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Abstract

One of the most important issues for magnetic-confinement fusion research is the so-

called anomalous transport across magnetic field lines, i.e. transport that is in excess of

that caused by collisional processes. The need to reduce anomalous transport in order

to increase the efficiency of a prospective fusion reactor must be addressed through an

investigation of its fundamental underlying causes.

This thesis is divided into two distinct components: one experimental and instrumen-

tal, and the other theoretical and based on numerical modeling. The experimental part

consists of the design and installation of a new diagnostic for core turbulence fluctua-

tions in the TCV tokamak. An extensive conceptual investigation of a number of possible

solutions, including Beam Emission Spectroscopy, Reflectometry, Cross Polarization, Col-

lective Scattering and different Imaging techniques, was carried out at first. A number

of criteria, such as difficulties in data interpretation, costs, variety of physics issues that

could be addressed and expected performance, were used to compare the different tech-

niques for specific application to the TCV tokamak. The expected signal to noise ratio

and the required sampling frequency for TCV were estimated on the basis of a large num-

ber of linear, local gyrokinetic simulations of plasma fluctuations. This work led to the

choice of a Zernike phase contrast imaging system in a tangential launching configuration.

The diagnostic was specifically designed to provide information on turbulence features up

to now unknown. In particular, it is characterized by an outstanding spatial resolution

and by the capability to measure a very broad range of fluctuations, from ion to electron

Larmor radius scales, thus covering the major part of the instabilities expected to be at

play in TCV. The spectrum accessible covers the wavenumber region from 0.9 cm−1 to

60 cm−1 at 24 radial positions with 3MHz bandwidth. The diagnostic is an imaging tech-

nique and is therefore also well suited to investigate inhomogeneous spatial regions, where

the need for an excellent spatial resolution is greatest. Additionally, it was also designed

as translatable to broaden the region of study, which can extend up to the magnetic axis,

in selected configurations. The translatable design combined with the flexibility of TCV

in terms of plasma positioning in the vacuum vessel allows the phase contrast system to

measure fluctuations across virtually the whole plasma minor radius. The diagnostic is

sensitive both to radial and poloidal wave numbers, depending on the configuration.

A parallel project to the development and installation of the phase contrast imaging sys-

tem was the installation of a prototype Doppler reflectometer operating in a homodyne

configuration, both in X and in O mode polarization. The reflectometer was operated

parasitically to assess its performance which proved to be excellent; it is now routinely

available on TCV.

The theoretical part of the thesis consisted of extensive modeling of the effect of plasma

shape, in particular triangularity, on turbulent transport by means of linear and nonlinear

gyrokinetic simulations. This was motivated by experiments on TCV that had shown a
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dramatic improvement in confinement, up to a factor of two, in inverting the sign of the

triangularity from positive to negative. Negative triangularity was indeed found to have a

stabilizing influence on ion scale instabilities, specifically on the so called trapped electron

mode (TEM). Simulations were carried out on actual TCV shots and the variation of the

heat flux with triangularity calculated by the nonlinear simulations is in fair agreement

with the experimental results. Linear simulations and a simple analytical model explain,

in agreement with nonlinear runs, the resulting stabilization as a result of a rather com-

plex modification of the toroidal precessional drift of trapped particles exerted by negative

triangularity.

Keywords: Tokamak, plasma physics, confinement, turbulence, imaging diagnostic,

transport, heat, particle, drift, nonlinear, gyrokinetic, phase contrast
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Version abrégée

Le transport généré par des phenomènes non-collisionnels à travers les lignes de champ

magnétique est parmi les problèmes les plus importants dans le domaine de la recherche

sur la fusion nucléaire à confinement magnétique. Le besoin de réduire ce type de trans-

port pour pouvoir augmenter l’efficacité d’un futur réacteur à fusion doit être abordé par

une investigation directe de ses causes fondamentales.

Ce travail de thèse est divisé en deux composantes: la première expérimentale, la deuxième

théorique et basée sur la modélisation numérique. La partie expérimentale consiste en la

conception et installation d’un nouveau type de diagnostic de fluctuations turbulentes

dans l’intérieur du tokamak TCV. Une étude détaillée de nombreuses techniques possi-

bles, dont le Beam Emission Spectroscopy, la Réflectométrie, le Cross Polarization, la

Diffusion Collective et différentes méthodes d’imagerie, a été effectuée en premier. De

différents critères, comme la difficulté d’interpréter les données, les coûts, l’ampleur des

études de physique possibles et les performances attendues, étaient les critères utilisés

pour comparer les différents diagnostics pour l’application à TCV. Le rapport signal

bruit attendu et la fréquence d’echantillonage requise sur TCV ont été éstimés à l’aide

d’un grand nombre de simulations linéaires, locales et gyrocinétiques des fluctuations. Le

résultat de ce travail a été le choix de la méthode du contraste de phase de Zernike avec

une configuration tangentielle.

Le diagnostic a été spécifiquement conçu pour fournir des informations inconnues jusqu’à

maintenant sur les caractéristiques de la turbulence. En particulier, il est caractérisé

par une localisation spatiale exceptionelle et par la capacité de mesurer un large spectre,

depuis l’échelle du rayon de Larmor des ions à celui des électrons, donc en couvrant la

plupart des instabilités attendues sur TCV. En particulier le spectre accessible est com-

pris entre 0.9 cm−1 et 60 cm−1 en 24 positions radiales avec une bande passante de 3MHz

environ.

Le diagnostic se base sur une méthode à imagerie et est donc adapté à l’investigation

des régions spatiales inhomogènes, d’où la nécessité d’une très bonne résolution est plus

importante. En outre, le diagnostic a aussi été conçu pour être déplacé dans la chambre à

vide pour agrandir la région de plasma accessible, jusqu’à atteindre l’axe magnétique dans

des configurations particulières. La capacité de déplacement du diagnostic, combinée avec

la flexibilité de TCV quant aux positions possibles du plasma à l’intérieur de la chambre

à vide, permet au contraste de phase d’effectuer des mesures sur quasiment tout le petit

rayon du plasma. Le diagnostic est sensible aux nombres d’onde radiaux et polöıdaux, en

fonction de sa configuration.

Un projet parallèle au dévelopement et à l’installation du système du contraste de phase

était l’installation d’un prototype de réflectomètre Doppler avec une configuration homo-

dyne, en polarisation X comme en polarisation O. Le réflectomètre a été utilisé de manière

parasitaire sur TCV pour vérifier ses performances, qui se sont démontrées excellentes; il
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est maintenant régulièrement utilisé sur TCV.

La partie théorique de la thèse a intéressé la modélisation, avec des simulation gy-

rocinétiques linéaires et non linéaires, de l’effet de la forme du plasma, en particulier

de la triangularité, sur le transport turbulent. Cette étude a été motivée par des experi-

ences effectuées sur TCV qui ont montré comme, en changeant la triangularité de positive

à négative, le confinement de l’énergie du plasma augmente d’un facteur deux. Les sim-

ulations ont permis de vérifier que la triangularité négative a un effet stabilisant sur les

instabilitées à l’échelle ionique, en particulier sur les modes causés par les électrons piégés

(TEM). Les simulations ont été effectuées sur des tirs réels de TCV et la variation du flux

de chaleur en fonction de la triangularité calculée par les simulations non linéaires est en

bon accord avec l’expérience. Les simulations linéaires et un simple modèle analytique

expliquent, en accord avec les simulations non linéaires, que la stabilisations est due à la

modification assez compliquée de la dérive de précession toröıdale des électrons piégés,

exercée par la triangularité.

Mots clés: Tokamak, physique des plasmas, confinement, turbulence, diagnostic à im-

agerie, transport, chaleur, particules, dérive, nonlinéaire, gyrocinétique, contraste de

phase
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Chapter 1

Nuclear Fusion: history and present
status

1.1 Introduction

From time immemorial, men interested in describing things they saw in everyday life were

called naturalists because they were, indeed, observing and studying natural phenomena.

In particular, even the titles of some of the earliest studies mentioned nature explicitly,

for example Lucretius’ De Rerum Natura, and were attempts at describing the laws of

nature and the role of men as part of it. As centuries passed, man progressively moved

his attention from the anthropocentric aspects of his description to the naturalistic ones,

in the attempt to remove all superfluous aspects from his description. In this respect, the

step which led from Ptolemy’s description of the solar system to Copernicus’ is especially

remarkable. Progressively man acquired consciousness of the fact that his description was

nothing but a picture of the world which could not account for everything. The concept

of model was thus born and we now are aware of the fact that we describe reality through

a model, which means a picture of the world which accounts only for what we can or

want to observe. In particular it has been recognized how a theory is valid in a given

limit and no longer appropriate in another limit; for example, if the GPS system used

Newtonian mechanics its accuracy would be too poor for it to be useful, while orders

of magnitude in accuracy are gained with Einstein’s relativistic description. Over time,

naturalists, also due to the proliferation of scientific knowledge, started specializing and

concentrating on different aspects of the world, and over the past couple of centuries uni-

versities have also progressively moved from general naturalistic courses to the present

courses of mathematics, physics, chemistry, more recently engineering and, very recently,

computer science and biotechnologies. Along this process, another splitting mechanism

was at play: empiricism and rationalism, which try to describe the world using two dif-

ferent approaches: the former wants to deduce a model of a given part of the world under

consideration by observing how things behave and happen, while the latter aims at ex-

1



2 CHAPTER 1. NUCLEAR FUSION: HISTORY AND PRESENT STATUS

plaining the experimental evidence on the basis of first principles.

Plasma physics is not an exception to history: it is a description of a part of the world,

actually a large part of it in terms of amount of mass in the universe, and is divided

into subbranches, such as astrophysical plasmas, industrial plasmas, inertial confinement,

magnetic confinement, each of which is divided into its subbranches and, of course, into

theoretical and experimental approaches. In this thesis we will concentrate only on mag-

netic confinement plasma physics, trying nevertheless to follow, as long as we can, both

an experimental and a theoretical approach.

1.2 Nuclear fusion

The branch of physics called nuclear fusion primarily owes its existence to a few milestones

in experimental and theoretical physics of the 19th-20th centuries, in chronological order:

1. Radioactivity. It was first discovered in 1896 by the French scientist Henri Becquerel,

while working on phosphorescent materials. For this discovery [1], in 1903 he was

awarded the Nobel Prize for Physics.

2. On the electrodynamics of bodies in movement [2], in which Albert Einstein states,

among other outstanding concepts, the equivalence of mass and energy

3. The Rutherford scattering[3, 4]. In 1909 Ernst Rutherford, with a gold foil ex-

periment, showed how atoms are composed of heavy nuclei with electrons orbiting

around them. Rutherford scattering is also sometimes referred to as Coulomb scat-

tering because it relies on static electric, or Coulomb, forces. For this discovery,

Ernst Rutherford was awarded the Nobel Prize for Chemistry in 1908.

Of course, many more discoveries and outstanding scientists such as Pierre and Marie

Curie, Enrico Fermi, Ettore Majorana, Niels Bohr, Giuseppe Occhialini, Werner Heisen-

berg, Wolfgang Pauli, Erwin Schroedinger, Paul Adrien Maurice Dirac, James Chadwick,

Jagadis Chandra Bose, George Gamow and many others were necessary to understand

how a nucleus behaves and that, indeed, nuclei can be transformed into one another thus,

by the way, discovering the philosopher’s stone. It is a personal opinion of the author that

the three aforementioned milestones were essential ingredients in discovering that nuclei

can interact with each other and, sometimes, as a consequence, a new nucleus is created

releasing a given amount of energy which depends on the particular reaction.

Indeed, the basic idea of nuclear fusion is to force light nuclei to react in such a way as

to create a more stable nuclear configuration and releasing an amount of energy corre-

sponding to the binding energy. Nature is such that the binding energy of nuclei is not
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constant with the mass of the nucleus, it follows the experimental curve represented in

Fig.1.1. Iron being the most stable nucleus, energy is released by going towards its atomic

Figure 1.1: Binding energy per nucleon as a function of the mass of the nucleus.

mass from the right part, i.e. by breaking heavy nuclei, or from the left part of the curve,

i.e. by fusing light nuclei. The former corresponds to nuclear fission while the latter to

nuclear fusion.

In order to be useful as a source of energy, a fusion reaction must satisfy several criteria.

It must

• be exothermic: This may be obvious, but it limits the reactants to the low Z (number

of protons) side of the curve of binding energy. It also makes helium He4 the most

common product because of its extraordinarily tight binding, although He3 and H3

also appear

• involve low Z nuclei: This is because the electrostatic repulsion must be overcome

before the nuclei are close enough to fuse. As the atomic number is increased, a

larger kinetic energy is required for the nuclei to overcome the electrostatic repulsion.

• have two reactants: At densities less than the stellar ones, three body collisions are

too improbable.

• have two or more nuclei as products: this allows simultaneous conservation of energy

and momentum without relying on the emission of a photon. Indeed, if photons were

emitted, being gamma photons, they would require a shell made by a heavy element,

such as Pb, a few centimeters thick, to shield them and collect their energy. This

would entail severe complications to the engineering design of the fusion reactor.

Considering these requirements, as well as the probability of the reaction at a given energy

of the reacting nuclei, the energy released to neutrons and the ratio of the released energy
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to the energy lost by bremsstrahlung processes, the most attractive fusion reaction is the

following[23]

D + T → He4(3.5MeV ) + n(14.1MeV )

Since T is a radioactive material, safety requirements and the need to minimize neutron

damages to fusion facilities suggested, at least in the case of magnetically confined plasma,

the use of two other sister reactions

D +D → T (1.01MeV ) + p(3.02MeV )

D +D → He3(0.82MeV ) + n(2.45MeV )

having a branching ratio equal to 50% (i.e. they can occur with equal probability).

The maximum of the cross section for fusion reactions is found at energies of several keV,

which by far exceed the electron binding energies for almost any nucleus, thus requiring

the existence of a sort of gas composed of charged particles; this gas is the fourth state of

matter and is called plasma. Strictly speaking a plasma is an ionized gas, globally neutral,

which is governed by collective phenomena; this is a major difference from a normal gas

in which significant interactions occur only among neighboring particles. Being ionized,

a plasma needs to be confined: nature chose the gravitational confinement in stars, while

men, who cannot afford the mass of a star, turned to inertial or magnetic confinement.

1.3 Magnetic confinement, idea and historical devel-

opment

The idea of magnetic confinement can be traced back to 1892 when Hendrik Antoon

Lorentz experimentally found the law which carries his name:

F = qv ∧B. (1.1)

In words this equation states that any particle with charge q, moving with velocity v in

the presence of a magnetic field B, is subjected to a force in the direction orthogonal to

both the magnetic field and the particle velocity, and is therefore constrained to rotate

around the magnetic field line; this motion is called the Larmor motion. In other words

since charged particles follow magnetic field lines, a magnetic field can be used to confine

a plasma, which is indeed composed of charged particles. However the Lorentz force has a

drawback: if a given surface, which is the boundary of the region where the plasma has to

be confined, has a subset where the magnetic field has a perpendicular component to the

surface itself, charged particles will then escape from that region following the magnetic

field line.
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Figure 1.2: Sketch of the set-up of a linear machine. The confinement is provided by the
magnetic field generated by the plasma current and, at the end points, by the magnetic
mirror. The trajectory of a representative charged particle is depicted.

This is roughly the reason why linear machines, which were among the first devices

adopted for fusion studies, performed poorly: particle losses at end points. In Fig.1.2

is shown a typical set-up of a linear machine. Particle losses were minimized at the end

points by the so called magnetic mirrors, i.e. spatial regions where gradients in the mag-

netic field were externally imposed, thus producing a force directed towards the interior of

the machine. To minimize particle losses at end-points linear machines require particles to

have, on average, much larger perpendicular than parallel energies, where perpendicular

or parallel refer to the direction of the velocity relative to the magnetic field. As this

non-Maxwellian distribution is difficult and costly to achieve, linear machines were finally

abandoned at the beginning of the ’80s.

A solution to this problem had already been found by mathematicians in the beginning

of the 20th century and is stated in the following general form[26]

Poincaré-Hopf theorem. Let M be a compact orientable differentiable manifold. Let ν

be a vector field on M with isolated zeroes. If M has a boundary, then we insist that ν be

pointing in the outward normal direction along the boundary. Then we have the formula

Σiindexν(xi) = χ(M) (1.2)

where the sum of the indices is over all the isolated zeroes of ν and χ(M) is the Euler

characteristic of M.

The theorem was proven for two dimensions by Henri Poincaré and later generalized

to higher dimensions by Heinz Hopf. The only compact closed surfaces with zero Eu-

ler characteristics are the Klein bottle and the torus, thus implying that only these two

surfaces do not have any point where the magnetic field has a perpendicular component.



6 CHAPTER 1. NUCLEAR FUSION: HISTORY AND PRESENT STATUS

Since the Klein bottle does not have any contained volume, only the torus is apt for

magnetic confinement applications.

So in the toroidal geometry particles flowing along the magnetic field lines tend to remain

inside the volume since the field lines are closed on themselves. However, due to the

Maxwell-Ampere equation, the magnitude of the toroidal field is inversely proportional

to the distance from the axis of symmetry; the magnetic field gradient results in a verti-

cal drift, called the grad-B drift, which, together with curvature effects, causes a charge

separation which in turn tends to expel particles from the volume. The solution is to

give a perpendicular component to the magnetic field such as to make it helical: in this

configuration the vertical drift averaged over a particle orbit is zero and, therefore, the

particle confinement is ideally perfect.

There are two ways of providing this field correction: by imposing it externally through

coils or letting the plasma itself generate it; the former configuration is known as stellara-

tor while the latter as tokamak[5]. Both configurations are represented in Fig.1.3. If a

plasma has to provide the helical magnetic structure it is necessary to drive a current in

it. In a tokamak this is performed by discharging a transformer which drives a current in

the secondary circuit, i.e. the plasma itself. Stellarators are distinct from tokamaks also

because they are not azimuthally symmetric; they have a discrete rotational symmetry

which is often fivefold. The major advantages of a tokamak are its axial symmetry and the

simplicity of manufacturing planar coils; the primary merit of a stellarator is the absence

of a net current and thus of so-called current driven instabilities. It is far beyond the

scope of this thesis to deal with such instabilities which are treated in detail in [6, 7].

It is probably due to their simpler geometry that tokamaks historically received, both

experimentally and theoretically, more attention than stellarators and rapidly improved

their performance which was further enhanced by larger investments and, therefore, larger

average sizes. Additionally, design and construction inaccuracies are argued to be the

cause of lesser performances of stellarators compared to tokamaks of comparable size.

This thesis is focused, both in its experimental and theoretical parts, on the tokamak

geometry, in particular on the TCV tokamak. In the following section we will give a brief

overview of tokamaks and of TCV.

1.4 Tokamak

Tokamak is a russian acronym, toroidal’naya kamera s magnitnymi katushkami, which

means toroidal chamber with magnetic coils. It was invented in the 1950s by Soviet

physicists Igor Yevgenyevich Tamm and Andrei Sakharov (who had been inspired by an

original idea of Oleg Lavrentyev). In 1968, at the third IAEA International Conference on

Plasma Physics and Controlled Nuclear Fusion Research at Novosibirsk, Soviet scientists
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Figure 1.3: (Left) Sketch of the tokamak configuration (Right) Geometrical representation
of the magnetic field coils, in light blue, and of a given plasma flux surface, in multi-color
of the Stellarator W7-X.

announced the achievements of electron temperatures of over 1000 eV in a tokamak de-

vice. These astonishingly good performances were confirmed a few years later with laser

scattering.

Since this performance was far superior to any obtained in other existing devices, most

fusion research programs quickly switched to using tokamaks.

The basic principle of a tokamak is the following:

• A quantity of gas in injected in the vacuum vessel

• The toroidal coils are powered thus creating the confining toroidal field

• The gas is pre-inonized in one or more points of the vacuum vessel

• The central solenoid is energized and, immediately after, is powered off thus inducing

a loop voltage in the plasma, which is the secondary circuit of the transformer

• Collisional processes ionize the whole plasma

• The induced current generates the poloidal field thus confining the plasma and,

additionally, heating it by Joule effect

• An external, vertical, magnetic field is applied to stabilize the position of the plasma

in the vacuum vessel

Ohmic heating is a consequence of Coulomb collisions whose frequency is inversely pro-

portional to T
3/2
e , and thus becomes inefficient as the plasma temperature is raised. This

forced scientists to develop other means of heating: Electron Cyclotron Resonance Heat-

ing (ECRH)[8, 9], Neutral Beam Injection (NBI)[20], Ion Cyclotron Resonance Heating

(ICRH), Alfvèn Heating, Bernstein Waves and Lower Hybrid (LH) waves[10, 11]. Depend-

ing on their geometrical configuration, most of the aforementioned methods also provide
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current drive. An additional current is intrinsically generated in toroidal devices by the

plasma itself, and so it is shared by tokamaks and stellarators, and is called the boot-

strap current[12]. Roughly speaking, this current is due to the spatial pressure gradients

leading to a net current parallel to the magnetic field carried by passing particles. Equat-

ing the momentum exchange between passing and trapped electrons and between passing

electrons and ions, a net current parallel to the magnetic field is generated, called the

bootstrap current. The bootstrap current is thus a typical effect of a toroidal machine,

and is proportional to the trapped particle fraction.1

1.5 The TCV tokamak

The Tokamak à Configuration Variable (tokamak having a variable configuration) is a

mid-size tokamak specifically designed to study the influence of plasma shape on its con-

finement. Its major radius is 0.88 m and its minor radius 0.25 m. Plasmas of different

shapes are realized in an almost rectangular-cross-section stainless steel vacuum vessel

0.55 m x 1.55 m whose first wall is covered with carbon tiles. Different plasmas shapes

are realized through 16 independently powered coils; an overview of various plasma shapes

realized in TCV is shown in Fig.1.5. A toroidal field flux of about 0.8-1.3 Wb is generated

by 16 equally spaced toroidal coils, producing a toroidal field ripple lower than 1.5% over

the whole poloidal section [22]. A schematic view of the TCV tokamak is represented in

Fig.1.4.

Two sets of in-vessel coils vertically stabilize highly elongated plasmas. On the central

column, ohmic coils, which constitute the primary circuit of the transformer, generate a

loop voltage between 1 V and 10 V, resulting in a plasma current up to 1 MA. Table 1.1

contains an overview of the main parameters of the TCV tokamak. Figure 1.5 illustrates

the variety of plasma shapes achieved in TCV.

1.5.1 Auxiliary heating system

The TCV tokamak has, besides a large flexibility in terms of achievable plasma shapes,

the highest power density coupled to electrons, which makes TCV one of the best suited

tokamaks for electron transport studies. A total of 4.3 MW is installed in the Electron

Cyclotron Resonance Heating-Electron Cyclotron Current Drive (ECRH-ECCD) system;

split, as depicted in Fig.1.6, in a second harmonic system, 3 MW, and a third harmonic

system, 1.3 MW. In simple words the heating system makes use of the gyration motion

of charged particles around a magnetic field line, motion whose frequency is given by

1The name bootstrap appears in Raspe’s novel Baron Munchhausen’s Narrative of his Travels and
Campaigns in Russia when the Baron, trapped upside down in a hole in the snow, tries to get out by
pulling his own boots, which are outside the snow.
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Figure 1.4: Schematic view of TCV. A) Vacuum vessel. B) Shaping poloidal field coils. C)
Internal poloidal field coils used to vertically stabilize elongated plasmas. D) Toroidal field
coils. E) Ohmic coils. F) Mechanical support structure. (Courtesy of Dr. Y. Camenen)
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Parameter Units Value

Major Radius m 0.88

Minor Radius m 0.25

Plasma current MA 0.2-0.5 (typ) 1 (max)

Toroidal field on axis T 1.44 (typ) 1.54 (max)

On-axis electron density m−3 2 1020 (max)

On-axis electron temperature keV 18 (max)

On-axis ion temperature keV 1.5 (max)

Volume averaged beta % 3 (max)

Elongation 0.9-2.8

Triangularity -0.7 to +1

Circular plasma section m2 0.2

Circular plasma volume m3 1.1

Ohmic power MW 0.3 (typ)

X2 EC power MW 3

X3 EC power MW 1.3

Pulse length s 2 (typ) 4 (max)

Table 1.1: Overview of the TCV tokamak.
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#9849 − t=0.50s
a)

Limited (κ=1.2, δ=0.0,
Ip=230kA)

#6010 − t=0.80s
b)

SND upper (Ip=330kA)

#5650 − t=0.80s
c)

SND lower (Ip=335kA)

#8856 − t=0.29s
d)

DND (Ip=325kA)

#11368 − t=0.65s
e)

Highest current,
Ip=1.06MA

#18548 − t=1.50s
f)

Highest fully ECCD driven
current, Ip=210kA

#6442 − t=0.50s
g)

Pear shape
(Ip=360kA)

#10159 − t=0.01s
h)

Doublet shape
(Ip=115kA)

#19373 − t=0.42s
i)

Highest elongation,
κ=2.80

#8890 − t=0.75s
j)

Highest triangularity,
δ=0.86

#11928 − t=0.67s
k)

Lowest triangularity,
δ=−0.77

#11962 − t=1.00s
l)

Highest squareness,
λ=0.5

Figure 1.5: A number of representative plasma shapes obtained in the entire TCV history.
Equilibria were reconstructed with the LIUQE code.
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f = qB/(2πmγ), where q and m are the particle charge and mass respectively, B is the

magnetic field strength and γ is the relativistic factor defined as γ = 1/
√

1− (v/c)2, v

being the particle velocity and c the speed of light. By Ampere’s law, the strength of

the toroidal magnetic field in a given point is inversely proportional to the distance from

the torus’ axis of symmetry, thus providing a unique relation between cyclotron frequency

and the position in the vacuum chamber. Matching a harmonic of the cyclotron frequency

with the frequency of an electromagnetic (e-m) wave injected in the plasma results in a

resonance between charged particles and the wave, which provides the required heating

mechanism, both for waves polarized parallel and perpendicular to the magnetic field.

Considering the toroidal field of TCV, the choice of the second and third harmonic has

been a compromise between a good absorption coefficient, which decreases with increasing

harmonic number, and access to high density plasmas, which is enhanced with increasing

harmonic number.

In TCV the second harmonic system is made up of six gyrotrons delivering 0.5 MW

each at a frequency of 82.7 GHz. The power is transmitted through 30 m long wave-

guides and injected into the vacuum vessel through Mo mirrors steerable in the poloidal

and in the toroidal plane. Losses are smaller than 7% and are minimized choosing an

Extraordinary mode polarization (X-mode), in which, in the case of perpendicular injec-

tion, the electric field of the microwave is perpendicular to the plasma toroidal magnetic

field. All the launchers are located on the Low Field Side (LFS), two of them on the

machine mid-plane and the remaining four on the upper part, approximately 46 cm above

the mid-plane. The power deposition location is controlled by varying the poloidal in-

jection angle or, more seldom, by varying the toroidal field. Current drive is achieved

through the toroidal injection angle. Access to the second harmonic X-mode is limited by

the plasma right-hand cut-off frequency, which gives a maximum operational density of

4.25 · 1019 m−3. To heat denser plasmas the third harmonic is employed. The TCV third

harmonic system is made of three gyrotrons delivering 1.3 MW through a vertical injection

path. This configuration was required by the need to overcome the low coupling efficiency

by allowing the beam to propagate parallel to the resonant surface, thus extending the

length of resonant interaction, which is then chosen to be vertical along the whole plasma

height. As a result, the localization of the absorbed power is far worse than for the second

harmonic (X2) system, but the cut-off density is significantly higher being 11.5 ·1019 m−3.

The TCV EC system allows high coupled power densities, localized heating, a large variety

of target plasmas and fully sustained ECCD driven plasma current[13].
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X3 system (118GHz)

X2 system (82.7GHz)

Launcher 2, 3, 5, 6

Launcher 1, 4

Figure 1.6: (Left) Poloidal section of the TCV X2-X3 ECRH launching system. (Right)
Toroidal view of the TCV X2 ECRH launching system.

1.5.2 Main TCV diagnostics

In this section we will briefly explain the most important or most used diagnostics

currently operational in the TCV tokamak, some of which have been, by the way, of

paramount importance for the work described in this thesis.

Magnetics and equilibrium reconstrunction

The magnetic system in TCV comprises poloidal field coils and horizontal magnetic-flux

loops[17]. The former are arranged on four cross sections, toroidally separated by 90

degrees, each equipped with 38 almost evenly spaced coils mounted inside the vacuum

vessel. The signals from two opposite sections are acquired and used for equilibrium re-

construction. The same signals are averaged to cancel any toroidal asymmetry and fed

in real time to the plasma shape and position control system. A set of 38 flux loops

is also used both for real-time control and equilibrium reconstruction. In addition, two

toroidal arrays, located on the equatorial midplane, are installed for MHD mode analysis.

The basic equilibrium reconstruction is thus performed with an equilibrium code, called

LIUQE [14], which solves iteratively the Grad-Shafranov equilibrium equation [15, 2], in

order to find the best match with the measured fields on the magnetic probes and with

the measured magnetic fluxes. The LIUQE code is generally additionally constrained

with the total plasma energy measured with the diamagnetic loop [18]. It can be further

constrained with the sawtooth inversion radius and the pressure profile measured with

the Thomson Scattering system.
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Thomson scattering system

We will briefly elucidate the basic mechanism underlying the Thomson scattering before

describing the system installed in TCV. Readers interested in details are addressed to

[20].

When a photon of energy much less than 0.5 MeV collides with an electron, the scattering

process can be described in a classical way, i.e. in the particle being accelerated by the

e-m wave and radiating in all directions; this representation holds when there is negligible

change in the particle momentum when colliding with a photon, which is the case when

the photon energy is much less than the particle rest-mass, which is equal to 0.5 MeV for

electrons.

When an e-m wave is scattered by a particle, it experiences a Doppler shift in its frequency

given by

∆ω = v · (kdiff − kin) (1.3)

where v is the particle velocity, while kdiff and kin are the scattered and incident wave

vectors, respectively. By measuring the Doppler shift, the particle velocity, and thus its

energy, is then calculated because the two wave-vectors are known by the geometry of the

system. The total signal amplitude gives the number of scattered photons, and so the

number of scattering targets, i.e. the particle density.

In a plasma both ions and electrons contribute to the total scattering but, since ions are

much heavier than electrons, they undergo a much smaller acceleration and therefore ir-

radiate much less and contribute negligibly to the total signal. This is why the Thomson

scattering system is commonly used to measure electron temperature and density.

When the reciprocal of the difference in the probing wave-vectors is much shorter than the

Debye length of the plasma, scattering processes from different electrons are statistically

independent and one speaks of incoherent Thomson scattering. This is indeed the regime

of operation for practically useful geometries that provide the best spatial resolution. The

small cross section in this regime forces the use of high incident powers which are provided

by lasers operated in a pulsed, Q-switched [19], way. When the reciprocal of the differ-

ence in the probing wave-vectors cannot be neglected with respect to the Debye length,

the so-called coherent Thomson scattering occurs, i.e. the scattered signal is sensitive

to collective phenomena, such as ions’ dynamics and electrostatic waves at the relevant

wavelength[20]. TCV is equipped with three Nd-YAG lasers, whose wavelength is 1.064

µm, operating in a Q-switched mode, at 20 Hz. The lasers can be operated simultane-

ously to increase the signal to noise (S/N) ratio, typically in plasmas whose density is

lower than 8 · 1018 m−3, or independently, to increase the effective repetition rate to 60



1.5. THE TCV TOKAMAK 15

Hz. Electron temperatures and densities are measured vertically, which is the beams’

direction of propagation in the vacuum vessel, over 25 spatial locations in the core and

10 in the edge, sampling between Z=-0.17 m to Z=0.66 m, and are characterized by an

uncertainty of about 5%.

Far Infrared Interferometer

An interferometer evaluates the phase shift induced by a medium of a given index of

refraction N on an electromagnetic wave with respect to a reference beam which does not

pass through the same medium. In a plasma the index of refraction is proportional to the

electron density and if the frequency of the probing beam is much higher than any typ-

ical plasma frequency, the beam experiences only a phase shift and undergoes negligible

absorption.

In TCV, a 14 channel far infrared interferometer is used to measure the line-integrated

density along 14 parallel chords in the vertical direction. The system consists of a FIR

laser emitting a continuous wave at 214 µm pumped by a CO2 laser, and of a multi-

element detector unit (InSb hot-electron bolometer). The infrared laser beam is divided

into a reference beam and 14 beams passing through the plasma at different radial po-

sitions. The line integrated plasma density along each vertical beam can be determined

from interferometric measurements between each beam and the reference one. The whole

system is automated and its central chord serves as a real time data input for the TCV

density feedback system.

The frequency response of the detectors is 750 kHz and the sampling rate is 20 kHz.

The FIR signal can be inverted with basis functions determined by the Thomson Scatter-

ing measurements, to produce the local density profile [21].

Charge Exchange Recombination Spectroscopy

The CXRS technique is based on the spectral analysis of the radiation emitted by charge

exchange processes between neutral atoms and ions. Analyzing a given spectral line, it is

possible to derive the density, velocity and temperature of the ions species by measuring

the spectrum integral, centroid position and width, respectively.

In TCV a diagnostic, i.e. ideally non-perturbative, neutral hydrogen beam injector is

used to increase the signal of the charge exchange line C6+. The diagnostic beam has an

energy of 50 keV and a toroidal injection angle of 11.25 degrees. Due to its low power,

the injector does not perturb the plasma temperature and rotation[24]. TCV is equipped

with a 40 chords toroidal High Field Side-Low Field Side (HFS-LFS) and poloidal LFS

system, thus measuring toroidal and poloidal C6+ velocities along with temperature and
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density in 8 and 4 radial positions, respectively, with a sampling frequency between 2 and

20 Hz.

Neutral Particle Analyzer

Following charge exchange processes, neutrals can escape the confining magnetic field

and be detected outside the vacuum vessel. In the case of a Maxwellian distribution, the

source term of the neutral flux is given by [23]

S(E0) = n0ni〈σ01vi〉2

√
E0

πT 3
i

e−E0/Ti (1.4)

where E0 is the energy of the neutrals, n0 their density, ni is the ion density and 〈σ01vi〉
is the product of the charge exchange cross section with the ion velocity, averaged over

the neutral distribution function. Thus a measurement of S(E0) as a function of the

neutral energy gives the ion temperature, provided that the ion density is known and

that the mean free path of the neutrals is much longer than the plasma minor radius.

This condition is more likely satisfied at high energies because the charge-exchange cross

section is generally decreasing with energy. It is also to be stressed that the measurement

is intrinsically line-integrated as light is collected from the whole line of sight crossing the

vacuum vessel.

In TCV a Compact Neutral Particle Analyzer (CNPA) and a Neutral Particle Analyzer

(NPA) are installed[25]. The CNPA is an electro-magnetic (E‖B) NPA to analyze hydro-

gen, deuterium or helium atoms in the energy range of approximately 500 eV to 50 keV

(hydrogen). Two species can be measured at a time along a horizontally viewing chord.

The nominal time resolution of the CNPA is 2.5 ms for two seconds and up to 10 µs. The

NPA is a 5-channel Neutral Particle Analyzer developed in the Ioffe Institute (Leningrad,

Soviet Union), to analyze neutral fluxes of hydrogen isotopes from the plasma in the en-

ergy range of 600 eV to 8 keV. The NPA views the plasma along a fixed vertical chord,

which intercepts the core of most TCV plasma configurations. It consists of 5 energy

channels with electrostatic discrimination. The NPA electronics allows to operate up to

100 kHz (1 kHz for standard regime).
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Chapter 2

Feasibility study of fluctuation
diagnostics in TCV

2.1 Introduction and objectives

One of the most important issues for magnetic-confinement fusion research is the so-

called anomalous transport across magnetic field lines, i.e. transport that is in excess of

that caused by collisional processes. The need to reduce anomalous transport in order

to increase the efficiency of a prospective fusion reactor must be addressed through an

investigation of its fundamental underlying causes. These are widely believed to be mi-

croinstabilities, i.e. instabilities that are characterized by a small spatial scale compared

to the system size and are generally of a turbulent nature[1]. In the past decade con-

siderable progress has been made in magnetic fusion research, especially in tokamaks, in

improving the fusion performance, particularly through enhanced control of the plasma

discharge parameters. In particular, heat transport due to ion instabilities has been sub-

stantially reduced in some enhanced-confinement regimes[2] and has also been extensively

studied both experimentally and theoretically, leading to a fairly good, though incomplete,

understanding of the underlying physics. By contrast, electron transport remains more

anomalous and is also more poorly understood. Problems arise in both experimental and

numerical investigations because of the smaller intrinsic temporal and spatial scales, re-

quiring extensive diagnostic coverage and equivalently, on the numerical side, extensive

grids and long computational times. A related problem is the appearance of numerical

instabilities that hinder the convergence of the simulations. for example, the advective

fluctuating E∧B velocity is inversely proportional to the spatial scale of the parent fluc-

tuation, thus implying stricter limits on the Courant–Friedrichs–Lewy (CFL) condition

in numerical simulations [3].

In spite of these difficulties, numerical simulations in recent years have also begun to

address the nonlinear evolution and saturation of the turbulence, and nonlinearly gener-

ated modes, such as streamers [4], zonal flows [5] and geodesic acoustic modes [6], have

19
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been predicted to regulate the saturated turbulence and thus the overall transport. These

modes present an additional challenge to experimentalists owing to their complex spatial

structures. While experimental evidence for their existence has been obtained [7, 8], much

remains unknown about their properties, parametric dependences and effect on the level

of plasma turbulence.

Existing turbulence diagnostics can be roughly classified according to what they measure:

local or line integrated measurements, low k or high k turbulence spectral regions, real

or Fourier space, plasma core or edge, perturbing or not, fluctuations in temperature,

density, electric or magnetic field.

Strictly speaking probing the plasma in any way results in a perturbation technique, such

as with actual probes or with electromagnetic waves, of a given wavelength, which are

made to interact with the plasma. Truly non-perturbing techniques are instead the ones

making use of any signal self generated by the plasma itself, such as the Electron Cy-

clotron Emission (ECE) diagnostic used to measure electron temperature fluctuations or

magnetic probes used to measure fluctuations of the total magnetic field. However, in

order to be meaningful, even active diagnostics must be almost non-perturbing, in the

sense that the perturbation caused to the plasma has to be negligible. This has to be

verified a posteriori by comparing two identical discharges performed with and without

the diagnostic in operation and checking that any difference is within the errorbars.

Generally speaking, diagnostics meant for plasma edge can be either material probes or

instruments detecting the result of plasma-light interaction, while the core can only be

investigated through electromagnetic waves since the high temperatures reached could

not be tolerated by material probes, at least in fusion oriented devices.

The plasma edge has historically been measured with probes because of two main advan-

tages over e-m waves. The first is that the spatial resolution is generally determined by

the spatial extent of the probe itself, that is a few millimeters. In contrast, e-m waves

tend to provide poorer resolution, of the order of a few centimeters.

In the effort to try to understand anomalous transport, it is especially desirable to directly

measure the transport itself; in the case, for example, of particle transport by electrostatic

fluctuations, it can mathematically be expressed in the following way

Γn(t) = 〈ñṽ〉 ∝< ñ∇φ̃ >∝< ñkφ̃ > (2.1)

where brackets represent ensemble averages, ṽ the perturbed particle velocity, ñ the

perturbed density, φ̃ the perturbed electrostatic potential. Probes can simultaneously

measure several physical quantities, such as e-m fields, density and temperature, thus

providing an easy way to experimentally compute particle or heat transport; in this lies

their second advantage. In fact no core diagnostic, except for the Heavy Ion Beam Probe

(HIBP), is able to provide direct measurements of turbulent fluxes.
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The working principle of the HIBP diagnostic is based on the injection in the plasma

core of heavy, i.e. high atomic number, singly charged ions which, by interacting with

the background plasma, are ionized, thus becoming doubly charged, and are therefore

deflected to a trajectory which depends on the total magnetic field. An energy analyzer

permits the derivation of the electrostatic potential at the ionization location, which is the

intersection between the trajectories of the primary and of the secondary beam, while the

fluctuations of the double-ionized ions’ intensity at the detectors provide the fluctuating

electron density. Multiple detectors allow one to estimate the cross-phase between these

two quantities, thus measuring the particle transport. Finally, by varying the injection

angle and the energy of the primary beam, a large portion of the poloidal section can be

analyzed. In 2005 a HIBP proposal for the TCV tokamak was turned down due to cost

considerations and to issues concerning the accessibility to the vacuum vessel.

Diagnostics based on the interaction between e-m waves and plasmas can be divided into

local or line integrated depending on whether or not they are subject to any resonance or

cut-off in the plasma. Specifically when an e-m wave propagates in a plasma, or in any

other medium, it is very sensitive to what happens at the resonance, or cut-off, region

due to the behavior of its index of refraction. As an example the so called Reflectometer

is based on the interaction at the cut-off, while the Cross Polarization Scattering (CPS)

diagnostic either at the cut-off or at the resonance layer. The working principles of these

two diagnostics will be explained in detail in 2.4.3 and in 2.4.7, respectively. Conversely,

when the frequency of an e-m wave is much higher than any typical plasma frequency, its

amplitude is barely affected and it collects all possible information from the plasma along

its trajectory; for this reason these diagnostics are called line integrated, and we further

divide them into Interferometric and Coherent Scattering diagnostics. The former group

tends to provide a sort of image of density fluctuations along a line, while the latter pro-

vides information on a particular angle at which the probing e-m beam is scattered, and

is therefore referred to as a Fourier diagnostic, in the sense that it provides information

directly in Fourier space.

In principle, diagnostics operating in direct or conjugate space provide the same informa-

tion as long as the whole space, direct or conjugate, is sampled. However, this is never the

case due to accessibility limitations to the vacuum vessel. In particular it is, in general,

more problematic to collect information at a given, even though small, scattering angle

because the unscattered and the scattered beams must be separated; the latter must be

further divided into each component corresponding to each scattering angle one wants to

study. More detailed comparisons are made in sections 2.4.4 and 2.4.5.
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2.2 Motivation for development of core fluctuation

diagnostics on TCV

One of the aims of this project is to provide means for investigating, from an experimental

point of view, the physical characteristics of density fluctuations present in the core region

of the TCV tokamak.

When this project was started, TCV did not have any turbulence diagnostic routinely

available, except for the reciprocating Langmuir probe, which provides data on fluctua-

tions in the Scrape-Off-Layer (SOL). The FIR interferometer (see section 1.5.2.3) is the

only diagnostic providing information on core turbulence through a line-averaged elec-

tron fluctuations along 14 vertical chords at 20 kHz, which is far below the level required

for detailed investigations on temporal and spatial scales of fluctuations, as well as for

intensive benchmarking of numerical codes vs experiment. A novel diagnostic for core

fluctuations was therefore needed and its development required a study of evaluation of

the various possible techniques specifically for application to the TCV tokamak. The

principal and most demanding part of such a study consists of evaluating in detail the

expected performance of each diagnostic, as well as identifying all the drawbacks often

hidden in their theoretical foundation. At the end of this type of evaluation effort, a

set of possible options generally turns out to be feasible, and the final choice is made on

the basis of expected signal-to-noise ratios, costs, difficulty of construction and variety of

physics issues that can be studied and compared with theory. We will describe hereafter

the feasibility study for a core fluctuation diagnostic for the TCV tokamak in relation

to the most important outstanding physics issues in plasma transport at the time of the

study.

Fusion oriented plasmas are characterized by spatial inhomogeneities such as Internal

Transport Barriers (ITB)[2, 9, 10], which are regions of the plasma interior characterized

by a transport level which is comparable to the collisional one for ions, and in some cases

only slightly above this level for electrons[11].

A universally accepted theoretical explanation of ITBs has not yet been found[12, 13],

and experimental information on the dynamics of plasma fluctuations in this regime is

still very incomplete. The large density and temperature gradients characterizing these

regions cause difficulties to diagnostics since the barrier’s narrow spatial extent requires

a very high spatial resolution; additionally, the WKB[14] approximation, upon which the

interpretation of the experimental data from some diagnostics is based, fails in the high-

gradient region. These same gradients also cause numerical instabilities in simulations to

be very severe.

TCV is characterized by the strongest direct electron heating on any tokamak, while the

ion heating is negligible[15]. In addition, the very low density required by the heating
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method results in a collisional decoupling of the two species and thus in an extremely high

ratio of electron to ion temperature, which in turn enables the study of the electron trans-

port alone [11]. Considering all the plasma features mentioned above in terms of spatial

inhomogeneities, fast phenomena, and small spatial scale micro-structures, a dedicated

and novel diagnostic system with high temporal and spatial resolution is therefore required

to allow a better experimental characterization and a comparison to theoretical models as

straightforward as possible. The characterization of the fluctuations should involve their

temporal and spatial structures, their wave-number and frequency spectra and their sta-

tistical properties. A crucial goal is to study the turbulence levels and characteristics in

relation to the internal magnetic configuration, plasma shape and other parameters such

as the impurity ions’ concentrations. An item of particular interest and very relevant to

current theoretical debates is the detailed phenomenology of ITB triggering in relation to

the E∧B flow shear[16], which can be deduced from Doppler spectroscopy measurements.

Of course, even though understanding turbulence stabilization in structures such as ITBs

is of paramont importance for fusion studies, the diagnostic should work also in any other

possible configuration.

In the following we will provide an overview of all the turbulence diagnostics which have

been considered in the feasibility study.

2.3 Modeling predictions of turbulence characteris-

tics in the TCV tokamak

In this section we will briefly describe the TCV tokamak in a somehow more diagnostic

related way with respect to what has been done in Chapter 1, the goal being to point out

all the TCV features working in favor of some diagnostics and against other ones.

The TCV tokamak is a highly flexible machine in terms of plasma shapes and positioning

in the vacuum vessel. The cross section of the vacuum vessel is approximately rectan-

gular with dimensions 0.55 m x 1.55 m, horizontal and vertical, thus allowing plasma

elongations roughly between 1 and 3. Moreover, if the elongation is less than about 2,

the plasma vertical position can be chosen with some freedom thus implying that the

operability of a possible diagnostic should not depend on plasma shape and on its vertical

position, or, at least, should be as independent from them as possible.

Even though TCV can operate with plasmas at different heights in the vacuum vessel,

for unknown reasons, probably due to tiles-Scrape Off Layer (SOL) interactions, station-

ary ELMy H-mode plasmas can be sustained only for Z ≥ 0.1 m above the mid-plane,

preferably at Z = 0.23 m (this is a commonly used position as it is symmetric between

the equatorial and upper ECRH launchers). This implies, if a vertical position has to be
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preferred, the need to optimize a diagnostic to operate with plasmas at Z = 0.23 m.

Another important feature is the absence of external ion heating, which immediately im-

plies two things. First, ion turbulence is not expected to play any significant role. Second,

electron-scale turbulence, the so-called Electron Temperature Gradient (ETG) modes, are

not expected to be at play in advanced scenarios. This can be understood by looking at

the ETG threshold formula, derived in [17] by means of a number of linear simulations

using the GS2 code. The linear threshold is given by

R/LTe,th = max

[(
1 + Zeff

Te
Ti

)(
1.33 + 1.91

s

q

)
(1− 1.5ε), 0.8

R

Ln

]
, (2.2)

where ε is the inverse aspect ratio, q the safety factor, s the magnetic shear and Zeff the

effective charge. This formula was derived for positive values of magnetic shear, whereas

for negative values, the following holds [18]:

R/LTe,th =

(
1 + Zeff

Te
Ti

)(
2 + 0.4|s|+ 4.2

|s|
q

)
. (2.3)

In the case of density profiles that are not too steep, the linear threshold depends weakly

on the density gradient and, being linear in Te/Ti, becomes very high in an advanced

TCV scenario, where Te/Ti can be as high as 10, or even more. Additionally the Zeff

dependence increases the linear threshold since, in TCV, the experimental effective charge

is observed to significantly increase during ECH-ECCD operations, i.e. when operating

in an advanced scenario. These formulae were used at the start of this feasibility study

to search for ETG modes in the entire TCV database: they were found in the core only

in very few marginal conditions, while their presence in the edge is questionable due to

large error-bars in kinetic profiles. Only in ohmic shots, where Te ' Ti and Zeff ' 1,

are they expected to be unstable in the core. However, in such plasmas, on the basis

of a mixing length argument, their contribution to the total transport is expected to be

insignificant compared to longer wavelength modes, such as Ion Temperature Gradient

(ITG) and Trapped Electron Modes (TEM).

The mixed fluid-kinetic 0-D code KINEZERO [19] was also run on a large number of

different TCV shots, with experimentally measured kinetic profiles, to look for ETG

modes; when high k fluctuations were found, these could be due to high spectral tails of

the TEM mode; therefore, on a theoretical basis, it is expected that it will be difficult to

experimentally assess the existence of ETG modes in TCV, at least in advanced scenarios.

