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porter pendant toutes ces années de “dur” labeur.



4



Contents

Remerciements 3

Contents 7
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Résumé

La simulation d’écoulements de fluides viscoélastiques est un domaine qui
présente de grands défis tant du point de vue théorique que de celui de
la modélisation numérique. En particulier, jusqu’ici, toutes les méthodes
traditionnelles de résolution d’équations constitutives se sont heurtées au
problème du nombre de Weissenberg élevé. Il est dès lors évident que de
nouveaux outils sont nécessaires. Cette thèse propose d’appliquer la méthode
de Boltzmann sur réseau (MBR) à la simulation de fluides viscoélastiques
présentant des effets de mémoire, modélisés avec une équation constitutive
faisant appel explicitement à une dérivée convective supérieure, ce qui est la
première tentative du genre pour des écoulements non triviaux.
Une dérivation théorique des modèles discrets correspondant aux équations
de conservation de la masse, de la quantité de mouvement et de l’équation
constitutive est présentée ainsi que le traitement particulier des conditions
aux limites associées.
Nous commençons par présenter un algorithme permettant de simuler des
écoulements de fluides Newtoniens généralisés (i.e. sans élasticité, rhéo-
amincissants ou rhéo-épaississants) en résolvant l’écoulement plan de Pois-
euille et dans une contraction 4:1 en 2D. Puis nous proposons une méthode
de résolution d’équations constitutives présentant des effets de mémoire. En
particulier, les équations basées sur des modèles d’haltères avec ressort à
extensibilité infinie ou finie (modèles d’Oldroyd-B et de FENE-P respective-
ment) que nous couplons avec les équations de Navier–Stokes incompressibles.
Nous appliquons notre modèle sur les cas tests du moulin à quatre rouleaux
simplifié en 2D et sur la décroissance des vortex de Taylor–Green en 3D. Puis,
finalement, nous proposons des conditions aux bords pour parois planes que
nous validons sur le cas de l’écoulement Poiseuille bidimensionnel.
Deux avantages principaux de la méthode proposée sont la facilité d’im-
plémentation de nouveaux modèles viscoélastiques et la parallélisation de
l’algorithme.

Mots clés : dynamique des fluides numérique, méthode de Boltzmann
sur réseau, fluides non-Newtoniens, fluides Newtoniens généralisés, fluides
viscoélastiques, Navier–Stokes incompressible, conditions aux bords, déve-
loppement de Chapman–Enskog.
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Abstract

The simulation of flows of viscoelastic fluids is a very challenging domain
from the theoretical as well as the numerical modelling point of view. In
particular, all the existing methods have failed to solve the high Weissenberg
number problem (HWNP). It is therefore clear that new tools are necessary.
In this thesis we propose to tackle the problem of the simulation of viscoelas-
tic fluids presenting memory effects, which is the first attempt of applying
the lattice Boltzmann method (LBM) to this field for non-trivial flows.
A theoretical development of the discrete models corresponding to the equa-
tions of mass, momentum conservation and of the constitutive equation is
presented as well as the particular treatment of the associated boundary con-
ditions.
We start by presenting a simplified case where no memory but shear-thinning
or shear-thickening effects are present : simulating the flow of generalized
Newtonian fluids. We test the corresponding method against two-dimensional
benchmarks : the 2D planar Poiseuille and the 4:1 contraction flows. Then we
propose a new model consisting in solving the constitutive equations that ac-
count for memory effects, by explicitly including an upper-convected deriva-
tive, using the lattice Boltzmann method. In particular, we focus on the
polymer dumbbell models, with infinite or finite spring extension (Oldroyd-
B and FENE-P models). Using our model, we study the periodic (simplified)
2D four-roll mill and the 3D Taylor–Green decaying vortex cases. Finally,
we propose an approach for simulating flat walls and show the applicability
of the method on the 2D planar Poiseuille case.
Two of the advantages of the proposed method are the ease of implementa-
tion of new viscoelastic models and of an algorithm for parallel computing.

Keywords : computational fluid dynamics, lattice Boltzmann method, non-
Newtonian fluids, generalized Newtonian fluids, viscoelastic fluids, incom-
pressible Navier–Stokes, boundary conditions, Chapman–Enskog expansion.
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Notations

We introduce here the mathematical notations that will be used throughout
this thesis.

The scalar variables will be noted with lower case characters. The vectors
will be in boldface lower case and the tensors will be in boldface upper case
characters. The scalar product between two vectors will be noted by a dot
“·” whereas the full index contraction is denoted by a colon “:”. The tensor
product of two vectors a and b is denoted ab.

For vectors and tensors we will also use the indexed notation. The Greek
subscript indices range over physical dimensions. When dealing with higher
dimensional spaces then the subscript indices are lower case Latin characters.
We will use Einstein’s convention for summation. When a subscript letter
is repeated twice in a product, a summation over all possible values of the
index is implied. For example in a 3D space the scalar product ξ · u reads

ξ · u = ξαuα = ξxux + ξyuy + ξzuz.

The nabla operator, ∇, is the vector containing the space derivatives in each
spatial direction if not specified otherwise. If there is an possible ambiguity
the quantity on which will depend the derivative will be underscored. In
the table below the reader will find a summary of the notations, with some
examples.

Object Example Index notation
Scalar ρ, u ρ, u
Vector u, a uα, aα

Tensor Π, Q Παβ, Qαβγ

Scalar product ξ · u ξαuα

Full tensor contraction Π : S ΠαβSαβ

Tensor product cξ cαξβ
Nabla ∇x, ∇r ∂xα , ∂rα

17
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Chapter 1

Introduction

1.1 State-of-the-art

Nowadays the lattice Boltzmann method (LBM) has established itself as
a powerful tool for the simulation of a wide range of physical phenomena.
One of its main applications is the field of computational fluid dynamics
where it has proven successful to solve the weakly compressible Navier–Stokes
equations (see Wolf-Gladrow [100], Succi [94], Chen and Doolen [18], Dellar
[25, 26]) , but also much more complex situations as multiphase and multi-
component flows (see e.g. Shan and Chen [91], Reis and Phillips [89]). This
method is not solving directly the macroscopic conservation equations, but
rather models the statistics of collision of particles and offers more mod-
elling freedom. Therefore the LBM is a very good alternative to classical
solvers like finite differences, finite volume, finite element, or spectral ele-
ment methods (see respectively Griebel et al. [42], Versteeg and Malalasekera
[97], Zienkiewicz et al. [103], Deville et al. [28] for example).

