =

∂f2
α

∂x
|x=0 (2.13)



34 SFS junction with two noncollinear ferromagnetic domains

(here α takes values from 0 to 3 and refers to a fixed coordinate system). Note that, in the

general case, since the ferromagnetic exchange fields do not have the same orientation in

the two F-layers, the latter conditions do not lead to the continuity of the reduced functions

f j
±,⊥ and their derivative, except in the parallel case.

The last step will be to compute the Josephson current density using the formula (1.68)

IJ = ieν0DSπT

∞∑

ω=−∞

1

2
Tr (τ̂3σ̂0ǧ∂xǧ) , (2.14)

where S is the cross section of the junction, ν0 is the density of states in the normal metal

phase (per one spin direction), and the trace has to be taken over Nambu and spin indices.

The current can be explicitly rewritten for the linearized ǧ

IJ = −ieν0DSπT
∞∑

ω=−∞

∑

σ=±

1

2
(fσ∂xf

†
σ − f †σ∂xfσ) + f⊥∂xf

†
⊥ − f †⊥∂xf⊥. (2.15)

Using the coefficients introduced in equations (2.11), the Josephson current (2.15) reads

IJ = ieν0DSπT
∑

ω,σ=±

λσ

2
[Aσ(χ)Bσ(−χ) −Bσ(χ)Aσ(−χ)]

+λ⊥ [A⊥(χ)B⊥(−χ) −B⊥(χ)A⊥(−χ)] . (2.16)

Since the coefficients Aj
σ and Bj

σ are solutions to the linear system of equations (2.12)

and (2.13), they are linear combinations of eiχ and e−iχ. The expression (2.16) is explicitly

antisymmetric with respect to χ 7→ −χ, it therefore always produces the sinusoidal current-

phase relation (2.1). Finally, the expression (2.16) does not contain the domain index j:

it can be calculated in any of the two domains, and the results must coincide due to the

conservation of the supercurrent in the Usadel equations.

In the following sections, this formalism is used to study the influence of a magnetic

domain structure on the Josephson current.

2.3 Domains of different thicknesses in the P and AP con-

figurations

2.3.1 Parallel case (P)

In the most trivial case θ = 0, the equations can be solved easily with Aj
⊥ = Bj

⊥ = 0. We

naturally retrieve the expression reported in Ref. [1] for a single-domain SFS trilayer (of

thickness d1 + d2),

IP
c = eν0DSπT

∑

ω,σ=±

∆2

ω2

[
λσ

sinhλσ(d1 + d2)

]

. (2.17)
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The exact summation over the Matsubara frequencies ω can be done numerically. How-

ever, in many experimental situations, the exchange field is much larger than Tc. In this

limit, we can assume h ≫ ω which implies λ± = 1∓i
ξh

. The summation over Matsubara

frequencies reduces then to
∑

ω

1

ω2
=

1

4T 2
(2.18)

and the critical current is given by the simple expression

IP
c = I0Re




1 + i

sinh
[

(1 + i)(d1+d2

ξh
)
]



 (2.19)

with

I0 =
eν0DSπ∆2

2ξhT
. (2.20)

From Eq. (2.19) it is clear that the critical current oscillates as a function of the junction

length, with a pseudo-period of the order of ξh. When the critical current becomes negative,

the SFS hybrid structure is in the π state.

The high field limit expression is often sufficient to describe experimental data, as can

be see from the almost identical theoretical fits in Fig. 2.1 made with and without taking

this limit.

2.3.2 Antiparallel case (AP)

In the antiparallel configuration θ = π, the exchange field has the opposite direction in the

two domains. In this case we again find Aj
⊥ = Bj

⊥ = 0, and the critical current can be

easily derived,

IAP
c = I0ξhT

2
∑

ω,σ=±

1

ω2

[
2λσλ−σ

λσ sinhλ−σd2 cosh λσd1 + λ−σ cosh λ−σd2 sinhλσd1

]

. (2.21)

In the limit of the large exchange field h ≫ Tc, the summation over the Matsubara

frequencies (2.18) results in

IAP
c = I0Re

[
2

sin(d+ + id−) + sinh(d+ − id−)

]

(2.22)

with

d+ = (d1 + d2)/ξh (2.23)

d− = (d1 − d2)/ξh. (2.24)
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h

h

Figure 2.3: Quasiperiodic 0 to π transitions for antiparallel (solid lines) and parallel (dashed

lines) magnetization. On the graph, the indications 0 and π refer to the antiparallel case.

In the parallel case, the transitions occur along lines with d1 + d2 = const, starting from

the zero state.

For plotting the 0–π phase diagram in d1–d2 coordinates we use the condition of the

vanishing critical current. From the equations (2.19) and (2.22), the critical current van-

ishes if

sin d+ cosh d+ + sinh d+ cos d+ = 0 (2.25)

in the parallel case, and if

sin d+ cosh d− + sinh d+ cos d− = 0 (2.26)

in the antiparallel case. The resulting phase diagram is plotted in Fig. 2.3.

For d1 = d2 = d (symmetric case), we obtain that the critical current is positive for

any d: identical F layers in the AP configuration cannot produce the π state (a similar

conclusion was drawn in Ref. [64] for ballistic junctions and for diffusive junctions at low

temperature). For d1 6= d2, the SFF′S junction can be either in the usual 0 state or in the

π state depending on the difference between d1 and d2 (see Fig. 2.3). For large d1 and d2,

the periodic dependence of the phase transitions on the layer thicknesses approximately

corresponds to a single-layer SFS junction of the thickness |d1 − d2|+ (π/4)ξh. This result

is similar to the case of the clean SFF′S junction where the phase compensation arising

from the two antiparallel domains is observed [64].
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Figure 2.4: Critical current multiplied by the normal-state resistance as a function of the

total thickness of the ferromagnetic layer for a Nb/Co/Ru/Co/Nb junction with antiparallel

magnetization of the ferromagnetic Cobalt layers. For the upper set of points an additional

Copper layer is added at the SF interfaces to achieve a larger IcRN product. Adapted from

[66].

Another interesting feature of the phase diagram in Fig. 2.3 is the “reentrant” behavior

of the phase transition at a very small thickness of one of the layers. If the SFS junction is

tuned to a 0–π transition point, and one adds a thin layer F′ of antiparallel magnetization,

then a small region of the “opposite” phase (corresponding to increasing the F thickness)

appears, before the F–F′ compensation mechanism stabilizes the phase corresponding to

reducing the F thickness.

Recently, SFF′S junctions (Nb/Co/Ru/Co/Nb) with antiparallel magnetization and

identical dimensions of the F layers have been studied experimentally by Khasawneh et al.

[66]. The antiparallel orientation of the magnetization in the ferromagnetic Cobalt layers

results from an antiferromagnetic coupling mediated by the additional thin Ruthenium

layer. As can be seen on Fig. 2.4, their data is consistent with a monotonic exponential

decay of the critical current as a function of the thickness of the ferromagnetic layer.

In this section, we have seen that the π state disappears in the antiparallel orientation

for geometrically identical F-layers. However, we do not observe an enhancement of the

critical current (compared to the zero field current) in the AP configuration such as reported

in Refs. [65, 67]. This is in agreement with the claim of Ref. [65] that this enhancement is
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Figure 2.5: Critical current dependence on the size of the junction for θ = 0, π/4 and 3π/4.

We take h/T = 100 which corresponds to a realistic value for a diluted ferromagnet, as

reported in Ref. [54] and ξT =
√

D/2πT .

present only at low temperatures.

In the next section, we demonstrate that the suppression of the π state occurs contin-

uously as we change the misorientation angle.

2.4 Arbitrary magnetization misorientation and equal thick-

nesses

In the previous section, we have plotted the phase diagram for arbitrary layer thicknesses d1

and d2 in the cases of parallel and antiparallel magnetization. In principle, one can extend

this phase diagram to arbitrary misorientation angles θ. Such a calculation amounts to

solving a set of linear equations (2.12) and (2.13) for the 12 parameters defined in Eq. (2.11).

This calculation is straightforward, but cumbersome, and we consider only the simplest

situation with equal layer thicknesses d1 = d2 = d.

For equal layer thicknesses, the 0–π transitions are present at θ = 0 and absent at

θ = π. We will see below that with increasing the misorientation angle θ the amplitude of

the critical-current oscillations (as a function of d) decreases, and the π phase progressively

shrinks. At a certain “critical” angle θc, the π phase disappears completely for any value

of d. We find that the critical value is θc = π
2 , surprisingly independent of the strength of
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the exchange field.

The details of the calculation of the critical current are presented in Appendix D. In the

general case, the current can be written in the form of a Matsubara sum such as given in

Eq. (D.2). In Fig. 2.5, we plot the current as a function of the domain thickness for different

angles performing the summation over Matsubara frequencies numerically using realistic

values for the temperature and the exchange field. We find that the domain structure

reduces the π-state regions compared to the θ = 0 parallel case as well as the amplitude of

the current in this state. To the contrary, the 0-state regions are extended and the current

amplitude is increased in this state. This result may be simply understood as a continuous

interpolation between a sign-changing Ic in the single-domain case and an always-positive

Ic in the antiparallel case.

Considering the high-exchange-field limit introduced in Sec. 2.3, namely h ≫ Tc, and

assuming further d ≪ ξS (which is a reasonable assumption for the first several 0–π tran-

sitions in the high-field limit), we have λ⊥ ≪ λ± and λ⊥d ≪ 1 so that one can expand

Eq. (D.2) in powers of λ⊥. To the lowest order of expansion, the sum over Matsubara

frequencies is done and we obtain

Ic(θ) =
8dI0
ξh

(Q+ + P+ tan2 θ
2)(P+ +Q+ tan2 θ

2) − (1 − tan4 θ
2)P−Q−

(P 2
+ − P 2

− + tan2 θ
2(P+Q+ + P−Q−))

× 1

(Q2
+ −Q2

− + tan2 θ
2(P+Q+ + P−Q−))

, (2.27)

where P± and Q± are simple functions of the ratio d/ξh,

P± = 2
d

ξh

(

cosh(1 + i)
d

ξh
± cosh(1 − i)

d

ξh

)

Q± = (1 + i) sinh(1 − i)
d

ξh
± (1 − i) sinh(1 + i)

d

ξF
. (2.28)

From the general formula (2.27), one can retrieve the expressions (2.19) and (2.22) for the

Josephson current in the (symmetric d1 = d2) parallel and antiparallel cases by setting

respectively θ = 0 and θ = π. Within the approximation of a high exchange field, the

critical current (2.27) is a ratio of second degree polynomials in the variable tan2 θ
2 . The

critical current cancels if

tan4 θ

2
(P+Q+ + P−Q−) + tan2 θ

2
(P 2

+ +Q2
+) + (P+Q+ − P−Q−) = 0. (2.29)

This equation allows one to compute the full SFF’S phase diagram in the d–θ coordinates

(Fig. 2.6). We observe that Eq. (2.29) cannot be satisfied for any thickness as soon as θ

exceeds π
2 . As the misorientation angle θ decreases below π

2 , the region of the π state in

the phase diagram Fig. 2.6 increases, and it becomes maximal at θ = 0 (i.e., in the parallel

configuration).
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h

Figure 2.6: d–θ phase diagram in the limit of a large exchange field. The dependence on d

is almost (but not exactly) periodic.

