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ABSTRACT
New portable consumer embedded devices must execute mul-
timedia applications (e.g., 3D games, video players and sig-
nal processing software, etc.) that demand extensive mem-
ory accesses and memory usage at a low energy consump-
tion. Moreover, they must heavily rely on Dynamic Mem-
ory (DM) due to the unpredictability of the input data
and system behavior. Within this context, consistent de-
sign methodologies that can tackle efficiently the complex
DM behavior of these multimedia applications are in great
need. In this article, we present a novel design framework,
based on genetic programming, which allows us to design
custom DM management mechanisms, optimizing memory
accesses, memory use and energy consumption for the target
embedded system. First, we describe the large design space
of DM management decisions for multimedia embedded ap-
plications. Then, we propose a suitable way to traverse this
design space using grammatical evolution and construct cus-
tom DM managers that minimize the DM used by these
highly dynamic applications. As a result, our methodology
achieves significant improvements in memory accesses (23%
less on average), memory usage (38% less on average) and
energy consumption (reductions of 21% on average) in real
case studies over the current state-of-the-art DM managers
used for these types of dynamic applications. To the best
of our knowledge, this is the first approach to efficiently de-
sign DM managers for embedded systems using evolutionary
computation and grammar evolution.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods and Search—
Heuristic methods
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1. INTRODUCTION AND RELATED WORK
Modern multimedia embedded systems must be able to

run applications coming from desktop systems. However,
one of the most important problems that system designers
face today is the fast integration of applications coming from
a general-purpose domain into a highly-constrained mem-
ory device [17], where power consumption is a crucial design
and optimization priority, both at the hardware and soft-
ware level. In the past, most of the implementations that
were ported to these embedded platforms stayed mainly in
the classic domain of signal processing and actively avoided
algorithms that employ Dynamic Memory (DM). Recently,
with the emerging market of new portable devices that in-
tegrate multiple services such as multimedia and wireless
network communications, the need for an efficiently use of
DM in embedded low-power systems has arisen.

New consumer applications (e.g., 3D video applications)
are now mixed signal- and control-dominated. They must
rely on DM for a very significant part of their functionality
due to the inherent unpredictability of the input data, which
heavily influences global performance and memory usage of
the system. Designing them using static worst-case mem-
ory usage solutions would lead to an overhead in memory
usage and power consumption for these systems [3]. In ad-
dition, power consumption has become a real issue in overall
system design (both embedded and general-purpose) due to
circuit reliability and packaging costs [20]. Thus, optimiza-
tion in general (and especially for embedded systems) has
three goals that cannot be seen independently: memory us-
age, power consumptions and memory accesses.

Since the DM subsystem heavily influences performance
and is a very important source of power consumption and
memory usage, flexible system-level implementation and eval-
uation mechanisms for these three factors must be avail-
able at an early stage of the design flow for embedded sys-
tems. Current implementations of DM Managers (DMMs)
can provide a reasonable level of performance for general-
purpose systems [21]. However, these implementations do
not consider power consumption or other limitations of tar-
get embedded platforms where these DMMs must run on.
Thus, these general-purpose DMMs implementations may
produce large power and performance penalties. Conse-
quently, system designers currently face the need to man-
ually optimize the implementations of the initial DMMs on
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a case-per-case basis. However, adding new implementa-
tions of (complex) custom DMMs manually often prove to
be a very programming-intensive and error-prone task that
consumes a very significant part of the time spent in sys-
tem integration of DM management mechanisms (even if
standardized languages such as C or C++ offer consider-
able support).

Recently, a new high-level programming and profiling ap-
proach has been presented [4], [5]. Such methodology, based
on abstract derived classes or mixins in C++, is able to im-
plement complex custom DM managers from its basic parts
(e.g., de/allocation strategies, order within pools, splitting,
coalescing, etc.) [21] in a modular way and to evaluate their
power consumption at system-level. Based on their library,
authors also define a methodology to implement a DMM
by means of an almost-exhaustive exploration. Such explo-
ration is realized in a complete design space for dynamic
embedded systems. They aim to reduce power consump-
tion [4] and memory footprint [5]. In addition, this study
may be particularized for each embedded application. Fi-
nally, in [12], using the same methodology described in [4],
they balance the two factors (memory footprint and mem-
ory accesses) in order to achieve the most energy efficient.
However, they need two preliminary phases that require at
least two human decisions: (1) the significant reduction of
the initial design space, and (2) the execution of every DMM
to evaluate the performance of the final design, whereas our
goal in this paper is to automatically and efficiently explore
the DMM design space while exploiting grammatical evolu-
tion.

