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Lausanne, EPFL, Station 8, CH-1015 Lausanne, Switzerland.

† MOX– Modellistica e Calcolo Scientifico, Dipartimento di Matematica “F. Brioschi”
Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy

Keywords: error bounds; linear elasticity; output; finite element method;
smoothed finite element method

Abstract

Verification of the computation of local quantities of interest, e.g. the
displacements at a point, the stresses in a local area and the stress intensity
factors at crack tips, plays an important role in improving the structural de-
sign for safety. In this paper, the smoothed finite element method (SFEM)
is used for finding upper and lower bounds on the local quantities of inter-
est that are outputs of the displacement field for linear elasticity problems,
based on bounds on strain energy in both the primal and dual problems.
One important feature of SFEM is that it bounds the strain energy of the
structure from above without needing the solutions of different subprob-
lems that are based on elements or patches but only requires the direct
finite element computation. Upper and lower bounds on two linear out-
puts and one quadratic output related with elasticity – the local reaction,
the local displacement, and the J-integral – are computed by the proposed
method in two different examples. Some issues with SFEM that remain to
be resolved are also discussed.
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1 Introduction

Finite element analysis is a common tool in computer aided engineering de-
sign. From a theoretical point of view, the approximation produced by FEM
lies in a finite-dimensional subspace of the infinite-dimensional space where the
exact solution of the problem resides. Typically, no matter how large the finite-
dimensional space is, if the exact solution does not live in the finite element
space, there will always be a distance between the finite element solution and
the exact solution. Many a posteriori error estimates for finite element analy-
sis have been established to quantify the error of the computed solution in the
energy norm for elliptic partial differential equations [1–4].

Numerical solutions of partial differential equations are often used to deter-
mine approximations to quantities of practical interest such as displacements,
forces, or stresses. We refer to these quantities as outputs. Once a solution has
been computed on a given mesh, one is interested in determining the reliabil-
ity of the approximated outputs. In order to address this question a number
of a posteriori error estimation methods have been proposed with the aim of
quantifying the functional outputs of practical interest such as displacements
or stresses [5–9]. In this paper we will consider the elliptic system of linear
elasticity.

A key ingredient to the output bound procedure is the computation of global
upper and lower bounds on the total strain energy. It is known already since
the early work of de Veubeke [10] that an approximation based on the potential
energy principle (displacement method), which uses displacements as variables,
will give a lower bound on the global strain energy. Conversely, the complemen-
tary energy principle (equilibrium method) that uses stresses as variables will
give an upper bound on the global strain energy [11,12]. The difficulties arising
with equilibrium methods are the processing of boundary conditions. The right
hand side of the resulting discrete algebraic equation is zero if the displacement
is zero on the Dirichlet boundary, and the applied loads cannot be implemented
by merely striking out rows and columns of the flexibility equations, which is the
usual way in which displacement boundary conditions are implemented in the
displacement/stiffness method [13]. Parés et al [9] have presented computable
upper and lower bounds on exact outputs. Their method can be regarded as
a generalization of the complementary energy principle; however, they did not
solve the equation in stress space, but used a displacement approximation to
solve local approximate equilibrated stresses in each element. The finite element
approximations to the displacement solution were post-processed to yield the
so called inter-element hybrid fluxes for the computation of locally equilibrated
stress fields. Thus their method can compute an upper bound on the global
strain energy.

Recently a modified FEM with strain smoothing, SFEM, has been proposed
to solve solid mechanics problems. It has been found that in some situations the
strain energy computed by SFEM bounds the exact strain energy from above
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[14–16]. This method stems from mesh-free finite element research and was
first proposed to develop a stabilized nodal integration scheme for the Galerkin
mesh-free method. The aim is to achieve higher efficiency with desired accuracy
and convergence properties. A strain smoothing stabilization is introduced to
compute nodal strains by a divergence counterpart of a strain spatial averaging.
The strain smoothing method avoids evaluating derivatives of mesh-free shape
functions at the nodes and thus eliminates spurious modes [17].

A rigorous proof for the upper bound property for the strain energy of the
SFEM is still lacking. In [15] a proof was given, but only in the limited case
that the exact solution is in the subspace spanned by the nodal shape functions.
The authors also presented a proof for the softening effect shown by the stiffness
matrix of SFEM, while in [18] a theoretical explanation of SFEM was given. A
quasi-equilibrium concept was proposed for the four-node quadrilateral elements,
meaning that the upper bound property was due to a quasi-equilibrium condition
of the stresses in each finite element, which would make their method a kind of
equilibrium method. According to our own experience, several issues remain to
be solved with SFEM. For example, the upper bound property seems to hold
only with sufficiently fine meshes. Also, the choice of SFEM affects the upper
bound property and the situation can vary from problem to problem. In this
paper we study SFEM and give several properties, which may be useful for
proving the upper bound property. We then extend SFEM to compute lower
and upper bounds on general linear outputs of linear elasticity. Since SFEM is
a general method, some of our results extend beyond elasticity problems.