Away from the high-exchange-field limit, we can find the value of θc numerically using

the exact formula, Eq. (D.2). Remarkably, our calculations show that the critical value

θc = π
2 remains independent of the strength of the field h.

2.5 Discussion and experimental aspects

The main conclusion of the present work is that a domain structure in the SFS junction

reduces the region in the phase space occupied by the π state. We have demonstrated this

reduction with the example of the two domains placed along the junction. However we

expect that this qualitative conclusion survives for more general configurations of domains.

In view of this reasoning, we suggest that a domain structure in the junction can contribute

to the shift in the 0–π transition sequence reported in Ref. [54] and attributed to a “dead

layer” in the ferromagnet. If such a domain structure slightly reduces the region of the

π phase in favor of the zero phase, this would shift the positions of the two first 0–π–0

transitions in a manner similar to the effect of a “dead layer” (see, e.g., our θ = π/4 plot

in Fig. 2.5). To distinguish between the two scenarios, one would need to observe at least

three consecutive 0–π transitions and/or develop a more realistic theory of the effect of

domains in SFS junctions. In addition, no quantitative theory can presently describe the

appearance of the “dead layer” at the SF interfaces.
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Many of our results are based on the high-exchange-field approximation assuming

ξS/ξh =
√

h/(2πTc) ≫ 1. This is a reasonable approximation for the type of samples

reported in Ref. [54]: the exchange field in the CuNi ferromagnetic alloys has been esti-

mated at 850 K, whereas the critical temperature of Nb is of the order of 9 K. Thus, the

ratio ξS/ξh is of the order of 4. Note that the high-field limit is consistent with the diffusive

limit condition hτe ≪ 1 with τe the elastic mean free time (see the discussion of Sec. 1.4.4

for details). The parameters of the experiments [54] yield the estimation hτe ≈ 0.1.

In our treatment we have neglected the finite transparency of the interfaces, the finite

mean free path of electrons, the spin-flip and spin-orbit scattering. Of course, those effects

may be incorporated in the formalism of Usadel equations in the usual way (see, e.g.,

Refs. [68–70]). We expect that they do not change the qualitative conclusion about the

reduction of the π state by the domain structure. This has been confirmed by a subsequent

numerical work on the same setup [71]. It appears that to observe a significant deviation

from the critical misorientation angle θc = π/2 one needs to go to low temperatures and

low exchange field. The latter condition being experimentally not accessible even when

working with diluted ferromagnetic alloys. With regards to introducing finite interface

transparencies and spin-flip scattering, the authors of [71] remark that they did not find

any indication that our results [72] may change in any significant way. However, a realistic

quantitative theory of SFS junctions may need to take those effects into account, in addition

to a more realistic domain configuration in the ferromagnet.

Finally, it is interesting to remark that we do not observe any long range Josephson

effect in the system we consider. As remarked by Houzet and Buzdin in [73], it is necessary

to have two sources of triplet component (noncollinear magnetization) to generate the

component of the current decaying at the same rate as the current in a SNS junction, for

which the characteristic decay length is given by ξT =
√

D/2πT (this length is obtained

taking h → 0 in (2.17)). The authors of [73] propose therefore a junction with three

domains to generate long range triplet correlations.
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Chapter 3

SFS junction with in-plane

ferromagnetic domains

3.1 Introduction

The physics of single-domain SFS junctions (including the effect of spin-flip [74–76] and

spin-orbit scattering [2, 70, 77]) is now well understood. However, as we have seen in the

previous chapter, in some experiments the 0–π transition points may deviate from standard

predictions [54, 78] or even be absent [79, 80]. There is no consensus on the interpretation of

such deviations. They may be attributed either to the presence of a magnetically dead layer

at the interface between the superconductor and the ferromagnet [54, 59], or to a domain

structure or inhomogeneities in the ferromagnetic layer. The domain structure crucially

depends on the nature of the ferromagnet: strong ferromagnets consist of well-defined

magnetic domains whose spatial extension may be reduced by the proximity effect [81–84].

In weakly ferromagnetic alloys, on the other hand, the magnetization may fluctuate on

short length scales without forming domains [85].

Theoretically, SFS junctions with inhomogeneous magnetization have been studied

recently in different setups, see for example [63, 64, 68, 72, 86–89]. However, in most

works (except in Refs. [86–89]) only domains along the junction were studied (quasi-one-

dimensional geometry), while we believe that in the experimental realizations of SFS junc-

tions with thin F layers the domain structure is also likely to form in the plane of the F

film.

Motivated by the experimental progress on π junctions, we study a model of a diffusive

SFS junction with in-plane domains (so that the domain walls are orthogonal to the S and F

layers, see Fig. 3.1). This geometry has been studied previously by Volkov and Anishchanka

within the macroscopic approach of London equations [87]. Our model is different from



44 SFS junction with in-plane ferromagnetic domains

SS

ex

yzh = e e

h = -ez

a
d

χ -i
Δe

χi
Δe

F

F

Figure 3.1: SFS junction with in-plane magnetic domains.

the one studied in Ref. [86]: in that work, the Neel domain walls are considered, and the

junction is brought to the regime with only the long-range triplet component contributing

to the Josephson current. In our model, the domain walls are taken to be sharp, and no

long-range triplet component appears for domains with antiparallel magnetization.

The domain structure introduces an additional length scale: the domain size a. As one

can expect, we find that the effect of inhomogeneous magnetization depends strongly on

the relative magnitude of a and ξh. In the limit of small domains, a ≪ ξh, the exchange

field effectively averages out, and the critical current of a single nonmagnetic SNS junction

is retrieved. In the opposite limit of large domains a ≫ ξh, the influence of domain

walls is localized to their vicinity and produces only a small correction to the current

of a single-domain SFS junction. Between those limits, the supercurrent shows either a

damped oscillatory behavior as a function of the junction thickness (for large domains

a > ac ≈ 0.83 ξh), or a monotonic exponential decay (for smaller domains a < ac). In the

former case, the multidomain junction may be compared to a single-domain SFS trilayer

with spin-flip scattering [70] and a renormalized exchange field, whereas in the latter case

the junction behaves like a SNS junction with spin-flip scattering. The effective parameters

are determined analytically in both limits of small and large domains. When considering

the dependence of the critical current on the junction thickness, one finds that in SNS

junctions the presence of spin-flip scattering reduces the decay length, as can be expected

from the suppression of the proximity effect by magnetic scattering (see also Sec. 1.5.2).

In SFS junctions, spin-flip scattering leads to an increased oscillation period of the critical

current in addition to the faster decay. The decay and oscillation length which are the

same in monodomain SFS junctions (2.17) become therefore different in the presence of

magnetic scattering.
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We also study the inhomogeneous distribution of the current density and conjecture

that at low temperatures such SFS junctions with domains may realize the intermediate ϕ

phase proposed by Buzdin [90].

The chapter is organized as follows. In Sec. 3.2 we compute the superconducting Green

functions and the Josephson-current density for the multidomain SFS junction. Sec. 3.3 is

devoted to the analysis of the total Josephson current. In Sec. 3.4 we discuss the spatial

distribution of the current density. Finally, in Sec. 3.5 we summarize our conclusions.

3.2 Model for the multidomain SFS junction

As in the previous chapter, we assume that the ferromagnetic layer is strongly disordered,

and the motion of electrons is diffusive. In this regime, the quasiclassical Green functions

(averaged over the fast Fermi oscillations and the momentum directions) are given by the

solutions to the Usadel equations (1.62). To simplify the calculations, we further assume

that the junction is close to the superconducting critical temperature Tc. In this case, the

superconducting correlations are weak so that the Usadel equations can be linearized, and

the current-phase relation is sinusoidal

J = Ic sinϕ , (3.1)

where ϕ = 2χ is the superconducting phase difference across the junction and Ic is the

critical current. The sign of Ic determines if the junction is in the zero phase or in the π

phase.

In this chapter, we consider a SFS junction with in-plane ferromagnetic domains of

opposite magnetization. We introduce a coordinate system with the F layer in the yz plane

(Fig. 3.1). The x axis is directed along the junction, and the SF interfaces correspond to

the coordinates x = 0, d. The domain walls are taken to be normal to the y axis. The origin

of the y axis is chosen at the interface between two domains. The system is invariant under

translation along the z axis. Our further calculations will be equally applicable to either

the system with two domains of width a (see Fig. 3.1) or the 2a-periodic multidomain case

(the same setup periodically repeated in the y direction).

The (nonlinear) Usadel equation (1.62) in the ferromagnetic layer takes the form

D∇ (ǧ∇ǧ) − ω [τ̂3σ̂0, ǧ] − i [τ̂3 (h · σ̂) , ǧ] = 0. (3.2)

where D denotes the diffusion constant and as usual the system of units with ~ = kB =

µB = 1 is chosen. The Green function ǧ is a matrix in the Nambu ⊗ spin space, τ̂α and

σ̂α denote the Pauli matrices respectively in Nambu (particle-hole) and spin space, ω =

(2n+ 1) πT are the Matsubara frequencies and h is the exchange field in the ferromagnet.
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The Usadel equation is supplemented with the normalization condition for the quasiclassical

Green function

ǧ2 = 1̌ = τ̂0σ̂0. (3.3)

The boundary conditions for the quasiclassical Green functions have been discussed in

Sec. 1.4.6. Those conditions were initially derived for superconductor-normal metal in-

terfaces but are still valid [1] in the presence of an exchange field h, provided h ≪ EF .

For simplicity, we assume that the superconductors are much less disordered than the

ferromagnet, and then we can impose the rigid boundary conditions at the SF interfaces,

ǧ =
1√

ω2 + ∆2

(

ω ∆e±iχ

−∆e∓iχ −ω

)

Nambu

⊗ σ̂0 , (3.4)

where ∆ denotes the superconducting order parameter, and the different signs refer respec-

tively to the boundary conditions at x = 0 and x = d. At the boundary between ferromag-

netic domains, we impose the continuity of the Green functions and of their derivatives

(transparent interface). In fact, one obtains those transparent boundary conditions as long

as the jump in the exchange field h is much smaller than EF , and provided there is no

mismatch between structural and electronic parameters of the domains.