As a result of this large database of simulations, the expected minimum fluctuation level,

including all modes, was estimated as

∆n√
f

= 2π∇n
√∑

k

1

k2γk
(2.4)
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and is shown in Fig.2.1. This equation estimates the total transport with a mixing-length

argument and normalizes it to the frequency bandwidth, with the assumption that, in

the low k spectral region which contributes most to the total transport, the growth rate

of each mode is proportional to its real frequency. The normalization to the frequency

is necessary to take into account the effect of white noise on measurements taken with

different bandwidths. This level gives an estimate of the minimum acceptable Signal-to-

Noise (S/N) ratio of any projected diagnostic. Another important quantity to be taken

Figure 2.1: Minimum expected fluctuation density, per unit frequency bandwidth, on the
basis of a set of KINEZERO collisional and collisionless simulations, as a function of the
TCV normalized minor radius. Error-bars are calculated as standard deviations on the
entire simulation database, while values represent the average.

into account in a feasibility study is the spectral extent of unstable modes to be detected.

Ideally the experimental apparatus should be designed and built to capture any mode

expected to be unstable; in practice this cannot generally be done due to the intrinsic

resolution of the system which imposes lower and upper bounds. In this respect the

database of simulations was also used, in particular, to deduce the shortest wavelength of

fluctuations of interest to be expected in TCV.

KINEZERO is described, in detail, in [19]; for our present purposes it is sufficient to note

that it relies on a number of approximations to considerably speed up the calculations,

thus implying that the absolute calculated values must be treated cautiously. This is ulti-

mately true of any turbulence code which has not been benchmarked against experiments

and, as of this writing, none of the existing codes have seriously undergone such bench-

marking yet. However to increase confidence in these results, we performed a set of linear
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simulations using the GS2 code [20], with a Miller parametrization of the equilibrium

[21], which is a local gyro-kinetic code, described in Chapter 4, which models the physics

of plasma micro-instabilities more accurately than KINEZERO. The maximum expected

unstable turbulent wave-number is on average smaller, with respect to KINEZERO, by

about 50%, not exceeding 50 cm−1. The lowest density fluctuations to be measured have

been estimated to be 1017m−3MHz−1/2 at ρ=0.44 for an ITB shot and 6 ·1018m−3MHz−1/2

at ρ=0.72 for an L-mode shot, where ρ is defined as the square root of the normalized

volume.

2.4 Overview of main possible diagnostics

2.4.1 Beam Emission Spectroscopy

The Beam Emission Spectroscopy (BES) relies on the measurement of intensity fluctua-

tions of the light emitted either by bulk plasma ions excited by beam ions or by beam

neutrals excited by collisions with bulk plasma ions and electrons. The volume intersected

by the lines of sight of the beam and of the optics is the measurement volume. Correlation

lengths can be retrieved by correlating spatially separated lines of sight.

Two conflicting requirements are to be satisfied: localization of the measurement and

maximization of the amount of signal collected. Concerning the first requirement, as is

evident from figure 2.2, which gives a schematic view of a common BES geometrical con-

figuration, the intersecting volume is minimized when the beam trajectory and the optical

lines of sight are orthogonal to each other, while the integration length, and therefore the

amount of signal collected, is maximized in a parallel configuration. Despite the better

localization, a perfect perpendicular configuration is not desirable in view of the absence

of a net Doppler shift which would help in discriminating the actual signal from the spu-

rious one self-generated by the plasma. Furthermore, the beam must be as quiescent as

possible in the range of frequencies of expected fluctuations since fluctuations in the beam

intensity would be mistaken for actual density fluctuations.

The relevant physical processes for the BES diagnostic are the following

e− +H0 → e− +H0∗ (2.5)

X+ +H0 → X+ +H0∗ (2.6)

i.e. electron and bulk X ion impact excitation respectively, where bulk ion can be either

main ions or impurities. The amount of signal emitted at the wavelength λ can be written

as

Eλ = nenB < σv >e,λ
v +

∑
Z

nZnB < σv >Z,λ
v (2.7)
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where nB is the beam density and the sum extends over all the impurity species present

in the plasma. For beam energies larger than 40 keV, ion excitations tend to dominate

over electron excitation [24], and considering that

< σv >Z,λ
v = Z2 < σv >1,λ

v (2.8)

Eq.2.7 reduces to

Eλ = ZeffnenB < σv >1,λ
v (2.9)

thus implying that the presence of impurities could severely complicate the analysis since

the BES signal would be sensitive to the effective charge rather than to the ion density;

this in turn implies the need for an independent diagnostic to monitor the effective charge.

Let us now evaluate the approximate expected performance of a hypothetical BES diag-

nostic in TCV.

The TCV tokamak is equipped with a non perturbing Neutral Beam Injector for Diag-

nostic purposes (DNBI) at an operational energy of about 50 keV, injecting hydrogen at

a toroidal angle of 11.25◦ in the horizontal mid-plane. The beam FWHM is equal to 12

cm and has an equivalent beam current of 0.5 A.

The percentage of excited states in a hydrogen neutral beam traveling in a hot plasma has

been calculated in [26, 28] taking into account all radiative and collisional processes which

populate and depopulate all the excited levels. In the excited states n=2 and n=3, respec-

tively generating the Lyman and Balmer lines, these percentages are within 0.001-0.01

and within 0.0008-0.0025 respectively, depending on plasma conditions, for densities equal

to 1019 and 1020 m−3. Since 50 keV is much higher than any ion temperature ever mea-

sured in TCV [29], the velocity dependence of the reaction cross section can be neglected.

Considering densities of 1019 to 1020 m−3 and neglecting impurities we thus obtain, for

the Balmer line, an expected photon rate between 1.58 and 4.95 1017 ph s−1sr−1m−2 and

for the Lyman line 0.21 and 4.23 1019 ph s−1sr−1m−2. Considering an etendue [25] equal

to 10−6sr m2 and an optical collection and transmission efficiency equal to 40% we obtain

ñ/n equal to 0.81%-1.41% and 0.09%-0.12% respectively. These values have been ob-

tained by assuming, as noise source, only photon noise at 1MHz bandwidth; in particular

the beam is supposed to be quiescent, both in energy and in equivalent current, at the

frequencies of interest.

Let us now briefly analyze the spatial localization. The BES diagnostic would integrate

along any line of sight intersecting the beam width, and the localization would then be

smeared by the random walk of a beam particle during the life time of the meta-stable

excited level. This can be evaluated as the speed of a 50 keV neutral times the spon-

taneous radiative decay lifetime; the latter being of the order of tens of nanoseconds,

and thus negligible compared to normal core fusion plasma collisional times, it results

in radial shifts of the order of 1 cm. Let us consider an integration length L across the
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beam width, L being the effective width L0 composed of the actual beam full-width, 2w0,

plus any broadening, such as the one due to radiative decay, divided by the sinus of the

intersection angle between the beam and the diagnostic line of sight. Let us define φ

Figure 2.2: Schematic view of the BES configuration with the NBI and the two extreme
radial positions sampled by a given line of sight.

as the angle between the major radius and the beam at its innermost intersection point

with the line of sight (see Fig.2.2). Choosing in Fig.2.2 φ = π/2 (which is not the case

shown), allows one to sample the innermost radial position, which is one of the quantities

of interest. The difference between the maximum and the minimum major radii in the

intersection region is given by Carnot’s theorem

R2
2 −R2

1 = L2 − 2LR1 cos
(π

2
+ θ
)

(2.10)

where θ is the angle between the beam and any given line of sight, and is positive defined,

and φ = π/2 has been assumed. This gives a normalized radial resolution equal to

δρ =
R2 −R1

a
=
R1

a

[√
1 +

L2

R2
1

− 2L

R1

cos
(π

2
+ θ
)
− 1

]
(2.11)

When the integration length is small compared to the plasma major radius, the linear

term in L/R1 inside the square root dominates over the quadratic term, implying a strong

dependence over the angle θ, i.e. whether the measurement is taken at the tangency point

between the line of sight and a given flux surface. By Taylor expanding Eq.2.11 to the

second order in L/R1 we obtain

δρ =
L

a
sin(θ) +

L2

2aR1

cos(θ)2 (2.12)
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Since L ≡ L0/ sin(θ), where L0 ≥ 2w0, the radial resolution is composed of a fixed term,

L0/a, which accounts for the beam width, plus an additional term equal to L2
0 cot(θ)2/(2aR1),

which accounts for the geometrical set-up.

In TCV a is equal to 0.25 m and, for core turbulence measurements, 0.9 m < R1 < 1.1

m which gives, for δρ, the numerical values shown in Fig.2.3, which makes clear how a

good localization is achieved both with a short integration length and with a tangential

configuration (near-normal to the beam). Finally, since the BES diagnostic relies on ion

Figure 2.3: Normalized radial resolution for a number of geometrical configurations. The
difference, for each value of L, in the value of R1 in the range 0.9-1.1 m is negligible.

density fluctuations, it is sensitive to modes in the range of the ion Larmor radius: gen-

erally speaking kθρi < 1, while the minimum accessible wavenumber corresponds to a

wavelength comparable with the machine size, i.e. kθρi > 0.05− 0.1 for typical TCV ion

temperature and magnetic field. As a last consideration we recall that the lines of sight

must nevertheless have a finite, even though small, component along the beam in order to

produce a finite Doppler shift permitting spectroscopic separation from the background

plasma emission. Indeed, if we consider a line half-width σ for the bulk plasma signal

equal to Ti, to discern the beam signal we need to Doppler shift it by typically 5σ; by

adopting Ti ≤ 2 keV we obtain that the Doppler shift should be, at least, 0.40 nm for

Lyman line and 2.14 nm for Balmer line. This translates into a relative inclination be-

tween the NBI beam direction and the lines of sight of, at least, 64 degrees for both lines;

if we take as a limit 3σ instead, we obtain 70 degrees (the angle is the same as defined in

Eq.2.11). These shifts need to be, of course, resolved by the spectrometer as they would

produce shifts of 0.40 and 0.31 nm for the Lyman line and of 2.14 nm and 1.66 nm for

the Balmer line, respectively.
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2.4.2 Electron-Positron annihilation

Matter and anti-matter, when they interact, tend to annihilate, generating light whose

frequency and momentum satisfy the energy and momentum conservation principles.

Considering positrons, i.e. the anti-electrons, they annihilate with electrons generating

two photons of 512 keV each, plus the equivalent energy corresponding to the kinetic

energy of the pre-existing electron and positron. The idea is to study electron dynamics by

measuring 512 keV photons originating from plasma electrons annihilating with externally

injected positrons. The Lorentz force deters positrons from being directly injected in

tokamaks because of large magnetic fields, which are of the order of 1 T or more. Indeed

the Larmor radius of a charged particle is equal to

r =
p⊥
qB

=

√
E2 −m2

0c
4

qBc
(2.13)

where B is the magnetic field, p⊥ the particle momentum perpendicular to the magnetic

field, q its charge, m0 its rest mass, c the speed of light and E the component of the total

energy perpendicular to the magnetic field.

Considering a positron injected in TCV, whose field is about 1.4 T on axis, it must have an

initial energy of about 42 MeV to penetrate up to the magnetic axis, i.e. to have a Larmor

radius of about 10 cm. Such a high energy, corresponding to a relativistic positron, can

be reached only by building an ad-hoc accelerator; therefore positrons should be injected

in some sort of neutral form: for example the positronium.

The ground state of positronium exists in two different forms: the singlet state, para-

positronium (p-Ps), or the triplet state, ortho-positronium (o-Ps). These two states have

lifetimes equal to 125 picoseconds and 142 nanoseconds, respectively. The p-Ps lifetime is

definitely too short to permit the positronium to penetrate in the plasma, while the o-Ps

should have a velocity of about 4 ·106 m/s to reach the TCV magnetic axis. Additionally,

collisions with plasma electrons and ions cause the o-Ps to convert into the p-Ps state

thus causing an almost immediate loss of the positronium itself through annihilation. The

cross-section was calculated in [69, 70] as 2·10−17cm2 for 10 eV electrons and as 5·10−17cm2

for 10 eV hydrogen ions. These cross sections rapidly decrease for higher energies which

will thus be neglected for the purpose of this study. Considering the velocity positronium

should have in order to penetrate into the TCV plasma, this translates to about 106

reactions/s, which is equivalent to about 0.1 reactions during the time travelled by the

positron beam inside the plasma. Thus, as a rough estimate, 10% of the beam would be

lost through these collisional processes.

The remaining 90% of positronium atoms propagating through the plasma will undergo
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collisional ionization processes with plasma electrons, bulk ions and impurities

Ps+ I+Z →

{
e+ + e− + I+Z

e+ + I+(Z−1)
(2.14)

Ps+ e− → e+ + 2e− (2.15)

or will annihilate after 142 ns. In the following, for simplicity, we will consider that all

these atoms will react with the plasma before being annihilated.

All these reactions have been shown in [22] to be equivalent to assuming the plasma

to be composed of pure hydrogen and the electron ionization rate to be equal to twice

that of hydrogen. Positrons can undergo several processes: re-form positronium in col-

lisions with neutral hydrogen, annihilate with plasma electrons and undergo three body

recombination, i.e.

e+ + 2e− → Ps+ e− (2.16)

The latter mechanism, being a three body reaction, is rather improbable and can be

neglected [23], while the two former ones will be taken into account for the estimate of

the total signal collected from density fluctuations. Half of the positronium formed by

collisional processes will immediately undergo annihilation while the remaining half will

either annihilate, exit the plasma or be re-ionized at some distance from the recombination

point. A schematic overview of all the possible reactions the Ps beam can undergo is

depicted in Fig.2.4.

Let us call α the probability of the reaction o-Ps to p-Ps, β the total ionization probability

of Ps, γ the annihilation with a plasma electron, δ the probability to re-form another Ps

by colliding with a plasma ion (the ortho-para branching ratio is 0.5), then, having Ṅ

o-Ps per second we have a total rate of annihilations equal to

αṄ + (1− α)βγṄ + 0.5(1− α)βδṄ + 0.5(1− α)βδ[α + (1− α)βγ + 0.5(1− α)βδ]Ṅ + ...

=
∞∑
n=0

Ṅ [α + (1− α)βγ + 0.5(1− α)βδ][0.5(1− α)βδ]n

= Ṅ [α + (1− α)βγ + 0.5(1− α)βδ]
1

1− 0.5(1− α)βδ
(2.17)

The sum extending to infinity simulates an infinite plasma, even though for a finite plasma

the probability of a positron being transported to the first wall and being annihilated

should be used instead; in our rough estimate we will consider an infinite plasma. We

have already estimated α being equal to 0.1 which, considering the values of cross sec-

tions reported in [22], is the value we will assume also for ionization and recombination

processes. We will further simplify the calculation by neglecting γ compared to δ since,

for typical plasma parameters, the lifetime of positrons in a typical fusion plasma is of

the order of 10 s [22], therefore much longer than energy and particle confinement times.
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Thus the count rate is of the order of 10% of the incoming Ps flux. The fluctuating

signal, which is due to density fluctuations, scales as the spectrum of density fluctuations

compared to the total density.

Both ion and electron density fluctuations will contribute to the total signal even though

the major part is due to o-p Ps conversion, i.e. the first term in the above equation. This

term, being a Poisson process, is affected by an intrinsic relative noise equal to 1/
√
N .

So, estimating the fluctuating core signal to a few percent, Ṅ has to be larger than 104.

Additionally, this diagnostic could hardly be sensitive to the position of the event in the

plasma because the higher order terms in the above equation, which constitute about a

tenth of the total signal, are averaged over the whole minor radius, being due to ionization

and recombination effects. Localization could not be achieved by isolating detectors with

long shielding tubes in such a way as to collect only radiation coming from a given plasma

region, because the measurement would be anyway line integrated along the symmetry

axis of the tube, i.e. the line of sight of the detector.

Figure 2.4: Schematic view of the different processes, considered in the text, which
positrons can undergo in a plasma.

2.4.3 Reflectometry

In reflectometry experiments an electromagnetic wave is injected into the plasma and

a part of it is received after reflection at the cut-off layer. The spatial location of the
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reflecting layer in the plasma depends in general, in the cold plasma approximation, upon

the electron density profile, the total magnetic field, the probing beam frequency and its

polarization with respect to the total magnetic field.

Usually reflectometers are used to determine density profiles via radar-like techniques,

or to investigate plasma density fluctuations which perturb the radial position of the

reflecting layer. The received reflected wave is mixed with a reference signal thus enabling

the extraction of the phase delay which is a direct measure of the wave time of flight in

the plasma.

In the geometric optics approximation, the phase difference between two points can be

written as

∆φA,B =

∫ B

A

k(x) · dx =

∫ B

A

dxN(x)
ω0

c
(2.18)

where N is the plasma refraction index, c is the speed of light and ω0 is the pulsation of the

injected wave which, in normal tokamak experiments, is in the range of the microwaves.

Considering a pure ordinary mode propagating in the plasma perpendicularly to the total

magnetic field, the refractive index is given by N2 = 1 − ω2
p/ω

2, where ωp is the plasma

frequency. Near the cut-off layer the WKJB approximation breaks down because k tends

to zero, but it can be shown that in the case of negligible absorption and linear density

gradient [27], Eq.2.18 can still be used by subtracting a fixed π/2 phase shift such that

∆φ =

∮
dxN(x)

ω0

c
− π

2
, (2.19)

where the integral is calculated back and forth to the cut-off.

Despite the real behaviour caused by temperature effects, the standard theory assumes

the cold plasma approximation, which allows only two modes of propagation, namely X

and O mode. These correspond to three different cut-off frequencies, named O-R-L, which

have angular frequencies equal, respectively, to

ωpe (O)

√
ω2
ce

4
+ ω2

pe −
ωce
2

(R)

√
ω2
ce

4
+ ω2

pe +
ωce
2

(L) (2.20)

where ωpe is the plasma frequency and ωce is the electron cyclotron frequency. Taking

into account finite plasma temperature effects it is possible to show [34] that absorption is

negligible, but a correction of the ray trajectory is necessary; this correction is obtained by

replacing the electron mass with me = me

√
1 + 5/K in the cold dielectric tensor, where

K = mec
2/Te. The validity of this equation for the X mode, which is the only mode for

which these effects are important, requires K(1 − ωce/ω0) � 1; for a TCV eITB pulse,

for example, this value can be as high as 40.

In the case of fluctuation studies we distinguish between homodyne and heterodyne de-

tection; the former measures

Ir = Ĩ0 cos(φ̃) (2.21)
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where Ir is the received intensity, expressed as a fluctuation of the amplitude, Ĩ0, and of

the phase, φ̃. The latter splits the received signal and shifts one component by π/2 thus

obtaining

Ir,1 = Ĩ0 cos(φ̃) Ir,2 = Ĩ0 sin(φ̃) (2.22)

yielding fluctuations both in the reflected amplitude, which are related to the shape of the

reflecting layer, and in the reflected phase, which are proportional to the time of flight.

As briefly mentioned above, in the presence of density fluctuations the cut-off layer posi-

tion is modulated by a scale length L given by

1

L
(t) =

∂ñ

n0∂x
(t) =

∫∞
−∞ ikn̂(k, t)eık·x

n0

(2.23)

which, in the case of an ideally monocromatic fluctuating spectrum, is inversely propor-

tional to the fluctuating wave vector. The phase of the reflected wave, being proportional

to the beam path, will fluctuate as well; therefore the temporal spectrum of fluctuations

can be reconstructed by measuring the phase of the reflected wave.

Let us write the fluctuating permittivity as

ε(x) = ε0(x) + ε̃(x); (2.24)

the fluctuating phase is then calculated by expanding Eq.2.19 to first order in the pertur-

bation

φ = 2k0

∫ xc(ω0)

0

dx
√
ε0 + ε̃ ' 2k0

∫ xc(ω0)

0

dx

[
√
ε0

(
1 +

ε̃

2ε0

)]
= 2k0

∫ xc(ω0)

0

dx
√
ε0 + k0

∫ xc(ω0)

0

dx
ε̃
√
ε0

= φ0 + φ̃ (2.25)

In the vicinity of the cut-off layer, the WKBJ approximation breaks down due to the

singularity in the integrand. Therefore this equation is valid when the radial fluctuation

wave number, kr, is less than k0/
3
√
k0Lε [34], where k0 is the probing wave vector and

Lε = (dε0/dr)
−1 is the scale length of the plasma permittivity at the cut-off. For TCV,

the equivalent radial scale is approximately equal to 1.5 cm for an eITB, 1.7 cm at mid-

radius for an H-mode and 1.9 cm at the edge of an H-mode. The wave number is thus

upper bounded to approximately 3 cm−1 for all these three cases. Fluctuation wave

numbers that far exceed this limit give contributions to the reflected phase from all the

points where the shape of the zero order solution of the wave equation matches the shape

of density fluctuation distribution[33].

In the case of localized measurements it is possible to derive an equation binding the

radial wave number spectra of phase and density fluctuations[35]

Γφ(kr) = 2π
k2

0

|kr|
MLε[C

2(w) + S2(w)]Γn(kr) (2.26)
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where the spectra, Γn,φ, are defined as the Fourier transform of the autocorrelation func-

tion considered as a function of xc, w =
√

2|kx|Lε/π is a quantity much larger than unity

for tokamaks, C2 +S2 are Fresnel integrals approximately equal to 1/4 each, M is defined

as

M =
∂ε

ε∂ne
. (2.27)

In the case of propagation perpendicular to the magnetic field M is equal to 1 for O mode

and 4 for X mode.

Equation 2.26 gives the opportunity to recover the spectrum of density fluctuations, Γn,

from that of phase fluctuations, Γφ, in the case of long wavelength radial fluctuations.

It has been pointed out in [41] how the interpretation of reflectometry becomes much

more difficult when the poloidal component of density fluctuations’ wavevector cannot be

neglected compared to the radial one. In fact in this case, after reflection, the beam breaks

up into a group of scattered waves propagating in different directions, among which also

the specular one, that add up at the receiving antenna. Poloidally scattered components

are collected at the receiving antenna due to, first, the antenna spatial extent and, second,

to the plasma density profile which, being in general peaked, acts as a lens causing rays to

converge. Two dimensional fluctuations would not cause any problem in the case of flat

or hollow density profiles, which would by the way force the use of X-mode polarization

since the dependence of its cutoff on the magnetic field preserves spatial resolution. On

the contrary, since the O-mode cut-off only depends on the density profile, the spatial

resolution would therefore be lost if the density profile was flat and plasma regions with

a hollow density profile would be inaccessible.

In a numerical study [41] Mazzucato showed that, taking into account 2D fluctuations,

there exists, along the radial direction, a surface, called virtual cut-off, where the level of

fluctuations of the reflected wave amplitude is the lowest along the orthogonal direction.

This suggests the possibility of reducing the problem from 2D to 1D thus enabling the

use of 1D formulas.

If we call σφ the standard deviation of the phase modulation and ∆kθ the width of the

poloidal fluctuation spectrum, then the variance of the scattered waves in the radial

direction is equal, if ∆σφ∆kθ � k0, to σ2
φ∆k2

θ/(2k0); so that an observer located at a

distance from the (virtual) cut-off greater than the reciprocal of this spectral width will

sample a complicated interference pattern and will not be able to recover the correct

fluctuations. However, in this model an observer, if able to collect all the scattered rays,

would see them coming from a point, the virtual cut-off, due to the bending of all the rays

given by the lens effect of the plasma; in this way he could be able to recover the required

spectrum adopting a 1D geometric optics model for the amplitude of the reflected electric

field.

This model of reflectometry requires the following conditions:



36 CHAPTER 2. FEASIBILITY STUDY OF FLUCTUATION DIAG. IN TCV

Validity of the geometrical optics limit

∆kr <
k0

3
√
k0Lε

. (2.28)

The reflecting points must be distributed over a distance shorter than the radial scale

lengths of fluctuations

σ2
φ <

k2
0

Lε∆kr∆k2
x

. (2.29)

Since for large fluctuations ∆rc/Lε = σ2
φ/Lε∆kr∆k

2
x, for an extraordinary mode we obtain

σ2
n < 1/(π3/2L2

n∆k2
x); in the opposite limit of fluctuations, that is σ2

φ � 1, this equation

reads ∆kr∆k
2
x < k2

0/Ln. In TCV we can expect σn < 10−2,−3 for the first inequality, while

∆kr < 5 cm−1 taking Ln = 50 cm−1 and ∆kx = 1 cm−1. These limits decrease very

rapidly in case of stronger poloidal turbulence.

If these conditions are fulfilled it is indeed possible to build a reflectometer which is

actually able to collect almost all the scattered waves, thus obtaining complete information

on the fluctuation spectra; such a device is called Microwave Imaging Reflectometer (MIR)

and is described next.

Figure 2.5: Schematic view of the Microwave Imaging Reflectometer set-up. The beam
front is tailored, by two cylindrical mirrors, to approximately match the curvature of the
cut-off surface, before being injected in the plasma.

The optical set-up, schematically represented in Fig.2.5, has to make use of two cylindrical

lenses to tailor the beam wave front in order to make its curvature as close as possible

to that of the reflecting layer. This means that the poloidal lens’ focal point is on the

virtual cut-off surface, while the toroidal one is at R=0; obviously the poloidal lens has

to be translatable to search the focus of the virtual cut-off for various discharges and

probing frequencies. In this way a plane image of the cut-off layer can be produced on

the detection plane, where a 2D array of detectors is able to recontruct the fluctuations

profiles. In order to avoid spurious refraction effects, and considering the size of the optics,
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focusing metallic mirrors are to be preferred to lenses. It has to be underlined that, even

though MIR was invented to recover 1D fluctuation spectra, it is able to sample 2D spectra

by means of a two-dimensional detector array on the image plane.

The advantages of MIR are the following

1. Possibility of using X or O mode (as indeed in standard reflectometry)

2. Possibility of acquiring 3D plasma fluctuations with multiple closely spaced cut-offs.

The disadvantages are

1. The considerable amount of space required by the installation (at least a couple of

meters in radial direction outside the vessel)

2. The large amount of data collected (for a 10x10 array detection system at a frequency

of 1MHz we obtain 108 words/s, which could be reasonably translated into 107 to

2 · 108 words/pulse for TCV)

3. The amount of local oscillator power needed in order to obtain a heterodyne signal

4. The instrumental selectivity allows one to investigate only fluctuations for which

k⊥ρi < 1, thus excluding part of the electron modes

5. The fact that, for a midplane port, it can work only for plasmas at Z=0 or, alter-

natively, for highly elongated negative triangularity plasmas which, on the low field

side, offer a flat reflecting layer.

The instrumental selectivity depends on the poloidal region of the cut-off covered by the

beam and on the spatial resolution; for example with a resolution of 1 cm and a region

of 10 cm, the theoretical resolution is 0.63 cm−1 < kθ < 3.1 cm−1.

Considering a 10 cm wide probing wave having k0 = 20 cm−1 and fluctuations dominated

by kθ ' 3 cm−1, we obtain a divergence angle of the probing beam such that, travelling

from the virtual cut-off to the vessel and about 1 meter outside it (the distance covers

the space needed to install the mirror matching the toroidal curvature of flux surfaces),

the width of the beam becomes almost equal to half a meter, which is the minimum size

of the mirrors in the vertical direction.

In the following we will estimate the performance of a hypothetical future reflectometer

in TCV.

Assuming ∆kθ = 1 cm−1 (which is already about a factor 2 lower than the expected

TCV edge turbulence wave numbers) and a level of density fluctuations equal to 1% we

estimate the critical distance, beyond which it is impossible to recover correct data, to be
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about 5 cm, which is the distance between the antenna and the virtual cut-off. Moreover

the distance between real and virtual cut-offs is estimated, for cylindrical geometry, as

L = a (Lε)
b (2.30)

where a = 1−0.89e−0.43rc , b = 1−0.66e−0.45rc and rc is the position of the real cut-off (all

the parameters are expressed in meters)[36]. For typical TCV parameters this distance

is estimated in 10 to 20 cm thus making, according to this model, the use of standard

reflectometry quite unreliable.

These phenomena play a role also in the estimated correlation lengths given by the so-

called correlation reflectometer, which is a set of standard reflectometers with sweepable

frequencies which allow an estimate of the turbulence correlation length by spatially sepa-

rating the respective cut-off layers. Indeed if we model the data taken by the reflectometer

as actual data plus noise, what one obtains is a reduction of the correlation lengths esti-

mated by the diagnostic with respect to the real turbulent value.

In [37] an attempt to quantify the signal of the correlation reflectometer with an analytical

2D non linear model is carried out and the predicted response is found to depend on the

turbulence regime. In particular the authors summarize the response properties in two

regimes

1. Low turbulence level, i.e. ñ/n� 1

2. High turbulence level, i.e. ñ/n . 1

and in the case of short poloidal correlation lengths compared to the Airy pattern. The

authors find that, even with a low turbulence level, the extracted correlation lengths

are a function of both the perturbed density and the effective correlation length, thus

implying an intrinsic ambiguity in the deduction of the effective correlation lengths. In

the case of strong turbulence, the two dimensional spectrum generates multi-scattering

which eventually strongly modify the reflected spectrum in a way that is no longer related

to the actual turbulence spectrum.

In competition with MIR a new imaging technique, synthetic imaging, has been proposed

[38]. Briefly, it employs a numerical back projection analysis in order to recover the

fluctuating electric field at the cut-off layer.

E(x, t) = F−1{F [E(x0, t)e
ıkx(x−x0)]} ∝ F−1{F [E(x0, t)e

ık2
y(x−x0)]} (2.31)

where x is the cut-off layer radial position, x0 the detecting plane position, F and F−1

stand for, respectively, Fourier and inverse Fourier transforms, kx =
√
k2

0 − n2k2
y '

k0 − n2k2
y/(2k0), ky being the poloidal fluctuating wave-vector. Assuming a constant
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of proportionality, α, between measured frequency, Ω, and poloidal wave-vector we can

rewrite the last equation as

E(x, t) = F−1{F [E(x0, t)e
ıα2Ω2(x−x0)]} (2.32)

By varying the back-projection distance x− x0 the authors could identify the presence of

a virtual location in the plasma where the amplitude fluctuations strongly decrease and

the phase fluctuations dominate. This plane corresponds to the image plane in a lens

based optical system and, in [38], it is shown how synthetic reflectometry and MIR have

similar response properties in the case of small density fluctuations.

Even though the synthetic reflectometer is by far simpler to implement than MIR, it has

a few drawbacks:

1. The model is linear and cannot therefore work with high turbulence levels. Indeed

in [38] the simulations find a virtual cut-off only for ñ/n . 1%.

2. Fluctuating wave vectors must propagate in the poloidal direction much faster than

their de-correlation time

Therefore all the reflectometry configurations considered so far seem to be limited to low

turbulence levels or, in other words, to conditions treatable with linear models.

Another reflectometry configuration is the so called Doppler reflectometer, whose geomet-

rical configuration is depicted in Fig.2.6, in which the probing beam does not propagate

into the plasma orthogonally to the magnetic surfaces but at a finite angle in the poloidal

direction. In this configuration the receiving horn receives the backscattered signal ac-

cording to the Bragg relation

mk = k0[sin(θi)− sin(θs)] (2.33)

where m is the diffraction order, k is the fluctuating wave number and k0 is the probing

beam wave number. The most important contribution, the 0th order, corresponding to

a standard Snell reflection, will propagate away from the receiving horn and will be

reflected back and forth by the reflecting layer and the vacuum vessel. The backscattered

field originates from a theoretically well defined wave-vector which depends only upon

the probing frequency and the tilt angle of injection. Therefore, by scanning the injection

angle it is possible to measure a large part of the fluctuating spectrum. This requires

either a steerable launching mirror or a movable vertical position of the plasma in the

vacuum vessel, or both of them.

The peculiarity of this configuration enables one to deduce the turbulence velocity,

measured in the laboratory frame, thanks to the Doppler shift experienced by the back

scattered field according to

ωD = v · k⊥ (2.34)
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<

θi
θs

Reflecting layer

k⊥

Figure 2.6: Sketch of the geometrical configuration of the Doppler reflectometer. The blue
arrow represents the probing beam, solid red and green arrows the negative scattered
components, gradient-colored arrows represent the corresponding positive components.
Positive and negative are defined with respect to a given k⊥ direction on fluctuations on
the reflecting layer. The vertical dashed line is the normal to the reflecting layer.

where v is the velocity of turbulence in the laboratory frame, equal to the fluid velocity

plus the intrinsic turbulence phase velocity, and k⊥ is the fluctuation wave number selected

in Eq.2.33.

The perpendicular, rather than the total, wave vector is used in Eq.2.34 because it is

much larger than the parallel one since, due to the much higher parallel conductivity,

fluctuations are aligned orthogonally to the magnetic field lines. Using Eq.2.33, for the

case of a monostatic antenna, i.e. by choosing θi = −θs, the Doppler frequency is given

by

ωD = 2v⊥k0 sin(θ) cos(α) (2.35)

where α is the angle formed between the field line and the probing beam direction.

Since the Doppler shift is directly proportional to the electron velocity perpendicular to

the equilibrium magnetic field, the reconstructed velocity is the sum of the fluid velocity

components and the turbulence phase velocity, that is the velocity of the plasma itself with

respect to the laboratory frame and the velocity of the density fluctuations with respect

to the plasma frame. Even though the fluid velocity is composed of the diamagnetic

and E ∧ B drifts, only the latter is generally considered to contribute. Unfortunately

the contributions of the intrinsic turbulence phase velocity and of the E ∧B drift are not

easily separated unless an independent measurement is available: for example by reversing
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the equilibrium magnetic field and/or by comparing with CXRS measurements. However

it is possible to make some estimates of the main turbulence contribution to the signal by

the chosen k⊥ so that, eventually, an estimate of the order of magnitude of the two terms

is indeed possible according to theoretical models.

The k resolution of the instrument has been calculated in [39] as

∆k⊥ =
√

2
2

w

√
1 +

(
w2k0

ρ

)2

(2.36)

where w is the beam spot size and the effective radius of curvature of the spot ρ =

RplasmaRbeam/(Rplasma + Rbeam). As a result there exists an optimum value of w for any

given ρ: considering a probing frequency in the range 70 to 100 GHz, which corresponds

to the O-mode cut-off layer position over most of the TCV poloidal cross section, typical

values could be about w ' 1.5− 2 cm resulting in a resolution ∆k⊥ ≥ 2 cm−1.

In present day Doppler reflectometry experiments the scattering and receiving tilt angles

are chosen to be equal and in the range 18-30 degrees. These values are a compromise

between the need of getting rid of the strong m = 0 reflection component and the desire

to minimize the loss of k resolution due to the spot curvature.

The advantage of the Doppler reflectometer is the possibility of giving results no matter

where the plasma is, because the probing beam does not need to propagate orthogonally

to the magnetic flux surfaces as in standard reflectometry and in MIR. This also implies

that the technique is flexible in terms of the choice of access port. By applying multiple

probing frequencies it could be possible to estimate the E ∧ B shear flow, which is ex-

pected to be of paramount importance in regulating the turbulence saturation level [26].

The probing frequencies should be chosen such that the respective cut-offs are radially

separated by distances larger than the integration length of each probing beam; in this

way the calculated plasma velocities for each probing beam, i.e. in the cut-off position of

each beam, would be independent to one another.

Of course also for the Doppler reflectometer the question whether turbulence influences

the backscattered signal arises: fluctuations perpendicular to the probing beam direc-

tion cause the localization of measurements to deteriorate, and complicated interference

phenomena like the ones described above for standard reflectometry could make the re-

construction of v(r) and k(r) impossible. Nevertheless, if we assume that all these noise

components result in a symmetric broadening of the k spectrum, then by performing a

long enough time averaging it could be possible in principle to obtain the correct velocity

value. In this frame, an investigation with a 2D full-wave code has been carried out in [39]

and the result is that thanks to time averaging the required information about the veloc-

ity can be recovered, if the fluctuation level is not too high, but the spectrum could be lost.
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To conclude, this section is a collection of different theories, experimental indications and

numerical simulations on microwave reflectometry. The common message is the extreme

complexity of the measurement in the case of high fluctuation levels, i.e. non-linear cou-

pling of modes, when dealing with two-dimensional structures. It is beyond the scope of

this feasibility study to determine which description is the best, nevertheless it is enough

to say that microwave reflectometry, due to the excessive cost and complexity of MIR

or to ambiguity in the measurements, does not meet all the requirements listed in the

first section in terms of diagnostic flexibility in its use and of lack of ambiguity in the

interpretation of experimental results.

2.4.4 Collective Scattering

In this section, collective scattering designates the scattering technique which enables

one to recover some points in the density fluctuation spectrum by collecting the light

scattered, by density fluctuations, at angles which satisfy the Bragg relation. The word

collective means that the diagnostic is designed to measure collective electron behavior,

i.e. fluctuating wave-numbers such that kλD < 1, where λD is the Debye length.

The first work on the subject dates back to 1979 by Slusher and Surko[30], in which they

describe how to determine density fluctuations by coherent detection of scattered CO2

light. A more advanced treatment of light-plasma interaction is given in Chapter 3, here

we simply describe the simple interpretation of Bragg scattering.

The scattering process is characterized by the differential cross section

S = S0S(k, ω) (2.37)

where S0 is the Thomson cross section (e2/4πε0mc
2)2 and S(k, ω) is the spectral density of

plasma density fluctuations. The Fourier variables must satisfy the energy and momentum

conservation laws, that is

ω = ωs − ω0 (2.38)

k = ks − k0 (2.39)

with the subscripts s and 0 indicating respectively scattered and incident, while their

difference is equal to the fluctuating part.

In plasma physics, transport-relevant micro-fluctuations are characterized by wave-numbers

of the order of a few thousand inverse meters, and real frequencies of the order of hun-

dreds of kHz; therefore, in the case of a CO2 laser, whose real frequencies are much higher

than any plasma characteristic frequency, the fluctuating frequencies and wave-numbers
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are negligible in magnitude, thus providing the following relations

ωs ' ω0 (2.40)

|ks| ' |k0| ⇒ θB ' 2 arcsin(|k|/2|k0|) (2.41)

where θB is the so called Bragg scattering angle. According to the wave number of the

injected light one can select the fluctuations’ spectral region of interest, provided that a

given range of Bragg scattering angles is achievable.

Assuming a Gaussian probing beam with a 1/e2 intensity waist equal to 2w0, the ideal

instrumental k resolution is the standard deviation of the spatial Fourier transform of the

probing beam electric field, that is 1/w0. Thus, for a beam waist of 5 cm a resolution

of 0.2 cm−1 can be obtained, which might be sufficient or not depending on the range

of fluctuations under investigation and the experimental apparatus. Using a heterodyne

system, the spectral resolution is limited only by the beam width. However, the actual

minimum spectral resolution is somewhat worse than this because the scattered signal

has to be separated from the unperturbed beam. Therefore the actual limit is a function

of the Bragg angle and of the machine size. Indeed, given a beam path equal to L, the

condition permitting the separation of the scattered and unscattered beams is

L tan(θB) > 2w0 (2.42)

By imposing the minimum k to be equal to the intrinsic resolution 1/w0, in the approxi-

mation |k| � |k0|, we obtain

L ≥ 2w2
0k0 (2.43)

Concerning the spatial resolution, the common region between the probing and scattered

lines of sight results in the following localization

δL ' 2 · 2w0 cot(θB) ' 4w0k0

k
(2.44)

which, always considering the lowest wave-vector that can be resolved, is equal to

δL ≥ 4w2
0k0 (2.45)

which, exceeding tens of meters for a microwave and even a kilometer for a CO2 laser beam,

is essentially a line integrated measurement. This spatial resolution can be improved

considering high wave-vectors, of the order of k0 (Eq.2.44).

However it is possible to achieve a better result by taking into account the spatial variation

of the magnetic pitch angle and assuming that fluctuations, due to the much higher parallel

conductivity along magnetic field lines, satisfy the equation

k ·B ' 0 (2.46)
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so that the presence of magnetic shear allows one to select a given spatial region. Indeed

the instrumental selectivity function takes the form [31]

F (r) = e−
2k
∆

sin( ξ(r)2 ) (2.47)

where ∆ is the k resolution and ξ the variation of the magnetic pitch angle. For low wave

numbers, in the case of a radial injection in TCV we obtain the selectivity depicted in

Fig.2.7 whose corresponding integration length, given approximately by its width, even

though represents a significant improvement with respect to Eq.2.44, is such that one

would collect information roughly from the whole plasma minor radius, therefore leading

to a line integrated measurement once again. Nevertheless in Eq.2.47, for a given beam

Figure 2.7: Selectivity function as a function of the TCV major radius, in meters, for a
number of scattering wave-vectors, in the case of a radial propagation

and scattering angle, the only actual variable is the dependence of the magnetic field

pitch angle function ξ; it is therefore possible to obtain a better spatial localization by

employing a geometrical configuration which exploits the maximum possible pitch angle

variation: for example the variation along the beam path of the toroidal magnetic field

instead of the poloidal one. Following the same procedure as in [32], if we take a reference

frame, depicted in Fig.2.8, such that t̂ is parallel to the probing beam, û is parallel to the

equatorial plane and v̂ is such to form a right-handed reference frame, calling θ the angle

between the scattering direction and the probing direction, and φ the angle between the

fluctuation wave vector and the horizontal, we can write

ksu = k0 sin(θ) cos(φ)

ksv = k0 sin(θ) sin(φ) (2.48)

kst = k0 cos(θ)
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where k0 is the probing wave number and ks the scattered wave number.

Considering now two different waves originating from different spatial locations, sup-

Figure 2.8: Schematic view of the scattered wave vector ks, in the reference frame {t̂, û, v̂}
described in the text.

posing that the detection system is tuned to receive the first one, it will sample also the

second with a relative efficiency given by the relative angle between the two

F = e−[sin(φ2−φ1
2 ) 2k

∆ ]
2

(2.49)

The key point is to try to visualize the variation of the angle φ, as a function of the beam

path, in a given geometrical configuration. To do this it is enough to write Eq.2.46 in the

new coordinate system (û, v̂, t̂) to obtain

0 ' k ·B = |k0|[sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)− 1] · [Bu, Bv, Bt] (2.50)

which implies

sin(φ) =
Bt[1− cos(θ)]−Bu sin(θ) cos(φ)

Bv sin(θ)
(2.51)

cos(φ) =
1

(B2
u +B2

v) sin(θ)

{
BuBt[1− cos(θ)]

±
√
B2
uB

2
t [1− cos(θ)]2 − (B2

u +B2
v){B2

t [1− cos(θ)]2 −B2
v sin(θ)2}

}
(2.52)

Considering now a typical TCV equilibrium we calculate the spatial resolution for a

tangential injection. Intuitively, also after the considerations expressed in Sec. 2.4.1,

the best resolution is the one following the magnetic field line, i.e. matching the pitch

angle at the tangency point. In Fig.2.9 we show two examples of the resolution obtained

for a field line following beam, and a counter-field line following beam. In particular,
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if in a counter-field line following configuration, the integration length is of the order of

one meter, in the field line following configuration it is reduced to 20-25%; these results

are in substantial agreement with [32]. As already explained in Sec.2.4.1, the tangential

configuration permits a further localization due to the integration length, L, being a steep

function of the plasma normalized minor radius ρ as, in the case of localization in the

middle of the beam path, i.e. at the tangency point between the probing beam and the

flux surface of interest, it is equal to

δρ =
R1

a

[√
1 +

L2

R2
1

− 1

]
(2.53)

(Eq.2.11 in the case θ = 0), which, for TCV is of the order of 0.5 and 0.04 for the counter

and co-tangent configurations, respectively.

Figure 2.9: Left. Localization of the tangential collective scattering diagnostic for a
typical TCV pulse. Dashed and full lines correspond to the two solutions of the angle φ.
Right. Angle formed by the probing beam with the magnetic field line. Bottom. Field
line following probing beam. Top. Counter field line following probing beam

The scattered power originating from a volume of length L in the probing beam direction of

propagation from fluctuations of a given wave number generating a fluctuation amplitude

ñ is given by [30]

Ps =
1

4
ñ2r2

eL
2λ2

0P0 (2.54)

where re is the classical electron radius and λ0 is the probing beam wavelength. This
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power is scattered into the solid angle

∆ψ =
π

4

(
λ0

πw0

)2

(2.55)

This relation may be employed to determine the minimum radial resolution that can be

afforded in order to collect a sufficient amount of power allowing the discrimination of

signal from the detection system noise. For this purpose, assuming an effective fluctua-

tion intensity equal to the total fluctuation intensity times the ratio of the sampled ∆k

to the width of the k spectrum present in the plasma, an estimation of the wave number

resolution of the diagnostic is necessary.

The instrumental resolution is estimated from geometric considerations, sketched in Fig.2.10:

if we call L the spatial resolution, h the distance between the scattering point and the

receiving port, w0 the beam half-waist and θ the scattering angle, we obtain

tan(∆θ) =

√
w2

0 + (L/2)2

h−
√
w2

0 + (L/2)2 sin(α)
cos(α) ' ∆θ (2.56)

α =
π

2
− θ − arctan

(
2w0

L

)
(2.57)

Figure 2.10: Schematic drawing of the scattering geometry and estimate of the resolution.
The scale is arbitrary.

while from the Bragg relation

∆k = 2k0 cos

(
θ

2

)
∆θ

2
' ∆θ

(
k0 −

k2

8k0

)
' k0

√
4w2

0 + L2

2h
cos(α) (2.58)
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This instrumental broadening may be reduced to the Fourier limit (1/w0) if h is sufficiently

large, as per Eq.2.45. In practice a truly far-field measurement would require operating

in the focal plane of a focusing optic. In the intermediate field, the resolution is given by

Eq.2.58. Considering for instance a probing beam of w0 = 5 cm, an integration length

of 10 cm, h approximately equal to 1 m we obtain, for probing wave numbers of 60

cm−1, about 3.3 cm−1. Note that the contribution of the longitudinal integration to the

effective spatial resolution in the radial direction, considering a scattering event around

the tangency point of a magnetic surface, can be estimated to be about 1 cm; since this is

less than the width of the beam, the effective radial resolution is dominated by the latter.

We can therefore conclude that, in order to optimize the signal, it is worth searching for

a value of L that results in similar longitudinal and transversal resolutions, i.e. equal to

the beam waist. This value of the integration length, taking the tangency point is equal

to

L = 4
√
w0R (2.59)

that is about 30 cm for R = 1 m, i.e. TCV mid radius, and 2w0 = 1 cm.

Now the minimum overall level of fluctuation resulting in a signal-to-noise ratio of unity

is equal to

ñ =

√
4Ps

r2
eP0λ2L2

kmax
∆k

(2.60)

so that if we take an equivalent noise power of 2·10−13 W, as in the apparatus described in

[42], we obtain the results in Table 2.1 where all the calculations are performed assuming

ñ [m−3] P0 [W ] ∆k/kmax [%]

3 · 1014 1 3
1 · 1015 0.1 3
3 · 1015 1 1
1 · 1016 0.1 1

Table 2.1: Estimate of the minimum detectable fluctuating density for a probing wave-
length of 1 mm and an integration length of 10 cm.

a probing wavelength of 1 mm and an integration length of 10 cm.

In conclusion the collective scattering is feasible and allows one to discern the shape of

the k spectrum in a chosen area, since it gives the power scattered at a finite number of

points. Depending on the geometry of the system, the diagnostic can provide informa-

tion on kr or kθ in different locations of the poloidal plane by moving the plasma in the

vacuum chamber. The drawback is that the plasma in the scattering region needs to be

homogeneous in order to have a completely meaningful information from the diagnostic.

Additionally the information provided is limited unless one can arrange for a fairly large
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number of detectors in potentially difficult locations, if access to different parts of the

beam and a k spectrum in each one is to be obtained. Finally, only true far-field detec-

tion can give the optimum Gaussian resolution (especially for shorter wavelengths, such

as CO2), which means that an appropriate lens must be used for each detector.

In sections 2.4.5 and 2.4.6 we will consider probing e-m waves scattered by plasma den-

sity fluctuations. The scattered electric field is considered as a function that admits a

Taylor or Fourier expansion up to any order and the system is considered to be infinite.

Diffraction effects will be considered, for simplicity, only in the next chapter which deals

in detail with the Phase Contrast Imaging method.

2.4.5 Phase Contrast

The Phase Contrast Imaging (PCI) method is an internal reference interferometer which

is capable of converting phase perturbations into amplitude ones. First proposed by

Zernike[1], this method is a member of the imaging methods family, which includes the

Shadowgraph, Scintillation, Central Dark Ground and Schlieren techniques, and is based

on measuring the phase variation of an electromagnetic wave due to the perturbed refrac-

tive index of the physical medium it propagates through.