In Section 2 we introduce the formulation for the lower and upper bounds on
linear functionals of elasticity. In Section 3 we briefly describe the SFEM and
some properties thereof. In Section 4 some numerical results are reported and
commented on; finally some conclusions are drawn in Section 5.

2 Formulation of the upper and lower bounds on lin-

ear functionals of displacement

Let us consider a homogeneous elastic body that occupies a bounded region
Ω ⊂ IRd and d is the number of spatial dimensions. The boundary of Ω is
assumed to be piecewise smooth, and composed of a Dirichlet portion ΓD and a
Neumann portion ΓN , i.e. ∂Ω = ΓD ∪ ΓN . As is customary, u : Ω → IRd denotes
displacement, b represents a body force, and t the boundary traction. The stress
σ in matrix form is related to a strain ε(u) = Du via a linear constitutive law,
i.e., σ = Eε(u), where D is the differential operator matrix and E is the elastic
moduli matrix. The weak form of the elasticity equation reads: find u in U

such that
∫

Ω
εT (u)Eε(v) dΩ =

∫

Ω
bT v dΩ +

∫

ΓN

tT v dΓ ∀v ∈ V , (1)
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in which U = {v ∈ (H1(Ω))d | u = uD on ΓD} and V = {v ∈ (H1(Ω))d | v =
0 on ΓD} are the usual solution and test spaces respectively, and uD is the im-
posed boundary displacements. The notation H1(Ω) denotes the usual Sobolev
space. The energy norm associated with the bilinear form

∫

Ω εT (·)Eε(·) dΩ is
defined as

||u||2 =

∫

Ω
εT (u)Eε(u) dΩ.

In order to obtain an approximate solution of the weak problem (1), a finite-
dimensional counterpart of all these variational forms given above can be built
using the Galerkin FEM. We denote Uh ⊂ U and Vh ⊂ V the finite element
spaces of continuous functions that are piecewise polynomials of degree r ≥ 1.
The corresponding finite element solution in Uh is denoted by uh and satisfies
the equation:

∫

Ω
εT (uh)Eε(v) dΩ =

∫

Ω
bT v dΩ +

∫

ΓN

tT v dΓ ∀v ∈ Vh.

Now let us consider the output, which is a linear functional of the solution u

defined as "O(u), i.e. "O : (H1(Ω))d '→ IR. Since the output is used in the right
hand side of the dual problem defined as follows, it is required that the outputs
should depend explicitly on the solution u.

In order to derive upper and lower bounds on the output "O(u), we introduce
the following adjoint or dual problem: find uD ∈ U such that

∫

Ω
εT (v)Eε(uD) dΩ = "O(v) ∀v ∈ V , (2)

and the corresponding finite element approximation, uD
h ∈ Uh ⊂ U , such that

∫

Ω
εT (v)Eε(uD

h ) dΩ = "O(v) ∀v ∈ Vh. (3)

For any displacement u in U , we can write u = uD + uP such that uP ∈ V

satisfies
∫

Ω
εT (uP)Eε(v) dΩ =

∫

Ω
bT v dΩ+

∫

ΓN

tT v dΓ−

∫

Ω
εT (uD)Eε(v) dΩ ∀v ∈ Vh,

and the output
"O(u) = "O(uD) + "O(uP),

therefore computing bounds on output "O(uP) is equivalent to computing bounds
on output "O(u). Since the dual problem (2) holds for any v in V and uP belongs
to V , one can write the output "O(uP) as

"O(uP) =

∫

Ω
εT (uP)Eε(uD) dΩ.

4



Using the parallelogram identity, we can also rewrite the above output in the
form as follows

"O(uP) = 1
4

∥

∥

∥

∥

κuP +
1

κ
uD

∥

∥

∥

∥

2

− 1
4

∥

∥

∥

∥

κuP −
1

κ
uD

∥

∥

∥

∥

2

,

where κ ∈ IR is a parameter to be optimized to narrow the gap between upper
and lower bounds afterwards, and surely "O(uP) satisfies the following inequal-
ities

1
4

∥

∥

∥

∥

κuP +
1

κ
uD

∥

∥

∥

∥

2

LB

−1
4

∥

∥

∥

∥

κuP −
1

κ
uD

∥

∥

∥

∥

2

UB

≤ "O(uP) ≤ 1
4

∥

∥

∥

∥

κuP +
1

κ
uD

∥

∥

∥

∥

2

UB

−1
4

∥

∥

∥

∥

κuP −
1

κ
uD

h

∥

∥

∥

∥

2

LB

,

where the subscripts LB and UB denote the lower and upper bounds respec-
tively, e.g. ‖ · ‖LB ≤ ‖ · ‖ ≤ ‖ · ‖UB . We can see these expressions of upper and
lower bounds are non-computable, since they depend on the exact solution of
both the primal and dual problems. We can use finite elements (displacement
method) to compute a lower bound on

∥

∥κuP ± 1
κuD

∥

∥. Since ‖uP
h ‖ ≤ ‖uP‖ and

‖uD
h ‖ ≤ ‖uD‖,

∥

∥κuP
h ± 1

κuD
h

∥

∥ ≤
∥

∥κuP ± 1
κuD

∥

∥ as the problem is linear, then
we can rewrite the bounding formulation as

1
4

∥

∥

∥

∥

κuP
h +

1

κ
uD

h

∥

∥

∥

∥

2

− 1
4

∥

∥

∥

∥

κuP −
1

κ
uD

∥

∥

∥

∥

2

UB

≤ "O(uP) ≤ 1
4

∥

∥

∥

∥

κuP +
1

κ
uD

∥

∥

∥

∥

2

UB

− 1
4

∥

∥

∥

∥

κuP
h −

1

κ
uD

h

∥

∥

∥

∥

2

.