Close to the critical temperature Tc, we linearize the Usadel equations (3.2), (3.3)

around the solution for the normal metal state ǧ = τ̂3σ̂0sgn(ω). The linearized Green

function then takes the form

ǧ =

(

σ0sgn(ω) fασ
α

−f †ασα −σ0sgn(ω)

)

, (3.5)

where the scalar f0 (respectively f †0) and vector f (respectively f †) components of the

anomalous Green functions obey the linear equations

(
∂2

∂x2
+

∂2

∂y2

)

f
1(†)
± − λ2

±f
1(†)
± = 0, (3.6)

with

λ± =

[

2
|ω| ∓ ihsgn(ω)

D

]1/2

. (3.7)

The projections of the anomalous Green function along the direction of the exchange field

(“parallel” components) are defined as f
(†)
± (x, y) = f

(†)
0 ± f (†) · ez (we assume that the

ferromagnetic exchange field h is aligned in the direction ez, see Fig. 3.1). Note that

there is no perpendicular “long-range triplet” [91] component of the vector part of the

Green function, since the magnetizations of the domains are collinear. We have used the

invariance under translation along the z direction. The superscript 1 refers to domains

with field along ez and in the following we will use the superscript 2 for domains with the

field along −ez. Similar equations hold for f
2(†)
± with λ± ↔ λ∓.
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It is convenient to write the solutions to those equations in the form

f
(†)1,2
± (x, y) = f

(†)1,2
±Bulk(x) + δ

(†)1,2
± (x, y) (3.8)

where f1,2
±Bulk are the solutions of Eq. (3.6) for a single-domain SFS junction with the mag-

netization along ez (respectively −ez). Since the equations (3.6) are linear, the correction

δ(x, y) is also a solution to the same equations with the boundary conditions

∂yδ
1,2
± (x, y = ∓a) = 0, (3.9)

δ1,2
± (x = {0, d}, y) = 0, (3.10)

δ1±(x, y = 0) − δ2±(x, y = 0) = ∆f±Bulk(x), (3.11)

[∂y] δ
1
±(x, y = 0) − [∂y] δ

2
±(x, y = 0) = 0. (3.12)

Here ∆f±Bulk = f2
±Bulk(x) − f1

±Bulk(x) is the difference of the bulk Green functions in

the two domains. For the two-domain junction, the first condition imposes zero current

at the interface with vacuum, the second condition ensures the continuity of the Green

functions at the SF interfaces. Finally, the last two conditions reflect the continuity of the

Green function and its derivatives at the interface between the two domains. It can be

easily shown from symmetry considerations that this set of boundary conditions can also

be applied to a periodic multidomain SFS junction with domains of width 2a.

The condition (3.10) allows us to express δ1,2
± in the form of the Fourier series

δ1,2
± =

∞∑

n=1

sin
(πn

d
x
)

A1,2
n±(y). (3.13)

For each n we solve

∂2
yA

1
n± = γ2

n±A
1
n± (3.14)

with

γn± =

√

(
πn

d
)2 + λ2

± . (3.15)

To obtain the equation for A2
n± one needs to substitute γn± ↔ γn∓. We can solve those

equations for each Fourier component n with the boundary conditions provided by (3.9),

(3.11) and (3.12). The solution is given by

δ1± =
∆

|ω|

∞∑

n=1

sin
(πnx

d

) 2πn

d2

cosh γn±(y + a)

cosh γn±a
γn∓ tanh γn∓a

γn∓ tanh γn∓a+ γn± tanh γn±a

×
(

1

γ2
∓
− 1

γ2
±

)
(
eiχ − (−1)n e−iχ

)
. (3.16)

In the second domain, the correction δ2± is given by the same formula with the replace-

ment of y, γ± by −y, γ∓. The bulk Green functions are given by [72]

f1
±Bulk =

∆

|ω|

[
sinhλ±x
sinhλ±d

e−iχ +
sinhλ±(d− x)

sinhλ±d
eiχ
]

, (3.17)
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and f2
±Bulk = f1

∓Bulk. Finally, note that f †Bulk and δ† are given by the same expressions

(3.16), (3.17) with the replacement of χ by −χ.

The last step will be to compute the Josephson current density using the formula (1.68)

J = ieν0DπT

∞∑

ω=−∞

1

2
Tr (τ̂3σ̂0ǧ∇ǧ) , (3.18)

where ν0 is the density of states in the normal metal phase (per one spin projection) and

the trace has to be taken over the Nambu and spin indices. The current density can be

explicitly rewritten for the linearized ǧ

J = −ieν0DπT
∞∑

ω=−∞

[
∑

σ=±

1

2
(fσ∇f †σ − f †σ∇fσ)

]

. (3.19)

The symmetry of translation along the z direction implies that the current remains in the

xy plane. Using the expression for the Green functions (3.16) and (3.17), we can obtain a

general expression for the current density (which is too cumbersome to be reproduced here).

This expression involves two contributions. The first one is produced exclusively by the

bulk Green functions (3.17) and corresponds to a homogeneous ferromagnetic interlayer.

The second contribution is due to the correction (3.16) and reflects the influence of the

domain structure. The current resulting from this contribution is not uniform in space. The

characteristic decay scale of the correction as a function of the distance from the domain

interface is given by ℜ
(

1
γn±

)

∼ min(ξT , ξh, d), where ξT =
√

D/2πT and ξh =
√

D/h are

the thermal and magnetic coherence lengths, respectively. Far from the interface between

the domains (y ≫ min(ξT , ξh, d)), the correction (3.16) vanishes and we recover locally

the single-domain SFS current. Thus we expect the properties of the junction to be very

different in the two limits of small [a ≪ min(ξT , ξh, d)] and large [a ≫ min(ξT , ξh, d)]

domains.

3.3 Critical current

Experimentally, in SFS hybrid junctions the measurable quantity is the total current flow-

ing through the junction, that is along the x-axis. Since ∇ · J = 0, the total current is

conserved along the x direction. We can therefore compute it at x = 0, and we find

Jc

I0
= ℜ

[
∑

ω>0

∆2

ω2

λ+d

sinhλ+d

]

+
16π2

ad2ξ4h

∑

ω>0

∆2

ω2

∞∑

n=1

[
(−1)n−1n2

(γn+γn−)3
1

γn− coth γn+a+ γn+ coth γn−a

]

(3.20)
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ξ

Figure 3.2: Critical current Jc/JSNS vs. junction length d/ξh for a = 0.6 · ξh (dotted line),

1.6 · ξh (dashed line) and ∞ (solid line). Here JSNS is the critical current of the junction

in the absence of the exchange field. We take h
T = 100.

with

I0 =
4eν0DSπT

d
, (3.21)

and S the area of the junction. The first term is the critical current for a single-domain SFS

junction with a damped oscillatory dependence on the F-layer thickness (for a review, see

the discussion of the previous chapter in Sec. 2.3.1). It can be either positive (zero state of

the junction) or negative (π state). The second term reflects the influence of the domain

structure. The critical current (3.20) depends on the three dimensionless parameters: a/ξh,

d/ξh, and ξT/ξh. For some values of the parameters, the critical current (3.20) computed

numerically is plotted in Fig. 3.2. Depending on the values of the parameters, it shows

either an exponential decay or an exponential decay with oscillations, as a function of d.

Note that, as discussed in the previous chapter, in most experimental situations ξT ≫ ξh

because the ferromagnetic exchange energy exceeds by far the superconducting critical

temperature. In the following we will refer to this situation as the high-field limit. In this

limit, the summation over ω in Eq. (3.20) can be performed analytically [
∑

ω>0 ∆2/ω2 =

∆2/(8T 2)], and the deviation δJc from the critical current of a single-domain SFS junction

[the second term in Eq. (3.20)] is expressed in terms of the reduced variables n∗ = d
√

2
πξh

and

a∗ = πa
d :
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δJc

I0
= − ∆2

2T 2

n∗4

a∗

∞∑

n=1

(−1)nn2

(n4 + n∗4)3/2

× 1

ℜ
[√
n2 + in∗2 coth

(

a∗
√
n2 − in∗2

)] . (3.22)

In the limit of large d, the asymptotic behavior of this expression may be estimated as

an integral (in the variable z = n/n∗)

δJc

I0
= − ∆2

2T 2a∗

∞∫

−∞

dz
eiπn∗zz2

(z4 + 1)3/2

× 1
[√
z2 + i coth

(

a∗n∗
√
z2 − i

)

+
√
z2 − i coth

(

a∗n∗
√
z2 + i

)] , (3.23)

which is, in turn, determined to the exponential precision by the singular points of the

integrand in the complex plane. Remarkably, the contribution from the poles at (±i)1/2

cancels exactly the first term (single-domain contribution) of Eq. (3.20). For sufficiently

large d, to the exponential precision, the critical current is then given by

Jc ∝ e−λd , λ = − i
√

2z0
ξh

, (3.24)

where z0 is the singular point of the integrand with the smallest positive imaginary part.

Note that z0 is now a function of one dimensionless parameter α = a∗n∗ =
√

2a/ξh.

By analogy with a single-domain SFS junction with spin-flip scattering, the real and

imaginary parts of λ2 may be interpreted as an effective magnetic field and an effective

spin-flip rate 1,

λ2 = − 2i
[

ξ
(eff)
h

]2 +
4Γ

(eff)
sf

D
, ξ

(eff)
h =

√

D

h(eff)
. (3.25)

Therefore the effective field and spin-flip rate can be found as

h(eff) = hℑ(z2
0) , Γ

(eff)
sf = −h

2
ℜ(z2

0) . (3.26)

In the following, we discuss the limits of large and small domain sizes.

3.3.1 Limit of large domains : a ≫ ξh

We consider the limit of large domains, a≫ ξh, with the assumption of the strong exchange

field, ξT ≫ ξh. In this regime, the damped oscillations of the critical current at large d are

1We define the spin-flip scattering rate by Γsf = 1/(2τsf ), as in Sec. 1.5.2 and Refs. [20, 40, 92]
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Figure 3.3: Phase diagram of the junction in the high-exchange-field limit. Here a repre-

sents the width of the domains and d is the length of the junction.

determined by the solutions to the equation
√

z2 + i coth(α
√

z2 − i) +
√

z2 − i coth(α
√

z2 + i) = 0 (3.27)

with the smallest positive imaginary part. At α =
√

2a/ξh ≫ 1, one of the arguments of

coth(α
√
z2 ± 1) must be close to ±iπ/2. Expanding around this point, we obtain z2

0 =

i− π2

4α2 + (1−i)π2

4α3 + . . . This translates into the reduced effective field

h(eff) ≈ h

[

1 − π2

8
√

2

(
ξh
a

)3
]

(3.28)

and the effective spin-flip rate

Γ
(eff)
sf ≈ π2

16

(
ξh
a

)2

h =
π2D

16a2
. (3.29)

Thus, to the leading order in (ξh/a), the effect of domain walls reduces to an effective spin-

flip rate, which increases the period of 0–π transitions as a function of d and simultaneously

decreases the overall decay length of the critical current (see Fig. 3.2, dashed line, for an

illustration).