In this article we propose a new method, using genetic pro-
gramming, to automatically generate optimal DMM imple-
mentations, thus improving the state-of-the-art exploration
approaches. We present a novel approach that allows devel-
opers to design custom DM management mechanisms with
the reduced memory accesses, memory usage and power con-
sumption required for these new dynamic multimedia ap-
plications, with no manual intervention in the exploration
effort. First, starting from all the possible DMM implemen-
tations that the aforementioned methodology proposes ([4],
[5]), we automatically define the relevant design space of
DM management decisions for a minimal memory accesses,
memory usage and energy consumption. After that, using
grammatical evolution, we traverse this design space accord-
ing to the DM behavior of these new dynamic applications.
To evaluate each DMM implementation found by our evolu-
tionary algorithm, we have extended the DMM library de-
veloped in [4] to work in simulation mode. It enables a
relatively fast evaluation of each DMM implementation for
fine-tuning our DM design space exploration results during
the optimization process. As a result, the main contribu-
tions of this research work are two-fold: (1) the definition
of a set of rules that delimits the initial design space for a
particular multimedia embedded application and (2) a novel
evolutionary-based automatic exploration of DMMs for new
dynamic multimedia applications to help designers to create
very customized DMMs according to the specific dynamic
behavior of each application, since the user can fix maxi-
mum values of memory accesses, memory use and energy if
the final embedded system requires it.

The remainder of the article is organized in the following
way. First, Section 2 presents the construction method for
DM managers. Then, in Section 3, we present our design

flow to automatically explore DMMs, optimizing memory
accesses, memory usage and energy consumption. Section
4 explains how grammatical evolution is applied to gener-
ate DMMs. In Section 5, we detail our experimental setup
and we discuss the obtained results in two real-life embed-
ded applications. Finally, Section 6 summarizes the main
conclusions of this paper as well as our future work.

2. DYNAMIC MEMORY MANAGEMENT DE-
SIGN SPACE FOR EMBEDDED SYSTEMS

Much literature is available about possible implementa-
tion choices for DM management mechanisms [21], but just
few of them are related to a complete search space useful
for a systematic exploration in multimedia applications for
embedded systems. First, we summarize the design search
space of relevant DM management decisions presented in [4],
[5] and [12], since our evolutionary computation methodol-
ogy is based on the proposed search space.

DM management basically consists of two separate tasks,
i.e., allocation and deallocation. Allocation is the mech-
anism that searches for a block big enough to satisfy the
request of a given application and deallocation is the mech-
anism that returns this block to the available memory of the
system in order to be reused later. In real applications, the
blocks are requested and returned in any order, thus creating
“holes” among used blocks. These holes are known as mem-
ory fragmentation. On the one hand, internal fragmentation
occurs when a bigger block than the one needed is chosen
to satisfy a request. On the other hand, if the memory to
satisfy a memory request is available, but not contiguous
(thus it cannot be used for that request), it is called exter-
nal fragmentation. Hence, on top of memory de/allocation,
the DM manager has to take care of fragmentation issues.
This is done by splitting and merging free blocks to keep
memory fragmentation as small as possible. Finally, to sup-
port these mechanisms, additional data structures are built
to keep track of the free and used blocks. Therefore, to cre-
ate an efficient DMM, the design decisions that can be taken
to handle the possible combinations of the previous factors
(e.g., fragmentation, overhead of additional data structures)
must been classified.