In the basic setup (Fig.2.11), a monochromatic laser beam is transmitted through a re-

fractive medium located at the object plane Σobj, a lens L1 focuses it on the so-called

phase plate, whose role will be clarified hereafter and is a reflective or refractive flat op-

tical element designed to have, usually, a depression in its central part. The undiffracted

component of the beam is focused on the depression so that a phase difference between

the weak diffracted component and the much stronger undiffracted one, which serves as

local oscillator, is achieved. Lens L2 refocuses the beam on the image plane Σim thus

obtaining an image of the object. In order to have the best interference at the image

plane between diffracted and undiffracted components, the phase shift has to be ±π/2.

When PCI is used in a plasma, the refractive index is perturbed, almost exclusively, by

electron density fluctuations, see Eq.3.16. Therefore this physical quantity is what PCI

is sensitive to in a fusion plasma.

When the frequency of the probing beam is much larger than the frequency of any plasma

resonance or cut-off, the effect exerted by the plasma on the laser beam is a phase shift

φ. Let us write φ as the sum of a static and of a fluctuating component

φ = φ0 + φ̃, (2.61)

where φ0 is induced by the equilibrium density profile, while its fluctuations are responsible

for φ̃. We will now consider as unperturbed the beam phase-shifted only by φ0 and we
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Figure 2.11: Sketch of the basic, simplified, set-up of the Phase Contrast diagnostic. The
object plane is the plasma, the image plane is the detecting plane and L1 and L2 are the
imaging optics.

will refer to it with the subscript φ0. The total scattered electric field can be expressed as

Etot(r, t) = E0(r, t)eıφ0(r.t)eıφ̃(r.t) = Eφ0e
ıφ̃(r.t) ' Eφ0 [1 + ıφ̃(r, t)] (2.62)

where E0 is the probing field, φ̃ is the fluctuating phase and the last equality holds only if

the fluctuating phase shift is much smaller than unity. The unperturbed field is the first

term on the right hand side of the last equality of Eq.2.62, while the scattered field can

be thought of as the second one. Any detector is sensitive to the power of the incident

light, therefore the measured signal would be

Ps = |Es|2 = |Eφ0e
ıφ̃|2 = |E0|2 (2.63)

in other words, the system would not be sensitive to any first order term in the perturbed

phase shift.

Looking at Eq.2.62 it is evident that the unperturbed and perturbed fields are dephased by

π/2 in the phasor space, thus by applying an additional π/2 phase shift to the perturbed

components, the information on the phase perturbation can be made detectable as an

amplitude variation, i.e. a power modulation on a detector

Ps = |Es|2 = |Eφ0e
iφ̃|2 ' |Eφ0 [1 + iφ̃]|2 (2.64)

⇒ ±π/2⇒

= |Eφ0 [1∓ φ̃]|2 = |Eφ0|2[1∓ 2φ̃+ φ̃2] ' |Eφ0|2[1∓ 2φ̃] = P0 + P̃ (2.65)

The same result can be seen in a slightly different way, i.e. by developing in a MacLaurin

series at the end of the derivation, that is

Es = Eφ0e
ıφ̃ = Eφ0

∞∑
k=0

(ıφ̃)k

k!
(2.66)
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adding a ±π/2 phase shift to diffracted components

Ps = |Eφ0 |2
∣∣∣∣∣1± ı

∞∑
k=1

(ıφ̃)k

k!

∣∣∣∣∣
2

= |Eφ0|2|1± ı(eıφ̃ − 1)|2

= |Eφ0|2
[

3− 2

(
eıφ̃ + e−ıφ̃

2
± eıφ̃ − e−ıφ̃

2ı

)]
= |Eφ0 |2[3− 2 cos(φ̃)∓ 2 sin(φ̃)] = |E0,φ|2[1∓ 2φ̃+ φ̃2 + o(φ̃2)] (2.67)

The second equation on the first line was written to explicitly express which terms take

the additional π/2 phase shift ı. Similar expressions are obtained by adding a ±π/2 phase

shift to the undiffracted component

Ps = |Eφ0|2
∣∣∣∣∣±ı+

∞∑
k=1

(ıφ̃)k

k!

∣∣∣∣∣
2

= |Eφ0|2[3± 2 sin(φ̃)− 2 cos(φ̃)] (2.68)

which reflects the symmetry in shortening or lenghtening the optical path of the un-

diffracted component or of the diffracted ones.

The principal advantage of the PCI technique with respect to more traditional collective

scattering ones is that the former, being able to produce an image of the object of interest

in real space, is not affected by difficulties in interpreting signal scattered by highly non-

homogeneous regions, such as Internal Transport Barriers. The latter, on the contrary,

provides information directly in Fourier space, and is therefore a priori not possible to

discern signal originated from one particular portion of the sampling volume. For this

reason, with the same port allocation requirements, it is able to extract a considerably

larger variety of spatial structures.

The phase contrast method will be described in far more detail in Chapter 3; however it

is enough to say here that its validity rests on the conditions expressed by the following

four equations[63]

ω2
pe

ω2
0

� 1, (a)
ω2
ce

ω2
0

� 1, (b)
|k|
|k0|
� 1, (c) λ0reLne � 1 (d) (2.69)

where the subscript 0 indicates quantities referring to the probing beam, re is the classical

electron radius, L is the integration length, ne is the electron density, ωpe is the plasma

frequency and ωce is the electron cyclotron frequency.

Considering the TCV toroidal field, the second equation is satisfied to 0.01 by imposing

the probing frequency to be larger than 2 · 1011 rad/s. In typical TCV conditions the

electron density does not exceed 3 · 1020 m−3, which means that the first and the fourth

equations are satisfied if the probing beam has a wavelength of, at most, about 10 µm

and an integration length of about 20 cm. Considering the third equation, imposing

k/k0 ≤ 0.1 results in a maximum fluctuation wave number of 600 cm−1 for a CO2 laser
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beam.

One of the most important drawbacks of phase contrast is that it measures only line

integrated fluctuations, which basically means that it is not possible to obtain local infor-

mation unless an inversion procedure or a spatial filter is adopted. Both methods require

detailed information on the magnetic field in the plasma since the former relies on as-

sumptions on fluctuations and symmetry considerations[43], while the latter makes use of

the fact that only fluctuation wave vectors perpendicular to both the magnetic field and

the probing beam propagation direction are measured.

Considering the second approach one can, as in Section 2.4.4, set a reference frame such

that t̂ is a unit vector parallel to the propagating beam direction, û is parallel to the equa-

torial plane of the plasma and v̂ is such as to complete a right-handed reference frame

{t̂,û,v̂}. In such a way one can calculate, for each point of the propagation path, the

angle formed by the projection of the magnetic field onto the plane perpendicular to the

probing wave vector with respect to a reference direction (see Fig.2.12); this angle can be

selected through an appropriate spatial filter located in a focal plane.

Fig.2.13 shows calculations for a TCV equilibrium reconstruction in the cases of toroidal

Figure 2.12: Schematic representation of a magnetic field line and its projection on the
beam wave-front. The depicted angle is the one shown in Fig.2.13 and 2.14

and poloidal injection. For a poloidal configuration the position is not a single-valued

function of the angle, which means that, for a given angle, there are contributions to the

signal from different points in the plasma. By contrast, in the case of toroidal injection

the position is a single-valued function of the angle over a large fraction of the integration

path, and its derivative is small, implying that one can localize with fairly good precision

the position of the interaction. This precision is enhanced when the direction of propaga-

tion makes the beam nearly tangential to the magnetic field, by matching its pitch angle.

When the spatial resolution is projected onto a radial coordinate, by employing the ax-

isymmetry of the tokamak (thus neglecting toroidal field ripple) one obtains an excellent

radial localization of the measurements. Additionally, due to physical constraints, the
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Figure 2.13: a)Angle between the component of the magnetic field perpendicular to the
laser propagation direction and the reference horizontal vector in that plane, as a function
of the beam path in a monotonic q profile for a number of configurations with predom-
inantly toroidal injection. Through the magnetic axis, following the magnetic field line
in black; in the midplane in blue; in the counter-field line direction in red; parallel to
the midplane and above and below magnetic axis in green and light blue. b)Same as a),
but for poloidal injection with a number of radial injection points. The position is not a
single-valued function of the angle.

probing beam is smaller than the plasma poloidal cross section, therefore by vertically

shifting the plasma in the TCV vacuum-vessel, the high resolution region can be moved

across the beam cross section, so that fluctuations from most radial positions can be re-

solved in turn (this holds for plasmas that are not too elongated, of course). In an ideal

case with a point of perfect tangency between the beam and the magnetic field, the angle

function depicted in Fig.2.13 becomes degenerate at this point, i.e. all angles between 0

and π satisfy the k selection rules there.

The localization properties worsen negligibly if the equilibrium is characterized by a non

monotonic q profile, as illustrated in Fig.2.14.

Let us now give a rough estimate of the achievable localization: If L is the integration

length and R the radial position of interaction, in the case of a horizontal propagation

and a localization at the tangency point, the radial resolution is given by

δr = R

(√
1 +

L2

R2
− 1

)
, (2.70)

i.e. about 0.5 cm, corresponding to about δr/a = 1%, for a core measurement in TCV

and L=10 cm. (L is determined by the spatial filter, see Sec. 3.5.3).

In general, both in a toroidal and in a poloidal configuration, the PCI is sensitive to fluc-

tuation wave-vectors composed of both poloidal and radial components of k⊥. However,

there are peculiar points along the beam path where PCI is sensitive only to the radial

or to the poloidal component. For example it is easy to see that in both configurations
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Figure 2.14: Comparison of the angle formed by the component of the magnetic field
perpendicular to the laser propagation direction and the reference horizontal vector in
that plane, for toroidal injection in a case of monotonic q profile, full line, and reversed,
dashed line. The tangency point is chosen as the location of the minimum of the safety
factor.

the points of tangency to the flux surface select only the radial component. We antici-

pate here that in the toroidal configuration there are points sensitive only to the poloidal

component, see details in Chapter 3.

Let us now briefly see how it is possible to localize a PCI measurement. On the phase

plate, or in any other focal plane of the imaging system, the spatial distribution of the

scattered electric field corresponds to its spatial Fourier transform; therefore any angular

position with respect to the focal point corresponds to a given orientation of the fluc-

tuating wave vector. This angular position is nothing but the angle plotted in Fig.2.13.

The localization is achieved simply by physically masking the parts of the focal plane

corresponding to undesired positions along the beam path. In Chapter 3 we will give

more details on how the filter is actually built.

In order to be sure to collect all the light scattered by the maximum k under investigation,

one has to set the following geometric equations

kmax
k0

=
h(1− α− β)

D
(a), β =

D(D − z)M2w0

z2
Rh

(b) (2.71)

where D is the distance between the interaction point and the receiving mirror, β is the

factor that takes into account the divergence of the gaussian beam at a short distance

compared to the Rayleigh distance zR ≡ k0w0/2, which is the distance the beam travels

to increase its width by
√

2, h is the radius, or the half-aperture, of the receiving optical

aperture, w0 is the gaussian beam half-width at its waist, α = w0/h and M2 is the factor

that takes into account the non-perfect Gaussian nature of the probing beam. Eq.2.71b

expresses the intrinsic divergence of a gaussian beam at a distance z from its waist, short

compared to the Rayleigh distance. Eq.2.71a imposes the aperture to be large enough to
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collect the gaussian beam scattered at a distance z from its waist; the scattering angle

kmax/k0 and β add because they are supposed to be small; α is equal to w0/h as only first

order terms in z/zR are retained. M2 is equal to one for a perfectly Gaussian beam, in

reality lasers are characterized by M2 ' 1.1− 1.2.

The PCI signal is formally expressed as

φ̃ = reλ0

∫ b

a

ñe(x)dl (2.72)

where a and b are the limits of the integration length, i.e. b-a=L, re is the classical electron

radius, λ0 is the wavelength of the probing beam and ñe is the density fluctuation. So

that, in order to obtain a good signal to noise ratio, the key ingredients are the wavelength

of the laser and the integration length, for any given turbulence level.

Assuming an experimental apparatus whose noise is such as to produce an equivalent

phase variation of 5 · 10−5 rad[63] and considering an integration length of 20 cm, the

expected minimum detectable fluctuation is equal to 8 · 1015m−3 for λ0 = 10.6µm; by

contrast, we obtain 3.2 · 1016m−3 integrating the signal over 10 cm with λ0 = 5µm. these

two values translate into ñ/n of about 0.1 and 1% for a low density TCV pulse, and are

comparable to the theoretical estimation of fluctuating densities obtained with a series of

gyrokinetic simulations, as discussed in Section 2.3.

A limitation on the density gradient, sampled by the wave front w0, must be set in order

to ensure the validity of the Born approximation, Eq.2.69a. This reduces to evaluating

Eq.2.69d with ñe replaced by the spatial average variation of the electron density over

the beam wave front w0∇ne. This estimates gives an upper density gradient limit of

1023 m−4, for w0=0.5 cm and 1.18 · 1022 m−4 for w0=4.5 cm; conditions well satisfied in

TCV eITB pulses, i.e. the ones with the highest density gradient.

Let us now examine the conditions that the diagnostic must satisfy. Firstly, to ensure

the homogeneity of the wave front, the spatial dependence of the delay time in the image

plane must satisfy the following condition[63]

ω

c

(M − 1)2w2
0

2(Z= − Zobj)
� 1 (2.73)

where M is the magnification factor of the system, w0 the beam half-width and Z= and

Zobj are the positions of the image plane and of the object plane, respectively. The equa-

tion is satisfied at 0.14% for w0=3.5 cm, M=-0.5 (which is the magnification corresponding

to a resolution approximately equal to a cut-off of 60 cm−1), a frequency bandwidth of

100 MHz and Z= − Zobj > 2 m, which is the shortest practical distance.

The transit phase variation of the laser light through the plasma region under investiga-

tion, Lω/c, approaches one when the pulsation is about 300 MHz for an integration length

of 15 cm. Thus for turbulence phenomena, which are expected at much lower frequencies,
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the effect is negligible.

Other equations to be satisfied in order to have response properties compatible with the

Rytov and geometric optics approximations are[63]

Lk

k0w0

� 1 (2.74)

Lk2

πk0

≤ 1 (2.75)

k0w0 � 1,
|x− x′|k4

8k3
0

� 1 (2.76)

|x/xR|
k2

0w
2
0

� 1,
|x′/xR|
k2

0w
2
0

� 1,
|x− x′|
xR

� 1 (2.77)

where x and x′ are the distances from the beam waist of any two points along the optical

path in the plasma region, xR is the Rayleigh distance, L the integration length, k the

maximum expected fluctuation wave number.

Considering an integration length of 10 cm Eq.2.74 requires, to be satisfied to 2%, to have

a cut-off equal to kmax = 42 cm−1 for a beam half-waist of 3.5 cm and a probing beam

wavelength of 10.6 µm; this value doubles if a 5 µm laser is used. Eq.2.75, expressing the

Raman-Nath condition, is always satisfied up to a cut-off of 30.5 cm−1 for a 10.6 µm laser

beam and an integration length of 20 cm, while the threshold rises to 43.1 cm−1 if the

integration length is reduced to 10 cm, and goes up to 61 cm−1 if the probing k is equal

to 5 µm with L=10 cm. The Rayleigh distance, defined as k0w
2
0/2, is at least equal to 363

m for a 10.6 µm laser with a 3.5 cm width, so that the last of Eq.2.77 is largely satisfied

being no larger than 4 ·10−3. The first two Eq.2.77 are satisfied even with a width reduced

to 1.3 mm since in this case they are less than 7 · 10−9. The l.h.s. of the second Eq.2.76 is

equal to 1.1 · 10−3 with a cut-off set to 60 cm−1 and an integration length of 20 cm, while

it is equal to 2 · 10−3 for a 5 µm laser beam and a cut-off equal to 120 cm−1.

When operating the diagnostic with a localized measurement one should observe a Doppler

shift k · v, where k is the fluctuation wave vector and v the fluid velocity. By reversing

the plasma current and the toroidal magnetic field, so as to keep the localization fixed,

one could observe a difference in the absolute value of the Doppler shift for two ”iden-

tical” pulses, so that the value of the E ∧ B velocity could, in principle, be retrieved if

it is indeed dominant over the diamagnetic velocity. Moreover by changing only the cur-

rent, since the localization does not change significantly away from the tangency point as

shown in Fig.2.13, one could use the difference in the absolute value of the Doppler shift

to obtain the value of the poloidal velocity and compare it to the one given by the CXRS

diagnostic. In this fashion, similarly to the Doppler reflectometry technique, one could

ultimately hope to extract information about the turbulence phase velocity and compare

it to theoretical calculations.
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In conclusion, PCI diagnostic is feasible and allows one to obtain spatially localized im-

ages of plasma density fluctuations. These images can cover most of the poloidal cross

section by vertically shifting the plasma in the vacuum vessel.

2.4.6 Alternative imaging methods

In this section we will briefly describe imaging methods alternative to the Phase Contrast

and how they compare. The description is given for completeness since different authors

have already treated this subject in previous works [64, 63, 66], though we will do it in a

slightly different formalism.

Historically, the first two imaging techniques not relying directly on intensity fluctuations

but on phase fluctuations were the Central Dark Ground (CDG) and the Schlieren tech-

niques. The CDG consists of physically blocking the unscattered radiation and letting

the scattered radiation through. The mask should ideally be of the size of the focal spot,

whose diameter, for an aberrration-free lens, is equal to

4M2λ0f

πD
(2.78)

where λ0 is the probing beam wavelength, f the lens’ focal length, M2 the beam mode

parameter and D is the input beam diameter on the lens at the 1/e2 points.

The transmitted electric field, for a given phase perturbation φ̃, is equal to

Es = E0

∞∑
k=1

(ıφ̃)k

k!
(2.79)

which gives an intensity equal to

Ps = |E0|2|eıφ̃ − 1|2 = 2|E0|2[1− cos(φ̃)] ' |E0|2φ̃2 + o(φ̃3) (2.80)

therefore the intensity contrast is proportional to the square of the perturbed phase,

which makes the CDG much less sensitive than PCI, even though the CDG mask can be

manufactured more easily than the phase plate of PCI.

The Schlieren technique, where Schlieren is a german word standing for streak, consists of

letting through the unscattered component and only scattered components corresponding

to positive, or negative, fluctuating wave-vectors. The result is an intensity perturbation

linearly proportional to the phase perturbation but dephased by π/2. Indeed, expressing

the phase perturbation as a Fourier integral

φ̃(x) =

∫ ∞
−∞

dkφ̂(k)eık·x (2.81)

by blocking, for example, the negative wave vectors, the scattered field becomes equal to

Es = E0e
ı
R∞
0 dkφ̂(k)eık·x (2.82)
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so the detected power is given by

Ps = |E0|2eı
R∞
0 dkφ̂(k)eık·xe−ı

R∞
0 dkφ̂∗(k)e−ık·x (2.83)

since the fluctuating phase has to be real, φ̂∗(k) = φ̂(−k), thus

Ps = |E0|2eı
R∞
0 dkφ̂(k)eık·xe−ı

R∞
0 dkφ̂(−k)e−ık·x

= |E0|2eı[
R∞
0 dkφ̂(k)eık·x+

R−∞
0 dk̃φ̂(k̃)eık̃·x]

= |E0|2eı[
R∞
0 dkφ̂(k)eık·x−

R 0
−∞ dkφ̂(k)eık·x]

= |E0|2e−
R∞
0 dkφ̂(k)eı(k·x−π/2)−

R 0
−∞ dkφ̂(k)eı(k·x+π/2) ' |E0|2[1− φ̃π/2] (2.84)

where we have defined k̃ = −k and, after the second passage, k = k̃. φ̃π/2 is the fluctuating

phase shifted by±π/2 in Fourier space. The detected power is therefore linear in the phase

perturbation but dephased by π/2.

We now consider the so-called phase scintillation [67], which makes use of the phase shift

cumulated by scattered components while travelling at a distance L from the scattering

region.

After a distance L from the scattering region to the detection plane, the cumulated phase

shift of each Fourier component, scattered at an angle θ, is equal to

δk ' Lk0[1/ cos(θ)− 1] = L
k2
⊥

2k0

(2.85)

which is then an even function in k⊥. Let us write again the total scattered field as

E(x) = E0e
ıφ̃ = E0e

ı
R∞
−∞ dkφ̂(k)eık·x (2.86)

adding the additional phase shift to each Fourier component and imposing the phase shift

to be real, i.e. φ̂∗(−k) = φ̂(k), the Fourier integral can be rewritten as

ı

∫ ∞
−∞

dkφ̂(k)eı(k·x+δk) = ı

∫ ∞
0

dkφ̂(k)eı(k·x+δk) + ı

∫ ∞
0

dk′φ̂∗(k′)e−ı(k
′·x−δk′ ) (2.87)

where we have defined k′ = −k. Note also that δ−k = δk by Eq.2.85. Its complex conjugate

reads

−ı
∫ ∞

0

dkφ̂∗(k)e−ı(k·x+δk) − ı
∫ ∞

0

dk′φ̂(k′)eı(k
′·x−δk′ ) (2.88)

The power on the detector is then equal to

P = |E|2 = |E0|2e−
R∞
0 dkφ̂(k)eık·x2 sin(δk)−

R∞
0 dkφ̂∗(k)e−ık·x2 sin(δk)

= |E0|2e−
R∞
−∞ dkφ̂(k)eık·x2 sin(δk) (2.89)

which then results in a sinusoidal modulation of the power. This effect was experimentally

confirmed by H.Weisen by starting from a phase contrast arrangement and longitudinally
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shifting the position of the phase plate[65].

One can see that the phase scintillation technique can provide the same amplitude of

intensity fluctuations as PCI only for a single value of k⊥, the one giving δk = π/2, which

makes the scintillation technique inadequate for broad turbulence studies, even though it

is simpler than PCI since it does not need any spatial filtering. In general, the response

function is non-linear.

The Shadowgraph technique, like the phase constrast and the ones described in this

section, relies on the separation between the object plane and a plane used for imaging.

Since the plasma refraction index, but also the refraction index of any gas, depends on

its density, denser regions act as diverging lenses thus producing less bright spots, also

called shadows. On the contrary, less dense regions create brighter spots. Let us use the

geometric optics approximation: a ray propagating along z, incident at position (x,y) is

deflected into position (u,v) on the detecting plane

(u, v) =

(
x+

L

k0

∂φ̃

∂x
, y +

L

k0

∂φ̃

∂y

)
(2.90)

where L is the distance along z between the object and the detecting plane. The detected

power, in the case of a uniform incident intensity is given by the energy conservation

principle

Iddudv = I0dxdy (2.91)

which gives, in the case of small deviations of the index of refraction

I0dxdy = Id

(
dx+

L

k0

d2φ̃

dx2
dx

)(
dy +

L

k0

d2φ̃

dy2
dy

)

' Id

(
1 +

L

k0

∇2φ̃

)
dxdy + O(|∇4

x,yφ̃|) (2.92)

which gives, to first order in the refracting angle, a fluctuating intensity equal to

Ĩd = I0
L

k0

∇2φ̃ = −I0
L

k0

∫ ∞
−∞

dkφ̂(k)k2eık·x (2.93)

It can be noticed that this result is very similar to the intensity provided by the phase

scintillation in the limit k2
⊥L � k0. The two techniques are in fact different approaches

to describe the same physical effect. As a result, the shadowgraphy technique shares the

limitations and drawbacks of the phase scintillation method: it is non-linear and has a

weak response to long wavelength fluctuations.

All these imaging methods can be combined with a spatial filter as described earlier in

connection with PCI, which provides the same localization properties in all cases.

In Fig.2.15 we present a cartoon of all these methods to make their understanding more

immediate.
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Figure 2.15: Schematic view of all the imaging methods discussed in sections 2.4.5 and
2.4.6. Blue rays correspond to undiffracted components (meaning undiffracted by fluctua-
tions), green and red rays to diffracted components respectively corresponding to negative
and positive wave-vectors (along a selected direction)
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Figure 2.16: Schematic view of the optical set-up of the Mach-Zehnder interferometer.

At last we consider interferometry. Interferometry is a traditional way to observe varia-

tions of the refractive index of a transparent object. It relies on splitting a monochromatic

laser beam into two parts. One part is called probing beam and propagates through the

object of interest collecting changes in the index of refraction. The second part, called

reference beam, is allowed to propagate freely in air or vacuum. By combining the two

beams after interaction of the probing beam with the medium under consideration, the

total phase shift between the two can be measured thus providing the line integral of the

desired index of refraction. Interferometry can be used with a collimated probing beam

to be imaged on a single detector or with an expanded beam which, being imaged on a

one or two dimensional array, provides an image of the line integral of each line of sight.

Interferometric measurements are not only used to measure the index of refraction but are

also used to measure differences in beam paths in the same medium: the most famous use

in the history of physics was the one made by Michelson to try to measure the velocity of

ether. Interferometric measurements are also commonly used to determine the deviations

from flatness of optical surfaces which, for high quality optics, have to be at most in the

order of tens of nanometers.

In plasma physics the so-called Mach-Zehnder set-up, depicted in Fig.2.16, is commonly

used to measure density profiles and, in recent years, is coupled to current profiles mea-

surements through Faraday rotation. Let us now calculate the response properties of

the Mach-Zehnder interferometer. The total electric field on the detector, after a beam

splitter and a beam combiner, can be written as

E =
E0

2
ei(φ0+φ̃) +

E0

2
eiφref (2.94)

where φ0 is the phase shift due to the stationary density profile, φ̃ to its fluctuations and

φref is the phase shift of the reference beam. The beam intensity on the detector is equal
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to

I =
|E0|2

2
[1 + cos(φref − φ0 − φ̃)]

=
|E0|2

2
[1 + cos(φref − φ0) cos(φ̃) + sin(φref − φ0) sin(φ̃)] (2.95)

which implies that the interferometer response is linear in the perturbation when φref −
φ0 = (n+ 1/2)π, where n ∈ N, and quadratic when φref − φ0 = nπ.

Comparing this to the response of the PCI system one can see that the interferometric

imaging system has nearly identical performance. The overall image contrast is just a

factor of two lower than the PCI one.

The advantages of the system are

1. Relatively easy optical set-up

2. The system responds to all wave numbers, down to zero, even though, of course,

wavelengths can be uniquely identified only if they are not longer than the beam

full-width or shorter than twice the spatial sampling interval (Nyquist criterion).

The disadvantages of the system are

1. The signal is sensitive to mechanical vibrations

2. φ0 should be almost constant across the beam full-width

3. As all the other imaging techniques described above, in the absence of an opti-

cal filter a localization of the measurement is possible only by an Abel inversion

procedure

Even though mechanical vibrations are, for TCV, significant only below a few kHz, any

diagnostic should be as insensitive as possible to them, especially when looking for small

fluctuations, i.e. when searching for micro-instability thresholds in physical quantities

such as temperature or density gradients.

2.4.7 Cross Polarization Scattering

In Chapter 1 we described a plasma in a toroidal device, in particular in a tokamak, as a

set of nested flux surfaces characterized by homogeneity, to first order, in their transport

properties. It is legitimate to ask whether any perturbation of the main magnetic field

can lead to any additional transport. Indeed, since charged particles follow magnetic

field lines, any deviation from the equilibrium configuration will result in particles being
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convected along the perturbed field line. This phenomenon is known as magnetic fluc-

tuation. The name is a somewhat academic distinction from the so called electrostatic

turbulence which, in turn, assumes a perfect magnetic topology and describes the anoma-

lous transport in terms of fluctuating E∧B drifts, which are generated by fluctuations in

the electrostatic potential. In reality these are merely limiting cases and in general both

the electric and magnetic field can be expected to be perturbed.

The problem of magnetic fluctuations has been investigated in a theoretical framework

in the ’60s and ’70s and, in 1978, Rechester and Rosenbluth estimated that a relative

B-field fluctuation of 10−4 is able to cause a stochastic magnetic topology and generate

transport coefficients comparable to the ones experimentally observed [44]. These results

were obtained though the assumptions of

• A fully developed chaotic field with island overlapping

• Parallel correlation lengths much shorter than the electron mean free path

• The magnetic field fluctuates over a time scale much longer than the mean collisional

time

In these conditions the fluctuation of a magnetic field line, DM , generates a particle

diffusion equal to

D = DMv‖ (2.96)

where v‖ is the particle velocity along the field line and DM is a quasilinear estimate of a

spreading coefficient.

It was later shown [45] that these assumptions are not met in real plasmas and that trans-

port coefficients do not scale linearly with the particle parallel velocity and are generally

smaller that the ones predicted by Eq.2.96. From an experimental point of view one can

try to directly measure fluctuations of the radial component of the magnetic field, of the

plasma current density or of the plasma temperature. Additionally, since the particle

transport caused by magnetic turbulence is predicted to be proportional to the particle

velocity, linearly according to [44] or less than linearly according to [45], observations of

suprathermal electrons provide an insight on the fluctuation level.

Historically magnetic turbulence has been analyzed only close to the edge because mag-

netic probes are indeed much more sensitive to pertubed magnetic fields at the edge than

in the core. A number of measurements in different tokamaks have been carried out, we

report here a selection

• Hα emission revealing plasma filaments in TFTR[54]

• Mirnov coils capturing B-field perturbations in JET[55]
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These measurements showed that the dominant term generating the observed fluctuations

is electrostatic[1] but, not much is known about the centre yet. For the plasma core we

can cite

• The snake in JET[56]

• The runaway snake in TEXTOR[57]

• Bumpy Te profiles in RTP and in JET[58, 59]

• Striations of Hα light emitted by ablated pellets in Tore Supra[60]

which indicate, in various and indirect ways, the presence of perturbed magnetic structures

rather than actual values of magnetic field fluctuations.

Up to now the only way to investigate core magnetic fluctuations has been by means of

the Cross Polarization Scattering diagnostic (CPS), which employs the mode conversion

of the probing wave from X to O mode and/or vice versa caused by magnetic fluctuations.

The complete three dimensional description of the CPS theory in inhomogeneous plasmas

can be found in [52, 53]; here we will limit ourselves to a brief summary in one dimension.

In the following we will write with the subscript ”0” quantities at the probing frequency

ω0 and with the subscript ”1” quantities at the scattered frequency ω1 = ω0 + ω, where

ω is the frequency of fluctuations. Let us consider an incident wave E0(x) propagating,

with frequency ω0, in a plasma characterized by a conductivity tensor σ. The system is

fully described by the following system of equations

−∇ ∧∇ ∧ E0 = εµ
∂2E0

∂t2
+ µ

∂J

∂t
(2.97)

J = σ · E0 (2.98)

which in frequency Fourier space becomes

(−∇ ∧∇ ∧+µεω2
0 + iω0σµ)E0 = 0 (2.99)

In the presence of density or magnetic field perturbations, the tensor σ is to be replaced

by σ+ σ̃ thus giving, after a linearization in the current, a perturbed field which satisfies

(−∇ ∧∇ ∧+µεω2
1 + iω1µσ)E1 = −i(ω0 + ω)µσ̃E0 (2.100)

where ω1 is the frequency of the scattered wave, and ω is the fluctuation frequency.

In the case of density fluctuations the perturbed conductivity tensor, in the cold plasma

approximation, is given by (ñ/n)σ which means that only the number of carriers is per-

turbed, but not their velocity.

Considering now an O-mode wave propagating perpendicularly to the magnetic field,
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keeping the usual convention of the external magnetic field oriented along z, the current

J = σ · E0 is given by the following

me
∂v

∂t
= −e(E + v ∧B0)⇒ ∂J

∂t
= ε0ω

2
peE− ωceJ ∧ b0 (2.101)

where b0 ≡ B0/B0, ωpe = (nee
2/ε0me)

1/2 is the plasma frequency, while ωce = eB0/me

is the electron cyclotron frequency. In the presence of a fluctuating magnetic field B =

B0 + B̃ the perturbed current J = σ · E1 + σ̃ · E0 satisfies

∂J

∂t
= ε0ω

2
peE1 − ωceJ ∧

B0 + B̃

|B0|
(2.102)

which gives for the first order perturbed current

−ıω1(σ̃ ·E0 + σ ·E1) + ωce(σ̃ ·E0 + σ ·E1) ∧ b0 = ε0ω
2
peE1 − ωce(σ ·E0) ∧ B̃

B0

. (2.103)

Considering the cold plasma conductivity tensor, and by approximating ω1 ' ω0, in

Eq.2.103 all the terms in the scattered field cancel identically; therefore we are left with

σ̃ · E0 = − ωce
ωce − ıω0

(σ · E0) ∧ B̃

|B0|
(2.104)

the perpendicular component of this current gives rise to the so-called CPS signal, i.e. to

an X-mode which can then propagate through the plasma.

Since in fusion devices, in particular in tokamaks, the level of relative magnetic fluctu-

ations, B̃/B0, is small compared to the relative density fluctuations ñ/n, the net cross

polarization current is expected to be small compared to the current driven by density

fluctuations

JCPS
Jñ

= − ωce
ωce − ıω0

(σ · E0) ∧ B̃

|B0|
1

ñ/nσ · E0

' ωce
ω0

B̃

|B0|
n

ñ
≤ B̃/|B0|

ñ/n
(2.105)

where the last two relations hold for standard tokamaks. Therefore, in order to measure

the field related to the CPS current, the latter should be ”protected” by appropriate in-

strumental shielding of the field generated by electrostatic fluctuations.

The Tore Supra team was the first to try this approach. In their pioneering work, Rax

and collaborators employed O-X and X-O conversions in a vertical propagation direction.

To enhance the CPS current, the receiving horn was protected by being positioned behind

the O, respectively X, mode reflecting layer which was supposed to diffuse away all the

unwanted signal generated by density fluctuations. They ended up with an estimation of

magnetic fluctuations ranging from 5 · 10−5 to 10−4 [46, 47]. These values are expected to

lead to a chaotic field structure.

However their results have not been widely accepted mainly because, first, the receiving
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horn was not completely prevented from recording small angle scattering fluctuations;

second, the localization of the measurements appeared questionable. Indeed the beam

can undergo mode conversion also due to multiple reflections between the reflecting layer

and the vacuum chamber, even though this effect could be eliminated by modulating the

incident power and looking at the phase delay of the received signal, then rejecting any

delay over a prescribed threshold. The CPS diagnostic in Tore Supra was dismantled in

1999 due to the installation of a new vertical limiter with which it was incompatible.

A quite new approach has been proposed by E.Z. Gusakov and his team at Ioffe Institute

of St. Petersburg. In this configuration the mode conversion takes place at the Upper

Hybrid Resonance Layer (UHRL) with an extraordinary wave launched from the high

field side or with an ordinary wave from the low field side[48]. The main advantage of

this scheme is that most of the unwanted signal is absorbed by the plasma and is not

scattered away as it was in Tore Supra.

Since the mode conversion is exploited at a resonance, the diagnostic is meant to investi-

gate high k turbulence, whereas the cut-off scheme adopted in Tore-Supra was concerned

with the low k spectral region.

Another major difference between the configuration adopted by the Tore-Supra team and

the one proposed in[48] is that the CPS signal due to the ponderomotive force is not

always negligible compared to the CPS signal coming from the Lorentz force. Let us

illustrate this point by re-deriving the CPS signal. Let us propagate an incident wave of

frequency ω0 up to the UHR layer; at the scattered frequency we have

−(n+ ñ)e(v0 + ṽ) = σ(E + Ẽ) (2.106)

while electrons are governed by the following

∂v

∂t
+ (v · ∇)v = − e

m
(E + v ∧B) (2.107)

thus defining an effective electric field equal to the actual one minus the ponderomotive

force, plus the Lorentz force

Eeff = E1 + v ∧B +
m

e
(v · ∇)v

= E1 + (v0 + vω,k) ∧ (B0 + Bω,k) + i
m

e
(v0 + vω,k) · (k0 + k(ω))(v0 + vω,k)

(2.108)

where k(ω) models the dispersion relation of the fluctuations while the subscripts 0, 1

and {ω,k} stand respectively for incident, perturbed, fluctuating.

The component of the effective field at the scattered frequency is

Eeff = E1 + v0 ∧Bω,k + vω,k ∧B0 + i
m

e
[(v0 · k(ω))vω,k + (vω,k · k0)v0] (2.109)
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The current component at the scattered frequency is given by

−J1 = env1 + en0vω,k + enω,kv0 (2.110)

The continuity equation can be written in Fourier space as

n0 = n
k0 · v0

ω0

(2.111)

In the case of an extraordinary mode converted into an ordinary mode we can thus write

the CPS signal as

J1,z = −env1,z − en0vω,k,z = −enσzz(ω1)Eeff
en

− enk0 · v0

ω0

vω,k,z (2.112)

Let us take B = B0ẑ, the wave electric field along y, and σz,α = ine
2

mω
δz,α; where δz,α is the

Kronecker delta and the index α scans {x, y, z}. Therefore we obtain

J1,z = i
ε0ω

2
pe

ω1

{
[(v0 ∧Bω,k + vω,k ∧B0)z + i

m

e
[(v0 · k(ω))vω,k,z + (vω,k · k0)v0,z]

}
− enk0 · v0

ω0

vω,k,z

= i
ε0ω

2
pe

ω1

{
[−v0Bω,k,x + i

m

e
[v0 · k(ω)]vω,k,z

}
− enk0 · v0

ω0

vω,k,z (2.113)

or

J1,z = i
ε0ω

2
pe

ω1

[v0 ∧Bω,k]z −
ne

ω1

(v0 · k(ω))vω,k,z −
ne

ω0

(k0 · v0)vω,k,z

= ı
ε0ω

2
pe

ω1

[v0 ∧Bω,k]z + i
k1 · v0

µ0ω1

[k(ω) ∧Bω,k]z (2.114)

where the last equation has been derived considering the Bragg scattering condition, i.e.

k1 = k0 +k(ω) and neglecting the displacement current in Ampere’s law for low frequency

fluctuations, i.e. µ0envω,k = −i(k(ω) ∧Bω,k).

The contribution of the longitudinal velocity is negligible in comparison to that of the

Lorentz force in the limit of long-wavelength fluctuations which satisfy

k(ω)

ωpe
<
ωpe
cω1

(2.115)

which is typically satisfied if k is of the order of 10 cm−1.

The problem with this configuration is the density limit which may not allow one to scan

the entire plasma cross section. Indeed, for a given geometrical configuration, the UH

layer is a function of the density profile which may result in a non monotonic profile of

the resonance along the major radius, thus impairing the access to part of or the whole

high field side region. For TCV, the whole horizontal midplane is indeed observable if the
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central density does not exceed 1019m−3; this means that ITB plasmas are well suited for

this diagnostic but high density discharges, such as X3-heated H-modes, are not (see Sec.

1.5.1 for the meaning of X3 in TCV).

An estimation of the wave number can be made in this scheme by performing a time

of flight measurement. The basic idea is to exploit the low velocity of the wave in the

resonance region, so that expressing the time of flight as a function of the group velocity

tf =

∫ xs(k)

a

∂k0

∂ω0

dx+

∫ b

xs(k)

∂k1

∂ω1

dx (2.116)

and imposing the scattering condition

k = k1 − k0 (2.117)

where k is the fluctuation wave number, xs is the scattering position while a and b are the

launching and receiving horn positions, respectively. Solving equations 2.116 and 2.117

one finds
dtf
dk

= −∂xs
∂ω1

⇒ tf ' t0 −
∂xs
∂ω1

k (2.118)

where xs is the UHRL radial position. Approximating the derivative with l/ω0, where l is

the inhomogeneity radial length, one could obtain the value of k once the plasma density

is known with good precision.

The radial resolution is estimated to be about 1 cm[49].

According to the reciprocity theorem[27], the CPS power is given by

PCPS =
1

4

∫
d3rJs(r)Er(r) (2.119)

where Er is the field of the receiving antenna when operated in a reversed way, i.e. as an

emitter. In [48] the calculation is carried out and the result is that the total CPS power

is proportional to

S(k) = |b̂y,k,ω|2
(
kx
kc
−

ω2
pe

k2
cc

2

)2

+ |b̂x.k,ω|2
ω4
pe

ω2
ceω

2
i

(2.120)

where b̂x,k,ω and b̂y,k,ω are, respectively, the radial and poloidal Fourier components of

the magnetic field fluctuations normalized to the equilibrium magnetic field, while kc =

ωce(RUHR)/c. In Eq.2.120, the first term is due to the ponderomotive force, while the

second term is due to the Lorentz force. Considering the typical magnetic field in TCV at

mid-radius, and electron densities equal to 1018, 1019 and 1020 m−3, we estimate the term

ω2
pe/(kcc)

2 to be equal to 0.07, 0.7 and 7 respectively, and kc ' 6.7 cm−1. This indicates

that the ponderomotive force term is, in general, dominated by high k fluctuations; in

particular it is close to zero in low-mid densities in the ITG-TEM spectral region. Indeed,
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linear and non-linear simulations carried out with the GS2 code on actual TCV shots

indicate that the spectral region which contributes most to the total transport is around

kθρi ' 0.2, which implies (under the assumption kθ ' kr) kx/kc ' 0.1− 0.03, depending

on the ion temperature. In Eq.2.120 the term due to the Lorentz force is estimated to

be of the order of 0.005-0.3-6.9, for the three density values above. It follows that the

numerical factors multiplying the poloidal and radial components of the magnetic field

fluctuations in Eq.2.120 are, depending on plasma conditions, comparable or dominant

over one another. The CPS signal is generally, therefore, an admixture of radial and

poloidal components of the perturbed magnetic field.

In the derivation of Eq.2.120 we neglected the contribution to the scattered current given

by enω,kv0 since, ideally, the extraordinary wave does not produce any oscillatory velocity

with component along the magnetic field. However, in reality this is not true since the

propagating X-mode is not a plane wave but a spherical wave which, indeed, has a small

component along the external B field direction, ẑ. In [48] this contribution is estimated

as being equal to

S(k) =
ω8
pe

ω6
ceω

2
i

|n̂k,ω|2
∣∣∣∣∣
[

k̃iz
kx − kc

− (kz − k̃iz)kc
(kx − kc)2

]∣∣∣∣∣
2

(2.121)

where <(k̃iz) = kz/2. Estimating the ratio k‖/k⊥ ' 0.01 in toroidal plasma devices [6],

the contribution from density perturbations can be rewritten as

S(k) =
ω8
pe

ω6
ceω

2
i

|n̂k,ω|2 ∗ 10−4 (2.122)

The factor in front of the density contribution term to the CPS signal is not always very

small for TCV, due to the small value of the magnetic field strength; indeed, for the

three density values taken as a reference we find it of the order of 10−5, 10−1 and 100.

The spurious signal is therefore not always negligible compared to actual magnetic field

fluctuations.

This treatment, however, does not take into account the mode conversion (MC) induced

by magnetic shear which couples ordinary and extraordinary waves which, in the case

of a zero shear, would propagate independently. This effect is due to the fact that the

probing wave experiences a magnetic field rotating in the plane perpendicular to the

direction of propagation and its effect is predicted, in the cold plasma approximation, to

be maximum at the UHR[51]. To perform an estimation one may simply compare the

current given by the MC induced by magnetic shear (Eq.2.123a) and the current due to

magnetic fluctuations (Eq.2.123b)

C(s)enk,ωv0,z (a)
ε0ω

2
pe

ω1

[v0 ∧Bk,ω] (b) (2.123)
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where C(s) is a coefficient which accounts for the MC field. This estimation yields a

contribution from the magnetic shear of up to 5%. Ultimately, the complete estimate

of the fluctuation density CPS signal is to be done taking into account the electric field

arising also from magnetic shear coupling and not only from beam divergence.

Considering these estimates this diagnostic does not appear especially attractive; this is

not only due to the impossibility of separating the contributions of magnetic and density

fluctuations to the CPS signal, but also to the impossibility of separating the radial and

poloidal components of the magnetic field perturbation, since the mix is very sensitive to

the target plasma. Additionally the diagnostic is almost only sensitive to high-k fluctua-

tions which are not expected to drive considerable particle flux. Moreover, since density

fluctuations contribute most to the total signal in the case of oblique propagation, the

ideal target plasma has its magnetic axis located at Z=0 (and possibly highly elongated)

allowing true perpendicular launching from an equatorial port, which is in contrast with

the TCV flexibility in terms of plasma positioning in the vacuum vessel.

2.5 Concluding remarks

We try to summarize here the advantages and disadvantages of all the diagnostics explored

in this chapter, to clarify to the reader why we chose the tangential PCI.

We recall how it is imperative for a modern diagnostic to be able to measure fluctuations

in the following conditions

1. Excellent spatial localization

2. A good portion of the plasma cross section must be measurable

3. Data must be as independent of specific models as possible

4. The accessible spectrum must be as broad as possible

The last condition is desirable because, nowadays, numerical simulations rely on tur-

bulence scale separation to speed up the calculations and avoid a number of numerical

instabilities. This, most of the time, means considering adiabatic ions or electrons, which

roughly translates into considering small or large fluctuation wave numbers, i.e. the ITG

or ETG limit. It is not clear whether the results are biased by this simplification; i.e.

whether the theoretical knowledge we have built up to now provides an accurate descrip-

tion of reality; or whether, instead, energy advection across disparate scales will induce

severe modifications. Therefore ideally the same diagnostic should be able to compare

small and large scale fluctuations to estimate the actual energy stored in different parts of
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the spectrum. A cross diagnostic comparison is, in the opinion of the author, not sufficient

because every diagnostic samples ”its” fluctuations in a different way and with different

calibration factors which are not always easy to compare.

In the following table we will consider only tangential configurations for BES, Collective

scattering and imaging methods since no other configuration meets the localization re-

quirements. Concerning the access to most of the poloidal cross section, we have to say

that, in principle, all diagnostics meet this requirement.

Diagnostic Loca- Inter- Spectral Spectral Structure Easy
lization pretation region identification separation set-up

BES good simple low yes yes moderate
EPA poor simple any not not yes

Refl. std good(?) difficult low not not yes
Refl. MIR good(?) difficult low yes yes not

Refl. Doppler good(?) difficult high yes yes yes
PCI good simple any yes yes not

Schlieren good simple any yes yes not
CDG good simple any yes yes not

Shadowgraph good simple any yes yes not
Scintillation good simple any yes yes not

Interferometry poor simple any yes not not
Interf.+ filter good simple any yes not not

Collective Scatt. good simple high yes not not
CPScut−off good(?) difficult low yes yes yes
CPSUH good(?) difficult high yes yes yes

Table 2.2: Summary of diagnostic performance with respect to key points in diagnostic
development

In Table 2.5 it appears clear that only imaging diagnostics meet all the requirements.

Since the PCI is the one performing best among them, we chose to develop its tangential

version for the TCV tokamak, despite considerable technical difficulties which will be de-

scribed in the next chapter.
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Chapter 3

Phase Contrast diagnostic and
Doppler Reflectometer, theoretical
treatment and practical realization

3.1 The interaction of light and plasma

Let us begin this chapter by reviewing a number of physical quantities and notions rou-

tinely used in plasma physics. As mentioned in chapter 1, a plasma is a collection of

charged particles that respond strongly and collectively to electromagnetic fields, tipi-

cally taking the form of a gas-like cloud. The electrostatic potential of a heterogenous

plasma composed of multiple charged particle species in relative thermodynamic equi-

librium can be modeled by the Poisson equation with the inclusion of the Boltzmann

distribution. In the proximity of a singly ionized test ion, this equation reads

∇2φ(r) = −ρ(r)

ε0
=
nee

ε0
e

eφ
kBTe −

∑
i

niZie

ε0
e
−eφ
kBTi +

e

ε0
δ(r) (3.1)

where δ is the Dirac delta describing the test ion at the center of the reference system.

By assuming that, for each species, eφ � kBT , we can expand Eq.3.1 in a MacLaurin

series to obtain the Debye-Huckel equation

∇2φ(r) =
e

ε0

(
δ(r) + ne + ne

eφ

kBTe
−
∑
i

Zinie+
∑
i

niZi
eφ

kBTi

)

=
e

ε0

(
ne

eφ

kBTe
+
∑
i

niZi
eφ

kBTi
+ δ(r)

)
=

1

λ2
D

φ+
e

ε0
δ(r) (3.2)

where plasma quasi-neutrality has been assumed. The solution, in spherical geometry, of

the Debye-Huckel equation is given by

φ(r) =
A

r
e−r/λD (3.3)
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The damping of the exponential function is governed by the so-called Debye length, λD,

which accounts for charge screening effects due to the cloud of oppositely charged particles

disposed around the test particle by electrostatic attraction. (This solution does not hold

for distances smaller than the average distance between charged particles because the

statistical averaging behind the Boltzmann distribution does not hold: in this case the

Coulomb potential is the solution of the equation). The statistical averaging in Eq. 3.1 is

meaningful only if the number of particles in the Debye sphere is large, i.e.

