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ABsTRACT. In this paper we present a control theory approach
applied to some irrationality problems involving certain Dirichlet
series.

1. INTRODUCTION

The aim of this paper is to analyse from a control theory view-
point some irrationality problems arising from certain convergent se-
ries related to the Riemann zeta function and more generally related
to Dirichlet series.

The usual way to prove the irrationality of a certain real number
1s to prove that good rational approximations with sufficiently small
denominators exist.

The motivation of this paper is to provide a control theory viewpoint
in this sense: starting from a partial sum of a series (a state from a
control theory point of view), we provide a way to control the denomi-
inators of certain rational approximations, by suitably acting on the
subsequent coefficients of the series.

A classical problem in number theory considers sequences w whose
values wy for t = 1,2,... are in C, and the function

fe)

alw,s) = . s€C.

2‘5 '
t=1

Given a certain sequence w, a certain s € C, is a(w, s) = 07 If a(w, s)
is real, is it irrational? Series of this form are called Dirichlet series [2].
When w is a Dirichlet character, the series is a Dirichlet L-series. When
w =1 the corresponding L-series, denoted by ((s), is the Riemann zeta
function. This series, defined for Re (s) > 1, can be completed to a
meromorphic function defined on the complex plane and is the object
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of a wide research motivated mainly by the Riemann hypothesis on the
distribution of its zeros.

The domain of investigation of this paper are the Dirichlet series
for which wy; = 1 or —1, and s € N. In particular we will analyse
some general questions of convergence and irrationality of this category
of Dirichlet series. The Riemann zeta function for integers s > 2 is
included in this category. It is well known that ((s) is irrational for
every even positive integer, and Apéry proved that ((3) is irrational
[1]. Tt is conjectured ((s) is irrational also for every odd integer s > 5

For w, = (—=1)"*! and s = 1 the corresponding series converges to
log 2, which is an irrational number. Other examples of sequences w
correspond to other well known values of the corresponding Dirichlet
series (see Table 1).

b w (:onvergence
Iy+1,-1,+1,—1,... log 2
L,1,1,1.... C(2) =7m%/6
1,-1,1,-1,1,-1, .. 72 /12
1,1,-1,1,1, 1,1,1, —1,... 7 /54
1,-1,1,-1,1,1,1, - 11111111 ~1,1... (7% —4)/6
1,-1,-1,1,-1,~1,—-1, 1,1,~1,.—1,... 74(27% — 15)/90
311,1,1,1.. C(3)
1,-1,1,- 11 —1,. 3¢(3)/4
1,1;1,1,1,—1,1,1,—1,... 25((3)/27

Tab. 1. Some examples of Dirichlet series with w, = 1 or —1.

2. THE CONTROL THEORY VIEWPOINT

In this section we will use the classical notation from the control
theory (see for exemple [3]). Let the system T, = (7,X,U,¢) be
defined by

(i) the time set T = Z

(ii) the state space X = R
(iii) the input-value space U = (a,b). a bounded interval in R.
(iv) the transition map ¢ defined on

Dy={(r.o,z,w)lo,reT,1<o<12€X wecld"},

7T—1
(1) o(r,0,0,w) =2+ %

t=g

where we denoted wy 1= w(t).
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Note that for every z, each w € U!"°°) is admissible for = 13, Defini-
tion 2.1.4.]. Such an w can be regarded as a control of infinite lenght.
The time varying discrete system Y, is complete [3, Definition 2.1.7.].
It applies to the state z a control w. whose control at time ¢ is boudend
by ¢/t* for a suitable constant ¢. For s > 1 the series

Wy

te

t=0o
is absolutely convergent, so the control asymptotically forces the system
to reach the value

o(o0,0,2,w) = tlim ot 0,1, wley) € R

Note also that since ¥, is a discrete-time system of class C* (see
[3, Definition 2.5.1.}), it is also a topological system in the sense of [3,
Definition 3.7.1], with the topology of R.

From this perspective, sequences in Table 1 can be regarded as con-
trols applied to the state z = 0.

In the next section we will introduce certain controllers in order to
provide, given an event (x,t) where x is a state and ¢ is a time value,
a feedback law defined by a suitable next-state mapping. So, with the
designation of a controller, given an event (x,¢), the control uniquely
determines the evolution of the states at subsequent times: the system
becomes a classical dynamical system.

3. CONVERGENCE AS ASYMPTOTICAL CONTROLLABILITY

Theorem 3.1. Let s = 2. For every o € (2 —((2),¢(2)), there exist a
sequence {wy hien with wy = 1 or —1 and such that
2
=1

= (.

Proof. Let wy = 1. For ¢t > 2, define by recurrence:
-1

. Wi
1 if Z =) <
(2) wy = k=1 ""
-1 else

The decision rule defined by (2) plays the role of a feedback controller.
To prove the theorem note that:
o 1 = 1 e 1
(2-¢2).¢2) = (1= el > 5 | = (0.355,1.645).

k=2 k=2
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The theorem is then a consequence of the fact that for every ¢ > 2 one
has:

G

3) 5 < 3 -

To prove prove (3) let

f1) = 5 - Z =

We will prove that f(¢) < 0 for t > 2. We have

and

For ¢t > 3 we have:
207 — (t+1)2

> 0.
2+ 1)

Ft+1) = (1) =

So for ¢ > 3 the function f(¢) is increasing and its limit is 0. Since
f(3) < 0, this proves that f(t) < 0 for every t > 3.