In [5], all the important design options that can compose
the design space of DM management in different orthogonal
decision trees have been classified. Orthogonal means that
any decision in any tree can be combined with any decision
in another tree, and the result should be a potentially valid
combination (which does not necessarily mean that it meets
all timing and cost constraints). Moreover, the decisions in
the different orthogonal trees can be ordered in such a way
that traversing the trees can be done without iterations, as
long as the appropriate constraints are propagated from one
decision level to all subsequent levels. Basically, when one
decision has been taken in every tree, one custom DMM is
defined for a specific DM behavior pattern.

Then, these trees have been grouped in categories accord-
ing to the different main parts that can be distinguished in
DM managements [21]. They are shown in Figure 1. This
new approach allows the reduction of the complexity of the
DMM global design in smaller sub-problems that can be de-
cided locally. In such a search space, any combination of a
leaf from each of the decision trees represents a valid DMM.
This fact leads to a huge amount of potential implementa-
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Figure 1: DM management search space of orthog-
onal decisions

tions that can be used not only to recreate any available
general-purpose DMM [21], but also to create new highly-
specialized DMMs [4]. The five main categories of Figure 1
and the important decision trees inside them for the creation
of DMMs are fully described in [5].

Atienza et. al [4] have developed a C++ library based on
abstract classes and templates [19] that covers all the pos-
sible decisions in the DMM design space depicted in Figure
1. It enables the construction of the final global custom DM
manager implementation in a simple way via composition of
C++ layers. In general terms, the basic interface defined
in such DMM library, called HeapList, is based on a C++
template. Then, every DMM is formed by a set of atomic
DMMs, and each atomic DMM is defined by the following
class prototype:

template<class Heap, class AllSel, class FreeSel,
class Tail>

class HeapList {
...
inline void* malloc (size_t sz) { ... }
inline void free (void* ptr) { ... }
...

};

where

• Heap is the data structure of the atomic DMM de-
signed for a certain region of memory. It should in-
clude the type of data structure and policies for blocks
sorting and selection that are used in that manager.

• AllSel includes the set of conditions determining the
range of block sizes that will be attended by this atomic
DMM. If there are several atomic DMMs with the same
range, every memory request is attended in descending
order, as the atomic DMMs are created in the code.
Thus, the last atomic DMM attends requests when
there are no free blocks on the previous atomic DMMs.

• FreeSel defines the set of rules determining the range
of block sizes that are returned (freed) by this atomic
DMM. Using this parameter, block migration policies
between different atomic DMMs can be defined.

• Tail is the next atomic DMM in the global manager’s
structure. If there are no more atomic DMMs, it repre-
sents the interface used by the Operating System (OS)
to de/allocate memory (sbrk(), nmap(), malloc(), etc.).

For illustration purposes, in the following example we de-
sign a complex DMM formed by three atomic DMMs. Thus,
such DMM manages three different regions of memory. Ev-
ery region is selected accordingly to the block size that the
application needs to de/allocate. The first atomic DMM at-
tends de/allocation for 40-bytes-size objects. This atomic
manager uses a single-linked list of blocks with First In,
First Out (FIFO) allocation policy. The second atomic man-
ager is used for 80-byte size objects. Similarly, the last region
is used for all the requests that cannot be managed by the
previous two atomic managers.

typedef SingletonHeap <
HeapList<
FIFOSLFixedListHeap<SizeHeader>,
SizeSelector<40>,
SizeSelector<40>,
HeapList<
FIFOSLFixedListHeap<SizeHeader>,
SizeSelector<80>,
SizeSelector<80>,
HeapList<
FIFOSLBestFitHeap<SizeHeader>,
TrueSelector,
TrueSelector,
FixedHeap<SbrkHeap<EmptyHeader>,

2048, SizeHeader>
>
>
>> GlobalHeap;

In the DMM C++ library presented in [4], the authors have
developed several heaps, utility layers, object representa-
tions, selectors, headers, etc. This template-based approach
largely simplifies the complex engineering process of design-
ing custom DMMs, allowing the developers to cover a vast
part of the implementation space (e.g., different strategies
of the heap, internal blocks of the allocators, etc.) with
a minimal programming and modeling effort. In addition,
this library provides a logging layer, which reports at run-
time the number, type and size of objects de/allocated by
the application under study.