(4)

The key ingredient for computing output bounds are finding an upper bound
on

∥

∥κuP ± 1
κuD

∥

∥

2
, if we can compute upper bound

∥

∥κuP ± 1
κuD

∥

∥

2
UB

on
∥

∥κuP ± 1
κuD

∥

∥

2
,

we can obtain an output bounds according to (4). More details for deriving the
above formulations can be found in [8, 9]. We write the expansion of the upper
bound as

∥

∥

∥

∥

κuP ±
1

κ
uD

∥

∥

∥

∥

2

UB

≡ κ2ZP +
1

κ2
ZD ± 2ZI , (5)

where ZP is an upper bound on ‖uP‖2, ZD an upper bound on ‖uD‖2, ZI

a cross inner product with respect to ZP and ZD, whose specific computable
forms will be given in next section. The parameter κ is optimized to reduce the
bounds gap which is

κ2 =

√

ZD − ‖uD
h ‖

2

ZP − ‖uP
h ‖

2
. (6)

Letting v = uP
h in equation (3) gives

"O(uP
h ) =

∫

Ω
εT (uP

h )Eε(uD
h ) dΩ, (7)
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then with equations (4), (5), (6), and (7) we obtain an upper and lower bounds
on "O(uP) in the following compact formulations:

"+ = 1
2"

O(uP
h ) + 1

2Z
I + 1

2

√

(

ZP − ‖uP
h ‖

2
) (

ZD − ‖uD
h ‖

2
)

,

"− = 1
2"

O(uP
h ) + 1

2Z
I − 1

2

√

(

ZP − ‖uP
h ‖

2
) (

ZD − ‖uD
h ‖

2
)

.
(8)

3 The smoothed finite element method

Let us partition the computational domain Ω into smoothing subdomains Ω̄ =
Ω̄1 ∪ Ω̄2 ∪ ... ∪ Ω̄N with Ωi ∩ Ωj = ∅ if i .= j, where N is the number of finite
element nodes (including the nodes on ΓD) located in the entire computational
domain, and for every node k = 1, · · · ,N , the smoothing domain Ωk is obtained
by connecting sequentially the mid-edge point to the centroid of the surrounding
triangles of the node as shown in Fig. 1.

Given any strain field ε, the smoothed strain field ε̂ on each smoothing
domain Ωk is obtained by a nodal smoothing operation as

ε̂k =

∫

Ωk

ωk(x − xk) ε dΩ,

where ωk(x) is a diagonal matrix of the smoothing function ωk(x) that is positive
and normalized to unity:

∫

Ωk

ωk(x) dΩ ≡ 1.

The smoothed strain ε̂k is a constant over the smoothing domain Ωk. For two-
dimensional elasticity problems the diagonal matrix can be chosen to be ωk(x) =
diag{ωk(x), ωk(x), ωk(x)}. For simplicity the smoothing function ωk(x) is taken
as

ωk(x − xk) =

{

1/Ak, if x ∈ Ωk

0, otherwise

where Ak =
∫

Ωk
dΩ is the area of the smoothing domain Ωk. Therefore, the

smoothed strain in the smoothing domain Ωk will be

ε̂k =
1

Ak

∫

Ωk

ε dΩ. (9)

The SFEM is obtained by replacing in the weak form (1) the exact strain field
ε with the nodally smoothed strain field ε̂. The SFEM solution ûh is an approx-
imation of the solution, u, to the partial differential equation of elasticity. De-
note by Φi the shape function matrix for node i, for example for two-dimensional
problems the shape function matrix

Φi(x) =

[

φi(x) 0
0 φi(x)

]

,
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Figure 1: The finite element mesh and the smoothing domain Ωk.

in which φi(x) is the shape function for node i. The SFEM solution is then
expressed as

ûh =
N
∑

i=1

Φi(x)ûi
h, (10)

where ûi
h = {ûi

hx, ûi
hy}

T is the vector of displacements at node i. Since the strain
field is given by the derivatives of displacement, we define the approximate strain
obtained from the approximate displacements as ε(ûh), that is

ε(ûh) =
N
∑

i=1

DΦi(x)ûi
h. (11)

For the two-dimensional elasticity problem

D =

















∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

















,

and so according to (9) by replacing ε with ε(ûh) we obtain the smoothed strain
ε̂k,

ε̂k(ûh) =
1

Ak

∫

Ωk

ε(ûh) dΩ, (12)
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and, more specifically,

ε̂k(ûh) =
1

Ak

N
∑

i=1

(
∫

Ωk

DΦi(x) dΩ

)

ûi
h

=
1

Ak

∑

i∈Nk

(
∫

Ωk

DΦi(x) dΩ

)

ûi
h

=
1

Ak

∑

i∈Nk

B̂i
kû

i
h,

where Nk includes all nodes in the patch Ω̄k that is formed by the elements
sharing node k, and

B̂i
k =

∫

Ωk

DΦi(x) dΩ.