O

From the control theory viewpoint, let 32/, the system defined as ¥, in
which controls are allowed only in &/ = {—1,+1}. In the transition map
(1) coefficients w; can only be 1 or ~1. The preceding theorem can be
reformulated in terms of asymptotical controllability (see [3, Definition
5.5.1]). In this framework, in the system ¥} the event 0,00 e X x T
can be asymptotically <ont1;o]lcd to a for every o in (2~ ((2),(2)).

The Theorem 3.1 can be stated in analogous forms for other values
of 5. For exemple if s = 3 it becomes:

Theorem 3.2. Let s = 3. For every o € (2.25 — ((3),((3)) ~
(1.048,1.202) and for every o € (2—((3),¢(3) - 0.25) ~ (0.198,0.9 2),
there exists a sequence {w; hen with wy = 1 or =1 and such that

o0

Wy -
5B .

t=1
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In other terms, in the system X} the event (0,0) cannot be asymp-
totically controlled to a state in the interval (((3)—0.25,2.25 - ((3)) ~
(0.952,1.048), because

1 =1 i
g_gkgz/

Apart from that, all other states in (2—((3), ((3) can be asymptotically
reached because for t > 3, one has

Ot

!

—((3) ~ 0.048 > 0.

I

1 =1
fe=1

+1

For values of s > 4, the interval (2 — ((s),{(s)) is a neighbourhood

of = 1 whose size decreases with s, and for « in a certain union of

subintervals of (2 — ((s),((s)), the event (0,0) can be asymptotically
controlled to «.

4. CONTROLLABILITY AND [RRATIONAL NUMBERS

In the previous section we showed that for an integer s > 2, and
every « (rational or irrational) in a certain union of intervals, there
exists a Dirichlet series with coefficients 1 or —1 that for that value of
s converges to «. In particular this is true for every irrational number
in that intervals.

This was done by introducing a certain feedback control depending
on a. In this section we will provide sequences of controls w, with w, =
1 or —1 whose definition is independent of an auxiliary real number
a and whose corresponding Dirichlet series for a fixed value of the
integer s converges to an irrational number. We will prove that given a
finite sequence of wy, ..., wy, arbitrarily defined in {—=1,1} it is always
possible to complete that sequence to an infinite sequence with w, = 1
or —1 whose Dirichlet series for a fixed value of s converges to an
irrational number,

Theorem 4.1. Let s be an integer with s > 2. Let wy, ..., wy, be

arbitrarily defined in {=1,1}. Let = > 0 and define recursively t, by
thpr = 1 [lem(1,2,...,¢,)]"F.

For every h > 0 let wy, 41 = 1. Fort =t, +2,t,+3,... ey define:

{1
. 1 s .
+1 , _ 2k <
Zf +s + Z ks —
Wy = ke=tp+

—1 else
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The number o defined by
(4) o = o

18 1rrational.

Proof. The series (4) defining « is an absolute convergent series, so in
particular it is convergent. For every h = 0,1, ... consider the rational
approximations p/q, of o defined by
., th .
oS Zeq
qn 1 t*
We assume that (py,g,) = 1 and that g, positive. According to that,
itis qp <lem (1,2,...,4,)%

Note that ppt1/qae1 > pn/qn. This is a consequence of the fact that
for every t =t + 1,4, +2,..., thi1, is by definition

i
Wi
Z Z‘S— > 0.
kes=tp+1
This means that for every h

-
L’i <«
Gn
and
. Pn ) Ph
o = lim = = sup —.
h—o0 g, heN qh

Moreover we have:

) D oo Lhoiy w 20
i I Wi Wi “i
0#£|la—=|=a-2 = E — g — E -
qn an ks ks ks
k=tp+1 K=ty +1 h=ty  g+1

Note that for sufficiently large h,

ths
W 2
5 L
]{,s 48
k=tp+1 B

and that
o0
Wi 1
Z Z— < s
8 & ’
sty +1 1
so for sufficiently large h,
Pn

o — —
dh

<5< 3 3

5 0< e < e
(5) Tt T lem (1,2, 8,504 T
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On the other hand if & was rational, then o = M/N for certain fixed
M, N € N, and since py,/q, # «, we should have

Ph 1
U= | > =
dh N dh
and this is in contraddiction with (5) for sufficiently large h. So « is
irrational. 4

Remark 4.2. From the control theory point of view, the preceding the-
orem can be easily seen in more generality as follows. In the system
¥, an arbitrary event (x,¢) € X x 7 with 2 € Q can be asymptoti-
cally controlled to a state @ € X' corresponding to a suitable irrational
number.
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