In this research work, we have extended this DMM library
with a simulation mode. It allows us not only to execute a
real DMM for a certain application, but also to emulate the
behavior of a DMM to obtain the number of memory ac-
cesses, the memory used and energy consumed in indepen-
dent cases or memory allocation situations (see Section 3.3
for more details). Thus, we are able to evaluate a DMM with
an initial profiling of the application much faster than pre-
vious approaches, where every DMM needs to be evaluated
running the application in real-time with a predefined DMM.
As a result, the evaluation of DMM can be performed rela-
tively fast, and exploration algorithms can be included in the
searching process. It is indeed much faster than the method-
ology presented in [4], since the system designer does not
have to implement the DMMs, and try to evaluate them on
a one-by-one basis by running the application under study
in real-time.
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Figure 2: DMMs optimization flow

3. DMM OPTIMIZATION FLOW
The proposed optimization framework uses three differ-

ent phases to perform the automatic exploration of DMMs
using Grammatical Evolution (GE). Figure 2 shows the dif-
ferent phases required to perform the overall DMMs opti-
mization. In the first phase, we generate an initial profiling
of the de/allocation pattern of the different objects instan-
tiated by the application. In the second phase, we automat-
ically analyze the profiling report and provide the hardware
parameters of the target embedded system to generate a
sub-grammar of the original one, more specialized for the
application and final embedded system under study. Conse-
quently, such phase also reduces the search space. Finally, in
the third phase an exploration of the design space of DMMs
implementation is performed using GE. Next, we describe
the three phases of our proposed optimization flow.

3.1 Profiling of the application
First, we run the application under study using a basic

DM manager implemented with the DMM library. Such
process logs all the required information in an external file:
identification of the object created/deleted, operation (al-
location or deallocation) object size in bytes and memory
address. To this end, we must only include the DMM li-
brary in the source code of the application (one line of code
per variable to profile), as proposed in [4]. As a result, this
first phase takes between 2-3 hours in our methodology for
real-life applications, thanks to our tools with very limited
user interaction.

3.2 DMM grammar filter
In the following phase, as Figure 2 shows, we automati-

cally examine all the information contained in the profiling
report, and using the memory size of the embedded system,
we obtain a sub-grammar of the original one presented in
Section 4. Moreover, some incomplete rules in the original
grammar, such as the size of the selectors or the memory
size of the embedded system, are automatically defined ac-
cording to the obtained profiling. To this end, we have de-
veloped a tool called Grammar Filter. This phase takes no
more than 1-2 minutes with no user interaction.

Figure 3: DMM generation and evaluation process.

3.3 Optimization
The last phase is the optimization process. As Figure 2

depicts, this phase consists of a GE algorithm that takes
as input: (1) the sub-grammar generated in the previous
phase, (2) the hardware parameters (e.g., memory size and
power consumption model for the embedded memory [13])
of the target embedded system, and (3) the profiling report
of the application. It also uses the DMM library, extended
to simulate the behavior of every DMM generated by the
grammar when it is used in the application.

Figure 3 shows an illustrative example on how our method-
ology performs. Our GE algorithm is constantly generat-
ing different DMM implementations from the grammar file.
When a DMM is generated (DMM i in Figure 3), it is re-
ceived by the DMM library. Next, the DMM library, work-
ing in simulation mode, emulates the behavior of the ap-
plication debugging every line in the profiling report. Such
emulation does not de/allocate memory from the computer
like the real application, but maintains useful information
about how the structure of the selected DMM evolves in
time. Such methodology is much faster than previous ap-
proaches proposed in the literature ([6], [5]), and allows the
system designer to use automatic exploration algorithms in-
stead of compiling and running the application for every new
DMM. After the profiling has been simulated, the DMM li-
brary returns back the fitness of the current DMM to the
GE algorithm.