Historically, the lattice Boltzmann method was derived from the cellular au-
tomata and in particular the FHP model (named after Frisch, Hasslacher
and Pomeau who published the model in [34]). It was shown, using the
Chapman–Enskog multiscale expansion (see Chapman and Cowling [17]),
that this model is able to reproduce the weakly compressible Navier–Stokes
equations by modelling the flow with fictitious particles moving on a regular
lattice and obeying very simple collision rules. One of the great advantages
of this method is that it is unconditionally stable. However, it suffers from
the statistical noise due to the discreteness of the particles. In order to try
to correct this defect McNamara and Zanetti [74] proposed to replace the
particles by their velocity distribution function. This idea gave birth to the
lattice Boltzmann method in a paper by Higuera and Jimenez [52]. Eight
years later, He and Luo [48] showed that the numerical scheme could be
directly derived a priori from the continuous BGK (Bhatnagar, Gross and
Krook proposed this model in [7]) Boltzmann equation by a proper discretiza-

19



20 Chapter 1. Introduction

tion of the velocity space1. The discretization by He and Luo [48] contained
a slight error since their derivation could only demonstrate first-order time
accuracy of the method, although it was known since the beginnings of the
lattice Boltzmann developments, that the scheme was second order accurate.
In He et al. [49] the correct way of discretizing the space and time was pro-
posed. The idea of these papers, to make use of the Hermite polynomials
and of the Gauss–Hermite quadrature to discretize the microscopic velocity
space, was used in Shan et al. [92] to construct models that can not only
simulate the incompressible limit of the Navier–Stokes equations, but also
isothermal compressible fluids and to incorporate also temperature depen-
dence like in Nie et al. [76]. This idea pushed a step further could also lead
to the simulation of the Grad’s 13-moments equations (see Grad [40]).

All the models discussed in the preceding paragraph are based on the BGK,
or simple relaxation time, collision operator. Other collision operators were
proposed to improve the stability and accuracy of the method and also to
widen the range of physical phenomena that can be simulated. Two of them
were the multiple relaxation time (MRT) model (see for example d’Humières
[29], d’Humières et al. [30]) and the entropic model (see Ansumali and Karlin
[3], Boghosian et al. [11] for example).

The MRT models modify the collision by projecting the distribution func-
tions in the moments (of the velocity distribution) space and relaxing them
towards a “moments” equilibrium with different relaxation times. Some of
the moments are related to macroscopic quantities while others can be seen
as “ghosts” which play no physical role, but can interfere numerically in
the simulations. By tuning the relaxation times related with these “ghost
modes”, one can improve the accuracy and the stability of the numerical
scheme (see the paper by Dellar [26] for example). The entropic model ap-
proach consists of two distinct parts. A discrete Boltzmann’s H-function is
defined. Then the equilibrium distribution function is computed by mini-
mizing this “entropy” (in the BGK model the equilibrium is assumed to be
Maxwellian). Then the relaxation towards this equilibrium is modified in
order to impose that the H-function is never growing in order to satisfy the
H theorem (see Huang [53] for example). This has as a consequence to im-
pose the unconditional stability of the model. From the macroscopic point
of view, the correction of the collision can be viewed as a modification of the
viscosity depending on the shear rate tensor (see Malaspinas et al. [72]).

1The main idea of this model is that the effect of the particles’ collision consists in driv-
ing the velocity distribution towards a prescribed (usually Maxwellian) local equilibrium
with a characteristic constant (relaxation) time.



1.1. State-of-the-art 21

The lattice Boltzmann community was also very quickly interested in the
boundary conditions to be used in their simulations, and especially in the
behavior on solid walls. In the macroscopic world, the fluid “sticks” on
solid boundaries (no-slip condition) and this is reflected by a zero velocity
field. However, it is not straightforward to translate this information to the
velocity distribution function. This topic is of crucial importance for the
numerical simulations, since the numerical stability and accuracy are usually
determined by the quality of the boundary conditions. The first (and still
the most popular) boundary condition that was developed was the so-called
bounce-back, in which all the velocities of particles that hit the walls are
reversed. Its simplicity, unconditional stability and the fact that it is orien-
tation independent, makes it particularly appealing. Nevertheless, it is only
able to mimic a motionless wall, and therefore it does not allow to impose
any flow in a simulation. Furthermore, its accuracy is rather low and reduces
the overall exactness of a simulation. In order to correct these defects, a large
amount of boundary conditions were proposed to impose Dirichlet conditions
(prescribed velocity field) on walls. We give here a non exhaustive list of refer-
ences for some of them that are used for flat walls (see Skordos [93], Inamuro
et al. [54], Zou and He [104], Ansumali and Karlin [4], Latt and Chopard
[68]) and for curved boundaries in Bouzidi et al. [14] and in Ginzburg and
d’Humières [36].

In this thesis we apply the LBM to the simulation of viscoelastic fluids. This
class of fluids is characterized by the fact that the deformation of an element
of fluid because of stress does not only depend on the strain itself (as it is
the case for Newtonian fluids) but also on the history of the deformation
(memory effect). The polymer melts or solutions, which are present in in-
dustrial and everyday life products, are a good example of such fluids. The
viscoelastic fluids are very challenging from the theoretical as well as from the
numerical point of view. There exist numerous very different models, that
range from molecular descriptions which consider all the microscopic inter-
actions between particles, to macroscopic continuum mechanics models that
ignore the small constitutive elements of the fluids (see the books by Bird
et al. [8, 9], Larson [64] and Lin [70] for example).
The continuum based theories, like the Oldroyd-B model, are based on in-
variance properties of the deformation of continuous media that have been
investigated in many details by classical methods, from finite differences to
spectral element methods (see Tomé et al. [96], Bonito et al. [12], Keunings
[59], Fiétier [33] for example). Unfortunately they all suffer from the same
problem of representing correctly the fluids with strong viscoelastic interac-
tions, which are characterized by a high Weissenberg (Wi) or Deborah (De)
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number2 (Wi = 0 or De = 0 numbers correspond to Newtonian fluids). It is
indeed reported in the literature as the HWNP (high Weissenberg number
problem) (e. g. [82]) that all these methods fail to converge as Wi increases.
There was a need for novel modelling techniques. However it is not clear
which one of the physical model or of the numerical method, used for the
resolution of the viscoelastic simulations, is responsible for the lack of accu-
racy and numerical stability in the high Weissenberg number problem. One
possible issue would be an inappropriate treatment of the boundaries. For
the Newtonian fluids we know by experience that the fluid is sticking on the
walls (no-slip boundary condition). There exists no equivalent condition for
the stress experienced by the viscoelastic fluids and in practice one of the
few analytical results must be used to impose the behavior of the viscoelastic
stress on the boundaries of a flow.