4

3
πλ3

Dne � 1⇒ 4

3
π

√
(ε0kBT )3

α3/2e3
√
ne
� 1 (3.4)

where α is a numerical factor taking into account the ions’ contribution to the Debye

length (α = 2 if Te = Ti, ∀i). Eq.3.4 means that the mean kinetic energy has to be far

larger than the average Coulomb interaction between charged particles, which goes like

e2/r̄ ∼ e2 3
√
ne. If Eq. 3.4 is violated the plasma cannot be considered as a gas anymore and

the Boltzmann distribution cannot be used. Choosing the most unfavourable conditions,

i.e. temperature ∼ 10 eV which is about the ionization energy of hydrogen and density

∼ 1021 m−3, the aforementioned criterion is amply satisfied, as the value is larger than

600; in real tokamaks its value is as high as 105, allowing the use of the ideal gas state

equation, i.e. neglecting interactions between particles and their volume in the Van Der

Waals equation for real gases. Indeed real gases also behave as ideal gases at small

pressures compared to the atmospheric pressure.

The Debye length is of fundamental importance in plasma diagnostics as it governs the

collective behavior of the plasma. Indeed the Fourier transform of Eq. 3.3 is a Cauchy-

Lorentz function

φ̂(k) ∝ 1

1 + (kλD)2
(3.5)

which states that particle correlations in wave-number space are significant only for wave-

lengths much longer than the Debye length, beyond which a large number of particles

contributes in phase; this mechanism saturates after a few Debye lengths, where parti-

cles are completely shielded and do not respond to the test particle movements anymore.

In the opposite limit particles are uncorrelated, even though their reciprocal distance is

small, because their kinetic energy far exceeds the reciprocal potential energy of interac-

tion. The first limit gives rise to coherent or collective scattering, see Chapter 2, while

the latter to uncoherent scattering, e.g. Thomson scattering used to measure temperature

and density fluctuations.

We can now proceed to analyze the interaction between a plasma and an externally

launched electromagnetic wave.

Let us treat the plasma as an homogenous conducting medium, i.e. where currents can
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flow, governed by Maxwell’s equations in vacuum

∇∧ E = −∂B

∂t
∇∧B = µ0J + ε0µ0

∂E

∂t
; (3.6)

all the electromagnetic properties of the plasma are then expressed by the current density

J and by the vacuum permeability and permittivity µ0 and ε0.

Let us now assume the plasma to be homogenous in time and space

X(x, t) =

∫ ∞
−∞

dkdω0X̂(k, ω0)eı(k·x−ω0t) (3.7)

where X stands for E, B or J, and let us further assume the fields to be small enough to

produce a current linearly dependent on the fields themselves

Ĵ(k, ω0) = σ(k, ω0) · Ê(k, ω0) (3.8)

where σ is the plasma conductivity tensor.

We can then write Eq.3.6 as

k ∧ k ∧ Ê + ω2
0ε0µ0Ê + ıµ0ω0σ · Ê = 0 (3.9)

which can be re-cast into[
kk−

(
k2 − ω2

0

c2

)
Ī + ıω0µ0σ

]
· Ê = 0 (3.10)

introducing the dielectric tensor ε = I + ıσ/(ω0ε0), assuming the medium to be isotropic

and considering k directed along the z axis, we can write the dispersion relation as

det

 −k2 +
ω2

0

c2
ε 0 0

0 −k2 +
ω2

0

c2
ε 0

0 0
ω2

0

c2
ε

 = 0 (3.11)

which gives solutions for transverse and longitudinal polarizations. If the medium is not

isotropic, it is in general not possible to separate propagating waves into longitudinal and

transverse as they are always mixed, furthermore the refractive index is a function of the

wave direction of propagation.

Let us now consider a plasma fluid treatment, i.e., ignoring the details of the distribution

function, of waves propagating at phase velocities much larger than ion and electron

velocities in the plasma. We are then allowed to neglect particle motion thus assuming

the so-called cold plasma approximation, which consists of assuming that all the particles

are at rest unless directly accelerated by the fields.

The equation of motion of a charged particle in a purely monochromatic field reads

−ıω0mv̂ = q(Ê + v̂ ∧B0) (3.12)



80 CHAPTER 3. PCI AND DOPPLER REFLECT.: THEORY AND REALIZATION

where we neglected the second order term in the Lorentz force v ∧B. By adopting

B0 = B0ẑ we can solve for v̂ to obtain

v̂ =
ıq

ω0m

[
1

1− Ω2/ω2
0

(
Êx + ı

Ω

ω0

Êy

)
,

1

1− Ω2/ω2
0

(
Êy − ı

Ω

ω0

Êx

)
, Êz

]
, (3.13)

where Ω is the cyclotron frequency.

If the plasma is composed of ions and electrons, we can neglect the ion inertia and write

the current density as

J = −eneve = σ · E (3.14)

where

σ =
ıε0ω

2
pe

ω0

1

1− Ω2
ce/ω

2
0

 1 −ıΩce/ω0 0
ıΩce/ω0 1 0

0 0 1− Ω2
ce/ω

2
0

 (3.15)

where ωpe =
√
nee2/ε0me is the electron plasma frequency and Ωce = eB0/me is the

electron cyclotron frequency.

The wave equation reads (
∇2 − 1

c2

∂2

∂t2

)
E = µ0

∂(σ · E)

∂t
+
∇ρ
ε0

(3.16)

where ρ is the charge density distribution. Let us now assume that the density is given

by

n(x, t) = n0(x) + ñ(x, t) = n0(x) +

∫
dkdωn̂(k, ω)eı(k·x−ωt) (3.17)

if the broadband density fluctuation spectrum satisfies

ω � ω0 (3.18)

we can write to zeroth-order in ω/ω0

∂(σ · E)

∂t
' σ · ∂E

∂t
(3.19)

if, furthermore, the spatial inhomogeneities of the plasma density satisfy

|k| � |k0| (3.20)

we can neglect the last term in equation 3.16 to finally write the wave equation as(
∇2 − 1

c2

∂2

∂t2

)
E = µ0σ ·

∂E

∂t
(3.21)

Let us now consider the following limiting case in Eq.3.15

ω0 � Ω (3.22)
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then Eq.3.21 reduces to (
∇2 − 1

c2

∂2

∂t2

)
E = 4πreneE (3.23)

where re = e2/(4πε0mec
2) is the classical electron radius.

Eq.3.23 is of the form (
∇2 − 1

c2

∂2

∂t2

)
E(x, t) = U(x, t)E(x, t) (3.24)

which admits solutions of the form

E(x, t) = E0(x, t) +

∫
dx′dt′G(x− x′, t− t′)U(x′, t′)E(x′, t′) (3.25)

where E0(x, t) is the solution if the homogenous equation and the associated Green func-

tion satisfies (
∇2 − 1

c2

∂2

∂t2

)
G(x− x′, t− t′) = δ3(x− x′)δ(t− t′) (3.26)

and is given by

G(x− x′, t− t′) = − 1

4π|x− x′|
δ

(
t− t′ − |x− x′|

c

)
(3.27)

therefore the solution of Eq.3.23 is given by

E(x, t) = E0(x, t)− re
∫
dx′

ne(x
′, t− |x− x′|/c)
|x− x′|

E

(
x′, t− |x− x′|

c

)
(3.28)

If we now write the total electric field as the sum of the incident field E0, plus the field

E1 generated by electrons accelerated by the incident field, plus the field E2 generated

by electrons accelerated by E1 and so on

E(x, t) =
∞∑
i=0

Ei(x, t) (3.29)

we recognize that Eq.3.28 is nothing but the equation above in the non-relativistic limit,

where all the terms E1,2...,n are found by iterating the integral 1,2,..,n times over the

incident field calculated at the appropriate retarded time. The total field has to be finite

in magnitude, which implies that limn→∞En = 0, therefore we can think of solving the

problem with a perturbation approach. If we assume that all the terms in the series are

monotonically decreasing, we can stop the solution to the nth term if the (n+ 1)th one is

negligible in comparison: in the case where only the first term is important we obtain the

so-called first order Born approximation.

The Born approximation involved in replacing the total wave function E by the incident

wave function E0, is valid whenever the scattered wave is small compared to the incident

wave, i.e.

|E0e
ı(k0·x−ω0t)| �

∣∣∣∣∫ dx′
E0

|x′ − x|
eı[k·x

′−ω0(t−|x′−x|/c)]ne(x
′)re

∣∣∣∣ (3.30)
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where k =
√
εk0. Let us now develop the condition |k| � |k0|. By assuming a Fourier

decomposition of the perturbed density fluctuation, Eq.3.28, in the first order Born ap-

proximation, states that the first order scattered field can be written as

E1(x, t) = re
∑

k

e−ı[ω0±ω(k)]t

∫
dx′E0

1

|x′ − x|
eık0·x′eı(ω0±ω(k))|x′−x|/cn̂ke

±ık·x′ (3.31)

where the k = 0 component corresponds to the first term in the r.h.s. of Eq.3.39, while

all the others to the second term.

In the far-field detection limit we can approximate |x′ − x| by the constant x0 in the

denominator of the integrand, the average distance between the interaction region and

the detecting plane, and if we also consider an infinite integration domain, the integral

simplifies further as the exponential function reduces to the delta function, and we are

left with the Bragg selection rule to first order for the scattered frequency, ω1, and wave

number, k1:

k1 = k0 ± k ω1 = ω0 ± ω. (3.32)

By writing

(k1 − k0) · (k1 − k0) = k2 (3.33)

imposing the condition k1 ' k0 we find

1− cos(θB,k) =
k2

2k2
0

(3.34)

or

1− 2 sin2(θB,k/2) = 1− k2

2k2
0

(3.35)

which then implies that the Bragg scattering angle θB is equal to

θB,k = 2 arcsin

(
|k|

2|k0|

)
(3.36)

therefore electrons contribute in phase to the first order scattered field only at the Bragg

scattering angles, at any other angle the averaged contribution is zero and the information

on the perturbed density is lost.

Fluctuation wave numbers have a finite, though small, component along the beam direc-

tion because the integration volume is not infinite: if the integration length along the

probing direction is L, the associated broadening in wave vector space is approximately

equal to 2π/L and the simultaneous existence of positive and negative scattering orders

for a given fluctuating k cannot exist unless the following condition is satisfied

k

k0

≤ δkz
k
⇒ L ≤ 2π

k0

k2
(3.37)

which is the called the Raman-Nath condition. In the opposite limit, called the Bragg

regime, only one scattering order exists.



3.2. THEORETICAL TREATMENT OF GAUSSIAN BEAM PROPAGATION 83

Considering the line integral along the probing beam propagation direction, this reduces

to

λ0re

∫
dxne(x)� 1 (3.38)

provided that ωpe � ω0.

In the case that all these approximations are valid we can write the cumulated phase shift

between two arbitrary spatial points, a and b, as

φ = k0

∫ b

a

N̄(x) · dx ' k0

∫ b

a

dx

(
1−

ω2
pe

2ω2
0

)
= k0|b− a| −

∫ b

a

dxλ0rene(x) (3.39)

whose fluctuating component is then given by

φ̃ = λ0re

∫ b

a

dxñe(x) (3.40)

which, by virtue of 3.38, is necessarily much smaller than 1 rad.

3.2 Theoretical treatment of gaussian beam propa-

gation

The phase contrast principle was first proposed in 1932 by the dutch physicist Frits Zernike

[1] who, for this study, was awarded the Nobel prize for physics in 1953. In 1930, Zernike

was conducting research into spectral lines and discovered that the so-called ghost lines,

that occur to the left and right of each primary line in spectra created by means of a

diffraction grating, have their phase shifted from that of the primary line by 90 degrees.

It was at a Physical and Medical Congress in Wageningen in 1933 that Zernike first de-

scribed his phase contrast technique in microscopy, which was later extended by himself

to test the surface figure of concave mirrors. His discovery lies at the base of the first

phase contrast microscope, built during World War II.

Before describing the phase contrast principle, let us first recall a few definitions and

theorems [2]. A system of curves filling a spatial region without intersecting is called a

congruence if one and only one curve passes through each point of the region. The con-

gruence is said to be normal if there exists a family of surfaces which cut all the curves

orthogonally. If each curve of the congruence is a straight line, then the congruence is

said to be rectilinear.

Let us additionally recall that light rays are defined as the orthogonal trajectories to the

geometrical wave-fronts S, the solution of the eikonal equation. The following theorem of

Malus and Dupin holds
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Theorem. A normal rectilinear congruence remains normal after any number of re-

flections and refractions

whose corollary is that the optical path length between any two orthogonal surfaces,

i.e. wave-fronts, is the same for all rays. The Malus-Dupin theorem is also known as the

principle of equal optical path and implies that the orthogonal trajectories, i.e. geomet-

rical wavefronts, of a set of normal congruences generated by successive reflections and

refractions are all optically parallel to one another.

Let us consider rays in a homogeneous medium: if they are all generated by a point, the

cutting surfaces are spherical and the rays are said to form a homocentric pencil. After a

reflection or a refraction, it is in general not true that the normal congruence will remain

a homocentric pencil and, therefore, the cutting surfaces are not spherical anymore. This

is in general due to the shape of the refracting surface or to the refractive index being de-

pendent on the rays’ wavelength, if their spectrum is not monochromatic. The deviation

from a sphere of the wave-fronts is generally called aberration.

Let us now consider a point P (r) in a physical medium characterized by the refractive

index n(r); if there exists a point Q(r) where an infinite number of rays departing from

P converge, then Q is defined as the sharp image of P and the points P and Q are said

to be conjugate.

From the definition of image and the Malus-Dupit theorem it follows that

Theorem. In any aberration-free imaging system, the optical path length of all rays

originating from any point in the object plane is equal

This theorem is at the basis of any imaging system.

Let us recall, from chapter 2 Sec.4.5, that in the case of small phase shifts, scattered and

unscattered components are dephased by π/2; the Phase Contrast principle consists of

introducing an additional π/2 phase shift which makes the scattered signal linear in the

scattered phase shift (Eq.2.61)

Ps = |Eφ0|2[1± 2 sin(φ̃)] (3.41)

This formula was derived by assuming an infinite plane wave; we will now relax this

approximation by taking into account the formalism of diffraction theory. To propagate,

in vacuum, the electric field of an e-m wave from a given point P0 ≡ {x0, y0, z0} to

another point P ≡ {x, y, z}, we can consider only the time-independent part of a strictly

monochromatic scalar field

V (r, t) = E(r)e−ıω0t (3.42)
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which allows us to solve the problem by considering only the Helmholtz equation

(∇2 + k2
0)E(r) = 0 (3.43)

where k0 = ω0/c. The solution is given, in the approximations formulated by Kirchhoff

and later formalized by Sommerfeld, by the Fresnel-Kirchhoff integral

E(x, y, z) =
ı

λ0

∫∫
dx0dy0

E(x0, y0, z0)

r
e−ık0r cos(θ) (3.44)

where r is the distance between the two points and θ is the angle formed by the vector

PP0 and the direction of propagation, which is assumed to be along the z axis. It can be

noted how Eq. 3.44 is the mathematical expression of the Huygens principle, with each

wavelet originating in the plane z = z0 de-phased by π/2 with respect to the incident

beam.

In the paraxial approximation, i.e. when the wave is supposed to propagate at small

angles θ, we then write the distance, r, between any two points as

r =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 ' (z − z0) +
(x− x0)2 + (y − y0)2

2(z − z0)
(3.45)

which, in a cosine directors picture, translates into the following order conditions, in the

Taylor development, to neglect higher order contributions to the cumulated phase

1

8
z
k4
⊥
k3

0

� 1,
1

8
z
k4
⊥
k3

0

� 1

2
z
k2
⊥
k0

⇒ 1

4

k2
⊥
k2

0

� 1 (3.46)

the Fresnel-Kirchhoff integral, neglecting first order terms in the amplitude of each wavelet,

then becomes

E(x, y, z) =
ıe−ık0(z−z0)

λ0(z − z0)

∫∫
dx0dy0E(x0, y0, z0)e−ık0(x⊥−x⊥,0)2/2(z−z0) (3.47)

searching for self-similar solutions the normalized electric field can then be written as

E(x, y, z) =

√
1

πw(z)2
e−ıx

2
⊥k0/[2q(z)]e−ı(k0z+ψ(z)) (3.48)

with the complex beam parameter q defined as

1

q(z)
≡ 1

R(z)
− ı λ

πw(z)2
(3.49)

the beam half-width given by

w(z) = w0

√
1 +

(
z

zR

)2

(3.50)
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the wave-front radius of curvature expressed as

R(z) = z +
z2
R

z
(3.51)

and the Gouy phase shift ψ(z) equal to

ψ(z) = arctan

(
z

zR

)
(3.52)

where zR ≡ k0w
2
0/2 is the Rayleigh distance, which is the distance a gaussian beam travels

from its waist to increase its width by
√

2.

More general possible solutions of the paraxial equation are expressed, in cartesian coor-

dinates, as Hermite-Gaussian modes [25]

Enm(x, y, z) =

√
1

πw(z)2

√
e−ı2(n+m+1)ψ(z)

2n+mn!m!
e−ık0x2

⊥/[2q(z)]×

e−ık0zHn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
(3.53)

which, being mutually orthogonal, form a basis for the expansion of a general solution of

the paraxial approximation

E(x, y, z) =
∑
n,m

cn,mEn,m (3.54)

Laser beams are usually generated in the first, symmetric, “00” mode which, therefore, will

be the only solution treated in this thesis. This is the mode described by Eq.3.48, i.e., the

lowest order TEM00 collimated Gaussian beam.This means assuming all the coefficients

cn,m in Eq.3.54 to be zero but c0,0. In particular for a gaussian beam of power P0 and

half-width w0, the electric field at the waist, z = 0, in the plane perpendicular to its

propagation direction can be expressed as

E(x⊥) =

√
2P0

πε0w2
0

e−(x⊥/w0)2

(3.55)

whose Fourier transform is

Ê(k⊥) =

∫
dx⊥E(x⊥)e−ık⊥·x⊥ =

√
2πP0w2

0

ε0
e−(k⊥w0/2)2

(3.56)

The gaussian beam will pass through an aperture stop, which in general is the smallest

optic the beam passes through or is reflected by, supposed to be circular with radius a. If

the gaussian beam passes through an aperture, Eq. 3.47 holds but needs to be evaluated

over the surface area of the opening. The relative widths of the beam and of the aperture

essentially determine to what extent the beam will be diffracted. Ideally one should have
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an aperture much larger than the Gaussian width to minimize diffraction and an aperture

as small as possible for port accessibility: the best compromise is shown in Sec. 3.10 to

consist of an aperture approximately equal to the full Gaussian width.

3.3 Imaging properties of the Phase Contrast tech-

nique

Let us derive, in a similar fashion to [3], the imaging properties of the Phase Contrast

technique. Let us model the imaging system as an ABCD matrix [4], which expresses,

in the paraxial approximation, the distance of a ray from the optical axis, r, and its

inclination with respect to it, θ, at the output plane of a generic optical element, namely

o, as linear functions of the corresponding parameters at the input plane, i:[
ro
θo

]
=

[
A B
C D

] [
ri
θi

]
(3.57)

If we consider propagation in a medium characterized by a refractive index n and length

L, followed by a focusing optic of focal length f , the corresponding ABCD matrix is given

by [
1 0
− 1
f

1

] [
1 L

n

0 1

]
=

[
1 L

n

− 1
f

1− L
fn

]
(3.58)

which has a determinant of unity. Since an imaging system can be modelled by a set of

successive propagations-focusing optics, the overall ABCD matrix, by Binet’s theorem, is

equal to [
M 0
C 1/M

]
(3.59)

where C depends on the details of the optical system whose transverse magnification is

M .

It is possible to recover the electric field distribution at the image plane

E(Mx⊥, zim, ωs) =
1

M
e
ıωs
c

„
zim−zobj+

(M−1)2x2
⊥

2(zim−zobj)

«
E(x⊥, zobj, ωs) (3.60)

where ωs is the scattered frequency and the subscripts im and obj indicate the image

and the object plane, respectively. This equation can be derived by applying the Fresnel-

Kirchhoff integral at each lens and free-space propagation. The phase shift term represents

the cumulated phase shift, in the paraxial approximation (see Eq. 3.45), by a ray con-

necting points x⊥ in the object plane and Mx⊥ in the image plane.

As the Phase Contrast is an imaging technique, it is desirable that the phase shift does
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not depend on the spatial position in the object plane; therefore the following condition

is required
ω(M − 1)2w2

0

2c(zim − zobj)
� 1 (3.61)

where we considered |x⊥| ≤ w0 and ω is the maximum frequency of the fluctuations; we

stress that this equation does not imply a negligible phase shift, rather a phase shift that

does not depend on transverse coordinates in the object plane. Therefore we will consider

a new temporal coordinate such that the equivalent time delay is zero and will thus be

omitted in the following equations.

We will consider furthermore spatial variations of the phase shift induced by the stationary

bulk plasma density to be negligible; consequently we will subtract the uniform phase

offset induced by the bulk density, since it is irrelevant for the image.

Let us now denote as T (x⊥) the phase contrast transfer function introduced by the phase

plate, and by T̂ (k⊥) its spatial Fourier transform. We assume the scattered electric field

to induce a small phase perturbation by writing

Es(x⊥, t) = E0(x⊥, t)[1 + ıφ̃(x⊥, t)] (3.62)

The total signal at the image plane can be written as

E(Mx⊥, t) =
1

M
eık0(zobj−zim)−ω0t{T (x⊥) ◦ AaE0(x⊥, t)[1 + ıφ̃(x⊥, t)]} (3.63)

whereAa accounts for diffraction effects due to the clear aperture of all the optical elements

in the optical system and ◦ stands for the convolution integral in the x⊥ plane.

The signal intensity at the image plane is

I(x⊥, t) =
1

2
cε0|E(Mx⊥, t)|2 (3.64)

which can be expanded to first order in φ̃ to obtain

I(Mx⊥, t) =
c

2M2
ε0|T (x⊥) ◦ AaE0(x⊥, t)|2(x⊥, t)+

c

M2
ε0={[T (x⊥) ◦ AaE0(x⊥, t)][T (x⊥) ◦ AaE0(x⊥, t)φ̃]∗}(x⊥, t)

=I0(Mx⊥, t) + Ĩ(Mx⊥, t) (3.65)

where I0 is the dc intensity while Ĩ is the fluctuating signal.

The phase contrast signal collected at detector N is then given by

S(Mx⊥,N, t) =

∫
ΣN

Mdx⊥I(Mx⊥, t); (3.66)

whereas the signal actually measured by the acquisition system at the time instant tk is

the integral of the signal collected at previous time instants weighted by the detector time
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response function.

Let us consider a generic phase plate whose transfer function in real space reads

TPP (x⊥) = C(x⊥)eıϕ(x⊥) = A(x⊥) + ıB(x⊥) (3.67)

where A and B can be smooth or discontinuous functions of the position on the phase

plate surface. Eq.3.65 can be re-written as

I0(Mx⊥, t) =
ε0c

2M2
|(A+ ıB) ◦ (AaE0)|2(x⊥, t) (3.68)

Ĩ(Mx⊥, t) =
ε0c

2M2
{[B ◦ (AaE0)][A ◦ (AaE0φ̃)]− [A ◦ (AaE0)][B ◦ (AaE0φ̃)]}(x⊥, t) (3.69)

From Eq.3.69 we can infer that the fluctuating signal will be identically zero if either A or

B is identically zero, which implies that no phase shift is introduced by the phase plate.

Another particular mathematical case for zero fluctuating signal is A ≡ KB, K being a

constant.

Let us now consider the phase plate depicted in Fig. 3.1; its transfer function is given by

T̂PP (kx, ky) = H(|kx| − kc)−H(|kx| − km) + ı
√
ρ[1−H(|kx| − kc)] (3.70)

where H is the step function, kc is the low cut-off limit, km is the high cut-off limit and

x

y

Figure 3.1: (Left) Schematic top view of the reflective phase plate considered in the
calculations. the phase groove is depicted as a full region. Squiggly lines model an
infinite length. (Right) Lateral view

ρ is the phase groove reflectivity. This model of the phase plate is equivalent to assuming

a phase plate large enough to collect the whole scattered spectrum and a low-pass filter,
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possibly in another focal point of the imaging system, to cut all the components above

the Nyquist frequency of the detector array, km. This model is also appropriate in the

case where the detectors are made of a linear array and sample only a band of the probing

beam which is narrow compared to the curvature of an arbitrarily shaped phase plate. In

real space this translates into

TPP (x, y) =
sin(kmx)

πx
δ(y)− (1− ı√ρ)

sin(kcx)

πx
δ(y) (3.71)

If we define a the aperture width, the fluctuating signal is given by

Ĩ(Mx⊥, t) =
cε0
√
ρ

2M2 ×[ ∫ a
−a dx

′ sin[kc(x−x′)]
π(x−x′) E0e

−(x′/w0)2 ∫ a
−a dx

′ sin[km(x−x′)]−sin[kc(x−x′)]
π(x−x′) E0e

−(x′/w0)2
φ̃(x′)

−
∫ a
−a dx

′ sin[kc(x−x′)]
π(x−x′) E0e

−(x′/w0)2
φ̃(x′)

∫ a
−a dx

′ sin[km(x−x′)]−sin[kc(x−x′)]
π(x−x′) E0e

−(x′/w0)2]
(3.72)

If one considers an infinite phase plate, the term sin(kmx)/(πx) = δ(x) and the above ex-

pression reduces to Eq.2.148 of [3]. Let us now consider spatially homogenous fluctuations

such that

φ̃(x⊥, t) = φ̂(k, t) cos(k · x⊥ + φ0) (3.73)

if we consider only the center of the gaussian beam and, for simplicity φ0 = 0, we can write

an approximate transfer function in Fourier space (i.e. the ratio between the measured

signal and the phase fluctuation, with proportionality constants dropped) as

T (k) =
∫ a
−a dx

sin(kcx)
πx

e−(x/w0)2 ∫ a
−a dx

sin(kmx)−sin(kcx)
πx

e−(x/w0)2
cos(k · x) +

−
∫ a
−a dx

sin(kcx)
πx

e−(x/w0)2
cos(k · x)

∫ a
−a dx

sin(kmx)−sin(kcx)
πx

e−(x/w0)2
(3.74)

Let us consider, as already done in [3], the following two dimensionless parameters Q =

kcw0/2 and α = w0/a; we will further assume a fixed phase plate aperture, independently

of Q and α. In general the aperture width, i.e. a, is constrained by the geometry of the

problem, that is by the space available in the vessel ports. Instead kc and km are given by

the phase plate and are therefore constrained, in the case peculiar dimensions are needed,

by manufacturing processes. In Fig.3.2 we show the response properties as a function of

Q for α = 1.2 and km = 50/w0, it can be noted how the signal increases for increasing

values of Q, saturating at Q ' 1.8. Lowering Q at fixed α means smoothing the transfer

function, as the phase plate shifts “only“ the non-fluctuating component, but also means

eliminating part of the Local Oscillator (LO) power thus reducing the signal. In Fig.3.3 it

is shown how lowering α at fixed Q translates into progressively reducing the diffraction

effects as the gaussian beam is less and less truncated, while by increasing α we approach

the limit of a truncated plane wave characterized by an Airy-pattern. Larger values of α

at fixed Q mean smaller values of kc, thus implying a loss of LO power which explains the
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decrease in the overall response for α ≤ 1.4. Smaller values of α at fixed Q imply larger

values of kc, cutting off the long-wavelength response and potentially not allowing access

to spatial scales of interest. As a last consideration, we observe that the transfer function

is a high-pass filter because, the phase contrast being an internal reference technique, the

reference and the probing beam experience the same phase shift induced by the stationary

density profile, which is therefore unmeasurable. This concept was anticipated in Chapter

2, Sec. 4.5 when we wrote the approximate response function with respect to the beam

scattered by the stationary density profile, Eφ0 , instead of the actual probing beam, E0.

Figure 3.2: Phase contrast transfer function, in the case of truncated gaussian beam
and spatial homogenous fluctuations, for a number of values of Q. A fixed high-cutoff
km = 50/w0 was assumed.

3.4 Imaging conditions

In this section we will brefly evaluate which conditions the phase plate needs to satisfy to

guarantee the existence of an image. Looking at Eq.3.65 we can ask ourselves what the

required shape of the phase plate is for the system to have an actual transfer function,

i.e. to have a fluctuating intensity which can be written as the convolution product of the

fluctuating phase and the transfer function

Ĩ(x⊥, t) ∝ T (x⊥) ◦ φ̃(x⊥, t) (3.75)
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Figure 3.3: Phase contrast transfer function, in the case of truncated gaussian beam
and spatial homogenous fluctuations, for a number of values of α. A fixed high-cutoff
km = 50/w0 was assumed.

with the following properties

T̂ (k⊥) = T̂ (−k⊥) (3.76)

T̂ (k⊥) = 0 for

{
|k⊥| − kc ≤ 0

|k⊥| − km ≥ 0
(3.77)

By assuming again the phase plate geometry of Fig.3.1, an infinite aperture and a plane

wave, we obtain

T̂ (kx, ky) = C[H(kx + km)−H(kx + kc) +H(kx − kc)−H(kx − km)] (3.78)

whose inverse Fourier transform is

T (x, y) = C
sin(kmx)− sin(kcx)

πx
δ(y) (3.79)

where C is an arbitrary constant. Let us now consider, for simplicity, the case of a plane

wave and infinite aperture; from Eqs.3.67 and 3.69 we derive

B0A(x)− A0B(x) = C
sin(kmx)− sin(kcx)

πx
(3.80)

with

A0 =

∫ ∞
−∞

dxA(x) B0 =

∫ ∞
−∞

dxB(x) (3.81)
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Eq.3.80 gives an infinity of solutions of which the most obvious is

A(x) =
sin(kmx)− sin(kcx)

πx
B(x) =

sin(kcx)

πx

√
ρ (3.82)

which is the usual phase plate with phase groove reflectivity equal to ρ (see Eq.3.71).

Another choice is given by

A(x) =
sin(kmx)

πx

√
ρ

2
B(x) =

sin(kcx)

πx

√
ρ

2
(3.83)

where the presence of the factor
√
ρ/2 permits us to normalise the phase groove reflectivity

to ρ. By Fourier transforming we obtain

T̂PP =

√
ρ

2
{H(km + kx)−H(km − kx) + ı[H(kc + kx)−H(kc − kx)]} (3.84)

which means that diffracted components are shifted just by π/4, instead of the usual π/2.

Even though the transfer function is symmetric, its value is reduced by the factor
√

2

with respect to the usual phase contrast.

At last we examine another solution

T̂PP (kx, ky) = ı
√
ρ[H(kx + kc)−H(kx − kc)] +H(kx − kc)−H(kx − km) (3.85)

which means measuring only half of the scattered spectrum and the whole unscattered

beam. Eq.3.69 becomes, for a perturbation with wave number greater than kc,

I0(Mx⊥, t) =
ε0E

2
0ρ

2M2
(3.86)

Ĩ(Mx⊥, t) =
ε0E

2
0

√
ρ

2M2
T (x) ◦ φ̃ (3.87)

where

T (x) =
sin(kmx)− sin(kcx)

2πx
δ(y) (3.88)

the transfer function is then given by

T̂ (kx, ky) =
H(km + kx) +H(km − kx)−H(kc + kx)−H(kc − kx)

2
(3.89)

which is equal to the response of the phase contrast divided by two, in intuitive agreement

with the argument that only half of the scattered spectrum is collected. Let us evaluate

the signal also in the case of a gaussian beam and infinite aperture; the unscattered signal

is equal to

I0(Mx⊥, t) =
ε0E

2
0

2M2

{
ρErf 2(Q) +

1

4
[Erf(Q′)− Erf(Q)]

2

}
(3.90)
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while the fluctuating signal can be written as

Ĩ(Mx⊥, t) =
ε0E

2
0

√
ρ

2M2
×[

−Erf(Q′)
Erf(Q+) + Erf(Q−)

2
+ Erf(Q)

Erf(Q′+) + Erf(Q′−)

2

]
(3.91)

where Q = kcw0/2, Q± = (kc ± K)w0/2, Q′ = kmw0/2, Q′± = (km ± K)w0/2 and we

assumed again φ̃(x) = φ̂(K) cos(Kx + φ0). Taking the limit km → ∞, Erf(Q′) =

Erf(Q′±) = 1 and Eq.3.91 is one half of Eq.2.141 of [3].

Let us now numerically integrate the case of a gaussian beam and finite aperture of half-

width w0 equal to a and a phase plate such that Q = 1.5 and Q′ = 15Q, which is the

Nyquist limit for a thirty element linear detector. Let us consider three purely sinusoidal

perturbations with wave-vectors such that kw0/2 = {0.175 15.75 26.25}, respectively

below kc, between kc and km and above km. The normalised phase contrast response is

plotted in Fig.3.4

If we now take a set of one hundred sinusoidal modes with random phases, amplitudes and

Figure 3.4: Pure sinusoidal input (blue-full) and normalised PCI response (red-dashed)
for three wave numbers respectively below lower cut-off, in passband and above cut-off,
from left to right.
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wave-vectors, resulting in the spectrum plotted in Fig.3.5a, the PCI signal distribution

becomes closer and closer to the real spatial distribution as the phase plate becomes

wider and wider to collect all the scattered components: in Fig.3.5b,c,d we show the

reconstruction for kmw0/2 = {22, 80, 200}.

Figure 3.5: a) Power spectral density of randomly distributed input sinusoids. (b,c,d)
Real space representation of (a) (blue-full) vs. normalised Phase Contrast response (red-
dashed) with phase plates such that kmw0/2=22, 80 and 200, respectively.

3.5 Localization Properties of the Tangential Phase

Contrast technique

3.5.1 Basic principle

It is widely accepted, in view also of some experimental evidence [6], that in magnetized

plasmas fluctuations are aligned along the magnetic field, i.e. the parallel wave vector is

much smaller than the perpendicular one. Thus, since the phase contrast technique, be-

ing intrinsically line-integrated, is sensitive only to fluctuations perpendicular to the laser



96 CHAPTER 3. PCI AND DOPPLER REFLECT.: THEORY AND REALIZATION

beam direction of propagation, one can only measure fluctuations which lie in a plane

perpendicular to both the magnetic field line and to the beam direction. This identifies,

at each location along the beam path, a precise angle formed by the measured fluctuation

wave vector with a given reference vector in the beam wave-front plane [7]. Since this

angle can be selected by spatial filtering on a focal plane, if it is a single-valued, mono-

tonic and steep function of a linear coordinate along the laser beam path, it is indeed

possible to select an effective integration length which is much shorter than the whole

path travelled by the laser beam inside the plasma. We will treat this point in greater

detail in the following section.

Let us try to understand this concept with an idealized example. Let us consider a

current-free plasma (we are not concerned here with MHD equilibrium) and a tangential

injection parallel to the mid-plane. If the probing beam direction is parallel to the toroidal

field direction, before the tangency point between the probing beam and the flux surface,

the projection of the magnetic field line on the beam wave-front will always be on the

mid-plane, forming an angle of 0 degrees with the horizontal direction. After the tangency

point, the aforementioned projection will always form an angle equal to π; in these two

regions the Phase Contrast technique is sensitive only to vertical scattering wave vectors.

At the tangency point, the probing beam and the toroidal field are exactly parallel, re-

sulting in a degenerate point for the projection; therefore the technique is sensitive to the

entire scattering wave vector spectrum in the wave-front plane. The resulting projection

is depicted in the right part of Fig. 3.6. The selected fluctuating wave vector is orthogonal

to the direction of the projection and is thus vertical.

3.5.2 Expected localization in TCV

If we now consider a real equilibrium, the poloidal field will somehow smear out the dis-

continuity at the tangency point, resulting in a smooth curve. However, as we seek as

steep a function as possible, the tangential launching should have a slight vertical com-

ponent in order to match the pitch angle of the magnetic field. In Fig.3.7 we show, for a

real TCV equilibrium, two different integration lengths resulting from selecting a region

close to the tangency point or away from it.

As we have already noticed, this steepness is primarily caused by the spatial variation

(curvature) of the toroidal field direction and is therefore only weakly affected by the

plasma current profile, as can be seen in Fig. 3.8. In fact, in the case considered, a differ-

ence in magnetic shear (defined as the logarithmic gradient of the safety factor normalized

to the minor radius) of about 0.85 results in a variation of only a few centimeters in the

integration length, which in turn translates into a difference of a few millimeters in radial
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resolution.
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Figure 3.6: Angle between the projection of the magnetic field line onto the wave front and
the outgoing horizontal direction as a function of the position along the beam path in the
idealized case of a current-free plasma and tangential injection parallel to the midplane.
Points a and c stand for the beginning and the end of the plasma, while b stands for the
tangency point between the probing beam and the magnetic field line, assumed to be in
the counter-clockwise direction.

The actual localization is better understood in terms of a radial plasma coordinate, which

for us is the normalized square root of the plasma volume. In addition to the steepness

of the angle as a function of the linear beam coordinate, a second effect contributes to

the radial localization of the measurement: at the tangency point between the magnetic

surface and the probing wave vector, a significant fraction of the laser beam path stays

close to the tangency flux surface; in other words, the linear beam coordinate is also a

steep function of ρ since at the tangency point, according to Eq.2.12, δρ ∝ L2, where L is

the integration length. The two effects combined result in the angle being an extremely

steep function of ρ at this location, as shown in Fig. 3.9. Here, the different curves refer to

different vertical (a) and horizontal (b) plasma positions in the vacuum vessel; it is clear

that by displacing the plasma in the vacuum vessel, a good resolution can be achieved at

virtually all values of ρ.

The steep behavior remains even if the tangency point does not happen to occur on the

mid-plane, as can be seen in Fig.3.10a which refers to several vertical plasma positions

in the vacuum vessel, even though the best resolution region then moves along the beam

path.

It is interesting to see now the actual resolution as a function of ρ in terms of ρ itself. To

do this, we adopt a spatial filter with an angular resolution of 60 degrees (see Sec.3.5.3),

which allows marginal resolution near the cut-off wave number. We will see in the next

section that this value could be made smaller for larger wave number cut-offs, resulting
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Figure 3.7: Selected fluctuation wave-vector direction, with respect to the horizontal, as
a function of the distance along the beam path. The two boxes delimited by the black
dash-dotted and red dashed vertical lines show, respectively, examples of poor and good
spatial resolution. The width of each region is limited by diffraction.

Figure 3.8: Effect of the current profile on the selected fluctuation wave-vector direction,
illustrated by a comparison of two model q profiles: a monotonic profile (solid line) and
a profile with central negative shear (dashed line). At the tangency point the shear is
equal to 0.01 and -0.85 respectively. The resulting difference in the integration length is
approximately 3.4 cm, translating into a negligible difference in radial resolution.
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Figure 3.9: (Left) Direction of possible measurable fluctuations, expressed as an angle
relative to a fixed direction in the laser wave-front plane, as a function of ρ for a vertical
scan in the poloidal section. At the mid-path point the laser beam passes through the
mid-plane (solid black) and vertically shifted from it by 5 (dotted blue), 10 (solid red),
15 (dashed-dotted darkgreen) and 20 (solid lightgreen) cm. (Right) Same as (left) but in
the case of a horizontal scan from 2 cm on the LFS of the magnetic axis with 4 cm steps.
The case R − Rmag = 0.1 was chosen to match almost exactly the magnetic field pitch
angle at the tangency point.

in even better resolution.

In Figs.3.10 and 3.11 we show the resolution for the same cases plotted in Fig.3.9; the

resolution ∆ρ at the tangency point is in the range 0.01÷ 0.05.

We already mentioned how, at the tangency point, where the beam is tangent to the

magnetic surface but not necessarily to the magnetic field line, the sampled fluctuations

are radial, i.e. a purely radial kρ is selected; however, it is interesting to see whether the

poloidal component could be measured in other regions of the beam path and, more impor-

tant, to which extent the tangential PCI suffers from a mixing of radial and poloidal wave

vectors as a result of the finite spatial resolution of the measurements and of the selected

direction (the wave vector in the lab frame being fixed and determined by the spatial

filter). Indeed, while the spatial filter selects a given wave-number direction in the lab-

oratory frame, its poloidal projection onto the physically meaningful radial and poloidal

directions will generally change at different locations along the beam. This direction is

always purely radial at the tangency point, as shown in Figs.3.12(a,b) and 3.13(a,b). The

finite, though short, integration length also results in some degree of wavenumber mixing

between radial and poloidal components, depicted as an uncertainty in Fig. 3.12(c); this

is calculated as the difference between the maximal and minimal components of kρ along

the integration length corresponding to each point.
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Figure 3.10: a,b,c) As a function of the distance along the laser beam path (in meters),
the angle of the chosen fluctuations, the integration length and the spatial resolution are
shown for a scan in the vertical distance between the laser beam and the plasma midplane
at the half-way point along the beam path. d) Spatial resolution expressed as ρV as a
function of ρV itself. Calculations refer to the central ray of a beam which, at the half-
way point, is shifted 4 cm towards the LFS with respect to the magnetic axis and to a
minimum k⊥ = 0.9 cm−1, corresponding roughly to k⊥ρi = 0.45. In box (c) the dashed
lines reprent the virtual resolution, expressed as the poorest resolution over the beam
full-width.
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Figure 3.11: Same as figure 3.10 but for a radial scan.



102 CHAPTER 3. PCI AND DOPPLER REFLECT.: THEORY AND REALIZATION

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

ρ V

k ρ/k
 c

om
po

ne
nt

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

0.
6

0.
81

ρ V

k θ/k
 c

om
po

ne
nt

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

ρ V

∆ 
k ρ/k

 c
om

po
ne

nt

0
0.

2
0.

4
0.

6
0.

8
1

0

0.
2

0.
4

ρ V

∆ 
k θ/k

 c
om

po
ne

nt

Z
=

Z
m

ag
Z

−
Z

m
ag

=
0.

05
Z

−
Z

m
ag

=
0.

1
Z

−
Z

m
ag

=
0.

15
Z

−
Z

m
ag

=
0.

2

Figure 3.12: Radial and poloidal k components, and their uncertainties as functions of
ρV for the same configuration of Fig.3.10. Uncertainties are computed as ∆(kρ,θ/k) along
the integration length.
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Figure 3.13: Same as Fig.3.12 but for a radial scan. The case R−Rmag = 0.1 was chosen
to match almost exactly the magnetic field line pitch angle at the tangency point.
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3.5.3 Spatial filter

The previous section explains how it is possible to localize measurements by selecting a

particular range of fluctuation directions; in this paragraph we will describe in detail the

required procedure.

An optical imaging system is usually made of focusing elements, lenses or mirrors, and

thus usually possesses at least one focal plane. The spatial distribution of the electric field

in the focal plane corresponds to its spatial Fourier transform. In particular, the azimuthal

angular position of each scattered wavelet in the focal plane corresponds to the direction

of the generating scattering wave-vector in the plane of the beam wavefront; and the radial

position is linear in the diffracting angle, i.e. in the ratio of magnitudes of the scattering

wave-vector to the probing beam wave-vector. Since, as was explained in Sec.3.5.1, in

the tangential, field-line following configuration, the orientation of the scattering wave-

vector unambiguously corresponds to a particular position along the beam path, a spatial

selection can be made by filtering on the focal plane of the imaging system. The filtering

is done by positioning in a focal plane a mask which allows only part of the radiation

to reach the detector plane (Figure 3.14). According to the direction along which the

filter is aligned, one obtains the desired angle and thus the location from which the signal

originates. Because of the finite dimensions of the focal spot, dictated by diffraction, the

spatial filter must have a finite width, which translates into the angular range illustrated

in Figure 3.7. This angular width is a function of the wave number and is the angle

subtended, on the focal plane, by the diffraction spot centered on that wave number as

seen from the focal point (filter center). In case of a gaussian beam with half-width w

calculated at the e−2 point on the focusing optics, the resulting resolution angle ∆α is

given by

∆α = 2 arctan

(
M22

kw

)
(3.92)

where M2 ' 1 is the correction factor which accounts for a non-ideal gaussian nature of

the probing beam and is defined such as the half divergence of a gaussian beam of wave-

length λ and half-waist w0 is θ = M2λ/(πw0). Thus, the achievable resolution improves

with k; the worst-case scenario is given by the lower-cutoff wave number, which in an

optimized configuration is given by kcutoff ' 3/w0, giving a resolution of approximately

60 degrees.

Two possible configurations may be considered for the spatial filter, as depicted in Fig-

ure 3.14. In the first one, on the left part of Fig.3.14, the resolution is optimized for all

wave numbers as the filter width is just large enough to accommodate the spot size, thus

is not uniform over the spectral range since it shrinks for higher k values. This distorts the

spectral response since the interaction region is different for different wave numbers. In

the second configuration, on the right of Fig.3.14, the achievable resolution is artificially
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decreased linearly with k; thus the angle bandwidth, and consequently the integration

length, is constant over the whole spectral range.

For the PCI diagnostic we chose to manufacture both types of filters depicted in Fig.3.14

Figure 3.14: Fluctuation direction selection by means of a spatial filter, depicted as a light
blue band, superimposed on the PCI phase plate, in gray. (Top) Only the undiffracted
component and diffracted ones impinging on the filter, all depicted in red, are sampled by
the system; other diffracted components, in black, are not selected. (Bottom) Schematic
view of both configurations explaining the effect of the filter shape on spatial resolution.
The maximum resolution at each wave-vector is indicated; on the left this varies with the
wave vector whereas the configuration on the right features uniform resolution.

for each of the two values of the optical magnification planned for the optical system (see

following sections) and for each of the phase groove widths of the two phase plates avail-

able at CRPP. The filter itself is made of stainless-steel, black chrome-plated to reduce

specular reflectivity, with a diameter of 50.6 mm and 0.5 mm thickness. The required

width tolerance per unit slit length is 1µm/mm, which is a standard value for slits. The
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minimal width of the filters is chosen at 1/e2 of power with an accuracy of 0.02 mm on

the full width. An example of the resulting design is shown in Fig.3.15.

Figure 3.15: Example of the uniform response spatial filter to be used in the low magni-
fication case with a phase groove width of 0.4 mm.

3.6 Experimental set-up

In this section we will describe in detail the experimental apparatus installed on the TCV

tokamak; in particular we will consider the optical design and all the constraints imposed

by the TCV torus and its hall. Additionally we will describe most of the optical and me-

chanical parts which compose the PCI diagnostic on TCV. First we will briefly overview

optical properties of mirrors and lenses as well as a few details concerning radiation de-

tectors.

3.6.1 Optical properties

Usually formulae used in optics refer to perfect surfaces of a given kind, e.g. spherical for

lenses or flat for windows and non focusing mirrors; however, optics’ surfaces are manu-

factured within a given tolerance which, in general, depends primarily on the size of the

optic and on the substrate material. Tolerances are specified on the uniformity of the

shape and on its cosmetic appearance. The maximum allowable deviation of an optical

surface from its ideal shape is described by a parameter called Surface Accuracy, which
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can be described in several ways:

Surface Flatness

It is the deviation for a planar surface such as a window or a mirror. When a test plate,

which is a clear flat reference, is held in contact with the optic under examination and

they are both illuminated, a contour map is visible as light and dark bands called New-

ton’s rings or fringes. Due to the air gap between the surfaces, each ring corresponds to

the vertical distance between the test plate and the surface under inspection. Since the

air gap is very small, the surface flatness is defined in terms of wavelength: e.g. 1/4 wave

or λ/4. The spacing between rings is equal to one-half the wavelength of the illumination

source, i.e. 1/4 wave = 1/2 ring. Monochromatic laser green light at 546.1 nm or red

light at 632.8 nm are generally used for illumination. Typically, only values less than 1/4

wave are considered to designate precision optics and values less than one tenth to be

high precision.

Sometimes surface flatness is also measured by a parameter called roughness, which is

quantified by the vertical deviation of a real surface from its ideal form. If this deviation

is large, the surface is rough; if it is small the surface is smooth. This deviation can be

measured in several ways

Ra =
1

n

n∑
i=1

|zi|

RRMS =

√√√√ 1

n

n∑
i=1

z2
i

Rv = minizi

Rp = maxizi

Rt = Rp −Rv

Rsk =
1

nR3
RMS

n∑
i=1

z3
i

Rku =
1

nR4
RMS

n∑
i=1

zzi

of which the most common is the average definition, Ra.