The fitness is computed as a weighted sum of the mem-
ory accesses, memory usage and energy consumed by the
proposed DMM for the target embedded system and appli-
cation under study. The amount of memory accesses and
memory used is directly calculated by the DMM simulator
in its source code. With respect to dynamic and static power
consumption, we assume that it is proportional to the execu-
tion time of the application using the DMM being evaluated
(tex):

Energy (DMM i) ∝ tex (DMM i) (1)

In several research works, cache misses have been com-
puted in order to estimate the energy consumed by appli-
cations [4], [9], [12], [20]. However, cache misses are costly
to compute, since it requires a complex analytical model or
a cache-simulator. In this work, we are interested in eval-
uating a DMM as fast as possible, while being able to ex-
plore global trade-offs between different DM managers, so
we mainly focus in (accurate enough) high-level exploration,
rather than evaluating cycle by cycle the execution of the
application in the internal buses of the embedded system.
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Furthermore, as it is showed in [9], the most important fac-
tor in an energy model is the execution time and the number
of memory accesses, which we model accurately.

To measure the execution time of the application under
study (and using the DMM proposed by the GE algorithm),
the DMM simulator calculates the computational complex-
ity or time complexity [18]. In this regard, every portion of
the code in the simulator that emulates the behavior of a
DMM is accompanied by its corresponding added execution
time, memory accesses and memory used. The following
code snippet shows an illustrative example of how this task
is performed:

inline void malloc(size_t sz) {
exTime += 2; memAcc += 2;
object* ptr = head.next;
if(ptr!=&tail) {
exTime += 2; memAcc += 5;
head.next = ptr->next;
if(head.next==&tail) {
exTime++; memAcc += 2; memUsed -= ptr->size();
tail.next = &head;
}
exTime++;
return (void*)ptr;
}
exTime++;
return 0;
}

The first sentence computes the execution time of the pointer
assignment (ptr) and the evaluation of the if condition.
The second one takes into account two memory accesses:
one for the head.next sentence (i.e., access operator) and
one because of the &tail sentence. This process is repeated
until the end of the function, updating the execution time,
memory accesses and memory used when needed. In the
example presented, the memory used is reduced in ptr-

>size(): this is correct because the DMM does not need
to manage this portion of memory, unless it is freed.

When the optimization process ends, the GE algorithm
returns the best DMM found, with minimal weighted sum
of memory accesses, memory used and energy consumed.
This phase takes no more than few hours with no user inter-
action. It mainly depends on the size of the profiling report.
In the performed tests we have applied GE to profiling re-
ports varying from 2.4 to 3.1 GB. Note that in previous ap-
proaches, this phase typically takes days, and requires that
the application does not demand user interaction [5]. In any
case, our methodology requires a lot less time than state-of-
the-art solutions to this problem [5] because we work with
a profiling report, instead of simulating multiple times the
complete original application. Furthermore, we do not com-
pile the original application every time a new DMM must
be evaluated, which makes our framework even more stable
and results more easily comparable overall.

4. DMM OPTIMIZATION USING GRAMMAT-
ICAL EVOLUTION

Grammatical Evolution (GE) (e.g., [15], [8], [7]) is a grammar-
based form of Genetic Programming (GP) [16]. It com-
bines principles from molecular biology to the representa-
tional power of formal grammars. GE’s rich modularity
gives a unique flexibility, making it possible to use alterna-
tive search strategies (evolutionary, deterministic or some
other approach) and to radically change its behavior by
merely changing the grammar supplied. Since a grammar

is used to describe the structures that are generated by GE,
it is trivial to modify the output structures by simply edit-
ing the plain text grammar. When tackling a problem with
GE, a suitable Backus Naur Form (BNF) grammar defini-
tion must initially be defined. The BNF can be either the
specification of an entire language or, perhaps more usefully,
a subset of a language geared towards the problem at hand.
In a simulation run, GE can theoretically evolve programs
in any language described by a BNF.