In the next step we will derive the stiffness matrix. The strain energy in the
smoothing domain Ωk is

∫

Ωk

ε̂T
k (ûh)Eε̂k(ûh) dΩ = Akε̂

T
k (ûh)Eε̂k(ûh)

=
1

Ak

∑

i∈Nk

∑

j∈Nk

ûiT
h (ûh)B̂iT

k EB̂j
kû

j
h.

Therefore, the local stiffness matrix associated with node k is obtained as

K̂ij(k) =
1

Ak
B̂iT

k EB̂j
k, (13)

and the global stiffness matrix for SFEM will be

K̂ij =
N
∑

k=1

K̂ij(k).

The entries (in sub-vectors of nodal forces) of the force vector f̂ in the right
hand side of the algebraic system can be simply expressed as

f̂ i =
∑

k∈Nk

f̂ i(k). (14)

The above integration is also performed by a summation of integrals over smooth-
ing domains; hence, f̂ i is an assembly of nodal force vectors at the surrounding
nodes of node k,

f̂ i(k) =

∫

Ω(k)

Φi(x)b dΩ +

∫

Γt(k)

Φi(x)t dΓ.
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Note that the force vector obtained in SFEM is the same as the one in FEM,
if the same order shape functions is used. This simplifies the implementation
of SFEM. In the Appendix, we give the implementation of SFEM with linear
triangle elements in detail.

In the sequel we will give some properties of SFEM. Lemma 1 gives the
orthogonality property for SFEM [15].

Lemma 1 For any compatible strain field ε(ûh) = Dûh obtained by (11) on a
finite element mesh Th, and the smoothed strain ε̂(ûh) obtained by (12) on the
same mesh, we have the orthogonality property:

∫

Ω
εT (ûh)Eε̂(ûh) dΩ =

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ. (15)

Proof We note that ε̂(ûh) is a piecewise constant function over the whole
domain. Equation (15) can be easily proven by relying on equation (12) and the
fact that Eε̂k(ûh) is constant over Ωk, so that the left hand side is a sum of the
cross inner product

∫

Ω
εT (ûh)Eε̂(ûh) dΩ =

N
∑

k=1

∫

Ωk

εT (ûh)Eε̂k(ûh) dΩ

=
N
∑

k=1

(
∫

Ωk

εT (ûh) dΩ

)

Eε̂k(ûh)

=
N
∑

k=1

Akε̂
T
k (ûh)Eε̂k(ûh)

=

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ. (16)

With the above orthogonality we can obtain other properties of SFEM.

Remark 1
The strain energy of the SFEM solution computed with the smoothed strain in
Vh always bounds the strain energy obtained with the compatible strain in Vh

from below:
∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ ≤

∫

Ω
εT (ûh)Eε(ûh) dΩ. (17)
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Proof We have

0 ≤
∫

Ω

(

εT (ûh) − ε̂T (ûh)
)

E (ε(ûh) − ε̂(ûh)) dΩ

=

∫

Ω
εT (ûh)Eε(ûh) dΩ +

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ − 2

∫

Ω
εT (ûh)Eε̂(ûh) dΩ

=

∫

Ω
εT (ûh)Eε(ûh) dΩ −

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ.

Remark 2
The strain energy of the FEM solution computed with the smoothed strain in
Vh always bounds the strain energy obtained with the compatible strain in Vh

from below:
∫

Ω
ε̂T (uh)Eε̂(uh) dΩ ≤

∫

Ω
εT (uh)Eε(uh) dΩ. (18)

Proof Since the inequality of Remark 1 holds for any displacement on mesh
Th, we can replace ûh with uh, i.e. the finite element solution expressed with
the same form as (10),

uh =
N
∑

i=1

Φi(x)ui
h,

and obtain the lower bounds on the strain energy computed with FEM,
∫

Ω
ε̂T (uh)Eε̂(uh) dΩ ≤

∫

Ω
εT (uh)Eε(uh) dΩ.