When the surface under examination is not flat, e.g. a parabolic mirror, air gaps should

be regular and map the height of the surface z = z(x, y) on the {x,y} plane. Irregularities

are used to define how the surface deviates from the required shape; such deviations are

also known as Surface Figure.
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Surface quality

Surface Quality refers to the cosmetic features of an optical element in terms of visually

permissible defects on the element’s surface, and is quantified by the so called Scratch-Dig

specification. During the grinding and polishing stages of fabrication, small defects can

occur, such as scratches and digs. A scratch is any mark or tear and a dig is any pit or

divot on the element’s surface. The specification used for the maximum allowable flaws

is denoted by a combination of numbers, the scratch number followed by the dig number;

for example 60-40. The lower the number, the higher the level of quality. For example,

a 60-40 value is common for research and industrial applications, whereas a 10-5 value

represents a high quality standard for laser applications. These values do not actually

correspond to a specific number of defects, but rather reflect the quality of an optical

surface by means of comparisons. Developed in response to the need for an accessible,

inexpensive product for inspection personnel, this is often employed as an easy to use

reference tool. Although this tool reflects Scratch and Dig evaluation as defined by the

U.S. Military Specification for the Inspection of Optical Components, MIL-O-13830A, it

is not certified to national or international standards.

There is no direct correlation between scratch number and the actual size of a scratch

on an optical element’s surface. As a common reference, the scratch number relates to

the ”apparent” width size of an acceptable scratch. However, there is some ambiguity

since this also includes the total length and number of allowable scratches. Dig numbers

do relate to a specific size of dig. For example, a 40 dig number relates to a 400 µm

diameter pit. Coating quality is also held to the same Scratch-Dig specification as the

surface of an optic. Surface Quality inspection typically includes additional criteria, such

as staining and edge chips. Overall cosmetic inspection also includes defects within the

material, such as bubbles and inclusions, including striae. Imperfections of this nature

can contribute to scattering in systems involving lasers and image defects. Inspection of

surface accuracy and quality is limited to the component’s clear aperture.

Clear aperture

The size of an optical element, such as mirrors, lenses and windows, does not correspond

to the actual reflecting or refracting surface usable. In fact, surface quality and accuracy

are specified over a smaller area centered on the optics, which is referred to as Clear

Aperture. Outside the clear aperture, the optics may not behave as specified due to im-

perfections in the polishing and/or in the coating procedure. Standard values of clear

apertures are typically between 80% and 90% of the diameter, if circular, or of the linear

dimension, if other than circular, of the optical element. Values beyond 90% are generally

not to be trusted.
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Edge treatment

There are several terms associated with the treatment of edges. The most basic is a cut

edge, which is literally what it means: a large sheet of glass is either ”cut” using a scribe

and break technique or cored for circular pieces, which can leave sharp edges. The next

edge type is swiped or seamed edges which means that all the sharp edges are removed.

The final type is a ground edge which provides an even mounting surface and gives a

uniform cosmetic appearance to the perimeter of the optic. The better the treatment of

the edge, the less likely it is that it may become chipped in handling. Edge chips are not

permitted within the optics’ clear aperture. Edge chips are typically defined for optical

windows and mirrors to have maximum values of 0.25 to 0.5mm. Bevels are clean ground

edges used to prevent edge chips or simply as protective chamfers. Bevels are generally

defined as maximum face widths at 45◦, with a standard tolerance of ±10◦.

Surface figure requirement

All the errors in each optical element contribute to the total deterioration of the image.

A useful criterion to account for this global effect is the Rayleigh quarter-wave criterion,

which allows a maximum deviation, also called Optical Path Difference (OPD), of one

quarter of a wavelength between any point in the image plane and the ideal spherical

wave front. Optical elements are usually specified either as root mean squared (rms) or

peak-to-valley (p-v), which is between 3.5 and 5 times larger than the corresponding rms

value. The total OPD generated by an optical system made of N optical elements is equal

to

OPDrms =

√√√√ N∑
i=1

[OPDi,rmsAi∆ni cos(θi)]2 (3.93)

where OPDi is the surface figure of each optical surface, θi the impinging angle, Ai the

ratio between the largest surface illuminated by a single point in the object plane to

the total surface of the optical element, ∆n is the change in the refractive index across

each optical surface. The assumption behind this formula is that optical irregularities

are assumed to be directly proportional to the surface of the element. The sum is to

be calculated over the optics after the interaction of the probing beam with the plasma;

irregularities in the optics before the plasma deteriorate the gaussian nature of the probing

beam but do not affect the signal.

Considering the surface figure values of all the optical elements and assuming the worst

case scenario in the conversion from p-v values to rms values, the PCI has an OPD equal

to λ/1288 for configuration `1 and λ/166 for configuration `3 (see Sec.3.6.9), which

largely satisfies the Rayleigh criterion. The inclusion of a cylindrical lens in front of the

image plane to enhance the signal on the detector array deteriorates the OPD leading to

λ/70 in configuration `1 and λ/10 in configuration `3, which would then be at the limits
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of validity of the Rayleigh criterion.

3.6.2 Detector properties

Sensors used to detect optical radiation are classified in two main groups: photodetectors

and thermal detectors. To the first group belong all the detectors based on a direct inter-

action of radiation with the material lattice; this interaction is detected through changes

in associated electrical circuits. To the second group belong all the detectors responding

to heating effects caused by incident radiation; once the detector is heated, its temper-

ature change induces some measurable physical parameter change, e.g. a change in the

electrical resistance of a conductor or of a superconductor heated above its critical tem-

perature.

The temperature change required by a thermal detector causes a slower response with re-

spect to photodetectors, whose time response generated by pair-hole production-recombination

is much faster. Typical response times are ' ms for thermal detectors and ' µs for pho-

todetectors.

Since the PCI is expected to measure fluctuations up to a few MHz, only photodetectors

are of interest and we will therefore describe only them in the following.

Photoconductive detectors

In a photoconductive (PC) device, incident radiation impinging on a semiconductor re-

leases energy to electrons, raising them into the forbidden energy band, thus enhancing

the electrical conductivity of the material. This basic principle is effective only if the

incident photon has an energy larger than the energy gap in the semiconductor and lower

than the energy required for the photoelectric effect, above which electrons are expelled

from the material and cannot contribute to the enhancement of its electrical conductivity.

This translates into a spectral response of the material which is therefore not sensitive to

radiation whose wavelength is longer than that corresponding to the energy gap or shorter

than that corresponding to the photoelectric critical energy. When a bias voltage and a

load resistor are used in series with the semiconductor, a voltage drop across the load

resistors can be measured when the change in electrical conductivity varies the current

flowing through the circuit.

Photovoltaic detectors

In a photovoltaic (PV) device, impinging radiation is absorbed at a p-n junction, produc-

ing an electron-hole pair which, in turn, is detected as a voltage. The basic fabrication
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technique consists of joining a positively and a negatively doped semiconductor to form

a p-n junction, i.e. a diode. The depletion zone in the contact has a width, d, which

depends on the total biasing voltage, Φ [5]

d =

√
2ε0Φ

e

(
1

np
+

1

nn

)
, (3.94)

np and nn being the doping concentrations in the p and in the n region, respectively. The

total voltage is given by

Φ =
kBT

e
ln

(
npnn
n2
i

)
+ ∆V (3.95)

where ∆V is the external biasing voltage, T the temperature and ni the intrinsic carrier

concentration, given by

n2
i = 4

(
2πkBT

h2

)3

e−Eg/kBT (m∗hm
∗
e)

3/2 (3.96)

where m∗e and m∗h are the effective masses of electrons and holes, respectively.

If radiation is absorbed outside the depletion region, electrons and holes recombine before

being separated by the depletion field and no detection occurs. In the depletion region,

since no dopants exist, the incident photon must have an energy larger than the entire

energy gap of the substrate material.

Let us now compare PC and PV detectors.

The minimum incident flux a detector can discern depends on the noise level of the de-

tector. In particular if we define the Signal to Noise Ratio (SNR) as

SNR =
<Φ

In
(3.97)

where In is the noise current, Φ the incident power (not necessarily absorbed) and < the

detector responsitivity, we can define the Noise Equivalent Power (NEP) as the incident

power which produces a SNR equal to one, in a root mean square sense. The responsitivity

of a photovoltaic detector is also expressed in terms of quantum efficiency η by

η = <hν
e

(3.98)

where ν is the light frequency.

It was mentioned that detectors are sensitive to particular spectral regions and are char-

acterized by response time constants, therefore the NEP is a function of incident light

wavelength and frequency. The NEP depends also on additional parameters such as op-

erating temperature, optimum bias, detector area and noise-equivalent bandwidth. To

compare different detectors the normalized detectivity, D∗, is defined as

D∗ =

√
Ad∆f

NEP
(3.99)
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and is customarily quoted in units of cm
√

Hz/Watt.

Several kinds of noise are active in a photo-detector:

• Johnson

• Shot

• Generation-recombination

• 1/f

• Temperature fluctuation of the background blackbody radiation

Noise powers add and are uncorrelated, therefore their variances add as well, i.e.

∆Ntotal =

√∑
i

∆N2
i (3.100)

in general in a PC detector the dominant sources of noise are Johnson, 1/f , G-R and

preamplifier noise; in a PV these are shot noise of the reverse saturation current, photon

noise, Johnson noise of the detector resistance and of the load resistance, 1/f and pream-

plifier noise.

In general preamplifier noise can be reduced by selecting Field Effect Transistors (FETs)

and by cooling the preamplifier to cryogenic temperatures.

The shot-noise can be written as[5]

IN,shot =
√

2eĪ∆f =
√

2e<Φ̄∆f (3.101)

the generation-recombination noise current can be expressed by[5]

IN,G−R = 2G
√
e<Φ̄∆f ; (3.102)

the 1/fnoise is important only at frequencies lower than a few hundred Hz and is therefore

filtered by ac amplifiers.

The Johnson noise in each resistor, of resistance R, is given by[5]

IN,J = 2

√
kBT∆f

R
(3.103)

By combining all the intrinsic noise forms in the D∗ parameter and adding shot noise due

to the Local Oscillator (LO) power, we can write the minimum detectable phase shift,

i.e. the phase shift giving SNR=1, in the approximately constant response spectral region

(see Fig.3.2) of the PCI as[3]

φ̃(x⊥) =
1

C

√(
Fd +

Pcr
ρPd(x⊥)

)
W0∆f

Pd(x⊥)
(3.104)
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where Pd(x⊥) = 0.5Adε0c|E(x⊥)|2 is the dc power incident on the detector area Ad when

the reflectivity of the phase groove ρ, is equal to one; Pcr and W0 are given by

Pcr =
ηAd

2hνD∗2
W0 =

hν

2η
, (3.105)

Fd = 1 for PV detectors and Fd = 2 for PC ones, and

C =

∫ a

−a
dxe−(x/w0)2 sin(kcx)

πx
(3.106)

Eq.3.104 is valid to 5-10% accuracy when a = w0 and kc = 3/w0.

3.6.3 Mechanical vibrations

Introduction

In chapter 2 it was stressed how the Phase Contrast is superior to standard interferometry

also because, since both the probing and the reference beam pass through the medium

under analysis, it is insensitive to mechanical vibrations. Indeed, its insensitivity concerns

the signal, in the sense that no contribution to the signal is due to vibrations as it is in

standard interferometry. However, the signal itself is sensitive to the alignment of the

whole optical system, in particular to the focusing of the unscattered beam on the phase

groove; in particular, it was shown in section 3.3 how the transfer function depends on

the low-pass wave-vector kc, i.e. on the phase groove width. Any misalignment would

interfere with the correct functioning of the system up to a complete loss of the signal

when the beam is focused outside the phase groove and, therefore, to the absence of the

required π/2 phase shift between scattered and un-scattered components. If mechanical

vibrations interfered with the alignment they would have to be eliminated or, at least,

reduced. If the PCI diagnostic did not require any optics mounted on the vessel, it would

be largely insensitive to mechanical vibrations; examples are the PCI diagnostic on the

TCA tokamak[8] and on the Alcator C-MOD tokamak [9]. In the opposite case, the

PCI requires a closed loop active stabilization system, such as the one on the DIII-D

tokamak[3], which we took as reference for our design.

Measurements of TCV vibrations

Four accelerometers were installed on the TCV tokamak to study how the torus vibrates.

Three accelerometers were installed in sector 15, central lateral port, in the 3 directions:

radial. r, toroidal, φ, and poloidal, θ; to estimate the noise level, the fourth one was po-

sitioned on a concrete column at a distance of about seventy centimeters from the torus.
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The acquisition system sampled at a rate of 50 kHz, while the accelerometer specifications

indicate a linear response up to 5 kHz, which was the highest frequency analyzed. The

absolute calibration stated in the specifications was assumed, i.e. 100 mV/g, g being the

earth gravity acceleration. To work properly, these accelerometers need a flat and rigid

support oriented in the direction of the vibrations to be measured.

Data showed good reproducibility: in Fig. 3.16 we compare two similar stray shots (stan-

dard power supply test shots without plasma) for all the channels; indeed they are com-

parable both in the rms values and in Fourier space. The typical Fourier transform of the

Figure 3.16: Comparison of two different stray pulses in terms of current (top), radial
acceleration (center) and Fourier power spectral density of all the accelerometers (bottom).

signals of the four accelerometers sampled during an actual TCV plasma shot is shown in

Fig. 3.17, where a dominant peak at about 1.3 kHz is evident. This high frequency mode

is due to the rectification of the 3 phase current in the alternator, ' 12 · 110 Hz, and is

present in the noise-test accelerometer as well. This suggests that this vibration is due

to electromagnetic pick-up of the accelerometer itself and/or of its cable. Two additional

configurations were tested to address this point. The first one had one accelerometer

on the torus in the φ direction; two (one shielded in an iron box) were mounted on the

concrete column used for the noise-test, and the last one was mounted on the opposite

side of the column. The results of a typical pulse are shown in Fig. 3.18, where the level

of vibration on the torus is still higher, as expected, than elsewhere.

It can be noted how the vibration of the shielded accelerometer is higher than the non-

shielded one located at the same position, probably due to a more rigid support provided

by the box itself, and that the two non-shielded accelerometers on two sides of the column
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Figure 3.17: Power spectral estimates of accelerometer data.

Figure 3.18: Power spectral estimates of accelerometer data in the second configuration
described in the text.
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have almost the same behavior; this would exclude the hyphotheses of EM pick-up of the

accelerometer because the one facing the tokamak should collect a larger signal than the

one on the opposite side.

The second test configuration had two accelerometers on the torus in the φ direction, one

shielded in the iron box and one outside; in addition, a third measurement involved a

60 Ohm resistance (equal to the impedance of the accelerometer) connected to the cable

in order to measure the pick-up of the cable itself. The fourth accelerometer was again

on the concrete column. The result is shown in Fig. 3.19, demonstrating that the EM

pick-up of the cable is negligible, while the shielding box reduces the signal somewhat.

To summarize, the signal measured by the accelerometers at all frequencies can be con-

Figure 3.19: Power spectral estimates of accelerometer data in the third configuration
described in the text.

sidered as actual vibrations and may be used to estimate the spatial displacement. As

will be explained in the next section, the stabilization network response decreases strongly

with frequency, so that high-frequency vibrations cannot be actively compensated; this is

the reason why we focused on determining the nature of the 1.3 kHz peak. It is therefore

important to estimate the actual spatial displacement at all frequencies. This task can be

simply performed by filtering the signal and integrating twice over time. In Fig.3.20 we

show how vibrations in the range 500-5000 Hz contribute negligibly to the total spatial

shift. Additionally, in Fig.3.21 it is shown how the predominant contribution to the total

spatial displacement comes from vibrations at 20 Hz. Indeed, by estimating the spatial

displacement in the frequency ranges 0-200 Hz and 1200-1400 Hz, we find the following

ratios for the accelerometers of configuration 1 (displacement in low-band divided by dis-

placement in high-band): r = 5.3 · 103, φ = 8 · 102, θ = 2.8 · 103 and noise=2.6 · 105.

The estimated SNR stays close to 100 also in the low frequency range. A test with a
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Figure 3.20: Reconstructed spatial displacement due to the whole signal and to the high
frequency components only.

visible laser beam was performed on a few TCV pulses by reflecting the laser beam by a

mirror mounted to the TCV vessel. After about ten meters from the reflection point, the

spatial shift was composed by a steady shift of about one centimeter, due to the torque

on the vessel generated by plasma current induction, plus fluctuating vibrations of the

order of a few millimeters. By estimating the equivalent steady state shift on the basis of

the accelerometers data and their positions at the measurements, one finds shifts of the

order of 2 to 3 cm.

Design criteria for the active stabilization system

The goal of the active vibration stabilization system is to keep the focal spot on the

phase plate inside the phase groove. Standard systems which address similar problems

detect the position of a reference beam on a quadrant detector which is aligned in such

a way as to have the beam centered on it when it is in the nominal position which, in

our case, is the position of the phase groove on the phase plate. As the beam vibrates,

the detector communicates the beam position to an appropriate electronic system which

steers a number of mirrors which, in turn, realign the beam in the correct position.

Since we need to stabilize the focal spot position on the phase plate plane, the idea is

to have two rotatable mirrors, one rotating along the horizontal direction, X, the other

along the vertical direction, Y.

The vibration frequency response illustrated in the last section appears very similar to the

one measured on the DIII-D tokamak, especially regarding the presence of a dominant

peak at 20 Hz. This led to the choice of a similar compensating circuit in terms of

electronics, scanning mirrors and position sensing detector. In particular, since a visible
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Figure 3.21: (Top) Estimated PSD of spatial displacement in the low frequency band.
(Bottom) Detail of the low frequency region.
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system was proven to perform poorly on the DIII-D tokamak, possibly due to power

flickering of the visible laser which induced artificial vibrations, the choice of the position

sensing detector fell on the 10.6 µm wavelength; although this is more expensive than

visible technology, the detection system operates on the probing beam and is therefore

expected to be more appropriate. The geometry adopted is a quadrant of four square

HgCdTe photoconductive detectors, arranged in two rows and two columns, manufactured

by Infrared Associates Inc. (Florida). The area of each detector is 4 mm2, while spacing

between detectors is 50 µm. Detectors need to be operated at 77 K; they are characterized

by a normalized sensitivity D∗ ≥ 2 · 1010cmHz1/2/W, and a field of view of 60◦, and are

protected by a doubly anti-reflectively coated ZnSe window. All the details concerning the

optical path from the first scanning mirror to the position sensing detector are deferred

to Sec.3.6.4.

The four signals exiting the quadrant detector are fed as input to the analyzing circuit

board executing standard differences and sums to find the correct drive for the scanning

mirrors as

X =
X2 −X1

X2 +X1

L

2
Y =

Y2 − Y1

Y2 + Y1

L

2
(3.107)

where {X, Y } is the coordinate of the centroid of the beam spot on the position sensing

detector surface (measured from the detector center), and L is the size of the detector’s

sensitive surface in mm. The circuit board OT-301DL coupled to the display OT-302 were

manufactured by On-Trak Photonics, Inc. (California) and were bought, second hand,

from G2 Technology.

A compensation circuit is necessary to adjust the frequency response of the position sens-

ing detector and of the scanning mirrors; it was built on the design performed for the PCI

diagnostic on the DIII-D tokamak[3]. Steering mirrors are then driven by second-hand

drivers AX-200 manufactured by GSI Group, Massachusetts.

We describe now the most delicate part of the active-stabilization system: the scanning

mirrors. These mirrors can be mounted on several kinds of motors, such as galvanome-

ters or piezoelectric devices; the former device type was preferred because of its superior

overall performance, which can be evaluated by two important requirements to be satis-

fied: rotation range to compensate for large deviations, and rotation speed to compensate

for fast deviations. These two requirements compete with each other as the former is

inversely proportional to the latter via mirror inertia. Indeed, mirror inertia depends on

the weight of the mirror and mainly on the size around the rotation axis. The size of

the mirror depends on the distance from the phase plate and, in general, on details in

the optical design; we mention here that our scanning mirrors are positioned around a

secondary image formed after the focus-relay lens (see Sec.3.6.4) which, by definition, is

the position with a minimum beam size, thus minimizing the size of the mirrors and,
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therefore, their inertia. Once the size of the reflecting surface has been fixed, the inertia

is directly proportional to the mirror weight, which is a linear function of the substrate

density and volume. To minimize the inertia, exotic substrate materials and volumes

were considered: in particular GSI proposed a Be substrate with an elliptically shaped

reflecting surface whose thickness was quadratically decreasing as a function of the dis-

tance from the center of the mirror. However, despite their much better performance,

their price was considerably higher, about 10 times, than standard octagonal flat quartz

mirrors, which were eventually chosen.

3.6.4 Geometrical beam path

In chapter 2 it was shown how a tangential configuration is far better, in terms of spatial

localization, than the standard vertical configuration already employed on the tokamaks

TCA, DIII-D, Alcator C-Mod and on the stellarator LHD. Additionally, it was even shown

that the probing beam has to be launched in a field-line following direction, otherwise the

benefits of a tangential scheme would be lost. The goal is then to design an optical path

allowing such a geometrical configuration.

Considering the tangential launching, a tangentially viewing port would have been an

ideal option but, since on TCV no such ports are available, the beam needs to be steered

from the radial to the tangential direction. The vacuum vessel has a major radius of

0.88 meters, a minor radius of 0.25 meters and is divided into sixteen sectors; as a re-

sult, therefore, to accomplish a near-tangential measurement near the magnetic axis, the

launching and the receiving port have to be separated by three sectors. Indeed, a two

sector separation would allow access to the edge only whereas a four sector separation

would allow access only to the high field side of the poloidal section in the high resolution

region. Furthermore it is shown in Sec.3.3 how, to measure long wavelength fluctuations,

which, on the basis of mixing-length arguments, are generally the most relevant ones in

terms of the amount of transport they generate, the beam waist needs to be of the order

of the wavelength of the fluctuations. Extensive linear runs performed with the codes

GS2 and KINEZERO showed that the modes which contribute most to the total trans-

port are located in the region kθρi ' 0.1 − 0.5 which, considering typical ion Larmor

radii in TCV, translates into 0.5 ≤ kθ ≤ 3 cm−1. If one considers, as optimal, a value of

Q = kcw0/2 between 1.4 and 1.6, this translates into a minimum beam half-waist in the

range 1 ≤ w0 ≤ 6 cm.

In Chapter 1 we mentioned that TCV can operate with plasmas at different vertical po-

sitions, even though ELMy H-mode plasmas tend to be robust and stationary only in the

upper part of the vessel, especially with the magnetic axis located at Z=23 cm. This nat-
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urally leads one to design the beam path with the tangency point, i.e. the best resolution

region, at that height. Moreover, the ports need to favor a field-line following launch,

thus the vertical angle between the launching and the receiving port has to be as close

as possible to the pitch angle of the magnetic field lines. The only two possibilities were

the use of the upper-lateral port in sector 12 and the mid lateral port in sector 15, the

latter being in use for the Bolometry diagnostic; or the upper-lateral port of sector 14

and the mid-lateral port of sector 1, respectively free and occupied by the glow antenna.

No ports were available in the top and bottom parts of the vessel. The upper-lateral

port of sector 14 is of difficult access due to the presence, immediately underneath, of a

diagnostic neutral beam which considerably restricts the available space around it; more-

over, the access to the port itself is additionally restricted by the presence of a cross-bar

for the mechanical support of the machine. Despite these difficulties this was the only

option available, and therefore the upper-lateral port in sector 14 and the mid-lateral port

in sector 1 were assigned to the PCI project, while the glow antenna was moved to the

bottom-lateral port in sector 1.

Let us now describe the lateral ports of TCV. Since TCV is equipped with a number

of shaping poloidal coils, access to the vacuum vessel is achieved through a 30 cm long

tunnel, whose diameter is equal to 15 cm if cylindrical, and 31.5 cm times 16 cm if rectan-

gular. The access to the vacuum vessel itself is accomplished by a circular hole of 13 cm

diameter in every port. The tangential configuration forces a net deviation of the probing

beam from a purely radial direction by about 60 degrees. Such a deviation cannot be

realized by one single mirror, if the probing beam is larger than a few centimeters. Addi-

tionally, considering the space availability, the beam full-width is constrained to nine to

ten centimeters.

One of the key requirements was to be able to intersect or at least approach the magnetic

axis which is located at a major radius of about 89 cm, depending on the plasma. Since

the geometrical configuration of TCV ports does not allow the beam to pass through the

average axis position without mirrors located in the vacuum vessel beyond the plasma fac-

ing surface formed by the carbon tiles, it was decided to design the system as translatable.

Depending on the plasma positioning in the vacuum vessel, the mirrors can penetrate be-

yond the surface of the tiles to let the probing beam approach, at the tangency point, a

major radius of 88-89 cm.

The launching and receiving ports are not identical and the reduced available portion of

the receiving port, due to the cross-bar, combined with the larger effective width of the

beam in the receiving port, due to plasma diffraction, induce asymmetries in the con-

figuration of the two ports and in the positioning of their mirrors. In particular, these

asymmetries resulted in two different penetration lengths which entail different launching

and receiving angles on the two front mirrors, causing different orientations of the mir-
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rors as functions of the radial positions of the launching and of the receiving port. It is

anyway desirable to have independent translation stages for the two ports in view of the

possibility of intermediate plasma vertical positioning in the vacuum vessel, resulting in

different distances of the LCFS from the tiles at the height of the two ports, which in

turn imply different innermost safe radial positions of the two front mirrors beyond the

tile level.

To ensure the correct alignment of the system, one could either oversize the mirrors to

accommodate the beam in its various trajectories, or design rotatable mirrors, or adopt

both solutions at once. In the former case, the required amount of oversize, for a given

port access, results in an unacceptable reduction of the beam waist, while the latter choice

results in a slight oversize (a few mm) to accommodate the beam in the case with the

largest impact angle. To minimize the over-sizing of the mirrors and ensure the correct

alignment, a sufficient and necessary condition is to tilt only the two front mirrors.

The best geometrical configuration is obtained by positioning all the in-vessel mirrors, in

both the launching and the receiving port, in such a way as to be positioned with their

normals in the same plane (or in parallel planes); this choice leads to two advantages.

First, the elliptical beam foot-print on the mirrors has one axis equal to the beam waist,

which is obviously the minimum dimension achievable. If the mirrors are elliptical, their

surface is minimized and has to be equal to the foot-print area plus the clear aperture; this

optimizes the space occupied by the mirrors in the two ports, thus maximizing the beam

waist, and minimizes the cost of the mirrors themselves. Second, the problem having been

reduced from three to two dimensions, the two front mirrors need to rotate around only

one axis. If we express the normal to the reflecting surface of each mirror in cylindrical

coordinates {r, φ, z}, in a reference system centered on the machine axis, we can write for

the launching port

ni = {cos(αi), sin(αi) cos(θi), sin(αi) sin(θi)} (3.108)

where αi is the angle formed by the normal to the ith mirror with the toroidal direction,

and θi the angle formed with the vertical direction (Since the system is translatable in a

tunnel, the mirrors are here constrained to be aligned in the radial direction). Similarly

for the receiving port

ni = {cos(βi), sin(βi) cos(ψi), sin(βi) sin(ψi)} (3.109)

with ψ → θ and β → α. In each port the normals to the mirrors lie in the same plane

if θi = θ and ψi = ψ ∀i, by construction. The launching and the receiving ports are

separated by an azimuthal angle of 3/8π in the toroidal direction; therefore the normals

to all mirrors in both ports lay in the same plane if, for example, the launching port is

rotated around the vertical axis by 3/8π and then around the radial axis of the receiving
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port by an angle equal to ψ. Indeed the triple product, which, when equal to zero, is a

necessary condition for the three normals to be aligned in a plane, between two mirrors of

the launching port (mirror number 1, steerable, and number 2, fixed) and one steerable

mirror of the receiving port is equal to

n1 · (n2 ∧ n3) = − sin(β1) sin(α1 − α2) sin(θ − ψ) (3.110)

which, since α1 and β1 are not fixed being the angles of the two steerable mirrors, is zero

if and only if θ = ψ. The triple product being equal to zero is a necessary condition

for the normals to the three mirrors to be aligned in a plane. The condition α1 − α2, if

the front mirror was not steerable, is a spurious condition implying the two mirrors are

parallel. In the TCV system the normals to the mirrors in the launching port are not in

the same plane as the ones to the mirrors in the receiving port. This was due to a flaw

in the design which caused a misalignment of about one degree.

Even though the system can be two dimensional in one particular configuration, the trans-

lational degree of freedom of each port renders the problem inherently three-dimensional.

If the two sliding directions were parallel, the beam could be made to impinge on the

center of each mirror just by changing α1 and β1 but, since they are not, the relative

distance between the two mirrors changes as a function of the relative position. Therefore

the beam starting from the center of the front mirror in the launching port will not always

impinge on the center of the receiving mirror or of the following ones. As the system is

conceived, the distance between the impact point on the receiving mirror and the center

of the mirror itself is only a function of the radial position of the receiving port; since

this has the shorter of the two strokes, the displacement is limited. The solution to this

problem was to oversize the mirrors in the receiving port.

The translatability of the two ports, which requires the presence in each of a bellows,

a sliding rod for support, as well as a screw to rotate the front mirror, further reduces

the available space for mirror positioning and, in turn, the width of the beam as well. A

MATLAB graphical routine was written to simulate the beam trajectory in the vacuum

vessel as aid to the actual design performed with the CAD-like software CATIA V5. The

MATLAB routine was used to quickly evaluate possible alternatives without modifying

the heavy design in CATIA. All the conflicting requirements listed above and all the me-

chanical constraints which needed to be satisfied resulted in lengthy iterations between

the design in CATIA and the design in MATLAB, which lasted several months in total.

The final configuration of the launching port comprises three fused silica mirrors, of which

two are in vacuum, one ZnSe window for vacuum interface (described in Sec.3.6.7), a screw

which allows a rotation of the front mirror by up to 4 degrees and a bellows with a linear

stroke of 100 mm. The screw was designed to provide twice the amount of rotation needed

to guarantee an engineering safety margin.
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The receiving port contains two fused silica mirrors, both in vacuum, one ZnSe window

for vacuum interface, a screw which allows a rotation of the front mirror by 11 degrees,

which is about four times the design requirement, and a bellow with a linear stroke of

70 mm. The rotation range is far larger than needed because there were no mechanical

constraints on the screw positioning in the receiving port, contrary to the case of the

launching port. Both screws were fitted with micrometric actuators which provide 20 mm

linear translation; the end of the actuator is connected with the front mirror at a given

distance from the mirror axis of rotation, thus allowing the front-mirror to rotate.

The actual total rotations of both mirrors as functions of the position of the micrometric

actuators were measured with the Accutrack system, manufactured by Atracsys (Switzer-

land). This is a localizer employing the signal of four LEDs mounted on a pen. After

an initial calibration, the combined positions of the LEDs permit one to calculate the

position of the pen end point. The orientation of the two front mirrors, around their

respective rotation axes, with respect to a plane parallel to the radial direction passing

through the center of the respective port was deduced by a least square fit calculated over

one hundred measurements carried out every millimeter step of the actuator; the results

for the two ports are shown in Fig.3.22.

In the receiving port, the end part of the actuator is connected to the front mirror

Figure 3.22: (Left) Angle, with respect to the radial direction passing through the center
of the port, of the front mirror in the launching port vs the position of the actuator.
(Right) Same for the receiving port.

through an electrically insulating zirconium pin. This choice was dictated by the ne-
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cessity to avoid mechanical forces induced by a varying poloidal magnetic field, during

the current ramp-up, in the loop formed by the front mirror support, the screw and the

external flange (see Fig.3.24). Mechanical vibrations are expected to interfere with the

equilibrium position of the pin and the guiding groove along which it slides, therefore a

spring is used to connect the groove to the support of the front mirror. Zirconium has a

compression strength of 2000 MPa and a bending strength of 700-1100 MPa, depending

on the material phase. The pin is 13 mm long with a circular section 4.75 mm in diameter;

the contact point with the guide is 13 mm from the clamp of the screw, which is then the

distance between the applied force of the spring and the clamp. By applying De Saint

Venant’s theory of elasticity[16] we find that the maximum force the screw can be allowed

to exert is 566-889 N, for the two extreme values of the bending strength, or 188-295 N

if a safety margin of 3 is required. The spring’s length and type were chosen after having

tested the mechanical response to an applied perturbation of the groove position of a

number of springs with different elastic constants and lengths.

The receiving port configuration was designed to let the beam exit the port in a purely

radial direction. This requirement was dictated by the fact that any other exiting angle

would have been problematic, or impossible, due to the aforementioned restrictions in the

access to the port itself. A purely radial exiting beam has the additional advantage of

being insensitive to the radial position of the port itself, therefore allowing a fixed posi-

tion of the mirror outside the vessel which redirects the beam to the optical table. This

was achieved at the expense of a steeper impact angle on the last mirror, named M5 in

Fig.3.24, which is therefore quite large.

The design of the beam path outside the vacuum vessel was performed, first, with dedi-

cated MATLAB routines, benchmarked with the commercial ZEMAX code and, finally,

again with CATIA V5 to check the results and to appropriately design mechanical sup-

ports for all the optical elements required outside the optical table.

The PCI system requires a large optical table to accommodate focusing optics which ex-

pand the laser beam to the desired width, as well as the optics composing the imaging

system, the phase plate, the CO2 and visible lasers for alignment along with their respec-

tive safety interlock systems, the position sensing detector accompanied by the vibration

active stabilizing system, and the detector array with its pre-amplifiers. The acquisition

system is located under the optical table. On the basis of the amount of space required by

the whole system compared to the available space outside the torus assigned to standard

TCV operations, we were not allowed to install the optical table on the same floor as

the tokamak. The only alternative was to install the optical table on a floor located four

meters underneath TCV, which entailed a significant lengthening of the optical path; this,

in turn, caused three major difficulties. The first concerns the alignment, which has to
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Figure 3.23: CATIA drawing of the launching port. In the picture the beam trajectory is
depicted in yellow, the ZnSe window in green, mirrors are indicated as M1 M2 and M3.
The bellow and the rotating screw are also visible.

Figure 3.24: CATIA drawing of the receiving port. In the picture the beam trajectory
is depicted in yellow, mirrors are indicated as M4 and M5. The bellow and the rotating
screw are also visible.
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be performed with, at least, one person on each floor. The second is the fact that the

beam has to pass through the floor; the existing concrete floor slabs had existing vertical

cylindrical holes, 8 cm in diameter and 40 cm high - a choice then had to be made whether

these were sufficient or larger holes were needed. The last difficulty concerns the optical

path from mirror M5 to the detectors. Indeed, since the phase contrast was designed to be

sensitive also to electron scale fluctuations, all the optical elements have to be designed to

collect all the scattered light. In the paraxial approximation, the half-width of a scattered

beam in free space propagation is described by

w(z) = w(0) + zθ (3.111)

where θ is the scattering angle and z is the distance along the beam path. Considering a

CO2 probing beam laser of 3.5 cm half-width, and fluctuations wave-vectors ≤ 60 cm−1,

Eq.3.111 translates into a doubling of the beam waist after 3.5 m. Now, the price of an

optical element, flat or focusing, increases considerably more than linearly with its linear

size while its optical properties generally deteriorate; additionally, aberrations consider-

ably increase with the oblique angle of propagation with respect to the optical axis of the

system. Since PCI is highly sensitive to optical aberrations, the lengthening of the optical

path after plasma scattering caused severe difficulties in the optical design.

The design of an optical system with the desired characteristics, in view of all the con-

straints in terms of available space outside the receiving port and the considerable distance

between TCV and the optical table, including a minimization of aberrations, number and

size of optical elements and their cost, required a detailed evaluation of several alter-

natives. These include long focal length lenses, combinations of tilted parabolic and/or

spherical mirrors, large off-axis paraboloids and telescopic arrangements of several kinds.

Only two configurations turned out to be feasible, and we describe them hereafter.

• Telescope with 2 lenses + existing CRPP parabolic mirror

The idea is to use a telescope made by two lenses to relay the beam exiting from the

receiving port to the parabolic mirror which will then focus it on the phase plate. The

parabolic mirror, used in a previous experiment at the CRPP, has a focal length of 1.91

m and a clear aperture of 13 cm.

The ABCD matrix of a telescopic device made by two lenses reads[
f1(f2−l3)+l2l3−f2(l2+l3)

f1f2

−l1[−l2l3+f2(l2+l3)]+f1[−(l1+l2)l3+f2(l1+l2+l3)]
f1f2

−f1+f2−l2
f1f2

f1(f2−l1−l2)+l1(−f2+l2)
f1f2

]
(3.112)

where f1 and f2 are the focal lengths of the first and the second lens, respectively, l1 is

the distance between the object plane and the first lens, l2 is the distance between the
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two lenses and l3 is the distance between the second lens and the parabolic mirror.

Let us now find the conditions under which the beam is imparted neither a convergence

nor a divergence by the telescope. By definition of the ABCD matrix this is found by

imposing the element C equal to zero; Eq.3.112 then gives the familiar telescope expression

l2 = f1 + f2 and reduces to [
−f2

f1
f1 + f2 − f2l1

f1
− f1l3

f2

0 −f1

f2

]
(3.113)

In this way it would be as if the parabolic mirror was positioned just outside the receiving

port without constraints on free space available. It is of interest to minimize the size of the

beam on the parabolic mirror, because this allows more flexibility on the positioning of the

phase plate on the optical table and permits the use of the central part of the parabolic

mirror, which is certainly the best part in terms of overall reflectivity and surface figure.

The minimum size is obtained in the point where an image is formed, which is found by

imposing B=0, yielding

l3 = f2
f 2

1 + f1f2 − f2l1
f 2

1

(3.114)

and Eq.3.113 reduces to [
−f2

f1
0

0 −f1

f2

]
(3.115)

The quantity −f2/f1 is the transverse magnification of the system, up to the parabolic

mirror, and can be chosen at will; an opportune choice may permit reducing the large

scattering angles, resulting in turn in reduced aberrations in the imaging system after the

parabolic mirror, as the angles are multiplied by the reciprocal of the magnification.

In our case this design requires f1,2 ' 3 m and both lenses need to be larger than 10

cm in diameter. The system is not very sensitive to the position of the object plane,

i.e. to the spatial localization of PCI: indeed a displacement δl1 changes the beam width

on the parabolic mirror by f2δl1θ0/f1, where θ0 is the scattering angle from the plasma.

The drawback of the system, which is the reason why it was discarded, is the difficult

alignment of the first lens which has to be mounted just outside the receiving port and, in

case of even a small misalignment with the beam, would cause severe aberrations limiting

the system performance.

The next configuration, even though more expensive than the one above, was the final

choice

• Large parabolic mirror + relay lens for focus

This design is based on propagating the beam from the receiving port to an off-axis

paraboloid large enough to collect all the light scattered by the plasma. Since the optical
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Figure 3.25: CATIA drawing of the beam path outside the vacuum vessel. In the picture
the beam trajectory is depicted in yellow, the parabolic mirror is indicated as PM. The
optical table is also visible. The entry port is on the right and the exit port on the left.

axis of the parabola has to be colinear with the optical axis of the propagating beam, two

intermediate flat mirrors need to deviate the beam to an almost horizontal propagation

direction. Such a set-up, depicted in Fig.3.25, requires a distance of about 10 m between

the object plane and the off-axis parabolic mirror, whose clear aperture needs to be at least

31 cm to collect all the light scattered by high wave-vectors allowing room for mechanical

vibrations.

The presence of the relay lens for focus is due to the focal lengths of parabolic mirrors

being directly proportional to their size. The focal length of such a wide parabola is larger

than three meters, which would then force the phase plate and, at least, the first lens after

it, to be larger than 6 cm. Since, usually, these are routinely manufactured smaller than

5 cm, we chose to introduce a relay lens for focus to shorten the overall focal length and,

therefore the dimensions of the phase plate and all the lenses after it.

Along the optical path, the laser beam is enclosed in plexiglas tubes and boxes to protect

the optics from dust and the beam from acoustic perturbations.

The complete design is described in detail in Sec.3.6.9.

3.6.5 Lasers

In the previous sections it was mentioned that PCI is designed to operate with a monochro-

matic probing beam at 10.6 µm. The reason for a monochromatic coherent source is

explained in Sec.3.1 while the choice of 10.6 µm is dictated by a compromise between

two conflicting sets of requirements. The validity of the Born and Raman-Nath approx-



130 CHAPTER 3. PCI AND DOPPLER REFLECT.: THEORY AND REALIZATION

imations as well as the first order paraxial approximation, which are at the basis of the

theoretical approach in Sec.3.1, are more easily satisfied at short wavelengths, which

are also beneficial in reducing plasma refraction effects (see Eq.3.15). Additionally, the

smaller the maximum scattering angle to be analyzed, the better is the optical system in

terms of aberrations and of size of its optical elements, as they are minimized. However,

longer wavelengths have several advantages as they are less sensitive to damages and im-

perfections of the optical elements; also reflectivity tends to be much higher at long than

at short wavelengths (see for example Fig.3.26). Additionally, focal spot sizes are larger

at long wavelengths, thus simplifying the construction of the phase groove and the spa-

tial filter. At last, sensitivity to plasma fluctuations is linear in the probing wavelength,

as stated in Eq.3.40, therefore, longer wavelengths are more appropriate to detect small

phase shifts. The choice of the CO2 laser at 10.6 µm is therefore a compromise.

The PCI diagnostic makes use of an rf excited carbon dioxide laser manufactured by Ed-

inburgh Instruments, Ltd. (UK). The laser was used for the PCI diagnostic on the TCA

tokamak; it is cooled by an external closed loop water chiller and, even though its nominal

output power is 8 W, it produces at this point an average output power of about 6.5 W,

reached after approximately two hours of operation. Power oscillations during the tran-

sient phase are generally between 3.5 and 8 W. The output electric field is specified to be

a pure linearly polarized TEM00, with a nominal power full-width at the output coupler

of 1.3 mm at the e−2 points and a nominal divergence of 9 mrad. The output wavelength

was measured, with a diffraction grating, to be 10.61±0.005µm. The output power can

be modulated by modulating the rf source. From dc to 10 kHz the power output follows

the input modulation uniformly; in the region 10-100kHz the laser can be modeled by an

RC circuit with time constant equal to 9.5± 0.2 µs; above 100 kHz significant deviations

occur, whose modeling was not attempted. The maximum modulation frequency is 500

kHz, above which no power is coupled in output. The CO2 laser is foreseen to safely

operate with the shutter LS-10-12, manufactured by Lasermet (UK). The laser shutter

is integrated in the TCV safety system that manages the access to the TCV zone during

daily operations. Additionally, the TCV safety system has the capability to switch off the

rf power supply in case of shutter failure.

The visible laser is a laser diode manufactured by Scitec Instruments (UK). It generates

100 mW CW power in the transverse TE00 mode. The nominal wavelength is 632±5

nm, the beam diameter at the output coupler is less than 5 mm and its divergence was

measured to be less than 2.5 mrad; power stability is declared to be less than 5% over 2

hours. The beam was found to be slightly elliptical and the TE00 mode contaminated by

higher-order modes generating patterns of characteristic size 1-2 mm. The power supply

of the visible laser is also under the control of the TCV safety system.
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3.6.6 Mirrors

In this section we will describe the mirrors used in the optical design.

Mirrors need to satisfy strict surface accuracy requirements as the PCI is sensitive to

optical aberrations, i.e. to differences in the optical path between the different scattered

components. Let us start with the in-vessel mirrors.

The in-vessel mirrors are flat and elliptically shaped because they are positioned in a

cylindrical tunnel at an angle with respect to the axis of symmetry. The required flatness

was λ at 632 nm over a clear aperture equal to 90% of the elliptical axis, which required

a mirror thickness of, at least, 10 mm. Five mirrors in total are installed in the vessel,

four of which are in vacuum. The environment of the TCV vacuum vessel required the

substrate to be made of fused silica which, to simplify the order, was also chosen as a

substrate material for the mirror not in vacuum.

Except for the two front mirrors, which require a special coating, all the mirrors are

coated with about 200 nm of Al protected by about 50 nm of SiO2 deposited up to 0.37

millimeters from the edge; even though this is the actual reflecting surface of the mirrors to

be used when calculating diffraction effects, only 90% of it is to be considered as useful for

the scattered beam, because the required flatness is specified only on that inner portion of

the mirror. The two front mirrors required a special coating which we describe hereafter.

All the mirrors were bought from DoricLenses Inc. (Quebec).

Front mirrors are more heavily exposed to four damaging phenomena

• Plasma ion sputtering

• Erosion by neutrals

• Erosion and deposition from glow discharge cleaning

• Erosion and deposition from boronization.

The other two in-vacuum vessel mirrors are expected to be much less affected by these

phenomena as they are positioned further behind the line of the plasma-facing tiles and

because their reflecting surfaces both face the external part of the vessel.

Detailed calculations of the impact of the first two phenomena were performed in collab-

oration with G. de Temmerman of Basel University. The results of a Scrape-Off-Layer

(SOL) simulations performed with the SOLPS5 code of a high density TCV shot, namely

shot 10452 [10], was provided to the TRIDYN code [11] to estimate, in the extreme po-

sitions the front mirrors can reach, the erosion and deposition on different coatings. In

particular, ion species considered in the calculations were D0, D+, C0, C1,2,...,6+. The re-

sults of the calculations imposed the use of a high Z material such as Ag, Au or Mo; in

particular, protected Al would have been severely damaged after one single shot with the
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mirrors positioned in the innermost position.

The ITER project foresees the use of Mo mirrors to withstand the impact of charge ex-

change neutrals, whereas Au is not considered due to nuclear transmutation caused by

neutron impact. To add further experimental data to studies of the performances of such

mirrors in a tokamak environment, we decided to use Mo for our front mirrors. Mirrors

fully manufactured in molybdenum, or in Al coated with Mo, did not meet the required

optical specifications; therefore we finally chose fused silica mirrors coated with Mo. The

process consists of depositing on the fused silica substrate a sufficiently thick layer of Mo

such that light does not interact with the substrate underneath the coating. The complex

refraction index for a number of layers can be found in [12]; considering the values for

Mo [13] we obtain a penetration length at 1/e points in power plotted in Fig.3.26a. The

Figure 3.26: (Left) Expected penetration length into a Mo layer as a function of incident
light wavelength. (Right) Expected Mo reflectivity at 10.6 µm for perpendicular incident
light.

penetration length at 10.6µm is equal to about 14 nm, thus 99% of the incident power is

expected to be reflected after 64 nm; adding a safety margin of three we designed the coat-

ing to have a thickness of 200 nm. Once we assume that no power is transmitted through

the reflecting Mo layer to the underlying substrate, we can make use of Snell’s law to

evaluate the reflection coefficient for incident light polarized parallel and perpendicular

to the plane of incidence. As a function of the incidence angle, Snell’s law

sin(θi) =
1

N
sin(θr) (3.116)
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allows one to calculate the Fresnel coefficients of a given material. The reflection coeffi-

cients at 10.6 µm, calculated for Mo, are plotted in Fig.3.27. The coating was performed

Figure 3.27: Expected Mo reflectivity at 10.6 µm, as a function of the incident angle, for
light polarized parallel and perpendicular to the plane of incidence; unpolarized light is
also reported as tot.

by HELIA Photonics Ltd. (Scotland).

Molybdenum is not suitable for continued operation at temperatures above 500 ◦C in an

oxidizing atmosphere, unless protected by an adequate coating. Since the baking tem-

perature in TCV is about half that value, we did not expect any problem on this side;

indeed tests at 300 ◦C for several hours did not show any effect on the mirrors. However,

even though from Fig.3.27 we expect a reflectivity larger than 98% at intermediate angles

of incidence, the measured reflectivity was about 80%. An investigation was performed

in collaboration with the Interdisciplinary Centre for Electron Microscopy of the Ecole

Polytechnique Fédérale de Lausanne to investigate whether a possible contamination of

the coating might have taken place. Measurements were done on a test mirror, coated

in the same coating run as the two front-mirrors, employing the Energy Dispersive X-ray

Spectroscopy (EDX or EDS) technique at a pressure of about 100 to 200 Pa. Monte-Carlo

calculations estimate the thickness of the sampled volume in about 150 nm which, being

smaller than the coating thickness, designed to be 200 nm, validated the use of this tech-

nique. Indeed, an analysis of the coated surface doesn’t show the presence of Si, while

this appeared clearly when a scratch in the coating was analyzed. This indicates that the

coating thickness is indeed larger than 150 nm.
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The atomic composition of the coating was determined to be approximately 60% Molyb-

denum and 40% Oxygen, meaning that Mo underwent oxygenation processes, most likely

with atoms present in the coating vacuum chamber. The mirrors were sent back to Helia

Photonics for a re-coating with a new procedure, after the first coating was removed by

plasma etching. Even though the new procedure proved to be slightly better than the

first one, reflectivity increased only to 85%.

Even though Mo is a high Z element, suited to widthstand high ion sputtering rates,

Quantitative results
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Figure 3.28: EDX report on the test mirror coated with Mo. The fraction of Oxygen is
clearly significant. The weight ratio shown translates into an atomic ratio of 60% Mo and
40% O.

its sputtering threshold is only a few tens of eV[28], depending on the bombarding ions.