3.3.2 Limit of small domains : a ≪ ξh, d, ξT

In the limit of small domains a ≪ ξh, d, ξT , we can calculate a perturbative correction to

the critical current by expanding (3.20) in a. To the lowest order in a, we obtain (without
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assuming the high-field limit),

Jc

I0
=
JSNS

I0
− 2a2d2

3ξ4h

∑

ω>0

∆2

ω2

[
λ0d cosh λ0d− sinhλ0d

λ0d sinh2 λ0d

]

, (3.30)

where λ2
0 =

λ2
++λ2

−

2 = 2|ω|
D does not contain the exchange energy h, and JSNS = Jc(h = 0).

This expression reveals that in the limit a → 0 the multidomain SFS junction behaves

like a SNS junction: the exchange field is averaged out when the domain width is small.

Note also that the correction arising from a finite domain width is always negative: the

amplitude of the current is decreased compared to the SNS case.

A more accurate approximation may be obtained in the high-field limit ξT ≫ ξh by the

asymptotic estimate of the oscillating sum described earlier in this section. To the second

order in a, the solution to the equation (3.27) is given by z0 = −α2

3 , which translates into

h(eff) = 0 , Γ
(eff)
sf ≈ 1

3

(
a

ξh

)2

h =
h2a2

3D
(3.31)

This expression for Γ
(eff)
sf agrees with the general estimate for the effective spin-flip rate

obtained by Ivanov and Fominov [20] for SF structures with inhomogeneous magnetization.

Note that for sufficiently small a, the equation (3.27) has a solution with real z2
0 corre-

sponding to a pure decay (without oscillations) of the critical current. The dependence of

the critical current on d is then purely decaying, without 0–π oscillations (Fig. 3.2, dotted

line).

3.3.3 0–π phase diagram

Between the two regimes of small and large domains, there is a phase transition as a

function of a/ξh corresponding to a bifurcation of the real solution z2
0 to Eq. (3.27) at

smaller a to complex solutions at larger a. For a/ξh smaller than the critical value, the

critical current decays as a function of d without oscillations (always in the 0 phase). For

a/ξh larger than the critical value, the dependence on d is damped oscillatory, qualitatively

similar to a single-domain SFS junction.

Numerically, we find the critical value ac/ξh ≈ 0.83. The full 0–π phase diagram in

the high-field limit is plotted in Fig. 3.3. Periodic 0–π transitions (as a function of d)

above ac/ξh and zero phase below ac/ξh illustrate our discussion. The absence of the 0–

π transitions in the case of small domains may explain why in some experimental SFS

junctions the π state is absent [79, 80].

For completeness, in Fig. 3.4 we also plot the locus of solutions z2
0 to Eq. (3.27) in the

complex plane for all values of α (in the units Γ
(eff)
sf /h and h(eff)/h). The corresponding
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Figure 3.4: The effective spin-flip scattering rate Γ
(eff)
sf and the effective exchange field

h(eff). The curve starts at a = 0 and ends at a = ∞. The inset shows the real part (decay

length) and the imaginary part (rate of oscillations) of λ in Eq. (3.24).

real and imaginary parts of λ determining the d dependence of the critical current (3.24)

are plotted in the inset.

3.4 Local current density

Since the system does not have a translational symmetry along the y direction, the Joseph-

son current forms a nontrivial pattern in the x-y plane. In Fig. 3.5 we present plots of the

current density (proportional to sinϕ) at two different points of the phase diagram: in the

zero phase and in the π phase.

Those inhomogeneous patterns may be qualitatively understood on the basis of inter-

preting the domain walls as producing an effective spin-flip scattering. Different regions

of the ferromagnet may be attributed different effective spin-flip rates, depending on their

distance from the domain wall. The effective spin-flip processes renormalize the decay co-

efficient λ in (3.24) and, therefore, different parts of the junction experience 0–π transitions

at different values of d. This can be clearly seen in Fig. 3.6 depicting the current density

near a 0–π transition. While the neighborhood of the domain wall is in the 0 phase, the

region near the free boundaries (at y = ±a) are in the π phase. This situation resembles a

model studied by Buzdin et al. [90]: a system of alternating zero and π junctions. In that

work, an intermediate equilibrium phase difference was predicted, depending on the ratio



54 SFS junction with in-plane ferromagnetic domains

S S S S 

a b

Figure 3.5: Josephson-current density in the two-domain SFS junction in the zero and π

phases. The domain size is a = 1.6 ξh ≪ ξT , and d is taken to be below (left) and above

(right) the first 0–π transition.

between the junction widths and the magnetic coherence length. Even though our model

cannot lead to such a ϕ-junction (we consider linearized Usadel equations and therefore

obtain a purely sinusoidal current-phase relation with only two possible equilibrium phases

0 or π), at low temperatures such a SFS system with domains could possibly produce a

ϕ-state.

3.5 Summary

In this chapter we consider a Josephson SFS junction consisting of domains with opposite

magnetization connected “in parallel”. As a function of the junction thickness, the critical

current may exhibit either a decaying oscillating or a purely decaying behavior, depending

on the domain width. The effect of domain walls in this geometry may be approximated as

an effective spin-flip scattering, together with a renormalization of the effective magnetic

field. This behavior is different from that in SFF’S junctions with the domains connected

“in series” studied in Chapter 2 and Ref. [72]. In that SFF’S setup, the domain structure

lead to a gradual reduction of the π phase (at a non-parallel configuration of the two

domains), so that the relative fraction of the zero phase increases as a function of the

mismatch in the magnetization directions. In the present chapter, however, we do not

consider the case of an arbitrary angle between the two magnetizations, because of the

complexity of the problem.

It is justified to ask oneself to what extend our conclusions [42] depend on the particular

choice of the realization of the in-plane domains. In a recent work by Champel et al. [88]

a similar study was performed for a different type of domain structure. It is shown that
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Figure 3.6: Current lines close to the 0–π transition. The domain size is a = 1.6 ξh ≪ ξT ,

and d is taken to be close to the first 0–π transition. Part of the junction is in the zero

phase and part in the π phase.

for a ferromagnet with cycloidal spiral modulation of the magnetization in the plane of the

ferromagnetic layer, one gets a phase diagram of the same form as Fig. 3.3 and effective

decay and oscillations rates comparable with Fig. 3.4. In Ref. [88] the inverse wave vector

of the spiral order is the relevant parameter and plays the same role as the size of the

domains a in our work. It appears therefore that our conclusions do not rely crucially on

the form of the in-plane domains.

We expect that in a realistic geometry of domains both effects of the spin-flip scattering

and of the reduction of the π phase take place simultaneously, and our findings presented

in this chapter and in the previous chapter (published in Refs. [72] and [42]) may help to

qualitatively describe the 0–π phase diagram of real SFS junctions with inhomogeneous

ferromagnetic interlayers.
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Chapter 4

Orbital effect of a magnetic field

4.1 Introduction

After having discussed in the previous chapters the physics resulting from the interplay

between ferromagnetism and superconductivity in proximity structures, we turn here to the

effect of an external magnetic field in a Josephson junction. We can distinguish between

the orbital and the Zeeman effect of the magnetic field. Some studies have focused on the

Zeeman effect of the magnetic field in proximity systems (see for example Ref. [93]) or,

since the Zeeman term in the Usadel equations is formally equivalent to the ferromagnetic

exchange field, considered the possibility to obtain a π junction by applying a field [94].

In this chapter we address the orbital effect of an external magnetic field in a diffusive

superconductor-normal metal-superconductor (SNS) Josephson junction. As we saw in the

previous chapters, one-dimensional models can often successfully be applied to describe the

proximity effect in the diffusive regime. However, including orbital effects in the formalism

forbids reducing the system to one dimension. As a result, the proximity effect in the

presence of the orbital effect of the magnetic field has been studied until now essentially

numerically or in simple limits (wide and short junction or narrow junction) for diffusive

hybrid structures [95, 96] and in the clean limit [97].

It is well established that in the limit of a thin (tunnel) junction the Josephson current

changes sign along the transverse direction when an external magnetic field is applied and

that the total current exhibits a Fraunhofer-like dependence on the magnetic flux through

the junction [46] due to the interference between the local currents. Observation of this type

of dependence has been extensively used experimentally to confirm the Josephson nature

of the coupling between superconductors. More recently, shifted Fraunhofer patterns have

also served as an indicator for the presence of a net magnetization when a ferromagnetic

interlayer is used [58, 60]. It has been then shown both experimentally [98] and theoretically
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[95, 96] that in proximity structures, discrepancies from the usual Fraunhofer patterns can

be present. In particular, the authors of Refs. [95, 96] have discussed numerically how the

damped oscillatory behavior (Fraunhofer like) characterizing wide and short junctions is

replaced by a monotonic exponential decay in narrow junctions. They have also identified

the length scale over which the transition between the two regimes takes place.

Motivated by this recent activity and by the rarity of analytical results on the Usadel

equation for non one-dimensional geometries, we revisit the problem of the diffusive SNS

junction in an external magnetic field. We consider the limit of a long junction and lin-

earized Usadel equations to obtain analytical results for a two dimensional problem. We

show that for a narrow junction, the Josephson critical current decays exponentially as a

function of the flux through the junction. We find the transition point (the critical width of

the junction) where this monotonic decay is replaced by damped oscillations of the critical

current. Finally, in the limit of a wide junction, we find damped oscillations with the same

period as in the Fraunhofer limit but an exponential decay instead of the purely algebraic

decay characterizing Fraunhofer patterns. In this regime, the superconducting correlations

become localized in a small region close to the border of the junction. The method we

develop does not rely crucially on the choice of particular boundary conditions for the

interface between the superconductor and the normal metal: it can be applied either to

the situation where the SN interfaces are transparent or to systems with finite interface

transparency.

The chapter is organized as follows. In Sec. 4.2 we describe the SNS Josephson junction

we consider and introduce the formalism used throughout the chapter. We discuss then

(Sec. 4.3) the basic mechanism of formation of Fraunhofer-like interference patterns in

short SNS junctions. We compute (Sec. 4.4) the superconducting Green function and the

Josephson current (Sec. 4.5) for long SNS junctions in a transverse field. In Sec. 4.6 we

discuss the applicability conditions of our method and finally in Sec. 4.7 we summarize our

conclusions.