In order to improve the modelling of viscoelastic flows, the community has
followed different approaches that depart from the continuum mechanics.
The molecular dynamics models give a very good description of the micro-
scopic phenomena. But their prohibitive computational cost is incompatible
with the study of macroscopic interactions of polymers with a solvent for
non-trivial geometries. An intermediate scale approach is more affordable
from this point of view. The development of kinetic theory approaches,
that provide a coarse grained description of the molecules (see the book by
Bird et al. [8] or the review by Keunings [60] more recently) represent there-
fore a good alternative. These models are describing the evolution of the
probability distribution function of the molecule configurations. These poly-
mer molecules are seen as chains of beads connected by rigid segments or
by springs, a quite good approximation for dilute solutions. For polymer
concentrated solutions or melts, a kinetic theory of entangled systems has
been used. One of the first models was the reptation theory by Edwards,
de Gennes, and Doi (see de Gennes [24], Doi and Edwards [31]). Suffering
from different defects this model has been improved to include more physical
processes, such that contour length fluctuations, tube stretch and convec-
tive constraint release. A review of these models can be found in McLeish
[73] for example. However these mathematical models are difficult to solve
on a computer, and usually macroscopic constitutive equations are derived
from them and then solved using classical techniques (see Keunings [59] for
example). The step from the mesoscopic to the macroscopic world is made
using averages which are done provided some simplifying mathematical and

2The Weissenberg number, Wi ≡ λγ̇, is defined as the product of the relaxation time
λ of the fluid and the shear rate, while, the Deborah number, De = λ/tc, is the ratio of
the relaxation time over characteristic time scale of the physical process, tc.
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physical assumptions which may filter out some of the underlying physics.
Furthermore the macroscopic constitutive equations are usually equivalent
to the ones obtained with the continuum approaches and therefore do not
offer really an alternative from the numerical point of view. The development
of the micro-macro methods that couple the dynamics of the kinetic theory
approach with the macroscopic continuum mechanics are a good alternative.
These methods, which became really popular thanks to Laso and Öttinger
[65], are well described in the book by Öttinger [80], are now a well estab-
lished tool (see for example Grande et al. [41] and Bonito et al. [12].

In this thesis we will try to tackle the problem of the simulation of viscoelas-
tic fluids, with a completely different methodology : the lattice Boltzmann
method. The hope is that the mesoscopic kinetic theory approach will provide
some progress in the field. Solutions have already been proposed for gener-
alized Newtonian fluids3 by different authors. The main idea of all these
models, based on the BGK collision, is to recompute the relaxation time
(which is linearly related to viscosity) at each cell and for each time step
depending on the constitutive equation relating the shear rate with the vis-
cosity. In Aharonov and Rothman [2], the problem of generalized Newtonian
fluids in diffusion problems is tackled by simulating a power-law fluid. This
approach is then used for the simulation of 2D porous media. In Ouared and
Chopard [81] the blood flow is approximated using the Casson model and
applied on the 2D Poiseuille flow as well as a 2D aneurysm geometry. In
these two papers the relaxation time is recomputed locally for each timestep
and position. In Gabbanelli et al. [35] the problem of the simulation of a
truncated power-law model fluid is addressed, but here in contrast to what
has been done in Aharonov and Rothman [2] and Ouared and Chopard [81],
the relaxation time is not recomputed locally, but first-order accurate finite
differences are used. This model is then used for the 2D Poiseuille flow
and for the reentrant corner problem. In Kehrwald [58], the simulation of
shear thinning fluids is performed using a MRT model and applied to both
2D Poiseuille and single-screw extruder geometries. In Boyd et al. [15], the
power-law problem for a LB BGK model is solved using a second-order local
scheme, but only in the 2D Poiseuille case. In Malaspinas et al. [71] the
cases of power-law and Carreau–Yasuda fluids were simulated in the cases of
steady Poiseuille and 4:1 contractions flows. Finally in Vikhansky [98] the
LBM is used for the simulation of Bingham fluids for flows in a cylinder and

3The viscosity of the fluid is depending on the shear rate, but there is no memory effects
as in viscoelastic fluids. The viscosity is either decreasing or increasing with growing shear
rate. These two cases correspond to shear-thinning or shear-thickening effects.
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a periodic mesh of cylinders.

For the viscoelastic fluids, that exhibit memory effects, there exist only very
few papers in the literature, which only partly take into account elastic effects
in the flow. In Qian and Deng [88] the elastic effect is obtained by modi-
fying the equilibrium distribution, whereas in Ispolatov and Grant [55] the
elastic effect is obtained by adding a Maxwell-like (exponentially decaying)
force to the system. In Giraud et al. [37, 38], and in Lallemand et al. [62]
a scheme for solving the Jeffreys model is proposed, but it fails to exhibit
some important elastic effects since the stress tensor is assumed traceless. In
recent works by Onishi et al. [78, 79] the Fokker–Plank counterpart for the
Oldroyd-B and FENE-P models were simulated with the help of the LBM.
The numerical results presented were obtained for very simple shear flows
and did not allow us to assert that the viscoelastic effects were very strong.
These two approaches are the state-of-the-art lattice Boltzmann models for
viscoelastic fluids. In Denniston et al. [27] the LBM is used for the simula-
tion of liquid crystals with an approach that shares some similarities with
ours although the constitutive equation is much more complex, which limits
the type of geometries that can be handled. There is therefore still room for
improvements in this domain, that we will discuss in this work. This thesis
is to our knowledge the first attempt to solve the full set of equations in-
cluding conservation and macroscopic constitutive equations of the extended
Oldroyd-B type of non-linear effects for non-trivial flows. Only isothermal
and incompressible fluids are considered here.