TCV routinely runs glow discharges with singly ionized helium atoms accelerated by a

potential difference of 400 V. The ion sputtering threshold is therefore by far insufficient

to protect the mirrors, which need to be somehow actively shielded. This is usually per-

formed with the use of mechanical shutters; however, since in our design, especially in the

launching port, there is no room for shutter movements, alternative solutions had to be

considered. The first option was to manufacture three rings, slightly larger than the torus

access hole diameter, to be spaced a few millimeters apart and oppositely charged, with

a total zero charge deposited on the rings, in such a way as to create the potential barrier

depicted in Fig.3.29. The negative part would repel electrons so as not to short-circuit the

glow current, while the positive part would repel incoming ions and protect the mirror.

If the distance between rings is smaller than 3 cm, the voltage drops to zero 5 cm away

from the center; the central ring could then be positioned 5 cm beyond the first wall to
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Figure 3.29: Radial profile of the electrostatic potential generated by three rings charged
to -V/2, V, -V/2. The profile does not depend on the distance between rings, provided
the latter is smaller than 3 cm.

preserve the ground voltage on the first wall. This option was rejected due to the risk of

short-circuiting the glow current and thus of possible damages to the vacuum vessel.

The second solution relied on the fact that the mirror substrate, being a glass, is an

insulator, so if the metallic mirror clamps are insulated from the reflecting surface, the

latter is left at a floating potential and is therefore subjected to ion sputtering only un-

der the sheath potential, which is below the Mo ion sputtering threshold. Two possible

solutions were considered: to deposit an insulating Al2O3/3TiO2 coating on the clamps

and on the mounts to completely insulate the entire mirror, or, during the Mo coating, to

mask the zones of the mirrors which would have been clamped in TCV; the first solution,

which would have had to be performed by Plasma and Thermal Coatings Ltd. (Wales),

was much more expensive and was therefore rejected. The geometrical configuration of

the front mirrors is depicted in Fig.3.30. The mirror clamps are connected to the vacuum

chamber, and thus are at the same electrostatic potential, while a gap separates each of

them from the Mo coating; this gap assures electrical insulation of the coating provided

that it is larger than the ion sheath thickness. According to [14] the ion sheath width is

a decreasing function of the plasma collisionality, which means that, for designing pur-

poses, it is enough to take the limit of a collisionless plasma. In this case about 10 Debye

lengths are enough to guarantee a drop of the potential by a factor of 20. In TCV the

glow potential is equal to 400 V, while the energy threshold of He sputtering on a Mo

target is estimated at 47.5 eV[15]. During the glow the Debye length is about 2.3·10−7 m

which means that 1 mm is largely sufficient for the electrical insulation purpose.

The clamps used in TCV are shown in Fig.3.31 and feature an additional protruding lip
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Figure 3.30: Horizontal view of first mirrors in TCV.

meant to protect the insulating gap from boron deposited during the boronization process

which could short-circuit the Mo reflecting surface to the clamps.

Due to mechanical vibrations of the vessel and to their almost vertical orientation

(' 23◦), all the in-vesssel mirrors are clamped on four points, instead of the usual three,

to ensure a safer support. To avoid a deformation of the reflecting surface due to the

fourth clamp, the mirror support was manufactured with a groove designed to accom-

modate a spring between the mirror support and the mirror rear surface, which provides

an additional degree of freedom; in Fig.3.32 we show one of the in-vessel mirrors with

its support. The spring should deliver enough force to keep the mirror in contact with

the clamps, but should also be sufficiently compressible to actually supply the additional

degree of freedom cited above. Several types of springs were tested on the bench mirrors

of the same size and approximately the same weight as the ones actually used in TCV;

the best performing spring was model 106-MBA-HST2, manufactured by Georg Rutz AG

(Germany), which delivers a force of 0.5 N/cm when compressed by 15% of its uncom-

pressed height (4 mm). In accordance with the specifications of the spring, the grooves

and the mirror mounts were designed to obtain a nominal compression of 15%, and a

maximum allowed of 30%.

The out-vessel mirrors not positioned on the optical table were all manufactured by Pre-

cision Glass & Optics (California) as Pyrex substrates coated with protected aluminium;

the surface figure was specified as λ/4 at 632 nm over 90% of the diameter. Only the

largest mirror, a 40 cm diameter, circular mirror, positioned before the parabolic mirror

in the optical path, has a BK7 substrate polished at λ/10 per 150 mm linear dimension

over 90% of the reflecting surface, and is also coated with protected aluminium.

The off-axis parabolic mirror of the required size was not available off-the-shelf and had to

be specifically manufactured. The cheapest solution was, by far, to buy a 76.2 cm wide,

f/4.5 parent paraboloid, manufactured by Optical Mechanics Inc. (Iowa) as a Pyrex sub-

strate polished to 0.07λ rms at 530 nm, with cosmetics 60-40 scratch and dig and exact

focal length 3.454 m. The parabola was cut by Rayotek Scientific Inc. (California) into
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Figure 3.31: Clamps used in TCV for in-vessel mirrors; the additional lip is meant to pre-
vent short-circuits between the clamps themselves and the Mo reflecting surface, possibly
caused by boron deposition.
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Figure 3.32: CATIA design of one in-vessel mirror with the groove dug in the support
underneath the mirror to accommodate a backing spring.

4 pieces, two of them 36.83 cm wide and the remaining two 24.13 cm wide. The four

resulting off-axis paraboloids were coated with protected Ag again by Optical Mechanics

Inc.. Additional flat mirrors to be positioned on the optical table were bought from ESCO

Optics (New Jersey) as Pyrex substrates coated with protected Al, 40-20 scratch and dig

and λ/10 flatness.

3.6.7 Windows for vacuum interface

The windows for vacuum-interface were bought from ULO Optics (UK). They are both

circular with a diameter of 100 mm, and thickness 10 mm. They are both made of ZnSe

coated on both sides against reflection at 10.6 µm. Flatness is λ/50 at 10.6 µm over 85%

of the diameter. The in-vessel mirrors in the receiving port are 90 mm wide in the smaller

direction, therefore the window has to be considered as the aperture stop of the system

when the beam is centered on it. The transmission was stated to be larger than 99.4%

for perpendicular incidence; and was indeed experimentally measured to be larger than

99%. Each window transmits about 60% of the visible laser power used for alignment;

therefore, also in view of additional ZnSe optics, viz. lenses on the optical table, a possible

double AR-coating at 10.6 µm and 632 nm was considered but, since the cost was much

higher than the price of a new visible laser with enough power to compensate for losses

induced by the windows, only the AR-coating at 10.6 µm was eventually chosen.

The window thickness has to be large enough to withstand the pressure load, i.e. 1 bar.

In view of the significant cost of ZnSe optics with excellent optical quality, as well as the

potential safety issues, it is vital that the windows be sufficiently thick to withstand this
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load over long periods of times without breaking. Even though an increase in thickness

reduces the optical transmission slightly, the losses are dominated by surface reflections,

which can be eliminated by anti-reflective coatings. The required thickness depends on a

number of factors, namely

• Mounting flange size

• Stress resulting from mounting or sealing

• Flange clamping stresses

• Mounting flange flatness

• Stress due to thermal expansion

• Vibration effects

• Pressure cycling or surges

• Thermal shock/cycling

• Mounting surface rigidity

• Mounting surface roughness

• Optic edge roughness

• Desired optical specifications

Given the impossibility to perform precise calculations taking into account all these fac-

tors, the following formula for the required thickness T is usually adopted for a circular

unclamped window supported by a flat flange around its edge

T =

√
1.1Pr2S

M
(3.117)

where P is the pressure load, r the radius of the window, S is a safety factor and M is

the rupture modulus of the material. For ZnSe the required thickness is of the order of

5 mm. The differential equation governing the vertical displacement w of a membrane

loaded with pressure p(x, y) is the Germain-Lagrange equation

∇4w(x, y) =
p(x, y)

D
(3.118)

where D = ET 3/12(1− ν2), T being the membrane thickness, E the Young modulus and

ν the Poisson ratio. For ZnSe E = 74.3 GPa and ν = 0.31. Normalizing every length
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to the windows radius R0 and transforming to cylindrical coordinates, Eq.3.118 can be

solved with the following boundary conditions

wn(1) = 0,
∂wn
∂rn

(0) = 0,
∂2wn
∂r2

n

(0) = 0 (3.119)

which lead to the following solution (the third condition imposes two integration constants

to be zero)

wn ≡
w

R0

=
3(1− ν2)p

16E(T/R0)3

[(
r

R0

)4

− 1

]
; (3.120)

this gives 1.4µm in the center of a 10 mm thick window, whereas a thickness of 5 mm

would result in about 11.8 µm. The induced curvature is zero in the center and maximum

at the edge, the use of the thick lens equation yields a focal length larger than 90 m over

the clear aperture of the window. The window diameters were chosen to be identical

to compensate this effect, even though the window in the launching port could have

been slightly smaller since the effective beam, being undiffracted, is smaller than in the

receiving port.

We shall now describe the window supports.

Windows need to be hermetically sealed against a pressure load of 1 bar, therefore windows

cannot be clamped but are supported instead by two flat flanges around the edge; the

seal is provided by O-rings between the window and each flange. An O-ring, also known

as a packing, or a toric joint, is a mechanical gasket in the shape of a torus; it is a

loop of elastomer with a disc-shaped cross section, designed to be seated in a groove and

compressed during assembly between two or more parts, creating a seal at the interface.

O-rings are manufactured in a number of different materials, each of which is specified to

have specific physical and chemical properties in given environmental conditions. The O-

ring has to maintain its elasticity at the baking temperature of TCV, which, as this thesis

is written, is 250 celsius. There is not yet a mapping of the temperature in the TCV vessel

during the baking, so, since the flanges are positioned in the interior of the vacuum vessel,

the maximum temperature had to be assumed. Moreover an increase of the temperature

baking is also foreseen as a possibility for the future. O-rings were therefore chosen to

be compatible with the present baking temperature, i.e. 250 celsius, with an additional

cooling system which is used now only to provide a safety margin but will be imperatively

required if the baking temperature will be increased above the O-ring thermal limit.

The chosen material is Kalrez, a perfluoroelastomeric material designed to tolerate up

to 327 celsius, produced by DuPont (France). The two sides of each window are not

compressed against identical O-rings but, to optimize the resistance in vacuum, a more

elastic quality of Kalrez was chosen for the vacuum side. The grooves in the flange were

also specifically designed for each O-ring; in Table 3.1 we report the design specifications.
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Air side Vacuum side

Installed compression [%] 13.2 12.2
Operating compression [%] 19.1 21.5

Free volume [%] 20.9 19.7
Groove width [mm] 10 8.03
Groove depth [mm] 2.965 2.2

O-ring ID [mm] 88.49 88.57
O-ring ED [mm] 92.02 91.19

Metal-to-Metal Clearance gap [mm] 0.1 0.1
Rupture module [MPa] 17.91 21.7
Max operating T [◦C] 327 280

Table 3.1: Design parameters of the Kalrez O-rings used to seal the ZnSe windows.

It must be stressed that the O-rings and the grooves are designed to withstand about 280

degrees celsius even if the cooling system fails.

The flange is designed in such a way as to clamp the window on its outermost annulus

of 7.5 mm width, therefore leaving the central circle of 85 mm in diameter, which is the

area over which flatness is specified, as the clear aperture of the system. The aperture

stop radius is therefore 42.5 mm.

3.6.8 Bellows

Bellows are to be designed based on a number of parameters: pressure drop, baking tem-

perature, linear stroke, number of cycles, external and internal diameters. The launching

port requires the maximum space available for mirror positioning, since one of the mirrors

has to be positioned in the space enclosed by the bellows itself and the beam travels at

finite angles with respect to the bellows sliding direction. The receiving port does not

present this problem as the beam is designed to exit the port in the radial direction,

that is parallel to the bellows sliding direction, and the space available allow to position

the bellows beyond the last in-vessel mirror, therefore the internal bellows diameter is

constrained only by the beam size. The pressure drop is obviously 1 bar.

The baking temperature, for the same considerations exposed in Sec.3.6.7, was required

to be 350 ◦C; the linear strokes, and thus the number of convolutions, are derived by

imposing that system be able to position the innermost point of the front-mirrors at least

2 cm beyond the wall, that is 4 cm beyond the tiles, for maximum protection when the

system is not operated, or during baking and boronization operations.

If the system has to be operated on a daily basis, considering a maximum of 4 cycles a

day, 250 days of operation a year, we designed the bellows to operate for 10 years, i.e.

10000 cycles.
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Both sets of bellows were manufactured by Comvat (Switzerland) in stainless steel, grade

316L.

3.6.9 The optical table

PCI can be set to detect ion or electron spatial scales by changing the optical magnification

of the imaging system. An optimal design is such that, to change the total magnifica-

tion, only optics on the optical table and after the phase plate need to be changed. This

translates, for the relay optic, into a precise focal length and a precise distance from the

paraboloid. The focal lengths of the paraboloid and of the relay lens and their distance

determine the effective focal length which, in turn, gives the minimum phase plate diam-

eter, for a given scattering angle, as well as the diameter of the first lens after the phase

plate, and the phase groove diameter. Moreover the distance between the paraboloid and

the relay lens determines the diameter of the relay lens itself, again for a given maximum

scattering angle.

A number of different optical designs were explored in the attempt to satisfy all the op-

tical requirements in terms of total magnification, minimization of the size of lenses and

mirrors, minimization of the total beam path on the optical table (to minimize the size

of the optical table itself and the number of optics to be installed on it), minimization of

aberrations and optimization of the blur on focal planes.

The optical table was manufactured by Thorlabs (Germany) and was chosen to be 2 m

long and 1 m wide, to be installed horizontally.

In Figs.3.33 and 3.34 we show the layout of the optical table for the two best perform-

ing optical designs for each of the optical magnifications of 0.12 and 0.55, respectively.

The physical parameters for these four configurations are described in Table 3.2. Given

the dimensions of the linear detector array, the two optical magnifications correspond to

0.9 cm−1 ≤ k ≤ 13.5 cm−1 and 4.1 cm−1 ≤ k ≤ 62 cm−1, respectively. It has to be

underlined that the two magnifications have been chosen so as to result in overlapping

spectral regions, which can therefore be benchmarked against each other.

The lenses were manufactured byULO Optics (UK) and Lambert Optics Ltd. (Nevada)

and were split between the two firms according to the most advantageous quotes proposed.

The substrate material is ZnSe coated on both sides against reflection at 10.6 µm. Lambert

Optics lenses are characterized by scratch and dig 40-20 and surface accuracy λ/4 at 632

nm. ULO Optics lenses are specified with rms roughness less than 2 nm and surface

accuracy λ/80 at 10.6 µm. Two 45◦ ZnSe beam combiners with surface figure of λ/4 at
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Figure 3.33: Schematic views of two feasible configurations on the optical table having a
total magnification equal to 0.12. Mirrors are indicated as M, lenses as L, irises as I, the
spatial filter as SF, M20 is the off-axis parabolic mirror used to expand the beam to the
desired width, M10 is the focusing off-axis parabola.
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Figure 3.34: Schematic views of two feasible configurations on the optical table having a
total magnification equal to 0.55. Mirrors are indicated as M, lenses as L, irises as I, the
spatial filter as SF, M20 is the off-axis parabolic mirror used to expand the beam to the
desired width, M10 is the focusing off-axis parabola.
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` 1 ` 2 ` 3 ` 4

w0 [m] 0.045 0.045 0.008 0.008
θ0 [rad] 0.0023 0.0023 0.01 0.01

M 0.12 0.12 0.55 0.54
Blur [µm] 74.3 35.4 109 58
OPD [µm] 0.596 0.19 0.313 0.232
F1 [m] 3.43 3.43 3.43 3.43
F2 [m] 0.381 0.508 0.381 0.381
F3 [m] 0.254 0.254 0.254 0.381
F4 [m] 0.381 0.508 0.381 0.381
D1 [m] 10 10 10 10
D2 [m] 4.93 4.82 4.93 5.17
D3 [m] 0.82 1.08 0.629 0.878
D4 [m] 1.39 1.39 1.2 1.36

∂M/∂D1[m−1] -2.92e-3 -2.76e-3 -0.366 -0.296
∂M/∂D2[m−1] 0.0563 5.7e-2 -1.04 -0.781
∂M/∂D3[m−1] -0.382 -0.241 -5.81 -2.68
∂M/∂D4[m−1] -0.203 -0.231 -2.16 -2.01
∂Blur/∂D1 -2.03e-5 -3.42e-6 -3.72e-5 -7.17e-5
∂Blur/∂D2 1.25e-4 -2.02e-5 -2.96e-4 -3.34e-4
∂Blur/∂D3 4.09e-4 5.09e-5 7.11e-5 9.75e-5
∂Blur/∂D4 -1.02e-4 -2e-5 -2.09e-4 -1.88e-4

Table 3.2: Physical parameters for the four adopted optical designs. M is the total
magnification, Fx the focal length of lens x, Dx the distance between lens x and lens
x− 1, x = 0 corresponds to the object plane.
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10.6 µm were also bought from ULO Optics.

3.6.10 Detectors

The PCI diagnostic will make use of two detectors already used on the tokamak TCA and

available at the CRPP: the first one is a single detector manufactured by Societé Anonyme

de Telecommunication (France), indicated as SAT in the following, and the second one is a

linear array manufactured by Infrared Associates Inc. (Florida), indicated as array in the

following. The physical properties are specified in Table 3.3. Considering Eq.3.104, for the

Kind Single-element PV Array PC

Area per element [mm2] 0.196 0.06

D∗ [cm
√

Hz/W] (declared) 5 · 1010 3 · 1010

D∗ [cm
√

Hz/W] (measured) 2.5 · 1010 1.5 · 1010

Saturation power [mW] 14 0.12
Operating T [K] 77 77

Bandwidth [MHz] 10 1
Spacing [µm] n.a. 50

Table 3.3: Physical properties of single-element and array detectors.

detector array we find a minimum measurable fluctuation phase of 1.2 · 10−5rad MHz−1/2

which corresponds, for an integration length of 10 cm, to 4 · 1015 m−3MHz−1/2. For the

SAT detector, considering the same integration length we obtain 8 · 1014 m−3MHz−1/2 as

minimum detectable fluctuating density. This quantities were considered in the choice of

the acquisition system.

• The measured bandwidth has been tested only up to 500 kHz which was the maxi-

mum possible modulation frequency of the laser power.

• In the array detector only 24 elements are actually working, numbers 2-6-7-10-14-22

do not respond to the input signal.

In Fig.3.35 we show the calibration of the preamplifiers to be used with the linear array

and the single-element detector. The linear array has two sets of amplifiers, the first

operating between 50 kHz and 150 kHz, the second one between 10 kHz and 3 MHz. The

single element detector has also two sets, from dc to 10 kHz and from dc to 200 kHz,

respectively. A new linear array of detectors, with or without matched pre-amplifiers,

cannot be purchased within current budget limitations.
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Figure 3.35: (Top) Voltage-to-Voltage gain of the thirty preamplifiers of the detector array
in the low and the high frequency range. Mean values and errorbars are averaged over
all pre-amplifiers. (Bottom) Voltage-to-Voltage gain of the single element pre-amplifier in
the two frequency ranges.
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3.6.11 Data acquisition

The acquisition system is one the most expensive parts of the diagnostics. Even though

the detector array has only 24 working elements it was decided to buy a 32 channel

digitizer manufactured by D-TACQ Solutions Ltd. (Scotland) in view of a possible future

upgrade of the detector array. With the same spirit the acquisition system can sample

at a much higher frequency than the bandwidth of the detector array; the choice of the

highest sampling frequency was dictated by physics arguments: the highest frequency of

fluctuations expected in the TCV tokamak.

The cost of the acquisition system depends mainly upon the number of modules needed.

Since the number of channels that can fit into a module is a function of the sampling

frequency, the cost estimate strongly depends on its value. In the following a number of

possibilities are shown.

The standard digitizer, widely used on TCV, is ACQ216CPCI-16-50-M5-RTMDDS which

can be configured for the following sampling rates:

• 16 channels at 16 mega samples per second (MSPS)

• 12 channels at 22 MSPS

• 8 channels at 25 MSPS

• 4 channels at 50 MSPS

Other properties are: 14 bit as resolution, simultaneous sampling, 1 GB memory (3 sec

at full tilt), Gigabit Ethernet on Rear Transition Module (RTM), voltage ranges ±3V,

Linux kernel 2.6 embedded. The output voltage was chosen after an evaluation of the bit

noise compared to the detector noise.

A set of about one thousand linear, electrostatic, ETG simulations were performed with

the GS2 code to estimate the maximum frequency to be expected in TCV. Simulations

were performed with kinetic electrons and adiabatic ions, evolving five poloidal modes

in the range 0.1 ≤ kθρe ≤ 0.8. Results suggest that the less expensive option, i.e. two

modules with 16 channels sampling at 16 MSPS each, is sufficient for TCV. Indeed, 5 MHz

seems to be acceptable since the highest frequencies are lower than 3MHz
√

Te[keV] for

a reversed shear, which would result in frequencies around 4-5 MHz (the most unstable

mode would be at about 1-3 MHz). Frequencies higher than 5 MHz are expected for

R/LTe ≥ 30 and R/Lne ≥ 2, which would be quite unusual for TCV. Positive shear cases

show frequencies definitely lower than 4 MHz.

Each module is also equipped with a hardware filter at 5MHz to avoid aliasing of the

signal and an External Clock Multiplier that multiplies an externally input signal by

12. The clock is therefore generated with the use of the standard 1MHz signal, fed into
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the External Clock Multiplier to generate a 12 MHz signal which, with the use of a

Digital Direct Synthesis clock, originates any arbitrary lower frequency signal. The jitter

produced is ±6 ns, which is then negligible compared to the sampling frequency.

The standard acquisition frequency is set to 12 MSPS; signals are additionally filtered at

3 MHz, decimated by a factor of 2, and stored also at 6 MSPS.

If higher fluctuation frequencies are to be acquired, two possibilities are open: frequencies

a few times higher than the standard ones or frequencies a few tens of times higher. The

first case is typical of fluctuations at the electron scale driven by high unstable wave-

vectors (kθρe ≥ 2); we will not be concerned here with S/N considerations concerning

the amount of phase shift at these wavelengths but we will make only considerations

concerning the acquisition frequency. In this case the acquisition system is capable of

sampling 8 channels at 50 MSPS, thus possibly reducing the spatial resolution of the

measurements, provided a new array detector with sufficient bandwidth becomes available.

The change in the spatial resolution depends on the length of the new linear detector and

on the magnification of the imaging system.

The second case is typical of externally launched RF waves at a multiple of the ion

cyclotron frequency which, for TCV, is about 21 MHz for hydrogen. There is at present no

ion cyclotron heating on TCV, but this could conceivably be added in the future. Whether

the hydrogen first harmonic or Mode Converted scenarios at the cyclotron frequency of an

impurity are employed in TCV, frequencies of interest will be close to the Nyquist limit

of this acquisition system and therefore their detection will probably require an optically

heterodyne configuration[3].

An optically heterodyne configuration requires the use of a modulator; on the market

available options are Acousto-Optic (AOM) and Electro-Optic (EOM) Modulators. The

ACM makes use of a radio-frequency wave which, traveling in an acousto-optic cell, splits

the probing laser beam into an un-diffracted component and a diffracted one which is

up-shifted in frequency by the frequency of the RF wave. The diffracted beam can then

be recombined with the un-diffracted one originating a power modulation at the RF

frequency

E = αE0 cos(Ωt) + βE0 cos[(Ω + ∆Ω)t] =⇒ I = I0(α2 + β2) + αβI0 cos(∆Ωt) (3.121)

where Ω is the laser frequency, ∆Ω the modulation frequency and α and β real positive

numbers such that the sum of their squared values is smaller than unity; these model the

depletion of the original power, I0, and the fraction converted to the frequency shifted

beam, respectively.

Fluctuating components will now appear at the original frequency ω and at two sidebands

∆Ω ± ω; the signal is then mixed with the reference signal and downshifted by ∆Ω. If

the acquisition electronics were able to process both sidebands, the signal to noise ratio,
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normalized to its homodyne counterpart, would read

(SNR)rel = α2β2 (3.122)

and half of it if the acquisition system was not able to. The shot-noise is almost entirely

determined by the Local Oscillator (LO), whose relative power fraction is equal to α2 +β2.

The total relative signal to noise ratio can be written as

(SNR)rel =

{
α2β2/4 if intrinsic noise is dominant

0.25α2β2/(α2 + β2) if shot-noise is dominant
(3.123)

if only one side-bands is processed, and the double if both of them are.

AOMs offered by Isomet (Virginia), Brimrose (Maryland) and AA-Optoelectronic (France),

generate a minimum modulation frequency of 40 MHz which, considering the sampling

rate of the acquisition system, translates into measurements in the 32-48 MHz region.

This scheme results in a factor of 8 signal-to-noise loss. Alternatively only one of the two

beams exiting the AOM can be used, with amplitude modulation applied directly to the

AOM, at any frequency from 0 to 20 MHz with a factor of 10 S/N loss.

To increase the overall efficiency, Weisen proposed [8] a configuration in which the direct

and the frequency up-shifted beams cross in the plasma at a small angle, larger than the

maximum scattering angle to be resolved. A spatial filter then blocks the unscattered

components of the unshifted beam. The PCI signal is then the interference of the scat-

tered components of the unshifted beam and the unsattered components of the shifted

one. In our design, this configuration cannot be achieved because the shifted beam would

be clipped by the numerous optics.

Alternatively to AOMs, EOMs employ birefringent crystals which undergo modifications

of their refractive index in response to an applied electric-field. Coupled to appropri-

ate polarizers, they produce amplitude modulations at the frequency of the electric field

applied to the crystal. Polarizers transmit about 50% of the input power. An EOM

permits a continuous modulation from DC up to 100MHz, with the exceptions of certain

frequencies, at which mechanical resonances within the crystal affect the response. The

cost for the Pockels cells was estimated by Cleveland Crystals (Ohio) as high as 20000

CHF, without guarantees on the performance at 10.6 microns. The expected reduction

of the S/N ratio, with respect to the homodyne case is about 97%. Because of the large

losses in S/N in these heterodyne schemes, they are more suitable for measurements of

coherent modes, such as externally launched rf waves. In the first implementation of the

diagnostic on TCV we do not foresee to employ this technique.
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3.7 Data analysis techniques

Since the Phase Contrast method provides an image of density fluctuations, the spatial

scale properties of the instabilities have to be deduced directly from the image. In this

respect one can choose from various approaches, among which the most popular are:

spatial correlation lengths, Fourier series and wavelets analysis.

The spatial correlation is probably the most useful and straightforward information if one

wants to compare experimental results to global gyrokinetic codes which calculate the

spatial envelope of the instability, i.e. a correlation length, which is formally defined as

the spatial distance above which the zero time lag cross-correlation coefficient between

two samples falls below the value 1/e.

C1,2(|~l|, 0) =
E[c1(~r, t)c2(~r +~l, t)]√
E[c1(~r, t)2]E[c2(~r +~l, t)2]

(3.124)

where E stands for expectation while c1 and c2 are two generic signals around their ex-

pected values.

It is also common, and more dense in information, to express the spatial scale as a Fourier

series which gives an immediate interpretation of the instabilities as a sum of wavelengths.

However, to accurately estimate a Fourier series one needs a sufficiently high number of

samples to obtain a good estimate. When analyzing time series, the number of samples

is directly proportional to the sampling rate, while when performing spatial analysis, the

number of points is the number of detectors. If the detector bandwidth is sufficiently

large, it is not, in general, problematic to increase by one order of magnitude the tempo-

ral digitizing frequency, while it is much more expensive to increase, by the same ratio,

the number of detectors; this leads to estimates of spatial scales based on a relatively low

number of samples.

As described in Sec.3.6.10, our linear detector has twenty-four working elements not uni-

formly spaced due to the presence of six defective elements. The low number of spatial

points and their non uniform spatial distribution suggests the use of alternative approaches

to standard Fourier analysis to validate the results obtained. Among those we describe the

Maximum Entropy Method (MEM) [17] and, particularly concerning the non-uniformity

of the samples, alternative Fourier spectrum estimates [21, 22].

Other methods based on the recovery of missed samples in the case of oversampling with

respect to the signal bandwidth exist, such as the Papoulis-Gerchberg Iteration, the Min-

imum Dimension Formulation and related improved or modified versions[24]. The former

is based on oversampling, with respect to the signal bandwidth, such that, starting from

an initial guess of the missing samples, by filtering the signal up to the expected signal

bandwidth and substituting the actual samples in the filtered signal, after a few iterations,
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the missing samples are recovered. The latter is based on the sampling theorem which we

report

The Sampling theorem If f(t) is continuous and bandlimited to ωm, then f(t) is uniquely

defined by its samples taken at twice ωm. The minimum sampling frequency is ωs =

2ωm and T=π/ωm is the maximum sampling period. Then f(t) can be recovered by the

interpolation formula

f(t) = Σ∞n=−∞f(nT )sinc(t− nT ) (3.125)

If we have k unknown samples f(tk), we can write them as

f(tk) = Σ∞n=−∞f(tk)sinc(tk − nT ) = Σk
h=1f(th)sinc(tk − th) + hk (3.126)

where hk are sums of known samples. Therefore Eq.3.126 can be re-written as

u = Su+ g (3.127)

by inverting the matrix S the unknown vector u can be found.

3.7.1 Maximum Entropy Method

The Maximum Entropy Method (MEM) consists of performing a linear prediction of the

data by means of an Auto Regressive (AR) model whose coefficients are then used in the

power spectrum estimates. Let us give an overview of the whole algorithm. An Auto

Regressive Moving Average (ARMA) model of orders p and q is a method historically

used to find a best fit of a time series to its past values, and use the results to predict the

future behavior. It can be formally written as

Σp
k=0αky

(k)(t) = Σq
k=0βkx

(k) + ε(t) (3.128)

where xi are the input data, yi the output data, the subscript (k) indicates the kth

derivative, α and β are the parameters of the model and ε is white noise. It is formed by

an autoregressive part of order p and a moving average part of order q. Its discretized

version reads

Σp
k=0αky(t− k∆t) = Σq

k=0βkx(t− k∆t) + ε(t) (3.129)

Considering only the AR part and dividing everything by α0 we obtain a frequency transfer

function of the form

H(f) =
1

α0

1

1 + Σp
k=1

αk
α0
e−2πikf∆t

(3.130)

We thus obtain a model which is an all-pole infinite impulse response filter. There are

a few constraints on the parameters in order to assure that the process X is wide sense



3.7. DATA ANALYSIS TECHNIQUES 153

stationary[27]. The model can also be made nonlinear by adding quadratic and even

higher order terms of the forms

XnXn+1 XnXn+1Xn+2 XnXn+1...Xn+p (3.131)

where p+1 is the order of the nonlinearity; these models will not be considered here.

Let us now address the estimate of the Fourier spectrum. If we do not restrict ourselves to

real frequencies in the Nyquist interval but consider the whole complex plane, we obtain

the following z-plane which is one-to-one mapped onto the Nyquist interval on the real

axis

z = e2πif∆t (3.132)

where ∆t is the sampling interval. The Fourier discretized power spectrum can be written

as

P (f) = |Σj=N/2
j=−N/2cjz

j|2. (3.133)

The complex plane formulation allows us to interpret the meaning of the power spectrum

estimate as a truncated Laurent series, which is only an approximation of an analytical

function as the latter is fully described only by the full infinite series, which is equivalent

to the usual infinite time or spatial domain description.

The trick of the method lies in approximating Eq.3.133 by a rational function in the

denominator

P (f) =
a0

|1 + Σj=N
j=1 ajz

j|2
(3.134)

with the constraint that the N aj must agree with the first N terms of the Laurent

expansion of the real power spectrum. The justification of the trick is the capability to fit

a potentially spikey spectrum with a function which possesses poles instead of zeros on

the unit circle, which corresponds to the Nyquist frequency. The approximation stated

by Eq.3.134 is known as all-poles model, Maximum Entropy Method, or Auto Regressive

model. Now, the new formula for the power spectrum looks like the linear filter response

function in the special case of an AR model (Eq.3.130), thus allowing us to approximate

the power spectrum of a signal by evaluating an AR linear model. The advantage of this

model is its capability to fit spikey spectral features of the real power spectrum.

Let us finally evaluate the coefficients of the AR model. Let yi be the realizations of the

wide sense stationary process Y , zi its sampled values and εi the error associated with

the measurement

zi = yi + εi (3.135)

at each time. The AR model gives

ŷ = Σp
k=1αkzk + δ (3.136)
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where δ is the deviation of the model from the measurements. The most obvious modus

operandi is to minimize δ in a least squares sense, thus, by denoting ensemble averages

by angular brackets, we obtain

< δ2 > =
〈
[Σp

k=1αk(yk + εk)− ŷk]2
〉

= Σp
h,k=1(< ykyh > + < εkεh >)αhαk − 2Σp

k=1 < ŷyk > αk+ < ŷ2 > (3.137)

minimizing with respect to the model coefficients leads to a system of linear equations

which can be resolved with standard techniques.

The accuracy of the model depends on the number of coefficients, i.e. the number of

poles, with respect to the number of data points. In Fig.3.36 we show the power spectra,

as a function of the relative number of poles and samples, in the cases of a large number

('1000) and a low number ('30) of evenly spaced data. The result suggests the use of a

moderate number of poles which needs to be larger than a few and less than about one

hundred.

3.7.2 Unevenly spaced data

Usually most of the algorithms are based on the assumption that the sampling rate is

constant in time or space, thus allowing the use of algorithms for the Fast evaluation of

the Fourier Transform (FFT) of the signal. These algorithms are based on the original

idea of Cooley-Tuckey [23] which permits to evaluate ∼ log2N operations instead of N2, N

being the length of the signal. In the case of unevenly spaced samples the FFT algorithm

is not directly applicable anymore and possible solutions are to interpolate the data on an

evenly spaced grid or, in the case of missing points, to replace missing data with zeros and

then apply standard FFT algorithms. However, these techniques, in the case of a small

data-set, will perform poorly as, in a sense, they invent the signal to analyze; especially

in the case of adiacent missing points, which give rise to spurious peaks at frequencies

comparable to gaps. An alternative approach is the Lomb-Scargle (LS) periodogram.

This method was first proposed by Lomb [21] and later re-elaborated by Scargle [22], and

consists of evaluating sines and cosines at the actual sampled locations, in time or space,

to compute the normalized Lomb periodgram

P (f) =
1

2σ2

{
[ΣN

j=1(yi − ȳ) cos(2πf(ti − τ))]2

ΣN
j=1 cos2(2πf(ti − τ))

+
[ΣN

j=1(yi − ȳ) sin(2πf(ti − τ))]2

ΣN
j=1 sin2(2πf(ti − τ))

}
(3.138)

where yi are sampled data at points ti, ȳ denotes the average, σ its standard deviation

and τ , defined as

tan(2πfτ) =
ΣN
i=1 sin(2πfti)

ΣN
i=1 cos(2πfti)

, (3.139)



3.7. DATA ANALYSIS TECHNIQUES 155

0 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2π/λ

 

 

MEM pole scan, S/R=10

0 2000
0

0.5

1

1.5

2

2.5

2π/λ

 

 

0 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2π/λ

 

 

0 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2π/λ

 

 

Noiseless FT m=n/15m=n/7m=n/2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

2π/λ

P
ow

er
 s

pe
ct

ru
m

 [a
.u

.]

MEM scan in number of poles

 

 

N−1
N/2
N/3
N/5
N/10

Figure 3.36: (Top) Power spectral estimate of a random set of Fourier components, pol-
luted with white gaussian noise at SNR=10, as a function of the relative number of data,
n, and poles, m. (Bottom) Same as left but with one single Fourier mode at λ = 0.1
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is a constant which makes the data invariant to any shift and, more important, is such

that Eq.3.138 would be the result if one estimated, at a given frequency f , the least

squares fit of the signal to the model equation

y(t) = A cos(2πft) +B sin(2πfti). (3.140)

This method permits also the evaluation of frequencies above the Nyquist frequency cor-

responding to the average sampling rate, without any ambiguity due to aliasing; in par-

ticular it is extremely efficient in case of clustered data.

Let us now compare standard FFT techniques, MEM and LS on a large('1000), evenly

spaced, data-set. In Fig.3.37 we compare standard FFT, MEM and LS on a set of ran-

dom Fourier components added with white gaussian noise at SNR=10. It is evident that

standard FFT and LS behave better than MEM.

If we now turn our attention to a low, unevenly spaced, data-set (corresponding to the
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Figure 3.37: Comparison of MEM, FFT and LS algorithms applied to a number of random
Fourier modes added with white gaussian noise at SNR=10.

PCI detector array), the relative performances of MEM, FFT and LS become much closer

and are almost equivalent, as shown in Fig.3.38.

A dedicated graphical MATLAB routine was written to analyze the data of PCI and

Doppler reflectometry. The routine includes modules to estimate the geometrical infor-

mation needed by both systems. Analysis functions include standard routines as FFT as

well as wavelet de-noising functions, non-linear analysis methods such as bi-spectra, and
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Figure 3.38: Comparison of zero-padded MEM mode, for a number of modes, FT and LS
algorithm applied to (left) one single Fourier mode at λ = 0.1 and (right) a number of
random Fourier modes. In both cases a white gaussian noise, with SNR=10, was added.

the numerical methods described above.

The following section describes the hardware and the analysis of preliminary data pro-

duced by the prototype Doppler Reflectometer (PREF) installed on the TCV tokamak at

the very end of 2006. The present status of the PCI and PREF diagnostics is offered in

Sec.3.9.

3.8 Doppler reflectometer

In Sec. 2.3 we showed that, among all the possible reflectometry configurations, the so-

called Doppler configuration is the most interesting one as it can provide information

concerning the plasma fluid velocity. In particular, since TCV has an excellent flexibility

in terms of plasma positioning in the vacuum vessel, it is naturally a well suited tokamak

for this kind of diagnostic.

We recall that Doppler reflectometry is also very attractive because, if used in a con-

figuration with two or multiple nearby frequencies, it allows one to estimate the radial

derivative of the fluid velocity, which is expected, on theoretical grounds[26], to suppress

anomalous transport. However, considering the high investments and port allocation re-

quired on an already busy tokamak such as TCV, before installing a complete system

featuring multiple frequencies, possibly sweepable as in radial correlation reflectometry,

it appears imperative to evaluate the future performance of the system. At the end of

2006 it was decided to install a prototype Doppler reflectometer on loan from Stuttgart

University, Germany.

Two systems are available: 70 GHz and 78 GHz; both are homodyne and can be used in

O or X mode. One source at a time can be installed in the midplane port of sector 7,
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which is shared with an oblique ECE diagnostic. The launching system, which is a replica

of the launchers used for high-power electron cyclotron heating, consists of four mirrors

injecting the microwave beam in the vacuum vessel with a poloidal angle between 10 and

55 degrees. The rotatable mirror can be moved at a maximum speed of 160 degrees/sec

and can be swept even during a TCV pulse.

The acquisition system is a CAMAC ADC sampling at 10 MHz. The sampling frequency

was chosen after an evaluation of the expected Doppler shift in various plasma configura-

tions. With the 70 and 78 GHz probing frequencies, cut-off densities are equal to 6.3 and

7.8 · 1019 m−3 in O-mode, and typically 2.7 and 3.8 · 1019 m−3 in X-mode. The frequency

shift ∆ω is given by

∆ω = k0 · ve (3.141)

where k0 is the probing wave vector and ve is the electron velocity in the laboratory

frame, equal to the fluid velocity, of which the dominant component is generally assumed

to be the E ∧B, plus the turbulence phase velocity. The Bragg condition selects ”only”

one scattering vector and is therefore sensitive only to the phase velocity corresponding to

that scattering vector. In TCV the resulting Doppler shift is to be expected in the range

0.1-2 MHz, depending on the incident angle. In view of this expectation, the passband

filter of the electronics was modified to set the lower cut-off to 37 kHz, instead of the

original 370 kHz.

In late 2006 a set of parasitic measurements were carried out to assess the performance of

the prototype reflectometer. The reflectometer proved to be feasible as it is characterized

by a very high SNR, more than two orders of magnitude, as shown in Fig.3.39.

The very high SNR allows one to distinguish clear signatures of physical events such as,

core MHD phenomena, ELMs, L-H transitions and H-L back-transitions: we show an

overview of all these events in an ohmic shot in Fig.3.40.

It should be noted, however, that the reflectometer is highly sensitive to electro-magnetic

pick-up.

We finally prove the existence of a Doppler shift. In shot 33525, an ohmic diverted L-

mode, the cut-off position is expected to be near the edge, ρ ' 0.9, and the reflectometer

reveals, as shown in Fig.3.41 a clean spectrum centered at about 250 ± 25kHz. The

poloidal injection angle was fixed at 20◦ resulting in a scattering wave number equal to

6.7 ± 0.2 cm−1, or a total velocity equal to about 2300 ± 300 m/s, which is comparable

to the electron diamagnetic velocity which, at the cut-off location, is about 2500 m/s.
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Figure 3.39: Power spectral density of the third-harmonic ECRH heated TCV shot 33576
showing an estimate of the SNR of the prototype reflectometer. The noise signal was
acquired during shot 33571 after a major disruption. Noise is dominated by a highly
monocromatic pick-up at 125 kHz; it is interesting to notice that, at that frequency, the
noise level quantitatively accounts for the spike in the signal.

Figure 3.40: (Top) D-α signal of TCV shot 33572 as a function of time. (Centre) Time
frequency spectrogram of the reflectometer signal. We notice clear signatures of core MHD
events in the L-mode phase, L-H and H-L transitions, ELMs and a 125 kHz noise pick-up.
(Bottom) Raw reflectometer data showing ELMs and the L-H and H-L transitions.
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Figure 3.41: Power spectral density of the Doppler reflectometer for TCV shot 33525
between 0.7 and 1.2 seconds.

3.9 Present status

In this chapter we described the theoretical basis and the practical realization of the

PCI diagnostic, in the tangential configuration, and of the Doppler Reflectometer; in this

section we briefly discuss the present status of both diagnostics and how these will be

employed in the near future.

All the components of the PCI diagnostics have been procured, the in-vessel and out-

vessel optics have been installed and aligned up to the optical table. The final alignment

is expected to take a few full working days and the diagnostic is foreseen to be operational

by the end of 2009.

Initially the diagnostic will be probably used parasitically to assess its performance and

exact response properties, this also in view of its completely new set-up. Later on it is

reasonable to foresee its utilization on a large number of TCV pulses, with particular

emphasis on key arguments in the research on magnetically confined plasmas. Indeed,

dedicated sessions have already been allocated to investigate turbulence characteristics

in Internal Transport Barriers (ITB), especially concerning their spatial variation across

the foot and the head of the barrier, which are expected to be zones of micro-stability

discontinuities; the impact of negative triangularity on turbulence in L-mode plasmas,

especially regarding the radial behavior; effect of negative triangularity in ITBs, especially

concerning a possible enhanced stabilization due to an increased Shafranov shift radial

gradient induced by negative triangularity; impact of plasma shape on H-mode plasmas,
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in particular on the stability of the Edge Transport Barrier.

The Doppler reflectometer is already operational and will be used in parallel to the PCI

diagnostic to estimate E ∧ B shear and its impact on transport.

3.10 Appendix: Evaluation of diffracting apertures

We want to evaluate here the effect of multiple diffractions induced by N apertures of

radii ai positioned at distances zi between each other starting from the waist along the

beam propagation direction, i.e. the waist is assumed to be at z = 0, the first aperture

at z = z1, the second at z = z1 + z2 and the last at z =
∑N

i=1 zi.

We will limit ourselves to a case where the paraxial approximation holds, i.e. we will make

use of multiple applications of the Fresnel-Kirchhoff integral (Eq.3.47) on an unperturbed

gaussian beam (Eq.3.48).

Let us adopt the following cylindrical coordinates (ρi, φi, ξi) = (ri/w0, φi, zi/zR) denoting

variable in the planes zis, the first application gives at z = z2

E(x⊥, z2, a1) =

√
1

π

ıeık0(z1+z2)−ı arctan(ξ1)

πw0ξ2

√
1 + ξ2

1

eıρ
2
2/ξ2

∫ 2π

0

dφ1∫ a1/w0

0

ρ1dρ1e
ıρ2

1

„
1
ξ2

+
ı−ξ1
1+ξ21

«
e
−2ı

ρ1ρ2 cos(φ1−φ2)
ξ2 (3.142)

The symmetry of the problem imposes the equation to be independent of φ2 thus allowing

the integral over φ1 to be equal to 2πJ0(2ρ1ρ2/ξ2). The argument of the Bessel function

is of order zR/z2 � 1 making a Taylor series expansion impossible; taking the limit

limx→∞ J0(x) =
√

2/(πx) cos(x − π/4) does not lead to analytical expressions either.

Inverting the order of integrations we would obtain even more complicated functions

which do not admit a primitive expressed as a combination of elementary functions. Let

us therefore apply againg the Fresnel-Kirchhoff integral to Eq.3.142 to obtain, at z = z3

E(x⊥, z3, a1,2) =

√
1

π

(2ı)2eık0(z1+z2+z3)−ı arctan(ξ1)
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(3.143)

after all the diffracting apertures we obtain

E(x⊥, zn, a1,...,n) =

√
1

π

(2ı)neık0
P
i zi−ı arctan(ξ1)

w0

∏N
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(3.144)
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Figure 3.42: Absolute value of the transfer function of the first diffracting aperture (top)
and of the additional ones (bottom) for α = 0.8 (a), α = 1 (b), α = 1.2 (c), for ξ1 =
0.0028, ξ2 = 0.0014.

To have an idea of the propagation, let us now numerically evaluate first the recurrence

integral

2ı

ξi+1

eık0zi+1

∫ ai/w0

0

ρidρie
ı
ρ2i+ρ2i+1
ξi+1 J0

(
2
ρiρi+1

ξi+1

)
(3.145)

for a number of values ξi and αi = ai/w0. In Fig.3.42 one can appreciate how diffraction

effects are a decreasing function of α, which would point to the maximum allowable value.

However, as already mentioned in Sec.3.3 it is important to keep a beam waist as large

as possible for turbulence studies. If we calculate the standard deviation from unity for

r/a ≤ 1, which models the absence of diffraction effects, we obtain, for the three cases in

Fig.3.42 0.1 − 0.09 − 0.08 for the top graphs and 0.12 − 0.11 − 0.1 for the bottom ones.

We did not consider the reference function to be 1−H(r/a−1) as the standard deviation

is then dominated by values outside r/a = 1, thus biasing the analysis. Other conditions

might be considered, such as the values in particular points, however we consider α = 1.2

satisfactory for our purposes.

Let us now analyze the behavior of a change in either ξ1 or ξ2 which we report In

Figs.3.43 and 3.44. It is evident how ξ1 barely affects the overall behavior of both curves

as, being small, it is effective only in the numerator of Eq.3.142 and does not appear at

all in Eq.3.145; while ξ2 affects both the response in the center of the beam and at the

edge. Since the recursive integral has to be evaluated for each optics, including mirrors
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Figure 3.43: Absolute value of the transfer function of the first diffracting aperture for
ξ1 = 0 (a), ξ1 = 0.002 (b), ξ1 = 0.01 (c), for α = 1.2 and ξ2 = 0.0001.

Figure 3.44: Absolute value of the transfer function of the first diffracting aperture (top)
and of the additional ones (bottom) for ξ2 = 8 · 10−5 (a), ξ2 = 0.001 (b), ξ2 = 0.01 (c), for
α = 1.2 and ξ1 = 0.0003.
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Figure 3.45: Absolute value of the transfer function of the PCI system for configuration
`1.

or transmitting windows, it is important that it assumes different values on each optics

in order not to enhance any deviation from unity but rather to average them out.

Let us now consider the effect of a focusing optical elements, such as a lens of a parabolic

mirror, of focal length f. During the passage across the focusing optic, the gaussian beam

undergoes a phase change equal to k0r
2/(2f). To convince ourselves of this result we can

consider the propagation of a gaussian beam of complex parameter q (see Sec.3.2) accross

an optical medium of matrix ABCD. The gaussian beam complex parameter qf , at the

end of the optical element, can be reconstructed from the value before the optical element

qi by
1

qf
=
C +D/qi
A+B/qi

(3.146)

which, in the case of a thin lens gives

1

qf
= − 1

f
+

1

qi
(3.147)

since the gaussian beam contains the factor exp[−ık0r
2/(2q)], by passing through a fo-

cusing optics, a gaussian beam collects a phase shift equal to k0r
2/(2f).

Let us now apply the Fresnel-Kirchhoff integral from the waist to the detector plane to

estimate diffraction effects in configuration `1; the result is plotted in Fig.3.45.
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Chapter 4

Modeling of shaping effects on
turbulent transport

4.1 Introduction

In this chapter we will focus on the influence of plasma shaping on micro-instabilities,

in particular on modes interacting with trapped electrons. The results of this chapter

are meant to theoretically explain a number of experimental results obtained in the TCV

tokamak concerning the influence of plasma shaping on electron heat transport.