4.2 SNS junction in a transverse magnetic field

We consider a SNS junction in a transverse magnetic field. We introduce a coordinate

system with the N layer in the yz plane (Fig. 4.1). The x axis is directed along the

junction, and the SN interfaces correspond to the coordinates x = 0, Lx. The origin of the

y axis is chosen in the middle of the N layer and we denote the width Ly. The system is

invariant under translation along the z axis. We take a uniform magnetic field H directed

along the z axis and neglect the screening of the magnetic field by the Josephson currents.

This assumption is justified in most experimental situations with sufficiently weak critical

currents, see, e.g., Refs. [94–96] for estimates. Namely, we must require that the junction
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Figure 4.1: SNS junction in a transverse magnetic field.

is narrow compared to the Josephson penetration depth [47]

Ly ≪ λJ =

√

φ0

2πjcLx
, (4.1)

with jc the critical current density and φ0 = h/2e the superconducting flux quantum.

For simplicity, we further consider that the London length is short compared to the

length of the junction Lx and neglect the penetration of the magnetic field in the super-

conducting electrodes. An exact treatment would require to add twice the London length

to Lx in order to get the total flux through the junction [47].

We assume that the normal layer is strongly disordered and the motion of electrons

is diffusive. In this regime, the quasiclassical Green functions (averaged over the fast

Fermi oscillations and the momentum directions) are given by the solutions to the Usadel

equations (1.62).

The (nonlinear) Usadel equation in the normal layer takes the form

~D∇̂
(

ǧ∇̂ǧ
)

− ω [τ̂3, ǧ] = 0 . (4.2)

D = vFle/3 is the diffusion constant with le the elastic mean free path and ω = (2n + 1) πkBT

is the Matsubara frequency. We have taken Eq. (1.62) in the absence of the vector compo-

nent (1.67): the singlet version of the Usadel equation is sufficient since we consider only

the orbital coupling to the external magnetic field. The Green function

ǧ =

(

G F

−F † −G

)

(4.3)

is therefore a matrix in the Nambu (particle-hole) space, and τ̂α denote the Pauli matrices

in this space. The gradient operator ∇̂ contains the vector potential A in order to describe
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the orbital effect of the field

∇̂ǧ =

(

∇G
(
∇− 2ie

~
A
)
F

−
(
∇ + 2ie

~
A
)
F † −∇G

)

. (4.4)

We neglect the Zeeman splitting which, in the case of the transverse magnetic field, has

a typically much smaller effect than the vector-potential term, provided the quasiclassical

condition kF le ≫ 1 is satisfied. The Zeeman term may be added as the contribution

±iµH to the Matsubara frequency in the Usadel equation (4.2). On the other hand, the

characteristic dimensions of the junction for observing the orbital effects discussed here are

of the order of the magnetic length [93, 96]

ξH =

√

φ0

H
. (4.5)

One can check that, for Lx ∼ ξH , the Zeeman splitting is much smaller than the Thouless

energy ETh = ~D/L2
x (using the quasiclassical assumption kF le ≫ 1) and thus may be

neglected for most purposes.

The Usadel equation is supplemented with the normalization condition for the quasi-

classical Green function

ǧ2 = 1̌ . (4.6)

For simplicity, we assume for the moment that the proximity effect is weak (close to

the critical temperature of the superconductor) and that the boundary conditions at the

interface with the superconductor are rigid. Recall that this is the case for the transpar-

ent interface, if the normal region is much more disordered than the superconductor, as

discussed in Sec. 1.4.6. We will see in Sec. 4.6 that these assumptions are not crucial and

can be relaxed.

Then the Green function can be linearized around the normal-metal solution as

ǧ =

(

sgn(ω) F

−F † −sgn(ω)

)

, (4.7)

and, choosing the gauge A = −yHex, the linearized Usadel equation (4.2) takes the form

[95, 96]
[

(∇x + 2iπy)2 + ∇2
y −

2|ω|ξ2H
~D

]

F (x, y) = 0 . (4.8)

Here we have rescaled both coordinates x and y in the units of the magnetic length ξH

(4.5).

This equation is supplemented by the boundary conditions at the interface with the

superconductor and at the open interface,

F (x = {0, Lx}, y) = FBe
±iχ , (4.9)

∇yF (x, y = ±Ly/2) = 0 . (4.10)
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The boundary condition (4.9) is the rigid one, with FB being the bulk value of the anoma-

lous Green function in the superconductor (close to the superconducting transition temper-

ature, FB = ∆/|ω|). The phase difference across the junction is thus denoted 2χ. Condition

(4.10) expresses the vanishing of the current through the interface with vacuum.

The second anomalous component F †(x, y) can be obtained solving the Usadel equa-

tion (4.8) with the boundary conditions (4.9) and (4.10) after the substitution (χ,H) ↔
(−χ,−H). It is therefore the complex conjugate of F (x, y).

The current density can be calculated from the solution of the Usadel equation using

(1.68)

J = 2πieν0DT

∞∑

n=0

[

F †∇F − F∇F † − 4ieA

~
FF †

]

(4.11)

where ν0 is the density of states in the normal metal phase (per one spin projection). The

symmetry of translation along the z direction implies that the current remains in the xy

plane. The sum is taken over the Matsubara frequencies ω.

4.3 Short junction limit: Fraunhofer interference patterns

Introducing the variables x̃ ∈ [0, 1] and ỹ ∈ [−1/2, 1/2], we can rewrite the Usadel equation

(4.8) in the form

[

(∇x̃ + 2iπφỹ)2 +

(
Lx

Ly

)2

∇2
ỹ −

2|ω|ξ2H
ETh

]

F (x̃, ỹ) = 0 . (4.12)

with ETh = ~D
L2

x
and φ = LyLx (recall that the lengths Lx and Ly are given in the units of

ξH). In the limit, Lx ≪ ξH ≪ Ly we can neglect the gradient term along the y direction.

The Usadel equation (4.12) is then reduced to a one-dimensional problem which can be

easily solved for the boundary condition (4.9)

F (x̃, ỹ) =
FBe

2iπφỹ(x̃−1)

sinhW

[
e−iχ sinh [Wx̃]

−eiχ+2iπφỹ sinh [W (x̃− 1)]
]

. (4.13)

with W =
√

2|ω|ξ2H/ETh. Note that it is not sufficient to require the condition Lx, ξH ≪ Ly

as claimed in Ref. [96]. Indeed, from the solution (4.13) we see that with Lx ∼ ξH the

gradient term along the y direction in (4.12) can give a non-negligible contribution.

Using the expression of the current (4.11) we can easily compute the total current

through the junction. As usual, we get a sinusoidal current phase relation,

Jtot = Ic sin 2χ . (4.14)
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Figure 4.2: Critical current Ic/(Ic(H = 0)) as a function of the magnetic flux through a

SNS junction for Lx ≪ ξH ≪ Ly.

The critical current is given by

Ic = I0
sin(πφ/φ0)

πφ/φ0
(4.15)

with I0 = Ic(H = 0) the critical current in a SNS junction at zero field and we have

reintroduced physical units. As expected, we recover the same Fraunhofer patterns (see

Fig. 4.2) as in a tunnel junction [46, 47].

4.4 Analytical results for a long junction

We are interested in solving the Usadel equation (4.8) in the middle of the long junction:

Lx ≫ ξH . This will allow us to retain only the mode with the slowest decay along the

x direction from a spectral decomposition of the solution. To simplify our treatment, we

assume that the temperature is sufficiently low, compared to the junction length: ξT ≫ Lx,

where the thermal length scale is defined as ξT =
√

~D/2πT . This assumption allows us

to neglect the ω term in the Usadel equation (4.8). We will comment on this assumption

in Sec. 4.6.

First, notice that in the limit of the long junction (when the junction length Lx is much

larger than the characteristic length of the decay of the anomalous Green function F ) we

can approximate the solution of (4.8) as a superposition [44] of the two Green functions

for the semi-infinite SN problem

F (x, y) ≈ F∞(x, y)eiχ + F∞(Lx − x,−y)e−iχ (4.16)
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where F∞(x, y) is the solution for the SN problem with the semi-infinite normal layer.

It obeys the same equation (4.8) with the same boundary condition (4.10) and with the

second boundary condition (4.9) replaced by F∞(x = 0, y) = FB and F∞(x → ∞, y) = 0.

Note the mirror operation y ↔ −y between the two terms in the right-hand side of (4.16).

It will be convenient to use the Fourier decomposition along the x direction by extending

the semi-infinite problem to the whole real axis,

[

(∇x + 2iπy)2 + ∇2
y

]

F∞(x, y) = f(y) δ(x) , (4.17)

where the right-hand side accounts for the jump in the derivative of the function at x = 0.

Taking the Fourier transform, we can rewrite this equation in the integral form

F∞(x, y) =

∫
dk

2π
eikx

[

∇2
y − (k + 2πy)2

]−1
f(y) . (4.18)

The function f(y) is fixed self-consistently by the boundary condition F∞(x = 0, y) = FB.

At positive x, we can close the integration contour in the upper half-plane, and the

poles of the integrand are given by the zero modes of the operator

A = ∇2
y − (k + 2πy)2 (4.19)

(this operator acts on the functions ψ(y) on the interval −Ly/2 < y < Ly/2 with the

boundary conditions ψ′(±Ly/2) = 0). In the long-junction limit, the solution in the middle

of the junction is determined by the zero mode with the smallest positive imaginary part

of k.

The general solution to the second-order differential equation Aψ = 0 can be written

in terms of a linear combination of two modified Bessel functions [99],

ψ =
√

k + 2πy

(

C1 I1/4

[
(k + 2πy)2

4π

]

+ C2K1/4

[
(k + 2πy)2

4π

])

. (4.20)

The boundary conditions at y = ±Ly/2 fix the ratio C1/C2 and limit the possible values

of k to a discrete set. We get from the condition at y = −Ly/2

C1

C2
=
K3/4

[
(k−πLy)2

4π

]

I−3/4

[
(k−πLy)2

4π

] . (4.21)

In Fig. 4.3, we plot the value of k with the smallest positive imaginary part as the

width of the junction Ly increases from zero to infinity solving the boundary condition

at y = Ly/2. In the limit Ly → 0, the 2πy correction in the operator (4.19) may be

neglected, and the spectrum is composed of the non-degenerate eigenvalues k = inπ/Ly

(the “leading” eigenvalue with the smallest imaginary part in the limit Ly → 0 is thus

zero). At a small finite Ly, the leading eigenvalue also becomes finite, but remains purely
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Figure 4.3: Effective wave number k, the lengths are given in units of ξH . A purely

imaginary k indicates a monotonic decay.

imaginary. This follows from the combined symmetry of the complex conjugation and the

reflection y 7→ −y, which relates the eigenvalues k and −k∗. Since the leading eigenvalue

is nondegenerate in the limit Ly → 0, by continuity it must remain purely imaginary for

sufficiently small Ly.
1

At larger Ly, two imaginary eigenvalues may collide and bifurcate to a pair of complex-

conjugate eigenvalues. This happens at Ly = Lc ≈ 0.82 (see Fig. 4.3). For Ly > Lc, we

must take into account the contributions of the two modes (corresponding to the wave

vectors k and −k∗) since they decay with the same rate (given by the imaginary part of

k). In the discussion of the wide-junction limit (Sec. 4.4.2), we will show that those modes

correspond to solutions localized close to the two edges of the junction y = ±Ly/2 (for

Ly ≫ 1). The critical length Lc separates the regime where the superconducting anomalous

Green function F (x, y) decays along the x direction without oscillations (narrow junction,

purely imaginary k) and the regime where the decay of the Green function is damped

oscillatory (wide junction, complex k with both real and imaginary parts).