1.2 Summary of the thesis

The outline of this thesis is the following. In Chapter 2 we present the a
priori construction of the lattice Boltzmann method from the continuous
Boltzmann equation, and give different macroscopic regimes of validity of
the method. We also give the explicit implementation formulas and show
how to, a priori, incorporate an external force to the scheme in a coherent
way, which to our knowledge was never presented before. In Chapter 3 we
quickly introduce the basics of non-Newtonian fluid dynamics, by describing
the generalized Newtonian case and the dumbbell model for viscoelastic flu-
ids. In Chapter 4, we discuss the issue of the velocity boundary conditions
in the lattice Boltzmann method by analyzing theoretically and numerically
some of the most popular treatments described in the literature. We use
the Chapman–Enskog expansion to discuss their validity and run several
benchmarks, on steady and unsteady flows, and compare them with existing
analytical and numerical solutions. In Chapter 5 we describe our models for
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the simulation of non-Newtonian fluids. As a first step we describe the pro-
cedure to implement any constitutive model, and then apply the method for
a Carreau fluid. Then we describe our model for incorporating viscoelastic-
ity through an Oldroyd-B constitutive equation. We also discuss the crucial
point of boundary conditions for the configuration tensor of the viscoelastic
model. In Chapter 6, we make a numerical validation of the models presented
in Chapter 5. We then compute the accuracy of the method by comparing
our solution with a semi-analytical solution for the Poiseuille case and then,
in a more complicated geometry, with a commercial solver for the 4:1 planar
contraction. In the viscoelastic case, we implement the Oldroyd-B consti-
tutive equation and validate our models by comparing simulations with the
analytical solution for a planar Poiseuille flow and for the flow in a 2D simpli-
fied four-roll mill, and with a high accuracy Fourier pseudospectral algorithm
for the Taylor–Green vortex case. As the lattice Boltzmann method is intrin-
sically efficient for parallel computing, we present the corresponding results
at the end of Chapter 6. Finally we conclude this dissertation in Chapter 7.
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Chapter 2

The Boltzmann equation
and the hydrodynamic limit

In this chapter we will summarize briefly the theory of the continuous Boltz-
mann equation and the macroscopic limits one can consider. For more details
one should refer to Huang [53] or Zwanzig [105] for example.

2.1 The conservation equations derived from

the Boltzmann equation

In the kinetic theory framework, we are interested in the dynamics of large
numbers of particles that are interacting through collisions. Since it is essen-
tially impossible to track them individually and since one is in practice more
interested in the behavior of macroscopic states rather than in the state of
each particle, we will concentrate on the particle mass distribution function
f(x, ξ, t) which is defined such that

f(x, ξ, t)d3xd3ξ, (2.1)

is the total mass of particles which are located in the volume d3x around
position x and which have a velocity located in the volume d3ξ around ξ at
time t. This approximation is valid whenever small volume elements d3xd3ξ
contain a large number of particles1. We will consider the different moments
of f

ρ(x, t) =

∫

dξ f(x, ξ, t), (2.2)

j(x, t) = ρu =

∫

dξ ξf(x, ξ, t), (2.3)

where the integration is carried out on the whole velocity space. In these
two equations, we can easily identify ρ as the density, and u as the mean

1Typically a volume of d3x = 10−9cm3 and d3ξ = 10−2ξ (ξ ∼
√

kBT , T = 1oC) still
contains 104 particles.

27
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velocity field. The higher order moments are more conveniently computed
with respect to the mean velocity. Accordingly we introduce the microscopic
velocity in the mean velocity frame

c(ξ,x, t) = ξ − u(x, t). (2.4)

The internal energy density is then given by

ρǫ =
1

2

∫

dc c2f(x, ξ, t), (2.5)

where c2 = ||c||2 is the norm of c squared. We can relate the internal energy
density, for a mono-atomic gas, to the temperature by the equipartition of
energy

ρǫ =
D

2
ρθ, (2.6)

where D is the physical dimension, θ = kBT/m with kB the Boltzmann
constant, m the particles mass and T the temperature. We are now interested
in the time evolution of f . In the presence of an external force field g one
can write a balance equation namely, the Boltzmann equation,

(

∂t + ξ · ∇x +
g

m
· ∇ξ

)

f(x, ξ, t) = Ω, (2.7)

where the collision integral (or collision operator) Ω , represents the changes
in f due to the inter-particle collisions. The Boltzmann equation is a non-
linear integro-differential equation, a notoriously intractable equation (except
for very small volumes where direct Monte Carlo simulations can be used).
Without any loss of generality, we will assume that m = 1 in the sequel.

Usually Ω is given in terms of the scattering cross section and is quadratic in
f (since only binary collisions are considered). Bhatnagar, Gross and Krook
(see Bhatnagar et al. [7]) proposed a simplified model where the assumption
is made that the effect of the collision between particles is to drive the gas
towards a local equilibrium state. This model, known under the name of
BGK, is given by

(∂t + ξ · ∇x + g · ∇ξ) f = −1

τ

(

f − f (0)
)

, (2.8)

where τ is the relaxation time and the equilibrium distribution f (0) is just
the Maxwell–Boltzmann distribution function

f (0)(x, ξ, t) =
ρ(x, t)

(2πθ(x, t))D/2
exp

(

−(u(x, t) − ξ)2

2θ(x, t)

)

. (2.9)
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We are now interested in the macroscopic physics that can be obtained
thanks to the BGK equation. Defining the velocity average of an observable
A(x, ξ, t) by

〈A〉 (x, t) =
1

ρ

∫

dξAf, (2.10)

and multiplying (2.8) by A and integrating over the velocity space, one can
show that the equation of motion of the quantity 〈A〉 is given by