As the reader can guess from the title, the work described in this chapter is intimately

tied to the plasma equilibrium reconstruction; therefore we start with a description of

a general equilibrium and a description of the numerical tools used to reconstruct the

equilibrium of the TCV shots we analyzed. We will then describe the numerical tools

used to calculate plasma micro-instabilities, i.e. the GS2 code, and we will finally present

our results.

4.2 Plasma equilibrium and shape

A general plasma equilibrium is described by the MHD equations

J ∧B = ∇ ·P µ0J = ∇∧B ∇ ·B = 0 (4.1)

where J is the plasma current density, B the magnetic field and P the pressure tensor.

The general solution of ∇·B = 0 in an axysimmetric system, such as a tokamak, is given,

in cylindrical coordinates (R,ϕ, Z), by

B = ∇ψ ∧∇ϕ+ F (ψ)∇ϕ (4.2)

where ϕ is the toroidal angle, the variable of symmetry, F (ψ) = RBϕ and ψ(R,Z) the

poloidal flux defined by

ψ =
1

2π

∫
Σ

B · dσ̂ (4.3)
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and Σ is the surface enclosed by a given field line. Eqs.4.1a,b imply that if the plasma

pressure is isotropic, it has to be constant on magnetic field lines and also on current

lines; Eq.4.2 implies Bpol · ∇ψ = 0, which means that the poloidal flux is constant on

constant pressure regions. Therefore the poloidal flux is called flux label because it can

be used to label nested magnetic flux surfaces. There are a number of possible alternative

flux labels, e.g. the toroidal flux, its square root, the minor radius in a perfectly circular

plasma etc. We will use in the following, unless specifically stated otherwise, the square

root of the normalized volume, ρV , which, to zeroth order in the expansion parameter

given by the Shafranov shift divided by the major radius, can be written as the ratio of

two surfaces and is therefore a sort of linear dimension

ρV ≡

√ ∫
V
d3r∫

VLCFS
d3r
'

√
2π(R0,LCFS + ∆)

∫
Σ
d2r

2πR0,LCFS

∫
ΣLCFS

d2r
'

√ ∫
Σ
d2r∫

ΣLCFS
d2r

(4.4)

where LCFS means the Last Closed Flux Surface, ∆ is the Shafranov shift of the radial

position of the geometric center of the flux surface under consideration with respect to

the geometric center of the LCFS, R0,LCFS. In the case of a circular, concentric plasma

it reduces to the normalized minor radius.

In case of an axisymmetrical system such as a tokamak, Eqs.4.1 lead to the Grad-

Shafranov equation [1, 2]

R
∂

∂R

∂ψ

R∂R
+
∂2ψ

∂z2
= −µ0R

2dP (ψ)

dψ
− F (ψ)

dF (ψ)

dψ
(4.5)

where F is defined as RBφ. The Grad-Shafranov equation is thus a two-dimensional,

non linear, elliptic partial differential equation where the poloidal flux, ψ, is both an

independent and a dependent variable. By solving this equation one obtains the spatial

mapping of current density, pressure and magnetic field.

Since the poloidal flux is a flux function, it is useful to plot its contour lines to have an

overview of the equilibrium because, to first order, kinetic quantities are only a function

of ψ.

The (R,Z) mapping of any flux surface is also commonly described in terms of so-called

moments of plasma shape which are meant to be compact representations of flux surfaces.

Historically the first plasma moment considered was the inverse aspect ratio, i.e. the ratio

of the minor radius, r, to the major radius, R0, because a circular flux surface cross-section

is completely described by the major radius and the aspect ratio according to the system

of equations

R = R0 + r cos(θ) (a), Z = Z0 + r sin(θ) (b) (4.6)

where θ is the geometric poloidal angle and the aspect ratio is defined as R0/r.

Subsequently, elongated plasmas were generated, i.e. plasmas with an elliptical cross
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section, described by a parameter, κ, called elongation

R = R0 + r cos(θ) Z = Z0 + κr sin(θ) (4.7)

More peculiar plasma shapes were then generated with a so-called D shape, modeled by

a higher shape moment called triangularity, δ; additional corrections can be modelled by

a higher moment called squareness, λ.

R = R0 + r cos[θ + δ sin(θ) + λ sin(2θ)] Z = Z0 + κr sin(θ) (4.8)

As is evident from Eq.4.8b elongation is also defined as

κ =
Zmax − Zmin
Rmax −Rmin

(4.9)

while, if we now choose the poloidal angle corresponding to Zmax, i.e. θ = π/2, Eq.4.8a

reduces to

R(Zmax) = R0 − r sin(δ)⇒ δ = arcsin

(
R0 −R(Zmax)

r

)
(4.10)

in the limit of small triangularities Eq.4.10 reduces to

δ =
R0 −R(Zmax)

r
(4.11)

which is an alternative definition of triangularity often found in literature. This ambiguity

in the definition of triangularity might lead to slight differences in numerical values. The

first correction in the Taylor development of the sin(δ) function is δ3/6 which is equal to

δ/10, i.e. a difference of 10% between the two definitions, for δ = 0.78. We will see in the

following, however, that this value is at the high end of the achievable range; for more

typical values of the triangularity the two definitions above are effectively equivalent.

As of this writing, there is considerable interest in up-down asymmetric plasmas, i.e. plas-

mas characterized by different lower and upper triangularities, because such asymmetries

break the symmetry of the distribution function along the field line in a manner which can

lead to non-zero k‖ of micro-instabilities and thus to turbulent momentum fluxes which

are suspected to regulate the bulk plasma rotation [3].

As a postscript, the first equality in Eq.4.4 holds exactly even if the plasma is elongated

or squared but not triangular; in this case the correction to be added to each integral

approximately scales as −δε, ε being the inverse aspect ratio.

In Fig.4.1 we depict equilibria corresponding to different values of the shape moments.

4.3 Particle drifts in magnetized plasmas

In this section we will quickly review the primary particle drifts in magnetized plasmas

as, for the reader unfamiliar to plasma physics in toroidal devices, they are key points
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Figure 4.1: An illustrative set of equilibria obtained by varying the shape moments.
Shown in the figure is the flux surface corresponding to a minor radius of 0.2 m. The case
{κ = 0.8, δ = 0, λ = 0} cannot be realized in practice, it merely illustrates how a plasma
with κ < 1 would look like.

for understanding the results of this chapter. In particular, considering how numerical

simulations were performed, we will only consider drifts arising from non-uniform and

static fields.

Charged particles diamagnetically gyrate around magnetic field lines and, in the case of

a homogeneous magnetic field, it can be easily shown that their orbit is circular. In the

case of an inhomogenous magnetic field the orbit is not exactly circular and, to find the

deviation, we will use the Larmor radius corresponding to a homogenous field, divided by

the magnetic field scale length, as the Taylor expansion parameter. We start by writing

the second law of dynamics

m
dv

dt
= q(E + v ∧B) (4.12)

where m and q are, respectively, the particle mass and charge. The magnetic field can be

developed to first order as

B = Bgc −
m

q|Bgc|
[(v⊥ ∧ b̂) · ∇]B (4.13)

where the subscript gc stands for guiding centre.

Let us now write the total particle velocity as the sum of the parallel velocity of the

guiding centre plus the perpendicular velocity around its trajectory, plus a possible drift

which, being due to the spatial inhomogeneity of the magnetic field, is assumed to be of
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the order of the Larmor radius divided by the spatial scale of the magnetic field variation

v = v‖b̂ + v⊥[cos(Ωct)n̂+ sin(Ωct)b̂n] + vd (4.14)

where Ωc = qBgc/m is the cyclotron frequency, n̂ and b̂n stand for normal and bi-normal

to the field line, respectively.

By averaging over many cyclotron periods, Eq.4.12 reads

dv‖b̂

dt
+
dvd
dt

=
q

m

(
E + v ∧

[
Bgcb̂−

〈
m

q|Bgc|
[(v⊥ ∧ b̂) · ∇]B

〉])
(4.15)

where the angular bracket stands for averaging over cyclotron periods.

If the plasma is in a stationary state, i.e. the guiding center velocity is constant, and we

consider only first order corrections, then by taking the cross product with b̂ we obtain

v‖
db̂

dt
∧ b̂ = v‖(v‖b̂ · ∇b̂) ∧ b̂

=
q

m

(
E ∧ b̂ + (vd ∧Bgcb̂) ∧ b̂− m

q|Bgc|
〈v⊥ ∧ [(v⊥ ∧ b̂) · ∇]B〉 ∧ b̂

)
(4.16)

By vector identity

(vd ∧Bgcb̂) ∧ b̂ = Bgcb̂(vd · b̂)− vd(Bgcb̂ · b̂) (4.17)

since we are considering drifts perpendicular to the magnetic field direction the first term

on the r.h.s. is equal to zero, and Eqs.4.16 and 4.17 are combined to yield

vd = vE∧B −
m

qBgc

v‖(v‖b̂ · ∇b̂) ∧ b̂− m

qB2
gc

〈v⊥ ∧ [(v⊥ ∧ b̂) · ∇]B〉 ∧ b̂ (4.18)

where we have defined

vE∧B =
E ∧ b̂

Bgc

(4.19)

In Eq.4.18 the first term on the right hand side is the ambipolar E ∧B drift, the second

is the curvature drift and the third is the ∇B drift. If the particle’s parallel and per-

pendicular velocities vary over a larger spatial scale than the Larmor radius then we can

write

vd = vE∧B −
m

qBgc

v2
‖(b̂ · ∇b̂) ∧ b̂− mv2

⊥
2qB2

gc

∇|B| ∧ b̂ (4.20)

In the case of time-independent e-m fields ∇∧B = µ0J and so, by employing the vector

identity
1

2
∇( B ·B) = B ∧ (∇∧B) + (B · ∇)B (4.21)

and the equilibrium equation J ∧B = ∇P, we can re-write the drift as

vd = vE∧B −
m

qB2
gc

v2
‖

(
∇|B| ∧ b̂ +

Bgc

2
∇β ∧ b̂

)
− mv2

⊥
2qB2

gc

∇|B| ∧ b̂ (4.22)
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where β = 2µ0P/B
2
gc. Eq.4.22 shows how, apart from the difference in the perpendicular

and parallel energies, the curvature drift differs from the ∇B drift by the gradient in the

toroidal beta.

Let us now evaluate these drifts for trapped particles, i.e. particles forced to bounce back

and forth due to a mirroring effect induced by the inhomogeneity of the magnetic field.

The periodic motion of a trapped particle guiding center defines the so-called banana orbit

which can be averaged again over its trajectory to calculate its average drift. It turns out

that in the case of an unperturbed tokamak, i.e. neglecting the toroidal field ripple and

any deviation from the ideal magnetic configuration, the average banana orbit undergoes

a net drift in the toroidal direction which is due to the combined effect of parallel motion

and vertical drifts described above. This is called the toroidal precession drift.

An adiabatic invariant is the lowest order approximation to a Poincaré invariant

= =

∮
C

p · dq (4.23)

(p,q) being the usual phase space variables.

Let us consider, as C, the periodic motion of the guiding center of a trapped particle,

which approximates the real particle orbit to zeroth order in the Larmor radius expansion;

the Poincaré invariant is approximated by the so-called longitudinal adiabatic invariant[4]

= ' J =

∮
C

p‖ds (4.24)

where ds is an element of arc along a given field-line and p‖ = p · b̂. Averaging magnetic

curvature and field gradients over the bouncing period results in an average drift of par-

ticles in the toroidal direction which, in the case of low trapped particle energy is given

by [5]

〈ϕ̇〉(ψ,E, µ) = −1

q

∂J/∂ψ

∂J/∂E
(4.25)

where E is the particle energy, q its charge, µ its magnetic moment and ψ is the poloidal

flux of a given flux surface.

Let us now quote, with the same notations as in [6], the toroidal precession drift in the

particular case of large aspect ratio, circular and concentric flux surfaces which, having

zero Shafranov shift, are therefore modeled as having zero pressure gradient.

〈ϕ̇〉 ∝ G(X, r/R, s)E ∝ λ

{
s

[
X − 1 +

E(X)

K(X)

]
+

1

2

[
E(X)

K(X)
− 1

2

]}
E (4.26)

where E and K are the complete elliptic integrals of first and second kind, respectively, s

is the magnetic shear and

X =
1− λ+ λr/R

2λr/R
λ =

µB0

E
(4.27)
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Figure 4.2: Values, in arbitrary units, of the geometrical factor determining the toroidal
precession drift, for a number of magnetic shear values.

r and R being the minor and major radii of a given flux surface, respectively, and B0

the magnetic field on the geometric center of the flux surface. In the limits X → 0,

corresponding to the deeply trapped limit, and X → 1, corresponding to the barely

trapped limit, the G factor is equal to

lim
X→0

G =
B0

Bmin

lim
X→1

G = − B0

Bmax

(4.28)

meaning that deeply trapped and barely trapped particles drift in opposite directions in-

dependently of magnetic shear. Let us now look at the whole pitch angle space dependence

of the G factor in Fig.4.2: it is evident how, depending on the magnetic shear, trapped

particles can drift in different directions thus resonating or not with a given perturbation

(see Sec.4.4).

4.4 Trapped particles instability

Let us immediately see what is probably the most important effect of the toroidal preces-

sion drift in magnetically confined plasmas by reviewing, as an introduction to the results

of this chapter, the basic mechanism of the Trapped Electron Mode first described by

Kadomtsev and Pogutse in[45].

Let us divide particles into passing and trapped, i.e., into particles free to move along a

magnetic field line and particles forced to bounce back and forth due to a mirroring effect

induced by the inhomogeneity of the magnetic field. There exist two types of trapped

particles: the ones trapped into the magnetic mirror generated by the toroidicity of the
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problem, and the ones trapped in the helical windings of magnetic fields which do not

possess axial symmetry, such as stellarators. In reality, tokamaks also have the second

type of trapped particles due to the toroidal field ripple; however, since this is very small

in TCV (see Chapter 1), their presence will be neglected.

The basic mechanism of the instability is the following: any given inhomogeneity along

the magnetic field causes a different effect on passing and trapped particles trajectories.

In particular, in the case of slow waves, i.e., waves with low parallel velocity compared to

the thermal speed (ω � k‖vth), passing particles are adiabatic, i.e., achieve a Boltzmann

distribution by virtue of their fast parallel motion, while trapped particles with a small

parallel velocity do not average the perturbation and can resonate with it: this gives rise

to the instability.

Kadomtsev and Pogutse consider the case of a circular, collisionless plasma, with elec-

trostatic fluctuations of low frequency compared to the cyclotron frequency; this case is

modeled by the linearized collisionless Vlasov equation

df̃

dt

∣∣∣∣∣
u.p.t.

=
∂f̃

∂t
+ v · ∇f̃ +

e

M
(−∇φ0 + v ∧B) · ∂f̃

∂v
=

e

M
∇φ̃∂f0

∂v
(4.29)

where e is the particle’s charge, M its mass, while the perturbed distribution function

and the electrostatic field are expressed as

f = f0 + f̃ φ = φ0 + φ̃ (4.30)

f0 being the equilibrium distribution satisfying the equation

v∇f0 +
e

M
(∇φ0 + v ∧B)

∂f0

∂v
= 0 (4.31)

and u.p.t. stands for unperturbed particle trajectory.

The ∇φ0 term is neglected in this localized treatment and the perturbation is assumed

to be periodic in the toroidal and poloidal angles, ϕ and θ, respectively

φ̃ = eıkr−ıωt+ımθ−ılϕφ̂(θ) (4.32)

where the hat function is assumed to be periodic in the poloidal angle θ. The perturbed

distribution function of specie j is split into its adiabatic, i.e. Boltzmann, and non-

adiabatic, g̃, contributions

f̃j = f0,je
−ej φ̃/Tj − f0,j + g̃ (4.33)

which, after a linearization of the adiabatic term, gives

f̃j = −f0,j
ejφ̃

Tj
+ g̃ (4.34)
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Substituting Eq.4.34 into Eq.4.29 gives

dg̃

dt

∣∣∣∣
u.p.t.

=
ej
Tj

∂φ̃

∂t
f0,j +

1

B
∇φ̃∇f0,j (4.35)

Passing from particle coordinates to guiding center coordinates and performing the gyro-

averaging, one finds [7] (or in a more recent document [6])

dg̃

dt

∣∣∣∣
u.g.c.t.

=

(
ej
Tj
f0,j

∂

∂t
+

1

B
∇f0,j∇

)∫
dkJ0

(
k⊥v⊥

Ω

)
eı(krj+mθj−lϕj)φ̂ (4.36)

where J0 is the Bessel function, Ω is the cyclotron frequency and u.g.c.t. stands for un-

perturbed guiding center trajectory. Upon integration over time gives

g̃ = −ı ej
Tj
f0,j

∫
dkJ0

(
k⊥v⊥

Ω

)
e−ık(ω − ω∗)φ̂×∫ 0

−∞
dteık[r′j(t)−r]+ım(θ′j(t)−θ)−ıl(ϕ′j(t)−ϕ)−ıωt (4.37)

where the coordinates {r′, θ′, ϕ′}|t=0 = {r, θ, ϕ}. The perturbed density is obtained by

integrating over velocity space to obtain

ñj =− n0,j
ejφ̃

Tj
− ı
∫ 0

−∞
dt

∫
dvdke−ıωt

′+ık[r′j(t)−r]+ım(θ′j(t)−θ)−ıl(ϕ′j(t)−ϕ)×

J2
0

(
k⊥v⊥

Ω

)
1

Tj
fM,j(ω − ω∗j )φ̂. (4.38)

where

ω∗j =
Tjm

ejBr

1

fM,j

dfM,j

dr
∼ mρjvj

a2
(4.39)

is the diamagnetic drift frequency.The appearance of the additional Bessel function is due

to gyro-averaging after transforming from guiding center to particle coordinates.

Imposing quasi-neutrality Kadomtsev and Pogutse obtain the following dispersion relation(
1

Te
+

1

Ti

)
n0φ̂ =− ı

∑
j=e,i

∫ 0

−∞
dt

∫
dvdke−ıωt+ık[r′j(t)−r]+ım(θ′j(t)−θ)−ıl(ϕ′j(t)−ϕ)×

J2
0

(
k⊥v⊥

Ω

)
1

Tj
f0,j(ω − ω∗j )φ̂ (4.40)

where ej = −e for electrons and the opposite for ions. Eq.4.40 is valid in the limit m� 1,

so that mφ̃ � ∂φ̂/∂θ, and ω � Ω and has to be integrated over the guiding center tra-

jectory.

Considering only large scale perturbations, which are the most deleterious to plasma con-

finement, the characteristic spatial scale of the electrostatic perturbation is assumed to be

much larger than the radial excursion of particles out of the flux surface due to perpen-

dicular unperturbed magnetic drifts, therefore the Bessel function is approximated by 1.
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The width of the electrostatic potential is furthermore assumed to be small compared to

the plasma minor radius, thus implying the existence of local values of the eigenfrequency

ω = ω(r).

In the integral over passing particles we can write

θ′ − θ '
v‖t
′

Rq
ϕ′ − ϕ ' q(θ′ − θ) (4.41)

therefore the integral over dt’ generates the factor ı[ω− (m− lq)v‖/(qR)]−1 which can be

neglected compared to ω−1 provided that

(m− lq)v‖
1

qR
' (m− lq)vjρjm

a2

a

ρjm

ε

q
∼ (m− lq)ω∗ a

ρjm

ε

q
� ω (4.42)

which in turn implies

(m− lq)� ρjm

a
(4.43)

provided that

ω∗
ε

q
& ω (4.44)

therefore the contribution of passing particles is unimportant.

In the case of trapped particles, the equivalent of Eq.4.41 is

ϕ′ − ϕ ' q(θ′ − θ) + ξ′ (4.45)

ξ′ being the deviation from a given magnetic field line on the flux surface considered.

Considering the case m− lq � 1, which is equivalent to assuming the hat functions above

to have a minimum number of nodes along θ, the integral of (m− lq)(θ′− θ) is a periodic

function of order m− lq which can then be neglected. Averaging over the bouncing period

τj, we can write ξ′ ' 〈ξ′〉 = 〈ϕ̇〉t therefore Eq.4.40 yields(
1

Te
+

1

Ti

)
n0φ̃ =

∑
j=e,i

1

Tj

∫
dvf0,j

ω − ω∗j
ω + l〈ϕ̇〉

∫ 0

−τj
dt′

φ̂

τj
(4.46)

Eq.4.46 implies that the toroidal precession drift is responsible for the Trapped Electron

instability, since the drift velocity appears in the denominator of the dispersion equation

and, therefore, can resonate with the frequency of the perturbation. It should be noted,

however, that the resonance takes place if and only if banana orbits drift in the direction

of the perturbation.

In general, TEM fall in the same frequency range as the toroidal-ITG instability, therefore

they can interact with each other and the resulting instability is dominated by the former,

the latter or is a mixed regime, depending on ion and electron drives (see [6] and references

therein) and on plasma collisionality [8].
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4.5 Gyro-kinetics and the GS2 code

Gyrokinetics (GK) is a branch of plasma physics derived from kinetics and electromag-

netism used in magnetically confined plasmas to describe phenomena that are slow com-

pared to the particle gyro-motion, i.e. micro-instabilities. The trajectory of a charged

particle in a magnetic field is a helix that winds around the field line. This trajectory

can be decomposed into a relatively slow motion of the guiding center along the field line

and a fast circular motion called cyclotron motion. For most plasma physics problems

other than high-frequency wave absorption or emission, the latter motion is irrelevant.

Gyrokinetics provides a way to describe the evolution of particles without taking into ac-

count the circular motion, except for finite Larmor radius effects, discarding the irrelevant

information on the gyration angle by averaging over it, that is

< X(∗) >=

∫ 2π

0
dαX(α, ∗)

2π
(4.47)

where * stands for all quantities the X variable depends on except the gyro-angle.

The Vlasov equation is a seven dimensional (space, velocity and time) equation describing

the distribution function, f , of an ensemble of particles of any kind.

∂f

∂t
− [H, f ] = 0 (4.48)

where H is the Hamiltonian of a single particle and [, ] is the Poisson bracket.

Let us first change variables from a canonical phase-space z ≡ (q,p) to guiding center

coordinates Z ≡ (rg, v‖, v⊥, α), by using Catto’s transformations[9] to tie the guiding

center position rg and the particle position r

rg = r +
mv ∧ b̂

qB0

(4.49)

where B0 is the magnetic field at the guiding center position, q the particle charge and

m its mass. By perturbing the distribution function f = F0 + δf , the GK equation is

obtained by gyro-averaging
∂ 〈f〉
∂t

− 〈[H, f ]z〉 = 0. (4.50)

We briefly mention the existence of a modern method of deriving the GK equation by

using the Lie transformation theory to change the coordinates to a system Z where the

new magnetic momentum remains an exact invariant in the presence of fluctuations, and

the Vlasov equation takes a simple form,

∂F

∂t
− [H,F ]Z = 0, (4.51)



178 CHAPTER 4. MODELING OF SHAPING EFFECTS ON TURBULENCE

where F (Z, t) = f(z, t), and H is the gyrokinetic Hamiltonian[10].

The conventional gyrokinetic formulation is a consistent expansion of the full kinetic

equation in the small parameter ρ∗, defined as the ratio of the ion Larmor radius to the

plasma minor radius, ordering

ω/Ωi ∼ k‖/k⊥ ∼ eδφ/Te ∼ ρs/Ln,T ∼ δf/F0 ∼ O(ρ∗) (4.52)

and k⊥ρs ∼ O(1). It is known that δn/n0 may become large in the tokamak edge where

steep gradients are observed, and there is a worry that conventional gyrokinetics may

break down. Numerical codes solving the Vlasov equation can solve it either in a thin

annulus around a given flux surface or in a larger spatial domain, and are accordingly

called flux-tube or global codes, respectively. Flux-tube codes have no radial variation

of the equilibrium and exhibit no ρ∗ dependence (ρ∗ scales out of the equations). Thus,

the flux-tube limit is commonly referred to as the O(1) theory. More details on flux-tube

code geometry can be found in Sec.4.6.3; for a full description of field-aligned coordinate

systems and flux-tube codes we address the reader to[11].

GS2 is a widely benchmarked code which solves the gyrokinetic Vlasov-Maxwell system of

equations as an initial value problem. The code employs a splitting operator which allows

a ballooning representation for the linear terms, solved implicitly, and a flux tube domain

treatment for the non-linear terms explicitly advanced in time with a second-order Adams-

Bashforth[14] scheme; GS2 allows the user to choose the amount of implicitness for each

kinetic species. The code can handle different ion species and collisions (a diffusion pitch-

angle or the Krook operator are available) and is fully electromagnetic. The magnetic

geometry can be given in input as an analytical model (s-α or Miller) or as a numerical

equilibrium obtained from an equilibrium solving code, such as EFIT or CHEASE[38].

In the field-line following coordinates, the non-linear gyrokinetic equation for the non-

adiabatic part of the perturbed distribution function g̃ = δf − F0qδφ/T may be written

as [12, 13]
∂g̃

∂t
+ [χ̃, g̃]/B + v‖b · ∇g̃ + iωdg̃ = iω∗χ̃− q∂F0

∂E

∂χ̃

∂t
(4.53)

where ω∗ is the diamagnetic drift. The distribution function F0 depends only on the flux

surface label Ψ and on the particle energy E = mv2/2. The perpendicular curvature and

∇B drifts are given by

ωd = k⊥ ·B ∧ (mv2
‖b · ∇b + µ∇B)/(BmΩ) (4.54)

where µ = mv2
⊥/(2B), [*,*] is the Poisson bracket, and the e-m fields are represented by

χ̃ = J0(k⊥ρ)
(
φ̃− v‖Ã‖

)
+
J1(k⊥ρ)

k⊥ρ

mv2
⊥
q

B̃‖
B

(4.55)



4.5. GYRO-KINETICS AND THE GS2 CODE 179

and are self-consistently solved through the GK Poisson-Ampere equations

∇2
⊥φ̃ = Σs

q

ε0

∫
dv

[
qφ̃
∂F0

∂E
+ J0(k⊥ρ)g̃

]
(4.56)

∇2
⊥Ã‖ = −µ0Σs

∫
dvqv‖J0(k⊥ρ)g̃ (4.57)

B̃‖
B

= − µ0

B2
Σs

∫
dvmv2

⊥
J1(k⊥ρ)

k⊥ρ
g̃ (4.58)

where J0 and J1 are the Bessel functions.

The coordinates used in the code are the energy E, the quantity λ = µ/E related to

the particle’s pitch angle range, and the field-line coordinate θ, which is the poloidal

angle. For each E and λ there are 2 possible parallel velocities, which makes the number

of parallel passing region points twice the value actually set in the code. The velocity

integrals are the following:

∫
dv =

√
2πB(θ)

m3/2

∫
dE

√
Edλ√

1− λB(θ)
(4.59)

A gaussian integration rule is adopted in the evaluation of these integrals to maximize

the accuracy over the computational effort, especially at the trapped/passing boundary.

Since the distribution function generally behaves differently in the trapped and passing

regions, the grid is different in these two regions. In the trapped region the λ grid is chosen

so that the points where v‖ = 0 correspond to grid points in θ, i.e., 1− λiB(θi) = 0. The

grid is equally spaced in the field-line direction and integrals over E are evaluated with

gaussian integration rule. The distribution function must vanish as θ → ±∞ thus the

boundary conditions applied in the code are the following

• δf=0 at the rightmost grid point in θ for v‖ < 0, i.e., at the end of the flux tube

• δf=0 at the leftmost grid point in θ for v‖ > 0, i.e., at the beginning of the flux tube

so that no particle is convected into the simulation domain from infinity.

For trapped particles, at given E and λ, which means for a given spatial extent in θ, the

distribution function for v‖ > 0 must be equal to the distribution function for v‖ < 0 at

the mirror point.

The code allows to option to simulate only half domain if symmetric eigenfunctions exist,

which is the case for an up-down symmetric equilibrium.
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4.6 The effect of plasma shape on performance

4.6.1 Historical results

Plasma shape has been theoretically and experimentally recognized as a major player

in plasma performance through its effect on both MHD and microturbulence. A fusion

relevant tokamak needs to operate at high pressure to maximize the reactor efficiency

by means of a high fusion rate and, in the case of advanced-tokamak scenarios, a high

bootstrap current and a low externally driven current. However there are limits to the

density, pressure and current which a plasma can withstand and above which MHD in-

stabilities occur, destroying the desired configuration. The influence of plasma shape on

MHD stability was theoretically studied in [16, 17] and has been experimentally observed

in the TCV, DIII-D and JET tokamaks in various scenarios[17, 18, 19, 20].

The improvement in performance with shaping in an elongated plasma is due to the in-

creased maximum MHD-stable current (at fixed safety factor) carried by an elongated

plasma, which in turn increases the maximum achievable beta according to the Troyon

scaling[21].

Concerning the effect of shaping on microturbulence, a few linear gyrokinetic (GK) studies

have been performed, showing in general a stabilizing effect of elongation on Ion Tem-

perature Gradient (ITG) modes[22, 23] and Trapped Electron Modes (TEM)[24]. More

recently the first non-linear gyrokinetic attempts to characterize the influence of plasma

shape on ITG turbulence, with the local GS2 code[25], have confirmed the stabilizing

effect of elongation[26]. When performing elongation studies, it is important to remove

any effects due to the total current because, as non linear results obtained with the

ORB5 code[27] have revealed, at fixed shape and at fixed pressure and current profiles a

larger total current reduces the ITG driven non-linear transport according to the scaling

χi ∝ 1/Itot[28]. This results from the consequent rescaling of the safety factor which

geodesic acoustic modes (GAMs) and zonal flows depend on. Latest results from the

GYRO code[29] indicate that elongation is beneficial in regard to a mixed ITG/TEM

turbulence.

All the analysis performed so far either focused on elongation alone or found that the ef-

fect of triangularity is negligible in comparison. By contrast, in this section we will focus

almost exclusively, both linearly and non-linearly, on modeling the effect of triangularity

on confinement as observed in TCV[15].

The TCV tokamak, Tokamak à Configuration Variable[30], was specifically designed and

built to explore the influence of shape on the plasma properties. Indeed, as mentioned in

Chapter 1, it can operate with edge elongation between 1 and 2.8 and with edge triangu-

larity between 1 and -0.7. Dedicated experimental campaigns were devoted to studying

the influence of plasma shape on energy confinement in L-mode; this choice was dictated
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primarily by the need to minimize the influence of the magnetic topology on plasma edge

stability and focus on core transport studies. Initially, ohmic plasmas were considered

with line averaged densities ranging from 5 to 9 · 1019 m−3, plasma elongation, κ, between

1 and 2.7 and triangularity, δ, between -0.3 and 0.55. The energy confinement time, τE,

increased considerably with elongation but was independent of triangularity[31, 32, 33].

This behavior was explained by a steepening of the average temperature gradient due to

flux surface compression, whereas no dependence of the underlying electron diffusivity on

plasma shape was observed. At a later stage, L-mode, centrally EC-heated plasmas were

studied at a lower line averaged density 1.8 · 1019m−3, intermediate elongation κ=1.5 and

triangularity between -0.65 and 0.55, revealing a strong dependence of the electron energy

confinement time on triangularity, which could be cast in the form (1 + δ)−0.35[34], and

could not be explained by the flux surface compression effect mentioned before.

These results motivated a later, more detailed study of plasma confinement in a trian-

gularity scan of EC-heated plasmas. Elongation was kept fixed, at κ = 1.6, because any

change in it introduces major changes in plasma parameters such as current and volume

which seriously complicate the analysis. Plasmas were limited on the central column

and were characterized by a major radius 0.88 m, a horizontal midplane minor radius

a = (Rmax − Rmin)/2 = 0.25 m, a toroidal magnetic field BT = 1.44 T, a line averaged

density in the range 1 ÷ 2.2 · 1019m−3 and a flat-top current 260÷280 kA. The electron

temperature and density profiles were measured with a Thomson scattering system, char-

acterized by an acquisition rate of 20 Hz and a radial resolution of roughly 0.02 m. The

C6+ ion temperature profile was measured by a Charge Exchange Recombination Spec-

troscopy (CXRS) diagnostic. The ECH injected power was between 0.45 and 1.8 MW,

deposited just outside the q=1 surface at ρ = 0.4 to mitigate sawteeth. The absorbed

ECH power fraction was calculated by the linear ray tracing code TORAY-GA[35] and, for

the densities used in this study, was 100% during the first path through the resonance, so

no power was reflected by the vacuum chamber wall. Additionally, the launching direction

was adjusted in each condition to ensure that the wave vector was always perpendicular

to the total magnetic field at the resonant layer, so no current drive was provided by the

RF power. The electron heat transport is calculated via power balance analysis, taking

into account EC power deposition, ohmic power and electron-ion equipartition. Interested

readers are referred to[15, 36] for further details. The main result of the experiments was

the stabilizing role of negative triangularity: in particular, the same electron temperature

and density profiles were achieved for plasmas with triangularity of the Last Closed Flux

Surface (LCFS) equal to 0.4 and -0.4, respectively, injecting in the latter case half as much

power as in the former. This implies that flipping the edge triangularity from 0.4 to -0.4

essentially halves the electron heat transport. Conversely, injecting the same amount of

EC power resulted in considerably higher temperature in the δ < 0 case with respect to
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the δ > 0 one. In the remainder of this paper we will focus on two TCV shots (shots 28014

and 28008) having the same electron density and temperature profiles but two different

edge triangularity values, being equal to 0.4 and -0.4, respectively. These two shots were

analyzed in [15] and an overview is shown in Figs.4.3 and 4.4. They are characterized by

the same kinetic profiles within the errorbars except for the ion temperatures, which were

about 15% higher in the center for the negative δ case, although approximately the same

at ρ = 0.7; however in the simulations we will neglect this effect which, on the basis of

linear simulations, is expected to be small. Note in particular that Te/Ti is larger than 2

in these discharges.

It is worth commenting briefly on the radial behavior of elongation and triangularity. As

is evident from Fig.4.3, the plasma shape moments have finite penetration lengths, i.e.

they are not constant along the radius. Their penetration length is governed by magnetic

shear which is slightly different in these two shots. In particular if the safety factor profile

were flat, the elongation would freely propagate up to the magnetic axis. Instead, since

the magnetic shear reaches its maximum values at the edge, it is there that the shape

moments are mostly damped. Additionally, due to the difference in the edge triangularity

values, the safety factors, and thus the magnetic shears, differ mostly at the edge giving

rise to different elongation penetration lengths for these two shots. In the following sec-

tions we will address this point further.

These TCV discharges motivated an investigation concerning their microstability, in order

to assess the direct influence of plasma shape on electron transport coefficients.

4.6.2 Methodology of numerical simulations

The simulations have been performed with the flux-tube code GS2[25]. A pitch-angle

diffusion operator was chosen for treating collisions. Although the code is fully electro-

magnetic, the simulations performed here are in the electrostatic limit owing to the low

beta values in the experiments considered (2µ0〈p〉/B2
0 ' 10−3). The simulations were

performed with three kinetic species (electrons, deuterium and carbon as impurity), 16 to

32 energy grid points, 20 to 40 circulating-particle pitch angles, 16 to 32 trapped-particle

pitch angles. Carbon was retained as impurity due to the high Zeff which, being no less

than 3.5, leads to a C concentration equal to 20% of that of deuterium. We performed

separate convergence studies for positive and negative triangularities, of which the former

case is slightly more demanding, and they indicate that at least 11 poloidal modes and 70

radial modes are necessary to attain an accuracy of about 8% on the saturated heat flux;

this value will be used in the following as an upper-limit estimation of the error bar asso-

ciated with every non-linear simulation. All the non-linear simulations discussed in this
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Figure 4.3: Overview of the equilibrium parameters of TCV shots 28008 and 28014. Radial
profiles of safety factor (a), magnetic shear (b), elongation (c) and triangularity (d). The
q profiles in (a) have been more accurately calculated than in [15]
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Figure 4.4: Overview of the kinetic profiles of TCV shots 28008 and 28014. Radial profiles
of electron temperature (a) and density (b) from Thomson scattering diagnostic, and the
ion temperature (c) from CXRS. All the figures show raw data as well as spline-fitted
values. This picture was reformatted from [15].

paper have been performed with 15 poloidal modes and 85 radial modes in a simulation

domain which, at θ=0, is 132.9 ρi wide in the θ direction and 207.3 ρi wide in the radial

direction, resulting in turbulent modes evolved in the following ranges: 0 ≤ kθρi ≤ 0.67,

|kxρi| ≤ 1.27 and ∆kxρi = 0.03, ∆kθρi = 0.05; here ρi is the ion Larmor radius and

θ is the poloidal angle along the field line. The grid limits have been chosen after ex-

ploratory nonlinear runs were performed over a broader range. In particular the upper

limit kθρi < 0.67, which is close to the most unstable mode as seen in Fig.4.5a, is in fact

well above the wave number generating the maximum heat flux, which is kθρi ' 0.15; at

kθρi = 0.67 the heat flux drops to 7% of the maximum (see also Fig.4.6b). More details

concerning convergence studies are illustrated in Sec. 4.11. A typical run requires about

3 · 104 dynamically adjusted time steps. An initial equilibrium reconstruction, performed

with the LIUQE code [40], to determine the plasma boundary was followed by a simulation

with the PRETOR[37] transport code to derive the steady-state current profile, which was

then provided in input to the CHEASE[38] equilibrium code to calculate the complete

equilibria directly read by GS2. This method ensures a correct evaluation of the magnetic

topology. Alternatively, an analytical description, such as the Miller parametrization[39],

could be used. However, in this case it would be imperative to choose the parameters

such that they are all consistent with the equilibrium they refer to. Let us illustrate this
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point in the case of a triangularity scan: by solely changing the value of the triangularity

on a given flux surface one does not obtain the actual experimental equilibrium relative

to the desired triangularity because, in reality, triangularity is correlated with its radial

derivative and with the surface’s Shafranov shift, which have to be changed as well. To

correctly evaluate the additional geometrical terms needed in the analytical parametriza-

tion, an actual equilibrium reconstruction is therefore required. The method employed

reads the output of an MHD equilibrium code (CHEASE) directly, thus automatically

providing the correct geometrical information to GS2.

To isolate just the effect of plasma shape, the GS2 simulations have been performed by

keeping fixed temperature, density and effective charge profiles when comparing different

triangularities; the actual experimental profiles are indeed identical within the error bars.

4.6.3 Geometrical background

In this section we will briefly elucidate some geometrical concepts useful to the reader not

familiar with the GS2 code and, in general, with ballooning coordinates. An axisymmetric

equilibrium magnetic field made of closed surfaces may be represented in terms of scalar

potentials[41]

B = ∇α ∧∇ψ, α = ϕ− q(ψ)θ − ν(ψ, θ), (4.60)

where q is the safety factor and the scalar potentials are ψ, the poloidal flux, θ, the

poloidal angle, and ϕ − ν, the toroidal angle minus ν, which is a periodic function in ϕ

and θ. The field lines are straight and lie in the (ϕ− ν, θ) plane. A convenient coordinate

system is (ψ, α, θ) where ψ defines the flux surface of interest, α identifies each field line

on a flux surface and θ labels the position along the field line α on the flux surface ψ.

In ballooning coordinates, the quasi-orthogonality between the equilibrium magnetic field,

B0, and the dominant instability is modeled by assuming that any perturbation of a given

quantity X may be expressed as[12]

X = X̂(θ)eiS, (4.61)

where X̂ is the complex amplitude of the perturbation and S is the ballooning eikonal,

such that

B0 · ∇S = ∇α ∧∇ψ · ∇S = 0. (4.62)

This condition models the alignment of perturbations along the field line. In turn this

implies that S must be a function of ψ and α, and could thus be expressed as S =

n0[α+q(ψ)θ0]. Here n0 is an integer labeling the mode instability and θ0 is the ballooning

angle which ties radial and poloidal mode numbers through the relation kx = −kθsθ0,
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where s is the magnetic shear[12].

The non-linear gyrokinetic equation, in ballooning coordinates, is given by(
∂

∂t
+ v‖b̂ · ∇+ [χ̃, ·]/B + iωD

)
g̃ = iωT∗ χ̃− e

∂F0

∂E

∂χ̃

∂t
, (4.63)

where g̃ is the non adiabatic part of the distribution function, F0 is the Maxwellian

equilibrium distribution function, E the energy coordinate, [·, ·] is the Poisson bracket of

the spatial derivatives which models the non linear ExB drift, ωD = ∇S · B0 ∧ (mv2
‖b̂ ·

∇b̂ + µ∇B0 + Ze∇Φ0)/(mB0Ω) is the curvature and ∇B drift, χ̃ = J0(k⊥ρi)φ̃ is the

gyro-averaged electrostatic potential and ωT∗ is the diamagnetic frequency. The latter,

according to [12], can be written as

ωT∗ =
b̂ ∧∇S · ∇F0

B0

= n0
b̂ ∧∇[α + q(ψ)θ0] · ∇F0

B0

= n0
b̂ ∧∇[α + q(ψ)θ0] · ∇ψ

B0

∂F0

∂ψ
.

(4.64)

Using Eq.4.60a, the rotation property of the triple product and the fact that the safety

factor, being a flux function, depends only on ψ we obtain

ωT∗ = n0
∂F0

∂ψ
(4.65)

which is then only a function of the toroidal mode number of the instability, n0. Therefore

in Eq.4.63 only the parallel advection b̂ · ∇, the ∇S term, the curvature and ∇B drift

operators and the magnetic field itself depend on the coordinate θ along the field line[12],

and so may change according to the equilibrium reconstruction. Also an additional term,

∇ρ, depends on θ and enters in the evaluation of volume integrals and flux surface aver-

ages.

Once the toroidal mode number n0 of the perturbation and the radial derivative of the

equilibrium distribution function are fixed, any change in the equilibrium reconstruction

is reflected into changes in the the aforementioned quantities.

Let us now develop one of these terms, |k⊥|2, which will be used in the following

|k⊥|2 = |∇S|2 = n2
0|∇(α + qθ0)|2 ∝ k2

θ |∇α · ∇α + 2θ0∇α · ∇q + θ2
0∇q · ∇q|. (4.66)

In the circular, high aspect ratio, zero β, limit this can be written as

|∇S|2 ∝ k2
θ |1 + s2θ2 − 2s2θ0θ + θ2

0s
2|. (4.67)

4.6.4 Linear simulations

Before performing a non-linear analysis, linear simulations are useful to understand the

basic properties of the instabilities under consideration and to explore all underlying
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features of the experimental regime, in particular to uncover possible hidden variables

that may affect turbulence independently of triangularity. All the runs described in this

section have been performed with three kinetic species: electrons, deuterium, and carbon

as impurity; the radial wave number has been chosen to be equal to zero and with the

actual reconstructed equilibrium located at ρ = 0.7, where ρ is defined as the square root

of the normalized volume, Eq.4.4. The choice of this radial location corresponds to a

compromise between the interest of simulating core turbulence and the fact that shape

effects are more visible at the plasma edge. Indeed shape and toroidicity decrease when

going from the edge to the magnetic axis.

Since the real frequencies of all unstable modes evolved are in the electron diamagnetic

direction (negative sign in our convention) and since the majority of the heat flux is

carried by the trapped electrons, we can conclude that the core of these TCV plasmas is

dominated by TEM turbulence. To strengthen our confidence in this claim and to assess

the impact of experimental uncertainties, we performed additional simulations varying the

electron and ion temperature profiles as well as the density profiles over their experimental

error bars to see how far from a possible regime transition these data are; the results are

summarized in Table 4.1 and do not show any change of behavior. The Te/Ti ratio has

been changed by 25% even though its experimental uncertainty is lower.

case variation max ∆ω max ∆γ

R/LTe -10% -4% -5%
R/Lnx -25% -10% -15%
Te/Ti -25% -16% -10%
Te/Ti +25% +22% -13%
R/LTi +10% +3% +2.4%

Table 4.1: Linear scan in experimental profiles showing the maximum variation in ω and
γ, calculated over the linear spectrum of Fig.4.5, obtained by varying the equilibrium
profile values within the experimental error bars.

The calculated spectra for TCV shots 28014 and 28008 are depicted in Figs.4.5 and 4.6

and show two important features. First, the growth rate of the most unstable mode for

each poloidal wave vector is lower in the negative δ case compared to the positive one.

Second, the values of the reconstructed field line averaged k⊥ are, for low toroidal mode

number, higher in the negative δ case with respect to the positive one, while the opposite

holds for high mode numbers. The average k⊥ has been calculated as follows[42]

〈k2
⊥〉 =

∫ θmax
θmin

dθk2
⊥(θ)|φ̃(θ)|2∫ θmax

θmin
dθ|φ̃(θ)|2

, (4.68)

where φ̃ is the fluctuating electrostatic potential, k⊥ is defined as in Eq.4.66 and θmin,max

specify the flux tube length used in the simulation. This formula weights the perpendicular
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wave vector with the energy of the fluctuations, therefore in case of strongly ballooning

modes it enhances the contribution from the low field side of the plasma. When only the

modes at θ0 = 0 are considered, which are usually the most unstable, it can be seen that

in the high aspect ratio, zero β, circular limit equation Eq.4.68 reduces to

〈k2
⊥〉 = k2

θ

[
1 + s2

∫ θmax
θmin

dθθ2|φ̃(θ)|2∫ θmax
θmin

dθ|φ̃(θ)|2

]
= k2

θ(1 + s2〈θ2〉), (4.69)

in agreement with[42]. The consequence of these two effects is, in a mixing-length pic-

ture, a double stabilization at low mode numbers, where most of the transport occurs,

due to the reduced growth rates and to a shorter perpendicular wavelength; this result

is plotted in Fig.4.6b which also makes it apparent that the first stabilizing mechanism

(on γ) dominates at high poloidal wave vectors. This conclusion is consistent with results

previously obtained with the linear global code LORB[43, 44].

As a first qualitative survey of the effect of plasma shape on plasma confinement, one can

perform a two dimensional scan in edge triangularity and edge elongation with a given

pressure and current profile. The scan is performed by taking density and temperature

profiles of a given pulse (28014 in our case) and then by changing the equilibrium recon-

struction: i.e. recalculating the equilibrium starting with the same pressure and current

profile and imposing a different shape to the Last Closed Flux Surface (LCFS). The re-

calculated q profiles change up to about 10% along the maximum δ scan at each value

of elongation. The maximum change in elongation at fixed triangularity is about 20%,

almost irrespective of triangularity. The absolute elongation difference also stays almost

constant up to the magnetic axis.

The resulting mixing-length heat diffusivity, calculated as the maximum of γ/〈k2
⊥〉[42], as

a function of the shape parameters is shown in Fig.4.7. It is apparent that turbulence is

quenched by lowering triangularity, especially to negative values, or by increasing elonga-

tion, as the contour levels over most of the κ − δ space can be approximately described

by κ ' δ+const lines. A more detailed examination, however, reveals a more complex

dependence on elongation at different values of triangularity. In fact an increase in κ is

always stabilizing at negative δ, whereas for positive triangularities it is initially destabi-

lizing and then stabilizing again. This behavior is not due to the growth rate but to the

average 〈k2
⊥〉, and in turn to the shape of the electrostatic potential along the field line,

as can be seen in Fig.4.8 which plots growth rate and equivalent perpendicular scale of

the fluctuation corresponding to the maximum of γ/〈k2
⊥〉.

Next, we proceed to explore whether the variations induced by a change in triangularity in

other discharge quantities could themselves have an influence on microturbulence. Since

the TCV shots under analysis are dominated by TEM turbulence, one might speculate

that the negative δ stabilization could be due to a difference in aspect ratio resulting in a
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Figure 4.5: TEM dispersion relations from linear GS2 simulations for TCV shots 28014
and 28008 (growth rate on the left, real frequency on the right). The negative δ case is
characterized by lower growth rates than the positive one.

Figure 4.6: a) Ratio of k⊥ for TCV shots 28008 and 28014, estimated from Eq.4.68, as a
function of kθ. b) Mixing length estimate via Eq.4.66 of the electron heat flux calculated
by GS2 at ρ=0.7 for TCV shots 28008 and 28014.
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Figure 4.7: Mixing length estimate, calculated as the maximum of γ/〈k2
⊥〉, of the electron

heat flux obtained with GS2 at ρ = 0.7, as functions of edge triangularity and elongation.
The top-left corner of the figure is empty because it corresponds to unrealisable equilibria.