Theorem 1 The smoothed strain energy of SFEM bounds the strain energy of
FEM from above:

∫

Ω
εT (uh)Eε(uh) dΩ ≤

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ. (19)

Proof The weak form for FEM is
∫

Ω
εT (uh)Eε(v) dΩ =

∫

Ω
bT v dΩ +

∫

ΓN

tT v dΓ ∀v ∈ Vh,

after choosing v = uh into the above equation, we have
∫

Ω
εT (uh)Eε(uh) dΩ =

∫

Ω
bT uh dΩ +

∫

ΓN

tT uh dΓ.
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Both FEM and SFEM have the same right hand side as (14) in the discrete form
when the same shape function is used on mesh Th, then with the finite element
solution uh as the test function to SFEM we get

∫

Ω
ε̂T (ûh)Eε̂(uh) dΩ =

∫

Ω
bT uh dΩ +

∫

ΓN

tT uh dΓ,

By comparing the above two equations, we have
∫

Ω
εT (uh)Eε(uh) dΩ =

∫

Ω
ε̂T (ûh)Eε̂(uh) dΩ.

In a similar way used for the derivation of equation (16), we can omit the hat of
ε̂(uh) on the right hand side of the above equation, and obtain

∫

Ω
ε̂T (ûh)Eε̂(uh) dΩ =

∫

Ω
ε̂T (ûh)Eε(uh) dΩ,

then, from the two equations above, we get
∫

Ω
εT (uh)Eε(uh) dΩ =

∫

Ω
ε̂T (ûh)Eε(uh) dΩ. (20)

With the following derivation

0 ≤

∫

Ω

(

ε̂T (ûh) − εT (uh)
)

E (ε̂(ûh) − ε(uh)) dΩ

=

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ +

∫

Ω
εT (uh)Eε(uh) dΩ − 2

∫

Ω
ε̂T (ûh)Eε(uh) dΩ

=

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ −

∫

Ω
εT (uh)Eε(uh) dΩ,

and remarking that the last step in the above equation is obtained according to
equation (20), we obtain an upper bound on the energy norm of the solution by
FEM as

∫

Ω
εT (uh)Eε(uh) dΩ ≤

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ.

With equations (17), (18), and (19) we obtain a sequence of inequalities for
the strain energies computed with the strains obtained with both FEM and
SFEM. References [14, 15] provide the same inequality (19) and proved that
the strain energy computed with SFEM is also an upper bound on the exact
strain energy, but only under the hypothesis that shape functions exist for exact
solutions. Many numerical examples show that SFEM does give upper bounds
on the true strain energy, except for some cases where the meshes are too coarse.
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Let us set

ZP =

∫

Ω
ε̂T (ûh)Eε̂(ûh) dΩ;

ZD =

∫

Ω
ε̂T (ûD

h )Eε̂(ûD
h ) dΩ;

and

ZI =

∫

Ω
ε̂T (ûh)Eε̂(ûD

h ) dΩ.

Now we have the final formulations for the quantities appearing in (8) that are
needed to compute upper and lower bounds on linear outputs by SFEM.

4 Numerical examples

We illustrate the effectivity of the proposed method on two numerical examples.
Linear triangle finite element approximations are used for both primal and dual
problems. Uniform mesh refinement is used in all examples to illustrate the
bounding property with respect to the mesh size. Since the two examples satisfy
homogeneous essential boundary conditions, uP is exactly u in the previous
equations, so we will omit the superscript P in the equations of this section.

The first example is a square elastic body with two rectangular holes, under
the assumption that the body is in plane stress state as shown in Fig. 2. A
uniformly distributed force, p = 1, is applied on the left and right sides of the
body. The non-dimensionalized Young modulus is 1.0 and Poisson ratio is 0.3.
Since the geometry and load conditions in this problem are symmetric with
respect to both the x- and y-axes, we only use a quarter of the body for the
finite element model. Two outputs are considered in this example. The first one

!1

0.50.5

0.5

0.3

0.2!2

Figure 2: An elasticity problem with symmetric geometry and load condition,
a quarter of the structure is used for the finite element modeling. The finite
element mesh shown in the right figure is the initial mesh with 132 elements.
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is the average normal displacement over the boundary Γ1,

"O1 (u) =

∫

Γ1

uT ndΓ,

in which n is the unit outward normal to the boundary; the second one is the
reaction force on boundary Γ2,

"O2 (u) =

∫

Γ2

nT (Nσ(u)) dΓ,

where

N =

[

n1 0 n2

0 n2 n1

]

,

and n1 and n2 are the components of n. The initial (coarse) mesh with respect
to mesh size H is plotted in Fig. 2. The uniformly refined meshes are based on
mesh sizes H/2, H/4, H/8, and H/16 respectively. The results for "O1 (u) and
"O2 (u) including the outputs calculated by FEM and SFEM, the upper and lower
bounds, and the average of the upper and lower bounds are plotted in Fig. 3.
From equation (8) the average of bounds is actually the average of the outputs
by FEM and SFEM, that is 1

2("O(uh) + ZI) = 1
2("O(uh) + "O(ûh)). We also

plot the strain energies computed by FEM and SFEM in both primal and dual
problems for the two outputs in Figs. 4-5. We will analyze the effectivity of the
bounds by a measure given at the end of this section.