−ρ
τ

(〈A〉 − 〈A〉eq) = ∂t (ρ 〈A〉) + ∇x · (ρ 〈ξA〉) − ρ 〈ξ · ∇xA〉
− ρ 〈A∇ξ · g〉 − ρ 〈g · ∇ξA〉 , (2.11)

where 〈A〉eq is

〈A〉eq =
1

ρ

∫

dξAf (0). (2.12)

By definition, the expectation value of a conserved observable is the same if
computed with the equilibrium, f (0), or the complete, f , distribution func-
tions. In our case, these fields are the density ρ, the momentum, ρu, and the
internal energy density ρǫ, which are given by

ρ = ρ 〈1〉 = ρ 〈1〉eq , (2.13)

ρu = ρ 〈ξ〉 = ρ 〈ξ〉eq , (2.14)

ρǫ =
ρ

2

〈

c2
〉

=
ρ

2

〈

c2
〉eq

. (2.15)

Replacing A in Eq. (2.11) by those three moments, we see that the l.h.s.
vanishes, and we get the general conservation laws. For A = 1 we have the
continuity equation

∂tρ+ ∇ · (ρu) = 0. (2.16)

For A = ξ we obtain the momentum conservation equation

∂t(ρu) + ∇ · 〈ξξ〉 = ρg.

By defining the stress or pressure tensor2

P =

∫

dc ccf, (2.17)

2P is called either stress tensor in the mechanics community or pressure tensor in the
kinetic theory community.
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where cc is the tensor product of c with c, we can rewrite this equation in a
more familiar way

∂t(ρu) + ∇ · (ρuu) − ∇ · P = ρg,

ρ
du

dt
− ∇ · P = ρg, (2.18)

where d
dt

represents the total derivative with respect to t and where we used
the continuity equation to simplify the result. The trace of the stress tensor
gives us the hydrostatic pressure, which is related to the internal energy
density by

p =
Pαα

D
=

2ρǫ

D
. (2.19)

The use of the equipartition theorem (Eq. (2.6)) leads to the perfect gas law

p = ρθ. (2.20)

Finally if A = ξ2/2 we have the energy conservation equation

∂t

(

ρǫ+
1

2
ρu2

)

+ ∇ ·
〈

1

2
ξ2ξ

〉

= 0. (2.21)

In order to rewrite this equation in a more convenient notation, we define
the internal energy flux q

q =
1

2

∫

dc cc2f, (2.22)

and we get

∂t

(

ρǫ+
1

2
ρu2

)

+ ∇ ·
[

u

(

ρǫ+
1

2
ρu2

)

+ P · u + q

]

= 0,

ρ
dǫ

dt
+ P : (∇u) + ∇ · q = 0, (2.23)

where the colon “:” denotes the full index contraction and where we used
twice the continuity and once the momentum conservation equation. At this
point we have the mass, momentum and energy conservation equations in
general forms. To write down a closed set of equations, one has to impose
some constitutive equations for the pressure tensor and for the internal en-
ergy flux.

The idea proposed in Grad [40] is to seek for solutions of the BGK equation
(Eq. (2.8)) projected on an Hermite basis (see Grad [39] for a detailed study
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of the Hermite polynomials basis). Grad’s method leads to two additional
sets of equations for the pressure tensor and for the energy flux. The whole
system is known under the name of Grad’s 13-moments equations. We will
not enter the details of the derivation of Grad, but we will use his idea of
projecting the distribution functions on Hermite polynomials as done in Shan
et al. [92], Nie et al. [76]. We will then truncate the expansion in order to
recover the desired hydrodynamic behavior.

2.2 Projection on the Hermite basis

The projection of the velocity distribution function on the Hermite polyno-
mial basis is given by

f(x, ξ, t) = ω(ξ)
∞
∑

n=0

1

n!
H(n)

α (ξ)a(n)
α (x, t), (2.24)

where ω(ξ) is a weight function, H(n)
α and a

(n)
α denote respectively the Hermite

polynomial of degree n (see Appendix A for the definition of H(n)
α ) and the

expansion coefficient of degree n, the vector α is a multi-index α1...αn, and
where we used Einstein’s convention for the summation over all indices in α.
The expansion coefficients are given by

a(n)
α (x, t) =

∫

dξ f(x, ξ, t)H(n)
α (ξ). (2.25)

The projection on the Hermite basis is natural because the expansion co-
efficients are given by the moments of a distribution function. Using the
definitions of the moments of f (see Eqs. (2.2), (2.3) and (2.17)) one gets for
a(n) (n = 0, ..., 4)

a(0) = ρ, (2.26)

a(1)
α = ρuα, (2.27)

a
(2)
αβ = Pαβ + ρ (uαuβ − δαβ) , (2.28)

a
(3)
αβγ = Qαβγ + uαa

(2)
βγ + uβa

(2)
αγ + uγa

(2)
αβ + (1 −D)ρuαuβuγ, (2.29)

a
(4)
αβγδ = Rαβγδ − (Pαβδγδ + Pαγδβδ + Pαδδβγ + Pβγδαδ + Pβδδγα + Pγδδαβ)

+ (δαβδγδ + δαγδβδ + δαδδβγ) , (2.30)

where Q and R are given by

Q =

∫

dc cccf, R =

∫

dc ccccf, (2.31)
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where ccc and cccc are the tensor products of c with themselves. The
internal energy tensor flux, Q, is related to the energy flux q by

qα = Qαββ.

The macroscopic equations obtained by Grad are only depending on five
moments, ρ, ρu, ρǫ, P and q. Therefore one can use an approximation of
the distribution function f which would have the same moments and the
macroscopic equation that would be recovered would be identical. We can
therefore truncate the infinite series of Eq. (2.24) up to the desired order
(four in the case of the Grad’s 13-moments equations) to obtain the macro-
scopic equations without keeping all the information contained in the original
distribution function

f(x, ξ, t) ∼= fN(x, ξ, t) = ω(ξ)

N
∑

n=0

1

n!
H(n)

α (ξ)a(n)
α (x, t), (2.32)

where N is the order of truncation. In order to analyze the effect of the
loss of information due to the truncation at a certain order we will use the
Chapman–Enskog expansion (see Chapman and Cowling [17]) that is pre-
sented in the next section.