A simplified version of the grammar we have used to ex-
plore DMMs in multimedia embedded applications, but that
illustrates the principles used in its definition within the pro-
posed exploration framework, is as follows:

<GlobalHeap>::=<SingletonHeap>
|<CoalesceableHeap>

<SingletonHeap>::=SingletonHeap(<HeapList>)
<CoalesceableHeap>::=CoalesceableHeap(<HeapList>)
<HeapList>::=HeapList(<Heap>,

<AllSel>,
<FreeSel>,
<Tail>)

<Heap>::=<FIFOBestFitHeap>
|<FIFOFirstFitHeap>
|<FIFOFixedListHeap>
|<LIFOBestFitHeap>
|<LIFOFirstFitHeap>
|<LIFOFixedListHeap>

<FIFOBestFitHeap>::=FIFOBestFitHeap(<Header>)
<FIFOFirstFitHeap>::=FIFOFirstFitHeap(<Header>)
<FIFOFixedListHeap>::=FIFOFixedListHeap(<Header>)
<LIFOBestFitHeap>::=LIFOBestFitHeap(<Header>)
<LIFOFirstFitHeap>::=LIFOFirstFitHeap(<Header>)
<LIFOFixedListHeap>::=LIFOFixedListHeap(<Header>)
<Header>::=EmptyHeader

|LeaHeader
|SizeHeader

<AllSel>::=<SizeSelector>
|TrueSelector

<FreeSel>::=<SizeSelector>
|TrueSelector

<SizeSelector>::=SizeSelector(<SizeSelectorInBytes>)
<SizeSelectorInBytes>::=#Size1

|#Size2
|#...
|#SizeN

<Tail>::=<FixedHeap>
|<HeapList>

<FixedHeap>::=FixedHeap(<SbrkHeap>,
<MemorySizeInKB>,
<Header>)

<SbrkHeap>::=SbrkHeap(EmptyHeader)
<MemorySizeInKB>::=#MemSize

In particular, the shown grammar does not include all the
DMM library developed in [4] due to space limitations. Nonethe-
less, this grammar is complete enough to implement many
well-known DMMs and to explore custom DMM implemen-
tations for the two real-life case studies used in this work
(see Section 5 for more details). Moreover, it is straight-
forward to extend it, following the principles of the shown
excerpt, with new classes to create the complete DMM li-
brary proposed [4].

The presented grammar includes two global heaps: (1)
CoalesceableHeap, which allows the DMM to split and coa-
lesce memory, and (2) SingletonHeap, which is the most sim-
ple DMM allowed since it does not permit neither splitting
nor coalescing. As the grammar shows, every global heap
contains a HeapList. Every HeapList is formed by its cur-
rent heap, an allocator, free-selector and the next heap in the
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list. On the one hand, both allocators and free-selectors can
be implemented as a TrueSelector or a SizeSelector. A True-
Selector allows the DMM to place an object in an atomic
DMM in any case. On the contrary, a SizeSelector only
allows the DMM to place an object of size <SizeSelector-

InBytes>. Note that this rule is not complete, since there
exists some parameters, i.e., #Size1, #Size2, ..., #SizeN that
are defined after the application has been examined, and the
final memory subsystem configuration of the target device is
inserted in our exploration framework. On the other hand,
every heap in a HeapList can be implemented as six differ-
ent First-In First-Out (FIFO) and Last-In First-Out (LIFO)
reuse strategies (see <Heap> rule). Finally, the HeapList
must end with a heap layer that provides memory directly
from the system. It happens when the rule <Tail> produces
a <FixedHeap> rule. This thin wrapper over system-based
memory allocators include SbrkHeap (built using sbrk() for
UNIX systems and an sbrk() emulation for Windows). The
parameter #MemSize depends on the embedded system under
study and it is defined when the exploration starts. Finally,
we have also defined three headers or object representations:
EmptyHeader which represents just the object, SizeHeader
that maintains object size in a header just preceding the
object, and LeaHeader that does the same but also records
whether each object is free in the header of the next object
in order to facilitate coalescing.

Just before the GE starts, all the parameters needed in the
grammar (<SizeSelectorInBytes> and <MemorySizeInKB>)
are initialized accordingly to hardware and software specifi-
cations. After that, every individual in the population de-
fines the implementation of a DMM, which is instantiated
and simulated over a profiling of the application. This sim-
ulation returns the fitness of each individual and the GE
continues, selecting after each cycle the best DMM found in
the overall population. In the next section, this process is
explained in detail using two real-life embedded multimedia
applications.