Figure 4.8: Growth rate (left) and averaged 〈k2
⊥〉 of the mode corresponding to the max-

imum of γ/〈k2
⊥〉 obtained with GS2 at ρ = 0.7 as functions of edge triangularity and

elongation.
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different trapped particle fraction. In Fig.4.9a we plot the inverse aspect ratio, calculated

as

(Rmax −Rmin)/(Rmax +Rmin) (4.70)

and, alternatively, in Fig.4.9b through the expression

〈a/R0〉 =
1

R0

√√√√∫ θmaxθmin
dθr2|φ̃(θ)|2∫ θmax

θmin
dθ|φ̃(θ)|2

, (4.71)

which, in analogy to Eq.4.68, represents, by means of an average over the energy of the

underlying instability, an effective aspect ratio seen by the particles (Fig.4.9b). Neither

function follows the trend of Fig.4.7, and the relative variation of the trapped particle

fraction, which is proportional to the square root of the inverse aspect ratio, is over a

factor of 10 smaller than the heat-flux variation shown in Fig.4.7.

Another effect that has to be taken into account is the dependence of local elongation on

Figure 4.9: Inverse aspect ratio, defined by a) Eq.4.70 and b) Eq.4.71, as a function of
triangularity and elongation of the LCFS.

triangularity. Even with the same elongation on the LCFS, the difference in Shafranov

shift for two different values of triangularity may result in a different degree of penetration

of the elongation into the plasma core. This in turn could cause a variation in TEM

turbulence in addition to the direct influence of triangularity. However, for TCV shots

28008 and 28014 the difference in elongation is less than 4% over the whole minor radius;

this, considering Fig.4.7, can only have a negligible effect compared to the observed 30%

reduction in the maximum of γ/ < k2
⊥ >.

Finally we consider the effect on the gradients induced by a change in triangularity.

Indeed, even though the profiles as functions of the flux surface coordinate are identical,

the local values of the spatial gradients generally differ due to flux surface compression.

In particular the enhanced Shafranov shift induced by negative triangularities compared

to positive ones, leads to a more peaked pressure profile on the low field side, whereas the
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opposite happens on the high field side. To investigate this effect we performed a pressure

gradient scan on linear simulations and compared the results expressed as functions of

(1/T )dT/dρ or 〈∇ρ〉(1/T )dT/dρ; if this effect was responsible for the difference under

consideration the growth rates should be equal when plotted as a function of the latter

quantity. Even though the difference in the growth rates almost halves, Fig.4.10, this

effect cannot be wholly responsible for the observed disparity. Looking at Fig.4.10b one

might be surprised by the fact that, even though the negative triangularity case has an

enhanced Shafranov shift with respect to the positive triangularity one, and thus the flux

surfaces are compressed in the unstable low-field side region, the gradient expressed in

real space in lower. This is due to the fact that we calculated the temperature gradient

using the ∇ρ averaged over the whole flux surface without φ̃ weighting; therefore the

result is due to the flux surface expansion on the high field side of the plasma which,

outside mid-radius (see Fig.4.11), dominates over the compression on the low field side.

If we had weighted the ∇ρ term with, for example, the electrostatic potential, to account

a posteriori for the ballooning character of the instability, we would have ended up with

a larger difference of the growth rates for these two shots, thus supporting even further a

genuine effect of triangularity on plasma micro-stability.

Figure 4.10: Linear growth rates of experimental cases 28014 and 28008 as functions of
(1/T)dT/dρ (a) and 〈∇ρ〉(1/T)dT/dρ (b). The compression effect is not responsible for
the observed difference.

The TEM was first theoretically investigated in [45] (see Sec.4.4), leading to the identifi-

cation of the toroidal precession drift of trapped particles as the cause of the instability.

Indeed, other parameters such as Te/Ti and density and temperature scale lengths be-
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Figure 4.11: Square root of 〈∇ρ2〉 as a function of ρ for the two TCV shots under con-
sideration. Outside mid-radius the negative triangularity case is characterized by a larger
pressure gradient in real space, for the same pressure gradient in ψ space. Inside mid-
radius the trend is the opposite but plasma shaping effects there are too small to be
detected.

ing equal, which is the case in the present experiments, it is natural to search for the

cause of the observed dependence in the drifts induced by the magnetic topology. Even

though the only operational difference between these TCV shots is the edge triangular-

ity, this translates into differences in several quantities, both macroscopic, such as the

Shafranov shift, and microscopic, such as the magnetic drifts. To understand how the

different microscopic drifts interact, the positive triangularity case has been changed ar-

tificially by replacing one or more drives in the gyrokinetic equation, one at a time, with

their corresponding values taken from the negative triangularity case. In particular, in

Equil. δ = 0.4 δ = -0.4 ωD ωD +∇⊥ ωD +∇// ∇⊥ ∇⊥ +∇// ∇//

χML 1 0.77 0.90 0.74 0.92 0.82 0.84 0.98

Table 4.2: Normalized heat diffusivity through mixing length estimate of real cases (δ =
±0.4 at ρ = 0.7) and of the artificially changed equilibria explained in the text (all the
others).

the toroidal gyrokinetic equation one could isolate the effects of curvature and ∇B drifts

(which have been simultaneously changed because, as can be seen in Eq.4.22, they differ

only in the negligible ∇β and are indicated as ωD in Table 4.2), the parallel advection

(indicated as ∇// in Table 4.2) and the gradient of the ballooning eikonal, which reflects

the effect of magnetic shear and can be interpreted as k⊥ (this parameter is indicated as

∇⊥ in Table 4.2 and has been changed independently of the perpendicular drifts for the

sake of numerical investigation). The result of this linear test is depicted in Table 4.2,
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which reports the heat diffusivities, normalized to the positive triangularity case value,

calculated as the maximum of γ/〈k2
⊥〉[42]. In Table 4.2 it is evident that parallel and

perpendicular dynamics behave differently: the curvature and ∇B drifts together with

k⊥ act to reduce the linear χML of the perturbation in the negative δ case, whereas the

parallel advection does not appreciably influence it. In particular the ∇⊥ of a negative

δ configuration narrows the electrostatic potential which, in turn, reduces the equivalent

perpendicular wavelength of the fluctuation. Additional tests mixing the electrostatic

potential, the growth rate and the k⊥ geometrical factor were performed; they result in

mixed regimes but are not reported here as considered not significant.

4.6.5 Non-linear simulations

The linear simulations discussed in the previous section show a qualitative trend matching

that observed in the experimental TCV shots. Nevertheless it should be noted that linear

mixing-length estimates only give a 30% difference in diffusivity between the two equi-

libria, whereas the experimental value is about 100%: nonlinear effects might therefore

be paramount in accounting for the larger variation observed in the experiment. Using

the numerical grids described in Sec.4.6.2, non-linear runs have been performed to check

whether the E ∧ B non-linearity plays any role in the microstability analysis of these

shots. As will be discussed in the following, it is indeed observed that non-linearity plays

a further stabilizing role, increasing the difference between the positive and the negative

triangularity cases, thus showing how the mixing length approximation is not adequate

for describing all the physical details even if it succeeds in capturing the relevant trends.

This can be appreciated in Fig.4.12, which compares the ratio between the experimen-

tal thermal diffusivities, reconstructed from a power balance analysis, of the two TCV

pulses under analysis and the corresponding simulated ratios at three radial points. The

non-linear simulations are performed in the collisionless limit. It can be seen that the

reduction in transport with negative triangularity is qualitatively reproduced, but a sat-

isfactory quantitative match is only obtained near the plasma edge. The smaller ratios

seen in the simulation towards the inside of the plasma can be explained by the finite

penetration depth of triangularity. In particular, if at ρ = 1 the triangularities are +/-

0.4, at ρ = 0.7 they are equal to +/-0.17 and at ρ = 0.4 they are lower by a further factor

of 3, being equal to about ±0.07 (see Fig.4.3). So since, going towards the magnetic axis,

the fraction of trapped particles tends to zero and the difference in triangularity vanishes,

the resulting difference in the trapped particle contribution to the total transport is an-

nulled. Even though passing particles are also stabilized by negative triangularity, they

contribute less to the total transport and with a smaller absolute difference with respect

to trapped particles. All this results in the two simulations giving approximately the same
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result at ρ ' 0.4. This claim is supported by Fig.4.13, which shows the decrease of the

trapped particle contribution to the total transport for the two extreme radial locations

in Fig.4.12.

Since the density and temperature profiles are everywhere equal in the two shots, the

anomalous transport reduction has to occur over the whole minor radius; the doubling of

the experimental confinement time cannot therefore be explained by a stiffness argument

which would imply an increased stored energy due to a mode stabilization that is approxi-

mately localized close to the plasma edge. In particular, the experimental diffusivity ratio

is still approximately 2 even at the innermost location studied. Since a local analysis is

patently unable to reproduce this result, as discussed above, global effects may be at play

which cannot be reproduced by the present modelling. In the following all the numerical

analysis will be performed at ρ = 0.7.

Experimentally, the electron diffusivity is found to depend on a combination of various

Figure 4.12: Blue rectangle: range in which lies the ratio of experimental electron ther-
mal conductivities, as a function of the square root of the normalized volume, between
discharges with edge triangularities equal to ±0.4. The area excludes the regions where
the EC power was deposited (ρ < 0.4) and where the impurity line emission is too large,
making the measurement uncertain (ρ > 0.7). Red points: same ratio simulated by non-
linear, collisionless, GS2 runs; the mean values are calculated in the saturated phase of
the simulation.

physical quantities such as Te, ne and Zeff . In particular, an inverse linear scaling was

found with respect to a particular combination corresponding to the effective collision-

ality, i.e. the electron collisionality normalized to the electron drift frequency, with the

proportionality factor depending in turn on triangularity[15]. As can be seen in Fig.4.14,

non-linear collisional simulations reproduce similar behavior with numerical values of the

same order of magnitude as the experimental ones. In these non-linear simulations the
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Figure 4.13: Comparison of the non-linear simulated heat transport as a function of pitch
angle for positive and negative triangularities calculated at ρ=0.4(a) and 0.7(b).
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Figure 4.14: Effect of collisionality on the non-linearly simulated electron heat diffusivity.
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Figure 4.15: Heat Flux integrated over pitch angle (cumulative integral) vs pitch angle for
two values of collisionality. At higher νeff the relative contribution from passing electrons
to the total flux increases. Even though their contribution to the total flux is small, note
how negative δ stabilizes also passing electrons.

estimated saturated heat flux is carried primarily by the electron species and, additionally,

the electron heat flux is mainly due to trapped particles (see Fig.4.15), which confirms

the TEM nature of the turbulence under investigation. This insight works in favour of

an intuitive explanation of the collisionality dependence observed in both simulations and

experiments. Indeed, collisional detrapping and dephasing processes alter the phase space

configuration of the instability, leading to more and more particles being taken out of the

highly unstable trapped region and transferred into the less unstable passing region, or

dephased with the instability, and therefore contributing less to the overall transport.

This is also reflected in a higher relative contribution of the passing electrons to the total

(and decreased) calculated heat flux increasing, for the cases plotted in Fig.4.15, from 5

to 10%. Thus, in terms of the effect on heat transport, reversing the triangularity from

positive to negative is equivalent to increasing the collisionality by a given factor. In

other words, TEM in a negative triangularity plasma are stabilized as if the plasma were

much more collisional; thus allowing the same amount of transport with, for example, a

much lower density and/or a much cleaner plasma. In Fig.4.15 the particle contribution

to the total transport as a function of pitch angle is given by the slope of the curves, so

it is possible to appreciate how the roles of barely trapped and barely passing electrons

become increasingly similar as collisionality is increased.
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4.7 Investigation of instability drives

Artificial changes in the equilibrium can be applied to nonlinear simulations in a sim-

ilar manner as was discussed in Section 4.6.4 for the linear case. The conclusions of

that section concerning the roles of the individual drives can thus be put to the test

in the nonlinear case. In Table 4.3 it can be seen how a change in either the ∇B

and curvature drift or in the equivalent k⊥ entering in the quasi-neutrality calculations

and gyroaveraging, lead to an approximately equal degree of turbulence suppression.

Thus the slight difference found between these two terms in the linear approximation

essentially disappears in the non-linear phase. However it is important to note that

when these terms are changed simultaneously, which has to be the case in order for the

simulations to be physically meaningful since the terms are connected by the relation

ωD = ∇S · B0 ∧ (mv2
‖b̂ · ∇b̂ + µ∇B0 + Ze∇Φ0)/(mB0Ω)[12], the heat flux variation is

reproduced almost exactly, thus confirming that the observed stabilization is induced by a

combined effect of different perpendicular drifts and consistent perpendicular scales of the

fluctuations. In the table it is also evident how the ∇ρ term, which enters in the calcula-

tions of volume integrals and surface averages, is not alone responsible for the difference,

which is then due to the linear terms, although the full non-linear equation increases the

difference between the two triangularities compared to the results of Table 4.2.

Equil. δ > 0 δ < 0 ωD ∇⊥ ∇ρ ∇⊥ + ωD

Saturated heat flux 1 0.59 0.55 0.53 0.78 0.58

Table 4.3: Same as Table 4.2 for corresponding non-linear simulations.

Since, as already mentioned in section 4.6.4, TEM are destabilized by the resonance be-

tween the real frequency of the perturbation and the toroidal precessional drift frequency

of trapped electrons, it is interesting to evaluate the dependence of the toroidal preces-

sional drift on triangularity. When the banana width can be neglected with respect to

the equilibrium scale lengths, which is one of the assumptions of a local code, the toroidal

precessional drift reads[5]

〈ϕ̇〉 =
1

q

∂I‖/∂ψ

∂I‖/∂E
, (4.72)

where E is the energy of the particle, q its charge and I‖ is the second (or longitudinal)

adiabatic invariant, defined as

I‖(ψ,E, µ) =

∮
dl‖v‖ = 2

∫ θb

−θb
dθJB|v‖|. (4.73)

Here±θb are the bouncing points of the electron with energy E and pitch angle µ(B(ψ, θb) =

E/µ), J is the Jacobian of the transformation to the field-aligned coordinate system and
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B is the amplitude of the magnetic field. Equation 4.72 can then be rewritten as

〈ϕ̇〉(ψ,E, µ) =
1

q

∂I‖/∂ψ

∂I‖/∂E
= (4.74)

=
2E

q

∂

∂ψ

(∫ θb

−θb
dθJ(θ)B(θ)

√
1−B(θ)/B(θb)

)
/

∫ θb

−θb
dθJ(θ)B(θ)/

√
1−B(θ)/B(θb),

which is then a linear function of the particle energy.

Figure 4.16 shows that this quantity behaves very differently for deeply trapped and

barely trapped particles; in particular the toroidal precessional drift tends to be higher

for positive δ in the deeply trapped region while the opposite happens for negative δ; this

behavior is in agreement with an analytical expression of the toroidal precessional drift and

with the Venus code[47], see Sec. 4.12 for more details. For a geometrical interpretation

Figure 4.16: Toroidal precessional drift of a trapped electron of energy equal to the
electron temperature, in arbitrary units, as a function of the trapped particle’s bouncing
points, for five different equilibria which have been generated from a single TCV shot, by
changing the shape of the LCFS.

we show, in Fig.4.17, the shape of three equilibria and the bouncing angle represented in

Fig.4.16. In order to investigate the resonance condition between the perturbation and

the toroidal precessional drift frequency, we normalize the latter to the real frequency of

the most linearly unstable mode, in agreement with the mixing-length estimate used in

Section 4.6.4. Figure 4.18 shows the ratio n0〈ϕ̇〉/ω(n0) for TCV shots 28008 and 28014,

calculated for a particle energy equal to the thermal electron temperature.

A resonant condition in this plot would occur when the ordinate is close to 1. In the

case shown it would appear that the negative triangularity case is closer to the resonance.

However, as a rule of thumb, the resonance condition ought to be evaluated not for a



200 CHAPTER 4. MODELING OF SHAPING EFFECTS ON TURBULENCE

Figure 4.17: Shape of three equilibria of Fig.4.16 superimposed to the bouncing angle,
indicating where the toroidal precessional drift of the equilibria cross.

Figure 4.18: Toroidal precessional drift of a trapped electron of energy equal to the
electron temperature, normalized to the real frequency of the mode which contributes
most to the total transport, as a function of the pitch angle.
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thermal particle, but rather at the energy where most of the transport occurs. Our GS2

simulations indicate that this happens for 2.5 . E/Te . 3; since the ratio shown in Fig.

17 is a linear function of the electron energy divided by the electron temperature, for

E/Te larger than 2 it is the positive delta case that is closer to the resonance, except in

the deeply trapped region. In order to verify this rough estimate we can calculate the

particle and heat fluxes by performing the energy integral, which is the only right approach

to quantitatively calculate any difference in the resonance for the two cases. Earlier

in this chapter we showed how these shots are largely dominated by TEM turbulence

and, further, that there is no appreciable shape effect on the parallel advection term in

the GK equation; this now justifies the use of the bounce-averaged GK linear equation.

Considering a generic physical quantity X, its flux across a given flux surface is given by

〈ΓX〉 =

∫
d3rdEdµXg̃vE∧B · ∇ρ∫

d3r∇ρ
= −

∫
d3rdEdµXg̃∇φ ∧ b̂/B · ∇ρ∫

d3r∇ρ
, (4.75)

where g̃ is the non-adiabatic part of the distribution function, B the amplitude of the

magnetic field and φ̃ the electrostatic potential, and the integral is carried out over the

whole flux tube. By expressing g̃ and φ̃ as Fourier sums, Eq.4.75 becomes

〈ΓX〉 =

∫
d3rdEdµXΣkĝkφ̂

∗
kik ∧ b̂/B · ∇ρ∫

d3r∇ρ
. (4.76)

where the reality constraint on the electrostatic potential, φ̂−k = φ̂∗k, has been imposed.

Since in the linear theory there is no saturation mechanism, let us normalize the X flux

to the squared modulus of the electrostatic potential. Considering only the most unstable

mode we may then write

〈ΓnorX 〉 = <
∫
d3rdEdµXĝkφ̂

∗
kik ∧ b̂/B · ∇ρ

e2

T 2
e

∫
d3rφ̂kφ̂∗k

∫
d3r∇ρ

. (4.77)

the bounce-averaged kinetic equation in Fourier space reads[46]

g̃ =
ω − ω∗

[
1− ηe(3

2
− E

Te
)
]

ω − n0〈ϕ̇〉
e〈φ〉
Te

e−E/Te , (4.78)

where ηe = d log(Te)/d log(ne), 〈φ〉 is the bounce-averaged electrostatic potential, 〈ϕ̇〉 is

the bounce-averaged toroidal precessional drift frequency, ω is the mode’s complex fre-

quency and the diamagnetic frequency is expressed by ω∗ = kθTe∇ne/(qBne). Adopting

the approximation φ ' 〈φ〉 and substituting Eq.4.78 into Eq.4.77 we obtain the following

quasi-linear estimate for the X flux
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〈ΓnorX 〉 = <
∫
d3rdEdµX

ω − ω∗
[
1− ηe(3

2
− E

Te
)
]
ik ∧ b̂/B · ∇ρ

ω − n0〈ϕ̇〉
e−E/Te/

e

Te

∫
d3r∇ρ.

(4.79)

Taking now as X the particle energy, Eq.4.79 gives the heat flux, while taking X = 1 we

obtain the particle flux.

Figure 4.19 shows the µ integrand (i.e. energy and surface integral) of Eq.4.79 for TCV

shots 28008 and 28014, indicating how negative triangularity acts, compared to positive

triangularity, favorably everywhere in the pitch angle space except for the deeply trapped

particles, which are less unstable in a positive triangularity configuration. Figure 4.17

indicates that this region is a subset of the bad curvature region. By performing the pitch

angle integral we obtain that the heat and particle fluxes for the negative triangularity

configuration are lower by about 15% than the ones corresponding to the opposite trian-

gularity. Roughly the same result is reproduced qualitatively also by linear and non-linear

GS2 simulations (Fig.4.20) which solve the whole GK equation coupled to the Poisson

equation. The only differences in the non-linear run are the precise values of the ratio of

the two heat fluxes and of the pitch angle value at which they cross over each other.

Figure 4.19: Quasi-linear estimates of the energy and particle fluxes as functions of the
pitch angle, for TCV shots 28008 and 28014.

As the toroidal precessional drift seems to be playing such an important role in the

microinstability of these TCV shots, it could be expected that its radial dependence

would be a good diagnostic for interpreting the results of GS2. In Fig.4.21 we plot, as a

function of the trapped particle bounce-angle, the value of 〈ϕ̇〉 for TCV shots 28008 and

28014 at the three radial positions of Fig.4.12. The difference between the two cases gets

smaller and smaller as one approaches the magnetic axis, due to the finite penetration

depth of triangularity.
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Figure 4.20: Non linear (top) and linear (bottom) GS2 estimates of the heat flux (left)
and of the particle flux (right) as functions of the pitch angle, for TCV shots 28008 and
28014.
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As briefly mentioned in Sec.4.6.4, since the toroidal precessional drift is a combined effect

of parallel and perpendicular dynamics, the < ϕ̇ > diagnostic is not only consistent with

the numerical exercises of Tables 4.2 and 4.3, but is actually a direct and powerful tool

to interpret in detail the transport properties of plasmas dominated by TEM turbulence.

It can be understood that the actual ratio of the toroidal precessional drift to the dominant

mode frequency is of fundamental importance in the evaluation of the generated flux. To

validate this picture we artificially changed the phase velocity of the dominant mode to

assess its impact on the velocity integral; the result is plotted in Fig.4.22 which represents

the particle flux in pitch angle space for the negative triangularity case. As can be noticed,

the contribution of barely or deeply trapped particles can be enhanced or reduced by

simply changing the phase velocity of the resonating mode without changing its growth

rate.

Figure 4.21: Toroidal precessional drift frequency, in arbitrary units, as a function of
the bouncing angles [rad] of a trapped particle with energy equal to the plasma electron
temperature, calculated at three radial positions.

4.8 Impurities and additional effects

In this section we will estimate the effects exerted by impurities on the confinement of

the TCV shots analyzed. As already mentioned in Sec.4.6.1, shots at different edge tri-

angularities are almost identical, in the sense that they do have the same kinetic profiles

within the error-bars, except for a slight difference in the ion temperature. In particular
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Figure 4.22: Quasi-linear particle flux for the negative triangularity equilibrium, at ρ =
0.7, with artificial changes of the dominant mode phase velocity.

the total current, the applied loop-voltage and the electron density and temperature are

equal, therefore suggesting the same, or almost the same, current density distribution.

Nevertheless, no information is available on the effective charge radial profile. Indeed, if

there were no impurities, quasi-neutrality would impose the ion densities of the two shots

to be equal but, since the ionic population is heterogeneous, an additional degree of free-

dom is present in the system, allowing the quasi-neutrality condition to be satisfied with

different radial profiles of ion density. The quasi-neutrality equation and the definition of

the effective charge (Zeff) read∑
i

Zini = ne
∑
i

Z2
i ni = neZeff . (4.80)

In the case of two ion species, namely, deuterium and carbon, which are the dominant

species in the TCV shots under consideration, Eqs.4.80 reduce to

ZDnD + ZCnC = ne Z2
DnD + Z2

CnC = neZeff (4.81)

where subscripts C and D stand for carbon and deuterium, respectively. Therefore, for

a given experimental electron density profile, a free choice in the, e.g., deuterium density

profile determines the carbon density profile and, thus, the Zeff profile.

In the absence of external particle sources such as NBI and pellets, the particle balance

is determined by neoclassical particle fluxes, the so-called Ware pinch and penetration of
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neutrals from the wall, and turbulent fluxes:

∂n

∂t
+∇ · (ΓNC + Γturb) = 0 (4.82)

in steady-state the two fluxes need to be equal and opposite in sign.

It is in general difficult to precisely calculate the neutral penetration into the plasma core

since it depends on actual temperature and density profiles as well as on the number of

atomic species in the plasma. However, in our case it is reasonable to estimate the neutral

penetrations for the two geometries to be equal since, up to ρ ' 0.7, all the measured

kinetic profiles are indeed equal, including ion temperature. Nevertheless, non-linear

simulations show a larger particle flux in the positive triangularity case. The neo-classical

Ware pinch is estimated to be smaller than the particle flux simulated by GS2 by a

factor 10 to 20, thus making its actual value, which depends on the bootstrap current

(see Chap.1, Sec.4) and thus on the kinetic profiles, unimportant. If we assume the neo-

classical fluxes to be equal in the two triangularity cases, It is imperative to find under

which conditions also the turbulent particle fluxes can be equal.

In Sec.4.6.2 it is explained how the numerical equilibrium is calculated; it should be added

here that the Zeff profile was assumed to be flat and its value, equal to 3.5, was chosen

to match the plasma resistivity calculated from the loop voltage and total current. Even

though measurements performed with the charge exchange recombination spectroscopy

suggest slightly larger values of the effective charge in the negative triangularity shot, the

associated error-bars are too large to reach any definitive conclusion. Here we therefore

relax the assumptions on Zeff and will try to make a rough estimate of the effective charge

profile by matching the quasi-linear electron particle fluxes of the two shots with different

density profiles of the two ion species; the electron density profiles being the experimental

values, and therefore equal for the two triangularities.

Let us solve Eqs.4.81 for nD and nC and then calculate their gradients:[
∇nD
nD
∇nC
nC

]
=

[
∇ne
ne
− ∇Zeff

Zeff

Zeff
ZC−Zeff

∇ne
ne

+
∇Zeff
Zeff

Zeff
Zeff−ZD

]
(4.83)

By fixing the experimental electron density gradient and the value of Zeff at one particular

radius, the Zeff scale length can be calculated on the basis of a given deuterium density

profile shape; the carbon density profile follows then by quasi-neutrality. The procedure

will be the following

1. Choice of a radial location near the edge, keeping in mind considerations on shape

penetration expressed in Secs.4.6.4 and 4.6.5

2. Choice of Zeff values at that location for positive and negative δ cases, which is the

boundary condition for the differential equation in Zeff
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3. Scan the deuterium density scale length from 0.5 to 10 times the electron density

scale length for both triangularities. In this range, which is assumed to be large

enough to capture physically reasonable changes of the deuterium density scale

length with respect to the electron one, we will look for possible solutions of the

deuterium density scale length

4. Match the electron quasi-linear particle flux for the two geometries; this permits the

derivation of the ion density scale length in one geometry as a function of its value

in the other.

5. Calculate the corresponding relation between the Zeff scale lengths for the two ge-

ometries, for a range of physically acceptable values. The result is shown in Fig.4.23.

6. Propagate the Zeff to an inner radial location by means of the gradient found above

7. Iterate to find the whole Zeff profile for each case (see Fig. 4.24)

The procedure outlined above can only identify a range of profiles, since the Zeff scale

lengths cannot be determined independently for the two geometries. However, the key

issue is in fact the relation between the two profiles. Indeed, the whole purpose of the

exercise is to check whether the negative δ case could be characterized by a larger Zeff in

the core, which could be responsible of an additional stabilization though collisionality.

As can be seen in Fig.4.24 the quasi-linear model indicates indeed that the negative δ case

Figure 4.23: Quasi-linear particle flux, in arbitrary units, as a function of deuterium
density scale length (the electron density scale length being fixed) for positive (red-dashed)
and negative (blue-full) δ, indicating the lower and upper limits corresponding to stars
and diamonds in Fig.4.24.
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is characterized by larger Zeff in the core independently of the boundary condition. Since

the integral of the plasma current times the plasma resistance has to be equal for the two

cases, as they were applied with the same loop-voltage within 5%, the central boundary

condition in Fig.4.24 has to be preferred with respect to the other two as it results in

similar average effective charge profiles for the two opposite triangularity cases. However,

considering Fig.4.14, to obtain a collisional stabilization able to push the ratio of heat

diffusivities to about two even at mid-radius, the required ratio in the effective charge

values should be about two to three, instead of 1.2-1.5 as obtained in Fig.4.24. Therefore,

while the difference in the impurity concentration does work in favor of reducing the dis-

crepancy between experiments and theoretical modeling, it is largely insufficient at least

in this linear model.

An additional comment on Fig.4.24 is required. The difference in the slopes of the effec-

tive charge profiles of the two cases goes to zero because the effect of plasma triangularity

gradually vanishes towards the magnetic axis; this is another effect of the finite penetra-

tion length of triangularity.
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Figure 4.24: Radial profiles of the effective charge estimated by matching quasi-linear
electron fluxes for positive and negative δ shots for three different boundary conditions.
Stars and diamonds roughly indicate the upper and lower limits, providing an indication
of the errorbars in the calculations.
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Figure 4.25: Toroidal precessional drift, in arbitrary units, plotted against trapped particle
bouncing angle for a number of geometrical configurations for an electron of energy equal
to the electron temperature.

Finally more accurate measurements of plasma rotation should be performed to assess

a possible difference in the E ∧ B shear between the two equilibria which could lead to

additional differences in the micro-stability of these two shots.

4.9 General dependence of the toroidal precessional

drift on plasma shape

After the results exposed in the previous sections, it is legitimate to ask whether there is

a direct relationship between the dependence of the toroidal precessional drift on plasma

shape and the mixing-length estimate plotted in Fig.4.7. We recall that all the equilibria

used in Fig.4.7 were generated keeping the same current density and pressure profiles,

therefore all the GK simulations are characterized by approximately the same turbulent

regime which, as we have already said in Secs.4.6.4 and 4.6.5, is the TEM regime.

Let us calculate the toroidal precessional drift using Eq.4.74 for different values of elon-

gation and triangularity. In Fig.4.25 we plot κ scans for two values of triangularity and a

fair similarity can be found with Fig.4.16.

Indeed an increase in elongation gives rise to a larger toroidal drift frequency for trapped

particles reaching the high field side region; as we have already seen in the case of tri-

angularity at mid elongation, this is stabilizing because it shifts the resonance down in

energy for that distribution function. Slightly different is the behavior of deeply trapped

particles whose toroidal drift is almost independent of elongation, especially at low values
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of triangularity. This is to be expected purely on the basis of the geometrical shape of

the low field side of the flux surface whose sensitivity the elongation increases with tri-

angularity; indeed, considering Eq.4.8 we can write to second order in the poloidal angle,

i.e. considering the deeply trapped particle limit

R ' R0 + r

[
1− θ2(1 + δ)2

2

]
' R0 + r

[
1− (1 + δ)2 (Z − Z0)2

2κ2r2

]
. (4.84)

Therefore, the inverse width of the resulting parabola R = r−α(Z−Z0)2 depends less and

less on κ when lowering δ, as shown in Fig.4.26. Therefore, the mildly stabilizing effect of

Figure 4.26: Inverse width of the approximate parabolic shape of a given flux surface
around the lowest field region, as a function of elongation and triangularity.

deeply trapped electrons when triangularity is increased, due to the slight increase of the

toroidal precession drift with triangularity (see Fig.4.16), becomes even more negligible

as elongation is increased. We stress here that, being concerned with pure particle drifts,

no effect on zonal flows through a q profile modification is considered by this analysis, in

which the heat flux is estimated from a linear model only (Fig.4.7).

Let us now address a peculiarity in Fig.4.7 which was mentioned in Sec.4.6.4. For low

values of elongation an increase in triangularity is first stabilizing and then destabilizing

again, which, in other words, implies that a circular plasma is the most unstable equilib-

rium regarding TEM stability. Let us try to interpret this result by means of the toroidal

precessional drift again. In Fig.4.27 we plot the toroidal precessional drift as a function

of κ and δ in the region of interest, i.e. low values of elongation and triangularity. It can

be seen how, contrary to the cases shown up to now, the toroidal drift is not a monotonic

function of κ and/or δ for trapped particles bouncing in the high field side region, while

the monotonic behavior in the deeply trapped region is maintained. Additionally, for
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Figure 4.27: Toroidal precessional drift vs bouncing angle of trapped particles as a function
of δ for κ = 1 (left) and as a function of κ for δ = 0.2 (right)

positive δ the angle at which the consecutive curves cross each other shifts progressively

towards the high field side. As a consequence, for low values of elongation and positive

triangularities, when increasing δ we obtain a stabilizing effect on deeply trapped parti-

cles but no destabilizing effect on trapped particles bouncing in the high field side region,

thus leading to a decreased overall quasi-linear transport. In Table 4.4 we estimate, in

arbitrary units, the electron heat flux by calculating the full velocity integral, i.e. over

energy and pitch angle from Eq.4.79. It can be seen how the non-monotonic behavior in

δ for low κ is recovered even though the worst triangularity is shifted to -0.2 instead of 0.

Furthermore, as in Fig.4.7, the calculated heat flux is not monotonically decreasing with

κ at δ ' 0.4.

κ = 1 κ = 1.2 κ = 1.4 κ = 1.6

δ = 0.4 4.1727 4.2409 4.1898 4.0584
δ = 0.2 4.4982 4.3805 4.1961 3.9771
δ = 0 4.7263 4.4173 4.1298 3.8566

δ = −0.2 4.8085 4.3678 4.0072 3.6672
δ = −0.4 4.7765 4.2554 3.8247 3.3047
δ = −0.6 4.2120 4.1241 3.5561 2.6029

Table 4.4: Quasi-linear electron heat flux estimated from Eq.4.79 for a number of edge
elongations and triangularities.
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4.10 Conclusions

To summarize this chapter, negative edge triangularity stabilizes TEM modes mainly

through perpendicular drifts and effective k⊥ modification. In particular the effective

stabilization is a result of a competition between deeply and barely trapped particles

which react in opposite ways to triangularity, the former acting to stabilize while the

latter being destabilizing for increasing triangularity. This, in turn, is due to the electron

toroidal precessional drift, which is larger with δ in the deeply trapped spectral region,

while the opposite is true elsewhere in the pitch angle space. This mechanism is effective

only close to the edge due to the finite triangularity penetration length; here, it indeed

matches semi-quantitatively experimental results obtained in TCV on the effect of shape

on confinement. However, the effect is experimentally seen much further into the core,

where the present theoretical framework is unable to reproduce it.

A similar picture holds for plasma elongation with the difference that the destabilizing

effect on deeply trapped particles can be neglected compared to the stabilizing effect on

trapped particles bouncing in the high field side: the overall stabilizing effect of increasing

elongation is therefore larger than the one obtained by decreasing triangularity.

Modeling also indicates that negative triangularity may lead to a different distribution of

impurities which, in turn, can further stabilize TEM through increased collisionality in the

plasma core. This effect, however, also appears insufficient to explain results. Additionally

a possible difference in the E ∧ B shear, again due to differences in ion temperature and

density profiles, needs to be experimentally investigated. Moreover, even though global

effects would ordinarily not be expected to play a major role, due to the small value of

ρ∗ ' 1/80, they might nevertheless be at play leading to additional differences in the

TEM stabilization between the two equilibria.

These last three effects are indirect effects of the plasma edge influencing the core. Their

assessment requires more accurate measurements of ion temperature, density and velocity,

as well as turbulence diagnostics and a global collisional code able to handle equilibrium

E ∧B flows.

4.11 Appendix 1: convergence studies

When solving the GK equation it is imperative to check whether the simulations converge

in all the possible numerical parameters or, at least, the ones which most affect the

numerical results. In general, convergence should be first checked in

• Real and imaginary parts of the linear frequency

• Heat and particle fluxes
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• Energy of the perturbation

In a linear run performed with a local code such as GS2, it is needed to check convergence

of the aforementioned quantities with respect to the following parameters

• Flux tube domain extent

• Velocity grid

• Number of parallel modes

• Confidence intervals on kinetic profiles

Since GS2 evolves linear modes implicitly, there are no problems of numerical stability;

therefore there is no need to check for convergence in the time step provided that ω∆t� 1,

which is the criterion ensuring convergence. In our simulations max(ω)∆t ' 10−3 which

has then been chosen as the required precision in the calculation of the real frequency of

each linear mode to stop the linear runs.

The flux tube extent is, for linear runs, equal to 7 poloidal turns; this value guarantees a

drop in the energy of the fluctuations of several orders of magnitude at the ends of the

flux tube with respect to the maximum value reached in the centre.

The number of grid points along the field line was normally set to 32 per poloidal turn,

convergence was checked to 64.

The velocity grid is composed of the energy and pitch angle variables. Passing particles

need 10 points in each parallel velocity direction, while trapped particles need at least 16

points, implying 32 points along the field line due to the GS2 numerical implementation.

In Fig.4.28 we show a convergence study of the normalized linear heat flux as a function

of the trapped particle pitch angle, to check that the maximum in the deeply trapped

limit is not a numerical instability, as it looks at first sight, but rather a real physical

effect.

Energy grids are usually made of 16 points between 0 and five times the temperature of

each kinetic species in the simulation.

Since in linear runs there is no saturation, fluxes are to be normalized in such a way as

to make them artificially saturate; one possibility is, for any mode, to divide each flux

by the corresponding energy of the perturbation. In Fig.4.29 we show a typical temporal

behavior.

Non-linear runs are of course much more demanding in terms of the computer time

required by each simulation and in terms of convergence studies. Indeed, fluxes are to be

considered as saturated after the Kelvin-Helmoltz instability saturated the linear phase of

the simulation, over a time scale in general between five and ten times the time required

for the linear fluxes to saturate. Moreover, additional checks must be performed, namely
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Figure 4.28: Normalized linear heat flux for TCV shots 28008 (full) and 28014 (dashed)
as a function of pitch angle for a number of energy and trapped pitch angle points.

Figure 4.29: Temporal behavior of the quasi-linear energy flux (a) and of the particle flux
(b) for a number of modes, normalized to the energy of the corresponding electrostatic
perturbation, for a typical run. The relative accuracy is better than 10−5.
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• Poloidal extent of the evolved spectrum and its resolution

• Radial extent of the evolved spectrum and its resolution

• Relative dimensions (poloidal to radial) of the simulation box

each of these is necessary to make sure that the correct saturated regime has been attained

in the simulation.

In particular it is imperative to show how the main saturating mechanism, i.e. zonal

flows, are converged by changing the radial extent of the simulation box.

In Figs.4.30,4.31 we show a number of non-linear electrostatic simulations of pulse 28014

(positive triangularity), which is the most demanding in terms of numerical grids required,

to prove convergence of our simulations in these last three points listed. In particular we

performed simulations, presented below, with an increased number of radial modes such

that ∆x/ρi = 2.4 − 1.7 − 1.2 named Sim1-Sim2-Sim3, respectively. Additionally ”sim2”

is performed with an increased number of poloidal modes such that kyρi ' 1. Since these

simulations do not show any major difference in saturated heat and particle fluxes, we

can confirm that our original simulations indeed converged.

Let us summarise the numerical grids:

1. sim1 represents the grid used in the bulk of this study.

2. sim2 has 1.41 poloidal and 1.41 radial modes more than sim1 with the same kx and

ky resolution.

3. sim3 has the same number of poloidal modes, with the same ky resolution, and 3

times as many radial modes as sim1. The radial extent of the simulation domain

in sim3 is 1.5 times the one in sim1 to assess convergence of zonal flows, so the

maximum kx evolved in sim3 is twice the one in sim1.

4. sim4 has an increased resolution in ky to assess convergence with respect to this

parameter. The remaining numerical parameters are chosen to be in between sim2

and sim3.

We summarise hereafter the evolved k-space for these three simulations:

Figures 4.30 and 4.31 show, as a function of the simulation evolution time normalized to

the minor radius at the LCFS divided by the ion thermal velocity, the electron particle

and heat fluxes for the Sim1, Sim2 and Sim3 numerical grids. The horizontal dashed line

shows the time-averaged value in the saturated phase (t > 180a/vth,i) adopted for case

Sim1. Estimated saturated levels of sim2 and sim3 and sim4 are, respectively, within

about 4%, 9% and 9% w.r.t. sim1, both for particle and heat fluxes. Finally Fig.4.31

proves that the two dimensional spectral region adopted in the simulation is sufficiently
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kyρi |kxρi| ∆kyρi ∆kxρi ∆x/ρi Lx/ρi

sim1 0-0.67 0-1.27 0.05 0.03 2.4 207
sim2 0-0.94 0-1.79 0.05 0.03 1.7 207
sim3 0-0.67 0-2.61 0.05 0.02 1.2 303
sim4 0-0.68 0-1.82 0.03 0.03 1.7 207

Table 4.5: Table illustrating main numerical grids used to assess convergence of non-linear
simulations

Figure 4.30: Temporal behavior of the non linear particle flux (top) and heat flux (bottom)
for cases Sim1, Sim2 and Sim3.
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Figure 4.31: |φ(x, y)|2 (top), particle flux (middle) and heat flux (bottom) integrated over
x (left) and over y (right) in logarithmic scale.
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broad as the electrostatic potential and the heat and the particle fluxes decrease towards

zero at the end of the grids.

4.12 Appendix 2: toroidal drift benchmark

In this section we will briefly give some additional information on the implementation of

Eq.4.74 and how it was benchmarked.

A Fortran routine reads an EQDSK file and, for a given flux surface, fits the equilibrium

to cubic splines and calculates the Jacobian and the magnetic field along the poloidal

angle; the integral is then evaluated through a trapezoidal integration rule which, to

converge, requires about 4000 equally spaced points. Non linear spacing does not lead to

significant improvements in the evalutation of the integrals. The radial derivative in the

numerator of Eq.4.74 is evaluated numerically by taking two neighboring flux surfaces.

Convergence calculations led to choosing 0.01 as the relative flux difference between the

two neighboring surfaces.

The numerical calculation was successfully benchmarked against the analytical derivation

of Kadomtsev and Pogutse [45] in the appropriate limit, and against the Venus code [47]

in the two TCV shots considered in Chapter 4 (see Fig.4.32).

An additional benchmark was performed against an analytical model developed by J.P.

Figure 4.32: Toroidal precession drift calculated at ρV = 0.65 by the Venus code as the
integral over the Maxwellian distribution. (courtesy of M. Jucker)

Graves [48] whose basic principle we report here. The plasma equilibrium is expanded
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into harmonics of the poloidal angle θ according to the following formalism

R̂ = R̂axis + r̂ cos(θ)−∆(r̂) +
∞∑
m=2

Sm(r̂) cos[(m− 1)θ] (4.85)

Ẑ = Ẑaxis + r̂ sin(θ)−
∞∑
m=2

Sm(r̂) sin[(m− 1)θ] (4.86)

where Raxis is the radial position of the magnetic axis, ∆ plays the role of the Shafranov

shift and r̂ is the minor radius of the flux surface.

Considering only second order expansions, i.e. m=3, and imposing the same plasma

boundary described at θ = {0,±π/2, π} by Eq.4.8 with λ = 0 (since λ is a higher order

moment), the following mapping between the two models is recovered[48]

Rmid = Raxis −∆(r̂) + S3(r̂) (4.87)

r = r̂ + S2 (4.88)

κ =
r̂ − S2(r̂)

r̂ + S2(r̂)
(4.89)

δ =
4S3(r̂)

r̂
(4.90)

The analytical expression of the toroidal drift is pretty long and complicated, we will

report only the deeply trapped limit

〈ϕ̇〉 =
Tq

eB0r̂R

[
1− 1

2q2

(
α− 2

r̂

R

)
− κ− 1

κ+ 1
− 2

r̂κr̂
(1 + κ)2

− 1

4
(δ + r̂δr̂)−∆r̂ − 2

r̂

R

1

1 + κ

]
(4.91)

where the subscript r̂ stands for radial derivative, T is the particle temperature, q the

safety factor and α = −Rq2βr̂ the ballooning parameter.

By calculating its value for TCV shots 28008 and 28014 we obtain, in agreement with our

calculations, a smaller value in the negative triangularity case.

The full pitch angle dependence is represented in Fig.4.33 confirming the same behavior

found by Eq.4.74 and by the Venus code.
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Figure 4.33: Toroidal precession drift, in arbitrary units, as function of the bounce angle
for the two TCV shots 28008 (blue) and 28014 (red) calculated at ρ = 0.7 by the analytical
model in [48] (Courtesy of Dr. Jonathan Graves)
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Chapter 5

Conclusions and future plans

This thesis can be roughly separated into two parts which, at a first sight, can appear

as disjointed since the former is experimental while the latter is theoretical. However,

in the opinion of the author, the two parts simply reflect two sides of the same, though

extremely broad and complex, domain: turbulence in magnetized plasmas.

5.1 Summary

The thesis work focused, at first, on the feasibility study of a number of possible diagnos-

tics for fluctuations measurements in the core of the TCV tokamak. Particular concern

was given to the spatial localization of the measurement, un-ambiguity in the interpreta-

tion of the results, width and resolution of the spectral response, ease of comparison to

theoretical models, number of target plasmas which can be used, portion of the plasma

cross section accessible to measurements and capability to measure complicated, non-

uniform plasma regions. Response properties are numerically evaluated for TCV main

parameters. It is shown how, among the alternatives taken into considerations, only

imaging techniques comply with all the required specifications, provided that they are

employed in a configuration such that their lines of sight are tangent to flux surfaces.

The final choice fell on the Phase Contrast technique, which proved to be superior to any

other imaging technique.

The theoretical treatment of the Phase Contrast, including the approximations needed to

validate the measurements and actual transfer functions of the system, is reviewed before

describing in detail its practical realization on the TCV tokamak. Even though the Phase

Contrast is intrinsically a line integrated measure, the tangential configuration and the

use of an opportunely designed spatial filter allow excellent spatial localizations which, in

selected configurations, can be of the order of 1% of the normalized minor radius. The

extremely good localization is a consequence of a short integration length which validates
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the Raman-Nath approximation even in the case of large fluctuating wave vectors. The

diagnostic is therefore designed to capture long and short wavelength fluctuations, the

former corresponding to the ion Larmor radius scale while the latter to the electron scale.

The design of the spatial filter was also optimized to allow a uniform response in Fourier

k space, thus avoiding distortions in the image reconstruction.

The system is translatable in the vacuum vessel, the reason being to allow one to measure

the edge and the core of TCV, up to the magnetic axis in selected configurations.

A satellite project of the thesis was the installation of a single channel, homo-dyne,

Doppler reflectometry, whose response properties were tested to assess the feasibility of

a future, more complete, system. The prototype performed very well with an excellent

signal to noise ratio, and is now routinely operated on TCV.

The second part of the thesis concerned linear and non-linear gyro-kinetic simulations of

the impact of plasma shape, in particular of triangularity, on plasma micro-stability. Di-

verted L-mode TCV pulses, which experimentally indicated a stabilizing effect of negative

triangularity, were analyzed with the GS2 code. The simulations identified the dominant

instability as the Trapped Electron Mode, and were found in a fair agreement with the ex-

periments, at least close to the plasma edge. Non-linear simulations are analyzed in phase

space also to explain the effect of a finite collisionality on the experimentally observed

transport coefficients. A linear, semi-analytical model successfully describes the relevant

physical effects found in non-linear simulations in terms of a modification of the toroidal

precession drift of trapped particles, exerted by triangularity. A number of additional

effects is also discussed.

5.2 Future plans

Anomalous transport is one of the most difficult and important topics in plasma physics,

both under the experimental and the theoretical point of view. It is therefore imperative

to characterize micro-instabilities at our best, which is the main reason why the Tangen-

tial Phase Contrast Imaging diagnostic, described in this thesis, was developed.

The diagnostic must undergo an initial experimental benchmark with other existing di-

agnostics, in order to prove its sensitivity to, at least, main plasma events: viz. L-H

transitions, Elms, disruptions, intensive power modulations, coherent and semicoherent

modes. If this benchmarking phase will be successful, the diagnostic will be released as

an operating tool to be fully exploited in all its characteristics.

In parallel, in order to assess our understanding of turbulent transport, it is necessary

to model future PCI data with the most advanced gyro-kinetic codes available at the

moment. This implies the development of a synthetic diagnostic to directly and quanti-
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tatively compare experimental results to simulations. The simulations are, of course, to

be performed with a physical model as more realistic as possible, meaning the inclusion

of the actual plasma geometry, the Coriolis and bulk E ∧ B drifts, and actual kinetic

profiles. Only after a satisfying benchmark as been obtained, both the diagnostic and

the gyrokinetic codes can be used to investigate physical peculiarities possibly captured

in each tool. An ideal study of this kind is the experimental verification of the stabiliz-

ing effect of negative triangularity on plasma micro-instabilities, at least in low density

L-mode plasmas, which would then bridge the two parts of this thesis.

It should be stressed that experimentalists and theoreticians should work in tight contact

with each other, as the former group needs guidance from theory to be conscious of where

their research is, and should be, heading; while the latter group needs experiments as it

is the only way to validate their numerical models. In the opinion of the author, research

in nuclear fusion is, nowadays, at such a level of complexity that it needs experimental

mathematics to advance further.

5.3 Conclusions

Conclusions are usually meant to summarize and explain in a few sentences why the sub-

ject of the thesis is useful or interesting, I defer them to Werner Heisenberg and Horace

Lamb.

When I meet God, I am going to ask him two questions: Why relativity? And why

turbulence? I really believe he will have an answer for the first. (W. Heisenberg)

I am an old man now, and when I die and go to heaven there are two matters on which I

hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent

motion of fluids. And about the former I am rather optimistic. (H. Lamb)
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