4.4.1 Narrow junction limit

For Ly ≪ 1 (in the units of ξH) we expand the exact solution (4.20) in powers of Ly and

find the wave number k solving the equation for the boundary condition (4.10) at y = Ly/2.

1We thank M. Skvortsov for pointing to us this symmetry.
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Figure 4.4: Superconducting pair correlations |ψ| normalized to their value at the border

of the junction for Ly = 0.25ξH (dash), 0.75ξH (dot), ξH (dash dot) and 2.5ξH (solid).

This yields the expansion

k =
iπ√
3
Ly

(

1 +
4π2

63
L4

y +
932π4

218295
L8

y +
7976π6

13752585
L12

y + . . .

)

(4.22)

To the lowest order in Ly, the solution to the Usadel equation does not depend on y.

In this limit, one can simply average the y2 term in the Usadel equation (4.8) and arrive

at a pair-breaking term [40, 95, 96, 98]

~D

2
∇2

xF (x) = (|ω| + 2Γ)F (x). (4.23)

with

Γ = −~Dk2

4
=
De2H2L2

y

12~
. (4.24)

This result obviously reproduces the first term in (4.22). For wider junctions, the depen-

dence of the anomalous Green function F (x, y) along the y direction cannot be neglected

anymore, but as long as Ly remains smaller than Lc, the function F (x, y) exhibits a mono-

tonic exponential decay along the x direction.
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4.4.2 Wide junction limit

In the limit of a wide junction Ly ≫ 1 (as usual, in the units of ξH), the solution is

determined by the two complex conjugate wave numbers k and −k∗. We show below that

the asymptotic behavior of k (in the units of ξ−1
H ) is

k = πLy + kres (4.25)

where kres is the constant term in the expansion in L−1
y .

Indeed, in the wide junction limit, each of the two zero modes (solutions to Aψ = 0) is

localized near one of the two edges of the junction and decays quasiclassically towards the

other edge. The solution localized near y = −Ly/2 should therefore have the quasiclassical

wave vector in the operator (4.19) vanishing in that region, which immediately gives the

leading asymptotics k ≈ πLy (the solution localized at the opposite edge has k ≈ −πLy).

To get the subleading term kres, we consider one of those zero modes (say, the one

localized near y = −Ly/2). This zero mode decays quasiclassically towards the opposite

edge of the junction, and with an exponential precision we can replace the boundary

condition at y = Ly/2 by the decaying condition at infinity, ψ(y → ∞) = 0. This selects a

solution from (4.20) of the form

ψ =
√

k + 2πyK1/4

[
(k + 2πy)2

4π

]

. (4.26)

Imposing now the boundary condition ψ′(−Ly/2) = 0 implies an equation on kres:

K3/4

[
(kres)

2

4π

]

= 0 . (4.27)

A numerical solution to this equation gives2

kres ≈ −1.68 + 2.32i . (4.28)

We illustrate our calculation in Fig. 4.4, where we plot the zero modes below and

above the transition. Below the transition (for Ly < Lc), the solution is nondegenerate

and symmetric, while above the transition (for Ly > Lc) the two zero modes are pushed

towards the edges of the junction. The characteristic size of the region near the edge where

the proximity correlations are localized are of the order 1 [from the solution (4.26)], i.e.,

ξH in the physical units.

2The Macdonald function K3/4(z) does not have zeros on the principal sheet of the Riemann surface,

therefore the solution must have π/2 < | arg k| < π. We also impose the condition ℑk > 0, for the

mode decaying along the x direction. Finally, under these constraints, we select the root with the smallest

imaginary part. Technically, the second sheet of the Riemann surface may be accessed with the relation

K3/4(e
iπz) = e−3πi/4K3/4(z) − iπI3/4(z).
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Finally, we can verify that the limit Ly ≫ 1 does not require imposing more conditions

on Lx. Indeed, we find numerically from (4.20) that when Ly → ∞ the difference between

the imaginary part (decay rate) of the zero mode with slowest decay and the zero mode

with the second slowest decay saturates to a finite value, approximately 2.4. Since this

difference is given in units of ξ−1
H , our long junction assumption Lx ≫ ξH is sufficient to

ensure that we can safely restrict ourselves to the slowest zero mode.

4.5 Josephson current

The transition between the two types of behavior of the anomalous Green function, purely

decaying and decaying with oscillations, may be observed in the critical current of the SNS

junction in a magnetic field. Our result on the transition is consistent with the previous

numerical works [95, 96], which indicate that the oscillations appear when the width of the

normal region Ly becomes of the order of the magnetic length ξH . We show below that the

oscillations of the critical current in the SNS system are governed by the same wave vector

k as the oscillations of the anomalous Green function F∞(x, y) in the SN system discussed

in Sec. 4.4.

In the long-junction limit, the anomalous Green function is given by the expression

(4.16), and, using the expression (4.11), one arrives at the sinusoidal current-phase relation

[7],

Jtot = Ic sin 2χ , (4.29)

where Jtot is the total Josephson current (integrated over the y and z directions).

In the “pure decay” regime (Ly < Lc), the asymptotic behavior of F∞(x, y) is

F∞(x, y) = FBψ(y)eikx (4.30)

with a purely imaginary k (see Fig. 4.3), and ψ(y) proportional to the zero mode of the

operator (4.19). This results in the exponential decay of the critical current as a function

of Lx:

Ic = 8πeν0DTLz

( ∞∑

n=0

FB

)

1

i

[
∫ Ly/2

−Ly/2
(k + 2πy)ψ2(y)dy

]

e−|k|Lx , (4.31)

where Lz is the dimension of the junction along the z direction. Note that this expression

is real [since ψ(y) = ψ∗(−y) in this regime] and positive (one checks this numerically).

In the regime of “decaying oscillations” (Ly > Lc), the anomalous Green function

F∞(x, y) contains contributions from two zero modes,

F∞(x, y) = FB

[

ψ(y)eikx + ψ∗(−y)e−ik∗x
]

(4.32)
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Figure 4.5: Phase diagram of the junction in the magnetic field. The left region corresponds

to the pure decay regime while in the right one the critical current Ic exhibits interference

patterns as a function of the flux of the field H.

[here ψ(y) 6= ψ∗(−y) are the two zero modes of the operator (4.19)]. Integrating the critical

current along the y direction, one finds

Ic = 8πeν0DTLz

( ∞∑

n=0

FB

)

ℑ
[
∫ Ly/2

−Ly/2
(k + 2πy)ψ2(y)dy eikLx

]

, (4.33)

so that ℑk and ℜk describe the rates of decay and oscillations of the critical current as

a function of Lx, respectively. In Appendix E, we present the details of the derivation of

(4.33). The derivation of (4.31) follows the same lines. Note that in the case of a wide

junction, Ly ≫ ξH , the localization of the superconducting pair correlations at the edge of

the junction results in the localization of the superconducting current in the same region.

We sketch the phase diagram of the junction in Fig. 4.5 in the coordinates Lx and Ly.

In experiments, however, one usually varies the external field for a given junction with fixed

dimensions. In this setup, the easiest way to observe a transition between the two regimes

is to study a junction with Lx > Ly (theoretically, we assume Lx ≫ Ly, but in practice Lx

may be limited by the thermal length ξT and by the smallest measurable critical current).

In this case, as the field H increases, one should be able to observe a crossover between the

pure-decay regime and the decaying-oscillating regime as ξH crosses over Ly. At low fields
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(for ξH ≫ Ly), in the pure-decay regime, the field dependence of the critical current is

Ic = I1
φ

φ0
exp

(

− π√
3

φ

φ0

)

(4.34)

where I1 is of the order of the critical current in the absence of the field [and we have used

the leading term in the asymptotics (4.22)]. This expression reproduces the existing result

for a SNS junction with a finite depairing rate (4.24) [in our treatment, the approximation

(4.16) implies assuming φ≫ φ0] [100]

Ic = I0

π√
3

φ
φ0

sinh
(

π√
3

φ
φ0

) (4.35)

with I0 the critical current in the absence of the field. Note that equation (4.35) is valid

only for linearized Usadel equations while we will show in Sec. 4.6 that the domain of

validity of the asymptotics (4.34) can be extended to non-linear situations. At high fields

(for ξH ≪ Ly), the critical current exhibits the decaying-oscillating behavior with

Ic = I2
Lx

Ly
exp

[

−2.32
Lx

ξH

]

sin

[
πφ

φ0
− 1.68

Lx

ξH
+ ϕ0

]

. (4.36)

Here I2 is of the same order as I1 and I0 (the current in the absence of the external field),

φ = HLxLy is the total flux through the junction, and ϕ0 is a phase shift, which we do

not compute here. Note that while both expressions (4.34) and (4.36) decay exponentially

with increasing the field, the expression in the exponent of (4.34) is proportional to H,

while that in the exponent of (4.36) only to
√
H.

If, however, one considers the current-field dependence for a contact with Lx < Ly,

then one would observe a crossover from the Fraunhofer pattern (for ξH ≫ Lx) [95, 96, 98]

Ic = I0
sin(πφ/φ0)

πφ/φ0
(4.37)

directly to the wide-junction regime (4.36), as the magnetic length ξH becomes shorter

than Lx.

4.6 Applicability of the results

To simplify our discussion, we have considered in Sections 4.2–4.5 the linearized problem

with rigid boundary conditions. However, our method is based on finding the zero modes

of the operator (4.19) which describes the proximity effect in the middle of the junction.