5. CASE STUDIES AND EXPERIMENTAL
RESULTS

We have applied the proposed methodology to two case
studies that represent different modern multimedia applica-
tion domains: the first case study is a 3D Physics Engine
(Physics3D) for elastic and deformable bodies [10], which is
a 3D engine that displays the interaction of non-rigid bod-
ies. The second benchmark is VDrift [2], which is a driving
simulation game. The game includes as main features: 19
different tracks, 28 types of cars, artificial intelligent players
and a networked multi-player mode. To compare our re-
sults with a well-known DMM, we have implemented one of
the fastest general-purpose DM managers using our DMM
library, namely, the Kingsley memory allocator [21]. Al-
though Kingsley is quite fast and extensively used in embed-
ded operating systems (e.g., RTEMS [1] or Free BSD [11]),
it can present a considerable fragmentation due to its use of
power-of-two segregated-fit lists.

The parameters employed in the GE algorithm for both
applications are shown in Table 1. To implement our GE
algorithm, we have used GEVA [14], a well-known GE tool
written in Java.

Table 1: Parameters for the GE algorithm.
Parameter Value
Population size 60
Number of generations 100
Probability of crossover 0.80
Probability of mutation 0.02

Figure 4: Results of memory accesses, memory us-
age and energy consumption of the custom DMM
obtained by our design framework, normalized to
Kingsley, in the Physics3D application.

5.1 Method applied to Physics3D
To create our custom DMM, we have followed the pro-

posed methodology flow shown in Figure 2. We first profile
the behavior of the application using a basic DMM imple-
mentation. Then, we run our Grammar Filter tool with the
following results: first, it makes the decision to have many
block sizes to prevent internal fragmentation. This is done
because the memory blocks requested by the Physics3D ap-
plication vary greatly in size (to store bodies of different
sizes) and if only one block size is used for all the differ-
ent block sizes requested, the internal fragmentation would
be large. Next, the tool chooses splitting or coalescing, so
that every time a memory block with a bigger or smaller
size than the current block is requested, the splitting and
coalescing mechanisms are invoked. In addition, an exact
fit to avoid as much as possible memory losses in internal
fragmentation is selected. Finally, the Grammar Filter tool
selects a header field to accommodate information about the
size and status of each block to support splitting and coa-
lescing mechanisms. At the end of this phase, we obtain a
reduced grammar file, which is used by the GE algorithm.

Then, we run the optimization phase and compare our
custom solution with the Kingsley [21] DM manager, who is
a well-known state-of-the-art general-purpose manager for
embedded systems. As Figure 4 shows, our custom DMM
uses less memory (reduction of 36%) and memory accesses
(19% less) than Kingsley. This is due to the fact that our
custom DMM manager does not have fixed sized blocks to
try with multiple accesses, and tries to coalesce and split
as much as needed to efficiently used the existing memory,
which is a better option in dynamic applications with large
variations in requested sizes. Moreover, when large coalesced
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chunks of memory are not used, they are returned back to
the system for other applications. Furthermore, the results
indicate that our custom DMM achieves significantly bet-
ter results for energy (a 21% reduction), when compared to
Kingsley, because most of the dynamic accesses performed
internally by Kingsley to its complex management structures
are not required in our custom DM manager, which uses a
simpler and optimized internal data structures for the target
application. Thus, our custom DMM reduces by 21% the en-
ergy consumption values of Kingsley. Even though Kingsley
does not perform splitting or coalescing operations, it suf-
fers from a large memory footprint penalty and performs
unnecessary accesses to traverse all its storage bins in order
to find the closest size for each new requested memory allo-
cation. This translates into many unnecessary accesses (and
expensive ones, because bigger memories need to be used)
with respect to our custom DM manager. Consequently, for
Physics3D, our methodology allows to design a very cus-
tomized DMM that exhibits less fragmentation than Kings-
ley and, thus, requires less memory. Moreover, since this
decrease in memory usage is combined with a simpler in-
ternal management of DM, the final DM manager performs
less memory accesses and obtains significant reductions in
energy consumption as well.