102 103 104 1050.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

Number of elements

O
ut

pu
t a

nd
 b

ou
nd

s

 

 

Output by FEM
Output by SFEM
Lower bounds
Upper bounds
Average of bounds

102 103 104 1050.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of elements

O
ut

pu
t a

nd
 b

ou
nd

s

 

 

Output by FEM
Output by SFEM
Lower bounds
Upper bounds
Average of bounds

Figure 3: The upper and lower bounds on the displacement output "O1 (u) (left)
and the reaction output "O2 (u) (right).

The second example is a plate with two edge cracks subject to a uniformly
distributed tensile stress, as shown in Fig. 6. The plate is assumed to be in
plane strain. The value of the tensile force acting on the two ends of the plate
is p = 1 and the dimension of the crack is a = 5. The non-dimensional Young
modulus is 1.0 and Poisson ratio is 0.3. The third output "O3 (u) we consider is
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Figure 4: The strain energies computed by FEM and SFEM in the primal prob-
lems for the first two outputs.

102 103 104 105

0.18

0.19

0.2

0.21

0.22

Number of elements

St
ra

in
 e

ne
rg

y

 

 

FEM
SFEM

102 103 104 1050.3

0.35

0.4

0.45

0.5

0.55

Number of elements

St
ra

in
 e

ne
rg

y

 

 

FEM
SFEM

Figure 5: The strain energies computed by FEM and SFEM in the dual problems
for the displacement output "O1 (u) (left) and the reaction output "O2 (u) (right).
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Crack tip

10

30

5

Crack tip

Figure 6: A double edge-cracked elastic plate subject to a uniform tensile stress:
just a quarter of the structure is used for the finite element modeling. The finite
element mesh shown in the right figure is the initial mesh with 41 elements.

the so-called J-integral, which is defined in the domain integral form as

"O3 (u) = 1
2

∫

Ωχ

uT
x

[

Q −
∂χ

∂x
D̃

]

ux dΩ, (21)

where the integration domain Ωχ contains the crack tip,

ux =

{

∂ux

∂x
,
∂uy

∂x
,
∂ux

∂y
,
∂uy

∂y

}T

,

χ is the weight function equal to one at the crack tip and vanishing on the
boundary of Ωχ, Q and D̃ are matrices containing the elastic parameters and
the weight function χ, refer to the appendix in [19]. From equation (21) we
see that J-integral is a quadratic function of the displacement, to express the
following equations clearly we use J(u,u) to express "O3 (u), so that we have

"O3 (u) − "O3 (uh) = J(u,u) − J(uh,uh)

= J(u − uh,u − uh) + 2J(u − uh,uh). (22)

In [19] it was found that

J(u − uh,u − uh) ≤ ηχ‖u − uh‖
2

= ηχ

(

‖u‖2 − ‖uh‖
2
)

≤ ηχ

(

‖uD
h ‖

2 − ‖uh‖
2
)

, (23)

15



Crack tip5
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"#

Figure 7: A 5× 5 integral domain Ωχ is arranged for evaluation of the J-integral.

where ηχ is a computable quantity related to elasticity coefficients and to χ. For
the second term in equation (22),

J(u − uh,uh) = J(u,uh) − J(uh,uh), (24)

we note J(u,uh) is a linear function of u, thus with bounding formulations for
the linear output (8), we can compute the upper and lower bounds on J(u,uh),
that is

"− ≤ J(u,uh) ≤ "+ .

Let Q = η
(

‖uD
h ‖

2 − ‖uh‖2
)

in equation (23), and consider the equations (22),
(23), (24) and (8). The upper and lower bounds formulations for the J-integral
are summarized as follows:

J+ = ZI + Q +
√

(Z − ‖uh‖2)
(

ZD − ‖uD
h ‖

2
)

,

J− = ZI − Q −
√

(Z − ‖uh‖2)
(

ZD − ‖uD
h ‖

2
)

.
(25)

In this example, due to the symmetry of the problem, we only use one quarter
of the plate for the finite element modeling. We use a 5 by 5 square area
surrounding the crack tip as the support, Ωχ, of the weighting function χ, see
Fig. 7. We should note that the J-integral gets a contribution from the entire
half plate, but we only use a quarter of the plate for the finite element model, so
we need to multiply the outputs computed by this finite element model by two,
including the J-integral and all terms on the right hand side of equation (25).
There is no such issue for the outputs in the previous example. The bounding
results computed are plotted in Fig. 8, where the formulation of average of the
bounds is different from that of the first two linear outputs, from (25) we can
see the average is ZI , that is ZI = "O(ûh) = J(ûh,uh). The strain energies
computed by FEM and SFEM in the primal and dual problems are plotted in
Fig. 9.