2.3 Chapman–Enskog expansion

In this section we will first project the BGK equation (2.8) on the Hermite
basis and then use a perturbative expansion to find expressions for the pres-
sure tensor and the heat flux. This expansion follows the path used in the
book by Huang [53] and is not the standard way it is done in the litera-
ture (e.g. Wolf-Gladrow [100] or Chopard et al. [20]). Nevertheless it keeps
the basic ideas and is simpler to use. Before proceeding further we need to
compute the expansion of the equilibrium distribution

f (0) = ω

∞
∑

n=0

1

n!
H(n)

α a
(n)
0α , where a

(n)
0α =

∫

dξ f (0)H(n)
α . (2.33)
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The coefficients a
(n)
0 up to order four can be computed straightforwardly

using Gaussian integration as

a
(0)
0 = ρ, (2.34)

a
(1)
0α = ρuα, (2.35)

a
(2)
0αβ = ρuαuβ + ρ(θ − 1)δαβ, (2.36)

a
(3)
0αβγ = ρuαuβuγ + ρ(θ − 1)(δαβuγ + δαγuβ + δβγuα), (2.37)

a
(4)
0αβγδ = ρuαuβuγuδ + ρ(θ − 1)2(δαβδγδ + δαγδβδ + δαδδβγ)

+ ρ(θ − 1)(δαβuγuδ + δαγuβuδ + δαδuβuγ

+ δβγuαuδ + δβδuαuγ + δγδuαuβ). (2.38)

Let us first recall the BGK equation (2.8)

∂tf + ξ · ∇xf + g · ∇ξf = −1

τ

(

f − f (0)
)

. (2.39)

The idea will be to project this equation on the Hermite basis. Using the
relations of Appendix A, we can rewrite the space derivative and velocity
derivative terms, projected on the polynomial of degree n, like

∫

dξ H(n)
α ξ · ∇xf = ∇x · a(n)

α +
(

∇xa
(n−1)
α + perm

)

, (2.40)

F (ξ) ≡
∫

dξ (g · ∇ξ)(H(n)
α f) =

(

ga(n−1)
α + perm

)

, (2.41)

where F represents the force term, “perm” represents all the cyclic index
permutations and ∇x· stands for the divergence. We assume in a first ap-
proximation that the distribution function is given by its equilibrium value.
We therefore can rewrite the BGK equation (2.39) as

∂tf
(0) + ξ · ∇xf

(0) − F eq = 0, (2.42)

where the F eq is
F eq =

(

ga
(n−1)
0α + perm

)

. (2.43)

Projecting this equation on the Hermite polynomial of degree n, and using
Eqs. (2.40) and (2.41) we get

∂ta
(n)
0 + ∇ · a(n+1)

0 +
(

∇a
(n−1)
0 + perm

)

−
(

ga
(n−1)
0 + perm

)

= 0, (2.44)

For n = 0, 1 one finds

∂tρ+ ∇ · (ρu) = 0, (2.45)

∂t(ρu) + ∇ · (ρθI + ρuu) = ρg. (2.46)
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For n = 2, we take the trace of Eq. (2.44) and divide the result by two, and
we find

∂t(ρǫ) − u · ∇(ρθ) +

(

D + 2

2

)

∇ · (ρθu) = 0. (2.47)

At this order of approximation one obtains the Euler equations for inviscid
fluids. We now want to refine our approximation. We will assume that f is
no longer exactly at equilibrium but close to it

f = f (0) + f (1), f (1) ≪ f (0). (2.48)

Before proceeding further let us evaluate the order of magnitude of the “off-
equilibrium” part f (1). Assuming that the characteristic length-scale of our
system is L, and using that the characteristic speed of our particles is the
speed of sound, cs, we can approximate the l.h.s. of the BGK equation (2.39)
as

df

dt
∼ cs
L
f = −1

τ

(

f − f (0)
)

, (2.49)

Replacing f by the “perturbative” Ansatz, Eq. (2.48), in this last equation
one has

f (0) ∼ − L

csτ
f (1), (2.50)

where we used that f (1) ≪ f (0). Since l = csτ is the mean free path we imme-
diately see that f (1) must scale like the Knudsen number3. Our perturbative
approach is therefore valid in the limit of the small Knudsen numbers. We
now can proceed and compute the off-equilibrium part of f ,

∂tf
(0) + ξ · ∇xf

(0) − F eq = −1

τ
f (1). (2.51)

We will now reuse the Hermite polynomial representation, in order to be able
to compute f (1)

−1

τ
a

(n)
1 = ∂ta

(n)
0 +∇·a(n+1)

0 +
(

∇a
(n−1)
0 + perm

)

−
(

ga
(n−1)
0 + perm

)

, (2.52)

where a
(n)
1α is given by

a
(n)
1α =

∫

dξf (1)H(n)
α . (2.53)

We know that the Hermite coefficients of the equilibrium distribution are
given in terms of the conserved moments (mass ρ, momentum j = ρu and

3The Knudsen number, Kn = l/L, is the ratio between the mean free path and the
characteristic lengthscale of the considered system.
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internal energy e = ρǫ). We can therefore rewrite the terms derived with
respect to time in this last equation as

∂ta
(n)
0 = ∂ρa

(n)
0 ∂tρ+ ∂ja

(n)
0 · ∂t(ρu) + ∂ea

(n)
0 ∂t(ρǫ), (2.54)

= −∂ρa
(n)
0 ∇ · (ρu) + ∂ja

(n)
0 · (ρg − ∇ · (ρθI + ρuu))

+ ∂ea
(n)
0

(

(u · ∇)ρθ −
(

D + 2

2

)

∇ · (ρθu)

)

, (2.55)

where in the last line we used the “conservation laws” computed above
(Eqs. (2.45)-(2.47)) to replace the time derivatives with space derivatives.
With Eqs. (2.34)-(2.38) one can compute the different “conserved moments

derivatives” for a
(n)
0 for n = 0, .., 3

∂ρa
(0)
0 = 1, ∂ρa

(1)
0α = 0, ∂ρa

(2)
0αβ = −uαuβ − δαβ, (2.56)