5.2 Method applied to VDrift
The dynamic behavior of the VDrift case study shows that

only a very limited range of data type sizes are used in it,
namely 11 different allocation sizes are requested. In addi-
tion, most of these allocated sizes are relatively small (i.e.,
between 32 or 8192 Bytes) and only very few blocks are
much bigger (e.g., 151 KBytes). Furthermore, we see that
most of the data types interact with each other and are alive
almost all the execution time of the application. Within this
context, we apply our methodology using the order provided
in Figure 2, optimizing memory accesses, memory usage and
energy consumed by the DMM. As a result, we obtain a final
solution that consists of a custom DMM with 4 separated
pools or regions for the relevant sizes in the application. The
first pool is used for the smallest allocation size requested
in the application, that is, 32 bytes. The second pool al-
lows allocations of sizes between 756 bytes and 1024 bytes.
Then, the third pool is used for allocation requests of 8192
bytes. Finally, the fourth pool is used for big allocation re-
quests blocks (e.g., 151 or 265 KBytes). The pool for the
smallest size has its blocks in a single-linked list because it
does not need to coalesce or split since only one block size
can be requested in it. The rest of the pools include doubly-
linked lists of free blocks with headers that contain the size
of each respective block and information about their current
state (i.e., in use or free). These mechanisms efficiently sup-
port immediate coalescing and splitting inside these pools,
which minimizes both internal and external fragmentation in
the custom DMM designed with our methodology. We have
tested our obtained DMM Kingsley used in the previous ex-
ample (i.e., Physics3D). The memory accesses, memory used
and energy consumed by both DMMs are depicted in Figure
5.

These results show that the values obtained with the DMM
designed using the proposed methodology obtains significant
improvements in memory usage compared to the manually
designed implementation of Kingsley (38%). This result is
obtained because our custom DMM is able to minimize the

Figure 5: Results of memory accesses, memory us-
age and energy consumption of the custom DMM
obtained by our design framework (normalized to
Kingsley) in the VDrift application.

fragmentation of the system in two ways. First, because its
design and behavior varies according to the different block
sizes requested. Second, in pools where a range of block
sizes requests are allowed, it uses immediate coalescing and
splitting services to reduce both internal and external frag-
mentation. In Kingsley, the coalescing/splitting mechanisms
are applied, but an initial boundary memory is reserved and
distributed among the different lists for sizes. In this case,
since only a limited amount of sizes is used, some of the
“bins” (or pools of DM blocks in Kingsley) [21] are under-
used. Therefore, our DM manager employs less memory
accesses to DM blocks than Kingsley (i.e., a reduction of
23%). In addition, the final embedded system implementa-
tion using our custom DMM achieves better energy results
than the implementations using the Kingsley DMM (18%
less consumed energy).

6. CONCLUSIONS AND FUTURE WORK
Nowadays, high-performance embedded devices (e.g., PDAs,

advanced mobile phones, portable video games stations, etc.)
need to execute very dynamic embedded applications. These
applications, typically coming general-purpose computers,
are very complex for embedded systems and currently de-
mand intensive DM requirements that must be heavily op-
timized (i.e., memory accesses, memory usage and power
consumption) for an efficient mapping on latest low-power
embedded devices. System-level exploration and refinement
methodologies have started to be proposed to consistently
perform that refinement. Within this context, the man-
ual exploration and optimization of the DMM implementa-
tion is one of the most time-consuming and programming-
intensive parts. In this paper we have presented a new
system-level approach based on genetic programming to au-
tomatically characterize custom DMMs with an integrated
profiling method. This approach largely simplifies the com-
plex engineering process of designing and profiling several
implementation candidates, allowing the developers to au-
tomatically cover a vast part of the DM management de-
sign space (e.g., different strategies of the heap, internal
blocks of the allocators, etc.) without any programming
and modelling effort. Furthermore, we have shown in our
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case studies that the profiling results obtained for memory
accesses, memory usage and power consumption by our op-
timized DMM using GE are significantly better than those
obtained with one of the fastest and frequently used general-
purpose managers, optimized for latest embedded systems,
the Kingsley DM manager. Our future work includes the
exploration of possible ways to parallelize the proposed GE
algorithm in order to improve further the execution time of
the exploration process.
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