We introduce the relative half bound gap given in [9]

ρG = 1
2

"+ − "−

"(u)
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Figure 8: The upper and lower bounds on the J-integral "O3 (u).
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Figure 9: Strain energies computed by FEM and SFEM in the primal problem
(left) and the dual problem (right) for the J-integral.
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as a measure of the accuracy of the bounds. It is certainly an upper bound on
the relative error between the average of the bounds and the exact output "(u).
Since the exact output "(u) is not known for the examples, we use the average
of the bounds calculated with a finer mesh of mesh size H/16 instead. Thus a
computable measure of the accuracy of the bounds is given by

ρG =
"+ − "−

"∗+ + "∗−
,

where "∗+ and "∗− are the upper and lower bounds calculated in the mesh with
mesh size H/16. Fig. 10 shows the convergence results of ρG for the three
outputs. The convergence rates do not attain the optimal converge rate of 1,
because there are singularities (corners and crack tip) in both the two examples.
The convergence rate for the displacement output, 0.7, is the biggest, and the
relative bound gap is the smallest. The convergence rates for the stress output
and the J-integral are 0.5 and 0.46, respectively. The convergence rate for the
J-integral is the smallest, because the approximate solutions are dominated by
a singularity caused by the crack, which affects the convergence rate much more
than the effect caused by corners in the first example. The relative half bound
gap for the J-integral is the largest in the three outputs, the main reason being
that the difference between the strain energies computed by FEM and SFEM
in the dual problem is very large, see the left figure in Fig. 9. The exact strain
energy of the dual problem is about 6, but the strain energy computed by SFEM
has trouble converging to this value and only provides an upper bound. This is
an issue that sometimes arises with SFEM, although it does not happen often.
The strain energies computed by SFEM in the primal problem for the J-integral
and in both primal and dual problems for other outputs in the first example are
very effective.

101 102 103 104 10510−3

10−2

10−1

100

101

Number of elements

ρ G

 

 

Displacement output
Reaction output
 J−integral output

Figure 10: Bounds convergence for the three outputs.
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5 Conclusions and discussion

We have examined SFEM with linear triangle elements and extended it to com-
pute upper and lower bounds on general linear outputs of displacements in elas-
ticity. In the examples we have considered, SFEM behaves like an equilibrium
method and the strain energy converges to the true strain energy from above.
We also find that in some cases the energy norm of the solution by SFEM does
not reach the exact strain energy, as shown in the right side of figure Fig. 9,
but can be used as an upper bound indicator. However, in most cases SFEM
really gives a convergent upper bound on the strain energy and, consequently,
also gives convergent upper and lower bounds on general linear outputs. One of
the most important advantages of bounds computation by SFEM is that they
are very easy to implement, as this simply requires a modification of a few lines
of our underlying finite element code to implement SFEM. This is an advantage
over the equilibrium method to obtain upper bounds. We also note that many
a posteriori error estimates proposed in literature are an order of magnitude
more expensive to compute than the finite element solution. In contrast, the
computation of upper bounds using SFEM is only about as expensive as solv-
ing the regular finite element problem. Further research will be on solving the
convergence problem of SFEM, and extending it to solve inelasticity problems
as done by Ledevèze and his coworkers [20,21].
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Appendix

For two-dimensional elasticity problems, the relation between displacement, u =
{ux, uy}T , and strain, ε(u), is ε(u) = Du,

ε(u) ≡































∂ux

∂x
∂uy

∂y
∂uy

∂x
+
∂ux

∂y































=







ε11(u)
ε22(u)
2ε12(u)







, (26)
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and the corresponding stress according to σ = Eε(u) is specifically expressed
as

σ ≡







σ11

σ22

σ12







=





λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ











ε11(u)
ε22(u)
2ε12(u)







,

where λ and µ are Lame’s constants, µ = E
2(1+ν) , and λ = Eν

(1+ν)(1−2ν) for plane

strain problem, λ = Eν
1−ν2 for plane stress problems.

Let the approximate finite element solution of displacement be

uh =
N
∑

i=1

Φi(x)ui
h,

where Φi(x) is the nodal shape function containing x and y components. For
implementation we usually first construct the elemental stiffness matrix and then
assembly them to global stiffness matrix. We define the displacement vector on
element T ∈ Th to be uh T = {u1

x, u1
y, u

2
x, u2

y, u
3
x, u3

y}
T , where the subscript T

denotes element T . Then the displacement of element T can be expressed as

uh T (x) =

[

φT1 0 φT2 0 φT3 0
0 φT1 0 φT2 0 φT3

]

uhT ,

where φT1 , φT2 and φT3 are the shape functions in element T , and with (26) the
approximate strain in element T is obtained as

εh T = Ruh T , (27)

in which

R =

















∂φT1

∂x
0

∂φT2

∂x
0

∂φT3

∂x
0

0
∂φT1

∂y
0

∂φT2

∂y
0

∂φT3

∂y
∂φT1

∂y

∂φT1

∂x

∂φT2

∂y

∂φT2

∂x

∂φT3

∂y

∂φT3

∂x

















, (28)

the strain energy in element T is then obtained by
∫

T

σT
h T εh T dΩ = AT uT

h T RT ERuh T ,

where AT is the area of element T . Therefore the element stiffness matrix is

KT = AT RT ER.
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With the following equation for computing the derivatives of the shape functions
the implementation of the local stiffness matrix is much simplified,

∇ΦT =
1

2AT





y1 − y3 x3 − x2

y3 − y1 x1 − x3

y1 − y2 x2 − x1





=





1 1 1
x1 x2 x3

y1 y2 y3





−1 



0 0
1 0
0 1



 .