∂ρa
(3)
0αβγ = −2uαuβuγ − θ(δαβuγ + δαγuβ + δβγuα), (2.57)

∂jαa
(0)
0 = 0, ∂jβ

a
(1)
0α = δαβ , ∂jγa

(2)
0αβ = δαγuβ + δβγuα, (2.58)

∂jδ
a

(3)
0αβγ = uαuβδγδ + uαuγδβδ + uβuγδαδ

+ (θ − 1)(δαβδγδ + δαγδβδ + δβγδαδ), (2.59)

∂ea
(0)
0 = ∂ρǫa

(1)
0α = 0, ∂ea

(2)
0αβ =

2

D
δαβ , (2.60)

∂ea
(3)
0αβγ =

2

D
(δαβuγ + δαγuβ + δβγuα). (2.61)

It is therefore straightforward to compute all the first-order coefficients

a
(0)
1 = a

(1)
1α = a

(2)
1αα = 0, (2.62)

a
(2)
1αβ = −τρθΛαβ , (2.63)

a
(3)
1αβγ = −τρθ

(

Λαβuγ + Λαγuβ + Λβγuα

+ (δαβ∂γθ + δαγ∂βθ + δβγ∂αθ)
)

, (2.64)

where

Λαβ = ∂αuβ + ∂βuα − 2

D
∂γuγδαβ. (2.65)

Note that Eq. (2.62) is a consequence of the mass, momentum and energy
conservation. We therefore can reconstruct the off-equilibrium distribution
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function

f (1) =

3
∑

n=0

1

n!
H(n)

α a
(n)
1α (2.66)

=
(1

2
H(2)

iαβa
(2)
1αβ +

1

6
H(3)

iαβγa
(3)
1αβγ

)

,

= −τρθ
[

1

2
H(2)

iαβΛαβ +
1

6
H(3)

iαβγ

(

Λαβuγ + Λαγuβ

+ Λβγuα + (δαβ∂γθ + δαγ∂βθ + δβγ∂αθ)
)

]

. (2.67)

In order to close Eqs. (2.18) and (2.23) we have to compute the stress tensor
and the heat flux, P and q. Using the perturbative expansion we rewrite
them as

P = P (0) + P (1), q = q(0) + q(1).

From Eqs. (2.17) and (2.22) we can compute P (n) and q(n)

P
(n)
αβ =

∫

dξ
(

H(2)
αβ −H(1)

α uβ −H(1)
β uα + (δαβ + uαuβ)H(0)

)

f (n), (2.68)

q(n)
α =

1

2

∫

dξ
(

H(3)
αββ − 2H(2)

αβuβ −H(2)
ββuα

+ H(1)
α uβuβ + 2H(1)

β uαuβ

−H(0)(uαuβuβ + (D + 2)uα)
)

f (n). (2.69)

As a consequence q(0) = 0 and we have for P (0)

P
(0)
αβ = ρθδαβ . (2.70)

We still have to compute P (1) and q(1), which are respectively given by

P
(1)
αβ =

∫

dξH(2)
αβf

(1), (2.71)

q(1)
α =

1

2

∫

dξ
(

H(3)
αββ − 2uβH(2)

αβ

)

f (1). (2.72)

Thanks to the orthogonality properties of the Hermite polynomials (see Ap-
pendix A) it is straightforward to compute these integrals

P (1) = −τρθΛ, (2.73)

q(1) = −τρθ
(

D + 2

2

)

∇θ. (2.74)
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We therefore deduce the Navier–Stokes equations

∂tρ+ ∇ · (ρu) = 0, (2.75)

ρ
du

dt
+ ∇ · (pI − µsΛ) = ρg, (2.76)

ρ
dǫ

dt
+ (pI − µsΛ) : (∇u) −

(

D + 2

2

)

∇ · (κ∇θ) = 0, (2.77)

where we introduced the pressure p through the perfect gas law p = ρθ, and
where the dynamic viscosity µs and thermal diffusivity κ are given by

µs = κ = ρθτ. (2.78)

We recognize above the thermal compressible Navier–Stokes equations. Nev-
ertheless this model is a little bit too restrictive, since it only allows the
viscosity to be equal to the diffusivity, and furthermore the bulk viscosity is
null. These flaws are easily understandable, since the model only contains
one transport parameter : the relaxation time τ . It is therefore natural that
it cannot represent correctly all the macroscopic transport coefficients. A
multiple relaxation time model has been proposed by Shan and Chen [90]
that allows the viscosity to be different from the diffusivity coefficient.

We just showed that the BGK Boltzmann equation, taken in the small Knud-
sen number limit, leads to the compressible Navier–Stokes equations. We
must also point out that in order to recover this macroscopic limit we only
needed the truncation of the velocity distribution function up to order four
in Hermite polynomials. We show now which limit we would have recovered
if one had truncated this series down to a lower order.

2.3.1 Order three truncation

We now assume that f and f (0) are given by their third order expansion in
Hermite polynomials

f = ω

3
∑

n=0

1

n!
H(n)

α a(n)
α , f (0) = ω

3
∑

n=0

1

n!
H(n)

α a
(n)
0α ,

where the a(n) and a
(n)
0 are still given by Eqs. (2.26)-(2.29) and (2.34)-(2.37).