Therefore, our results remain valid for more general boundary conditions and for the non-

linear case, as long as the junction is sufficiently long (so that the Green function F∞(x, y)

decays by a factor much larger than one by the middle of the junction). In this case, the
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Usadel equation close to the middle of the junction can be linearized anyway, and our

treatment of Sec. 4.4 can be performed in a similar way, albeit with more complicated

boundary conditions. Therefore all the conclusions of Sections 4.4 and 4.5 about the

different interference patterns of the critical current and about the transition value Lc ≈
0.82ξH remain valid. The crucial condition for applicability of our method is thus that the

junction is much longer than ξH [in the narrow-junction limit, we also need to assume that

φ≫ φ0 for applicability of our asymptotic formula (4.34)]. The only role of the boundary

conditions and of the non-linearity of Usadel equations is the renormalization of the overall

coefficients in the asymptotics (4.34) and (4.36).

Another approximation used in our calculation is the assumption of low temperature.

As we have seen in the previous sections, the characteristic scale at which the anoma-

lous Green function F (x, y) varies is of the order ξH . Therefore, the assumption of low

temperature [neglecting ω term in the Usadel equation (4.8)] implies ξT ≫ ξH . Under

this low-temperature assumption, the temperature enters only as small corrections to the

calculations in the previous sections (including corrections to the zero-mode wave vector

k).

We can now qualitatively discuss the high-temperature regime ξT < ξH . In this case,

the decay of the anomalous Green function F (x, y) along the x direction is determined

mostly by ξT , rather than ξH , and, as a result, the critical current contains an exponential

factor exp(−κLx) with κ ≈ ξ−1
T . However, one can still repeat much of the reasoning of

Sec. 4.4 in the presence of the ω term. One then finds that in the limit Lx → ∞, even

at high temperature, one can still distinguish the two regimes of the purely decaying and

oscillatory-decaying Lx dependence. The critical width Lc separating the two regimes is

slightly decreased as compared to the low-temperature case: a dimensional estimate gives

Lc ∝ ξ
2/3
H ξ

1/3
T at ξT ≪ ξH . On the other hand, the same dimensional estimate indicates that

the field contribution to the decay rate along the x direction is of the order ξ
1/3
T ξ

−4/3
H , which

translates to a crossover from the purely Fraunhofer regime to the oscillatory-decaying

regime at Lx ∼ ξ
4/3
H ξ

−1/3
T , i.e., for slightly thicker junctions than at low temperatures.

4.7 Summary

To summarize, we consider a long diffusive SNS junction in an external magnetic field H.

We show that depending on the width of the junction relative to the magnetic length ξH =
√

φ0/H two different regimes can be observed. For narrow junctions the anomalous Green

function F decays monotonically along the junction while for wide junctions exponentially

damped oscillations are present. We find that the transition between the two regimes

occurs for a width Lc ≈ 0.82ξH . Those different behaviors translate in a monotonic decay

of the Josephson critical current (4.31) as a function of the magnetic flux through a narrow

junction and in damped current oscillations for wide junctions. Finally, we show that for
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wide links the current and the superconducting pair correlations are concentrated in a

small region of size ξH close to the border of the junction.

The main finding of the present work [101], in comparison with previous studies of this

problem, is the identification of the damped-oscillating phase for wide and long junctions.

This phase resembles both the Fraunhofer regime (for wide and short junctions) and the

damped phase (for narrow and long junctions). The period of oscillations is the same as

in the Fraunhofer interference pattern, while the exponentially decaying factor resembles

the damped phase.

Conceptually, the transition between the two asymptotic regimes for long junctions

in our problem is similar to the transition between the two regimes in superconductor–

ferromagnet–superconductor junctions with domains studied in Chapter 3 [42]. In both

systems, the transition between the purely damped and damped-oscillating behavior is

related to a bifurcation of the solution to the linearized Usadel equations.

Experimentally the limit of a long junction is accessible and has been the subject

of recent experiments [98]. While the decaying regime has been observed, even though

without a good quantitative agreement with the theory, the regime of decaying oscillations

predicted here has not been reached, because the fields were not sufficiently high. In

future experimental studies, it may be convenient to use junctions with the aspect ratio

Lx/Ly ∼ 1 to access this new damped-oscillating regime, in order to be able to use lower

fields than for Lx/Ly ≫ 1 junctions. In any case, an accurate analysis would be required

to distinguish the decaying exponential regime predicted in our work from the distorted

Fraunhofer pattern due to possible structural inhomogeneities of the critical current, as

discussed in Ref. [47].
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Chapter 5

Conclusion

The mere observation of transitions between the 0 and the π phase has constituted an im-

portant challenge to experimentalists. More than twenty years have passed between the first

theoretical works suggesting the existence of SFS π junctions [3, 55] and their realization

in experiments. After the pioneering works [51–54, 58, 60] which showed good qualita-

tive agreement with the original theoretical predictions based on a quasi-one-dimensional

model and a monodomain ferromagnetic interlayer, a better understanding of the actual

magnetic structure of the ferromagnetic thin films is now necessary in order to progress

towards the controlled realization of devices based on π junctions. Experimental results on

the domain structure would also stimulate the interest in the long-range triplet component

and challenge the existing theoretical predictions in this field of research [6].

Experimentally, a first insight into the presence of a domain structure can be given by

the study of shifted Fraunhofer patterns. For a Josephson SFS junction with a monodomain

ferromagnet, one expects a shift in the interference patterns by the net magnetization in

the F layer, while in the presence of random domains the magnetization averages out and

standard patterns are recovered [58]. The advantage of the method is to allow studying the

ferromagnetic layer in the original SFS experimental setup. This might be important due

to the possible [62] influence of the proximity effect on the domain structure. An important

drawback is that no precise information on the size and form of the magnetic inhomogeneity

is provided. The decoration method used in Ref. [61] offers a detailed image of the domain

patterns. However, its spatial resolution is limited by the size of the decoration particles

(in Ref. [61] the average size is of about ten nanometers). Higher resolutions are difficult to

achieve since the saturation magnetization of the decoration particles decreases for small

particles. The technique used in [61] is not sufficient to resolve magnetic inhomogeneities

small enough to induce the effective spin-flip scattering expected from fits to the data. A

rough estimate of the size of the magnetic inhomogeneity needed to get noticeable effects

can be made from Eq. (3.31) (see also Refs. [20] and [41]) and yields domains smaller than
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ten nanometers.

The theory of mesoscopic proximity structures has been developed via complementary

use of analytical and numerical approaches. Numerical methods are useful in providing de-

tailed fitting of experimental data or sometimes in giving a first insight into a phenomenon.

Analytical approaches may give a better qualitative understanding of the physics by allow-

ing to isolate the relevant parameters and may therefore help orienting experiments. The

major part of the analytical works on hybrid structures uses the fact that quasiclassical for-

malism allows in many situations to reduce complicated inhomogeneous proximity systems

to a simple one-dimensional problem with appropriate boundary conditions. However, as

we have seen in Chapters 3 and 4, one needs sometimes to consider the physics beyond the

quasi-one-dimensional geometry.



Appendix A

Collision integral in the presence

of isotropic spin-flip scattering

We compute here the collision integral in the diffusive limit and in the presence of isotropic

magnetic disorder (1.45). For simplicity, the derivation is done in the absence of the triplet

component. The generalization to an arbitrary spin-structure of the Green function is

straightforward.

We can write the collision integral (1.55) in terms of quasiclassical Green functions

(1.53) (green functions integrated over dξp near the Fermi surface) using

∫
d3p

(2π)3
Ǧ(p,p − k) = τ̂3 ⊗ σ̂0

(

ν0πi

∫
dΩp

4π
g̃(p̂,k) + 1̌P

∫
p2dp

2π2

1

ξp

)

. (A.1)

Here P represents the principal part of the integral for which only the normal state Green

function gives a significant contribution (∆ ≪ EF ). The second term is proportional to the

unit matrix in the Nambu ⊗ spin space and can be incorporated into the chemical potential.

Therefore, the self-energies in terms of the quasiclassical Green functions become

Σ1(p̂,k) =
ivF

2
nimp

∫

dΩp1
σ1(θ)g(p1,k), (A.2)

and

Σ2(p̂,k) =
ivF

2
nimp

∫

dΩp1
σ2(θ)f(p1,k), (A.3)

where we used the relation (1.41) between the scattering amplitudes u1,2 (1.49), (1.50) and

the corresponding cross sections σ1,2 (Born approximation). Introducing

σsf
pp1

=
1

2
[σ1(θ) + σ2(θ)] and σpp1

=
1

2
[σ1(θ) − σ2(θ)] , (A.4)
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we separate the matrix self-energy Σ̌ into a non-magnetic and a spin-flip part

τ̂3 ⊗ σ̂0 Σ̌(p̂,k) =
ivF

2
nimp

∫

dΩp1
σsf
pp1

(θ) g̃(p1,k)

+
ivF

2
nimp

∫

dΩp1
σpp1

(θ) τ̌3g̃(p1,k)τ̌3. (A.5)

We can also write the self-energies in terms of the scattering mean free times τ1,2 corre-

sponding to the cross sections σ1,2 following relation (1.43) and introduce the spin-flip time

τs corresponding to σsf

2

τsf
=

1

τ1
+

1

τ2
. (A.6)

The collision integral Ǐ which we introduced in the Eilenberger equation (1.54) will there-

fore consist in two parts. To derive the contributions of the self-energies to the Usadel

equation, we have to compute their average over the direction of the momentum p. One

can show (see for e.g. [14]) that the non-magnetic part vanishes after averaging over mo-

mentum direction. The spin-flip part of the collision integral does not vanish when averaged

because g̃ and τ̌3g̃τ̌3 do not commute.

In the dirty limit, it is possible to expand the Green function in spherical harmonics.

Using the expansion (1.61) to compute the collision integral and neglecting the second

order terms in ǧ (the vector part is expected to be smaller than the spherical part 〈ǧ〉), we

get for the spin-flip part of the collision integral averaged over the momentum direction

〈
Ǐs
〉

=

〈
ivF

2
nimp

∫
dΩp

4π

[∫

dΩp′σ
sf
p,p′ τ̌3g̃τ̌3, g̃

]〉

=

(

0 1
τsf

〈g〉〈f〉
1

τsf
〈g〉〈f †〉 0

)

. (A.7)

The non vanishing off-diagonal terms will introduce the effect of isotropic spin-flip scat-

tering in the Usadel equation (1.62) (recall that we have considered the simple case where

triplet correlations are absent).