The construction of the elemental stiffness matrix in FEM is based on the
element, while the construction of the local stiffness matrix for SFEM is based
on the smoothing domain. The local stiffness matrix will involve contributions
from all nodes that belong to the patch. For example, the smoothing domain
Ωk is in the patch Ω̄k, see Fig. 1. The smoothed strain ε̂k is in fact an area
weighted average strain that is

ε̂k =
1

Ak

∫

Ωk

ε(x) dΩ

=
1

Ak

Mk
∑

I=1

∫

ΩI
k

εI
k(x) dΩ,

in which Mk is the number of elements that contain node k. For example,
the smoothing domain k in Fig. 11 has 7 subdomains; ΩI

k is a subdomain of
domain k, and εI

k(x) is the strain in subdomain ΩI
k. In the above equation, we

do not use small i but use capital I to represent the subdomain label, in this
way we will distinguish the following equations from the ones in Section 3: there
the formulation is related to node i, while here the formulation is related to
subdomain I. The strain energy in the smooth subdomain k

∫

Ωk

ε̂T
k Eε̂k dΩ = Akε̂

T
k Eε̂k

=
1

Ak

(

Mk
∑

I=1

∫

ΩI
k

εIT
k (x) dΩ

)

E

(

Mk
∑

J=1

∫

ΩJ
k

εJ
k (x) dΩ

)

.

Because the shape functions are linear, εI
k(x) is constant over each element,

and is certainly constant over ΩI
k for it being one part of an element, thus the

arguments in the above equation are omitted, and it is in a more simplified form

∫

Ωk

ε̂T
k Eε̂k dΩ =

1

Ak

Mk
∑

I=1

Mk
∑

J=1

AI
kA

J
kεIT

k EεJ
k , (29)

for I, J = 1, · · · ,Mk, and εI
k and εJ

k are in the form of (27), that is,

εI
k = RI

kû
I
h;

εJ
k = RJ

k ûJ
h ,

(30)
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Figure 11: Illustration of patch Ω̄k, smoothing domain Ωk, and smoothing sub-
domains ΩI

k.

where RI
k and RJ

k are in the form of (28). Substituting (30) into (29) we obtain

∫

Ωk

ε̂T
k Eε̂k dΩ =

1

Ak

Mk
∑

I=1

Mk
∑

J=1

AI
kA

J
k ûIT

h RIT
k ERJ

k ûJ
h .

Then we obtain the entries of local stiffness matrix in Ωk

K̂{I}{J}(k) =
AI

kA
J
k

Ak
RIT

k ERJ
k . (31)

Since the smoothing domain is formed by connecting the central points of ele-
ment edges to the centroids of elements, we see that AI

k is 1/3 of the element
area, SI

k , for example, area of Ω1
k is 1/3 of area of the element kst in Fig. 11;

and Ak is 1/3 of the sum of area of all elements in Ω̄k, therefore (31) is rewritten
as

K̂{I}{J}(k) =
SI

kSJ
k

3
∑Mk

l=1 Sl
k

RIT
k ERJ

k . (32)

As compared with (13) that is a 2 × 2 matrix, (32) is a matrix that contains
36 entries. The Matlab code for construction of the local stiffness matrix and
assembly of the global stiffness matrix is listed as follows:

for k = 1:size(coor,1)

[r,c,v] = find(ele == k);

S = [];

for m = 1:size(r,1)

S(m) = det([1,1,1;(coor(ele(r(m),:),:))’])/2;

end

SumS = sum(S);

for I = 1:size(r,1)
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vertices = coor(ele(r(I),:),:);

II = 2*ele(r(I),[1,1,2,2,3,3])-[1,0,1,0,1,0];

PhiGrad = [1,1,1;vertices’]\[zeros(1,2);eye(2)];
RI = zeros(3,6);

RI([1,3],[1,3,5]) = PhiGrad’;

RI([3,2],[2,4,6]) = PhiGrad’;

for J = 1:size(r,1)

vertices = coor(ele(r(J),:),:);

JJ = 2*ele(r(J),[1,1,2,2,3,3])-[1,0,1,0,1,0];

PhiGrad = [1,1,1;vertices’]\[zeros(1,2);eye(2)];
RJ = zeros(3,6);

RJ([1,3],[1,3,5]) = PhiGrad’;

RJ([3,2],[2,4,6]) = PhiGrad’;

K(II,JJ) = K(II,JJ) + 1/3/SumS*S(I)*S(J)*RI’*E*RJ;

end

end

end

In the program, coor and ele are the data of nodes coordinates and node num-
bers of vertices, respectively. II and JJ are the indices expressed by {I} and
{J} in the equations, respectively. The other part for SFEM including assembly
of the right hand side and incorporation of Dirichlet conditions is the same as
the procedure used in FEM, see [22].
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[20] P. Ladevèze, J.P. Pelle, Mastering calculations in linear and nonlinear me-
chanics, Springer, 2005.
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