Appendix B

Gap curve close to Γc
sf

In this appendix, we derive the asymptotic form of the minigap curve close to Γc
sf . We

have seen previously that the minigap Eg is the largest energy compatible with equation

(1.79). Introducing

z = sinhβ + α

z1 = sinhβ 1 + α

with α :=
ǫ

2Γsf
,

we can rewrite equation (1.79) in the form

2
√

Γsf =

∫ z1

α

1
√

z2
1 − z2

· 1
√

1 + (z − α)2
dz. (B.1)

The integral in the r.h.s. is a function of z1 and α, which we denote Y (z1, α). To determine

the minigap, we will find the maximum value of Y over z1 for a given value of the parameter

α.

The critical spin-flip scattering rate (1.80) can be obtained setting α = 0 and maximiz-

ing (B.1). It turns out that Y (z1, α)|α=0 is largest for z1 = 0. The next step is to go to

finite energies and expand Y in α. We write

Y (z1, α) ≈ Y (z1, α)|α=0 +
∂Y (z1, α)

∂α
|α=0 α, (B.2)

where
∂Y (z1, α)

∂α
|α=0 = − 1

z1
+

z1
1 + z2

1

. (B.3)

For a small α, the maximum of Y is expected to be close to the zero energy value z1 = 0

and the second term ∼ O(z1) can be neglected. The first term in the r.h.s. can be expanded

Y (z1, α)|α=0 ≈
∫ 1

0

1√
1 − s2

[

1 − (z1s)
2

2

]

ds. (B.4)



78 Gap curve close to Γc
sf

where s = z
z1

. Taking the derivative of Y over z1, using the expansion (B.2), we find that

the maximum of Y is obtained for

ẑ1 =

(

α
√

Γc
sf

)1/3

. (B.5)

substituting back this result in (B.2) and using the definitions of α = ǫ
2Γsf

and Y = 2
√

Γsf

we obtain an expression for Eg(Γsf). Finally we write Γsf = Γc
sf − δΓsf and expand in the

small δΓsf to get the asymptotic dependence (1.83).



Appendix C

Zero energy density of states for

Γsf > Γc
sf

For Γsf > Γc
sf the DoS in the N-region is finite at any energy. In this domain the Usadel

equation (1.74) at zero energy has a solution with θ real. Applying again the procedure of

the first integral (1.78), but this time for a real θ, we get

∫ θ(x)

π
2

dθ√
cos2 θ 1 − cos2 θ

= −2
√

Γsf x. (C.1)

Inverting this elliptic integral, we can find a complete zero energy solution for equation

(1.74). This solution involves the function dn(u, k), which is one of the Jacobi elliptic

functions, defined as inversions of the canonical forms of elliptic integrals (we follow the

notations used in Refs. [28, 102])

θ(x) = arcsin

[

sin θ 1

dn
(
2
√

Γsf(x− 1), cos θ 1
)

]

, (C.2)

where θ 1 can be determined imposing the rigid boundary condition (1.77) at x = 0

sin θ 1 = dn
[

−2
√

Γsf , cos θ
1
]

. (C.3)

In the inset of Fig. C.1, we use relation (C.2) to represent the dependence on position

of the DoS in the N-region for two different spin-flip rates. As expected the density of

states increases when we move away from the interface. For large spin-flip scattering rates,

the elliptic solution (C.2) saturates to the normal state bulk value θ(x) = 0, everywhere

except in a thin domain close to the SN interface (rigid boundary at x = 0).

Near the critical spin-flip rate, we found a square root dependence of the zero energy

local DoS on Γsf . Expanding the integrand in (C.1) in the small cos θ 1, we obtain that for
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ν/ν
0

Γ / 

Γ =

Γ =

ν/ν
0

Figure C.1: Dependence of the zero energy local DoS, at the open boundary, on the spin-

flip scattering rate: asymptotic expression near Γc
sf (solid line), complete elliptic solution

(dashed line) saturating to the normal state bulk value ν0 and its asymptotics at large

Γsf (dots). The inset shows the dependence on position of the DoS for Γsf = ETh and

Γsf = 5ETh.

Γsf → Γc
sf the density of states at the interface with vacuum is given by

ν(ǫ=0, x=1)

ν0
=

√
2

[
δΓsf

Γc
sf

]1/2

− 11

8
√

2

[
δΓsf

Γc
sf

]3/2

+ . . . (C.4)

In the limit of large spin-flip rates, when the density of states approaches the normal

state one, the expansion [103] of the elliptic integral in (C.1) near cos θ 1 = 1 leads to an

asymptotic expression for the DoS at the interface with vacuum

ν(ǫ=0, x=1)

ν0
= 1 − 8 e−4

√
Γsf + . . . (C.5)

In Fig. C.1, we compare the expressions (C.4) and (C.5) for the DoS at the open boundary

with values obtained using the complete zero energy elliptic solution (C.2).



Appendix D

Solving the linearized Usadel

equations

To solve the system of linear equations (2.12) and (2.13) with the 12 variables Aj
±,⊥ and

Bj
±,⊥, it is convenient first to reduce the number of variables by resolving the continuity

relations (2.13) in terms of the six variables

β± = B1
± ∓B1

⊥ tan
θ

2
= B2

± ±B2
⊥ tan

θ

2

β⊥ = B1
⊥ +

B1
+ −B1

−
2

tan
θ

2
= B2

⊥ − B2
+ −B2

−
2

tan
θ

2

α± = λ±A
1
± ∓ λ⊥A

1
⊥ tan

θ

2
= λ±A

2
± ± λ⊥A

2
⊥ tan

θ

2

α⊥ = λ⊥A
1
⊥ +

λ+A
1
+ − λ−A1

−
2

tan
θ

2
= λ⊥A

2
⊥ − λ+A

2
+ − λ−A2

−
2

tan
θ

2
.

Solving now the set of 6 equations (2.12) produces the solution

α⊥ =
2∆

ω
λ+λ−λ⊥ cosh (λ⊥d)

p−
p2
+ − p2

− + tan2 θ
2 (p+q+ + p−q−)

tan
θ

2
(1 + tan2 θ

2
) cos χ

β+ − β− = −4∆

ω
λ+λ− sinh (λ⊥d)

p−
p2
+ − p2

− + tan2 θ
2(p+q+ + p−q−)

(1 + tan2 θ

2
) cosχ

β+ + β− =
4∆

ω
λ+λ− sinh (λ⊥d)

p+ + tan2 θ
2q+

p2
+ − p2

− + tan2 θ
2(p+q+ + p−q−)

cosχ

α+ − α− = −4i∆

ω
λ+λ−λ⊥ cosh (λ⊥d)

q−
q2+ − q2− + tan2 θ

2 (p+q+ + p−q−)
(1 + tan2 θ

2
) sinχ

α+ + α− = −4i∆

ω
λ+λ−λ⊥ cosh (λ⊥d)

q+ + tan2 θ
2p+

q2+ − q2− + tan2 θ
2 (p+q+ + p−q−)

sinχ

β⊥ =
2i∆

ω
λ+λ− sinh (λ⊥d)

q−
q2+ − q2− + tan2 θ

2 (p+q+ + p−q−)
tan

θ

2
(1 + tan2 θ

2
) sinχ ,
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where

p± = λ+λ− sinhλ⊥d (coshλ+d± coshλ−d)

q± = λ⊥ coshλ⊥d(λ+ sinhλ−d± λ− sinhλ+d) .

In terms of the new variables, the supercurrent (2.16) becomes

IJ = ieν0DSπT
∑

ω

[
1

4
(α+ + α−)(χ)(β+ + β−)(−χ)

+
1

4(1 + tan2 θ
2)

(α+ − α−)(χ)(β+ − β−)(−χ) +
α⊥(χ)β⊥(−χ)

1 + tan2 θ
2

]

− [χ↔ −χ] . (D.1)

The resulting current-phase relation is sinusoidal with the critical current

Ic(θ) = 4I0ξhT
2
∑

ω

(λ+λ−)2λ⊥ sinh 2λ⊥d
ω2

(D.2)

× (q+ + p+ tan2 θ
2)(p+ + q+ tan2 θ

2 ) − (1 − tan4 θ
2)p−q−

(p2
+ − p2

− + tan2 θ
2 (p+q+ + p−q−))(q2+ − q2− + tan2 θ

2 (p+q+ + p−q−))
.

Eq. (D.2) can be used for numerical calculations of the critical current for an arbitrary rel-

ative orientation of the ferromagnetic exchange fields and for any value of their magnitude

(e.g., for producing the plot in Fig. 2.5). In the body of the article, a simpler expression

for the current is given in the high-exchange-field limit (Eq. (2.27)).



Appendix E

Josephson current for the SNS

junction in a magnetic field

We derive here the expression for the total current (4.33) for Ly > Lc. We have seen in

Sec. 4.4 that in the limit of a long junction, we can write the solution of the Usadel equation

in the form

F (x, y) ≈ F∞(x, y)eiχ + F∞(Lx − x,−y)e−iχ (E.1)

where for Ly > 0.82 the contributions of two zero modes need to be taken into account

F∞(x, y) = FB

[

ψk(y)e
ikx + ψ−k∗(y)e−ik∗x.

]

(E.2)

We can then compute the local current (4.11). Using the fact that the operation k ↔ −k∗
associated with the mirror operation y ↔ −y corresponds to the complex conjugation in

the zero-mode equation Aψk = 0 (with A given by (4.19)), we obtain the total current

after integration along the y and z coordinates

Ic =8πeν0DTLz

( ∞∑

n=0

FB

)

ℑ
[
∫ Ly/2

−Ly/2
(k + 2πy)ψ2

kdy e
ikLx

]

+

∫ Ly/2

−Ly/2
ℜ (ψkψ−k∗)ℑke−ℑkLx + 2πyℑ

(

ψkψ−k∗ e−ℑkLx

)

dy , (E.3)

We will prove now that the second term in (E.3) is always zero. Consider the integral

∫ Ly/2

−Ly/2
ψ−k∗(y)ψ

′′

k (y) − ψk(y)ψ
′′

−k∗(y)dy. (E.4)

By partial integration, it is easy to show that this integral is zero, recall that from (4.10)

[

ψ
′

k(y)
]

y=±Ly/2
= 0. (E.5)
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The functions ψk are zero modes of the operator A = ∇2
y − (k + 2πy)2 we can thus write

∫ Ly/2

−Ly/2
(k − k∗)ψ−k∗(y)ψk(y) + 2πyψ−k∗(y)ψk(y)dy = 0. (E.6)

Using the fact that ψ−k∗(y) = ψ∗
k(−y) we get that the second term in (E.3) is zero and the

final expression for the total current becomes (4.33)

Ic = 8πeν0DTLz

( ∞∑

n=0

FB

)

ℑ
[
∫ Ly/2

−Ly/2
(k + 2πy)ψ2(y)dy eikLx

]

. (E.7)

The derivation of the current (4.31) for Ly < Lc follows similar lines, with a single purely

imaginary wave vector k.
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