Applying the same procedure as in the previous subsection, we want to com-
pute f (1), which is given by Eq. (2.66). In order to compute it we therefore
need the expansion coefficients up to order n = 3. The expansion coeffi-
cients for n = 0, 1, 2 remain unchanged and are given by Eqs. (2.62), (2.63).
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Because of the orthogonality properties of the Hermite polynomials we have
that a

(4)
0α = 0, and Eq. (2.52) becomes

−1

τ
a

(3)
1αβγ = ∂ta

(3)
0αβγ +

(

∂αa
(2)
0βγ + ∂βa

(2)
0αγ + ∂γa

(2)
0αβ

)

−
(

gαa
(2)
0βγ + gβa

(2)
0αγ + gγa

(2)
0αβ

)

. (2.79)

Since all the terms on the r.h.s. side of this equation have been computed in
the preceding subsection, it is convenient to rewrite this equation as

−1

τ

{

a
(3)
1αβγ

}3

= −1

τ

{

a
(3)
1αβγ

}4

− ∂δ

{

a
(4)
0αβγδ

}4

, (2.80)

where the notation
{

·
}n

is the Hermite coefficient computed from f (0) trun-
cated at order n. This leads to

−1

τ

{

a
(3)
1αβγ

}3

= −∂δ(ρuαuβuγuδ)

+
{

ρθ (uαΛβγ + uβΛαγ + uγΛαβ)

− ∂α (ρ(θ − 1)uβuγ) − ∂β (ρ(θ − 1)uαuγ)

− ∂γ (ρ(θ − 1)uαuβ) − δαβ∂δ (ρ(θ − 1)uγuδ)

− δαγ∂δ (ρ(θ − 1)uβuδ) − δβγ∂δ (ρ(θ − 1)uαuδ)
}

+ ρθ
{

δαβ∂γ

(

θ − ρ(θ − 1)2
)

+ δαγ∂β

(

θ − ρ(θ − 1)2
)

+ δβγ∂α

(

θ − ρ(θ − 1)2
)

}

. (2.81)

Since the a
(n)
1 for n = 0, 1, 2 are the same as in the previous subsection, we

conclude that the mass and momentum equations (Eqs. (2.75), (2.76)) are
still valid. The differences appear in the energy conservation equation and
in particular in the energy flux, q. By substituting Eq. (2.80) in Eq. (2.66)

and then computing the internal energy flux (see Eq. (2.72)), denoted q(1)′

we get

q(1)
α

′
= q(1)

α +
τ

2

{

∂δ(ρuαuβuβuδ) + (D + 2)∂α

(

ρ(θ − 1)2
)

+ ((D + 4)∂β (ρ(θ − 1)uαuβ) + ∂α (ρ(θ − 1)uβuβ))
}

, (2.82)

where q(1) is given by Eq. (2.74). This result shows that the energy equation,
although having a correct form does not reproduce accurately enough the
heat flux and cannot be used for thermal fluids. Nevertheless, the formulation
with order three truncation represents isothermal compressible fluids since
the continuity and momentum conservation equations are still exact.



2.3. Chapman–Enskog expansion 39

2.3.2 Order two truncation

The order two truncation is the most commonly used lattice Boltzmann
model and has been discussed extensively in many works during the last
twenty years (see among other Chen and Doolen [18] or Latt [66]). We will
not enter into the details of the modifications and only give the major results
that we will reuse in the sequel.

This model is only valid for an a-thermal and weakly compressible flows (low
Mach number4). The equilibrium distribution function is given by

f (0) = wiρ

(

1 + ξ · u +
1

2
H(2)

αβuαuβ

)

. (2.83)

Since there is no temperature in this model, the energy conservation is irrel-
evant and θ = 1. As a consequence the time derivatives of the coefficients
become

∂ta
(n)
0 = −∂ρa

(n)
0 ∇ · (ρu) + ∂ja

(n)
0 · (ρg − ∇ · (ρI + ρuu)) . (2.84)

And therefore from equation (2.52) one gets

a
(2)
1αβ = −2τρSαβ , (2.85)

where the strain rate tensor S is given by

Sαβ =
1

2
(∂αuβ + ∂βuα) . (2.86)

We can apply the same procedure as in the third order truncation limit, but
this time the a

(n)
0 , n = 3, 4, coefficients will be zero and we will have to

compute modifications in a
(2)
1 . As done in (2.80) we can relate the second

order truncated Hermite coefficient to the one of the third order

−1

τ

{

a
(2)
1αβ

}2

= −1

τ

{

a
(2)
1αβ

}3

− ∂γ

{

a
(3)
0αβγ

}3

= 2ρSαβ − ∂γ(ρuαuβuγ),

= 2ρSαβ + O(Ma3). (2.87)

Using the low Ma number approximation, the non-equilibrium distribution
is given by

f (1) = −τρH(2)
iαβSαβ , (2.88)

4The Mach number, Ma = u/cs, is the ratio between the characteristic velocity of the
fluid and the speed of sound.
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which allows us to compute P (1)

P
(1)
αβ = −2τρSαβ . (2.89)

This gives us the following pressure tensor

Pαβ = ρδαβ − 2µsSαβ , (2.90)

where µs = ρτ is the dynamic viscosity. Finally we recover the following
macroscopic equations

∂tρ+ ∇ · (ρu) = 0,

ρ
du

dt
+ ∇ · (pI − 2µsS) = ρg. (2.91)

2.4 Discretization of velocity space

In the preceding subsection, we derived the macroscopic equations obtained
from the BGK Boltzmann equation for different truncation orders. We will
now use these truncated distribution function descriptions to discretize the
velocity space in a convenient manner. Since the macroscopic equations
only depend on the Hermite expansion coefficients a

(n)
α and can be exactly

recovered with the truncated fN (N is the truncation order) instead of the
complete f , it follows that Eq. (2.25) can be rewritten as

a(n)
α (x, t) =

∫

dξ fN(x, ξ, t)H(n)
α (ξ) =

∫

dξ ω(ξ)r(x, ξ, t), (2.92)

where r(x, ξ, t) is a polynomial function of ξ of degree not greater than 2N .
This integral can be exactly evaluated as a weighted sum using the Gauss–
Hermite quadrature (see the book by Krylov [61] and Appendix B)

a(n)
α (x, t) =

q−1
∑

i=0

wir(x, ξi, t) =

q−1
∑

i=0

wi

ω(ξi)
fN(x, ξi, t)H(n)

α (ξi), (2.93)

where wi, ξi (i = 0, ..., q − 1) are the weights and abscissae of the Gauss–
Hermite quadrature of a degree ≤ 2N (see Appendix B). Therefore the
discretized fN(x, ξi, t), (i = 0, ..., q − 1) completely determine fN(x, ξ, t)
and its moments. As can be seen in Appendix B the abscissae are not of
unit length as in the standard lattice Boltzmann method. In order to be
consistent with these models we have to rescale all the velocities by a factor
cl, which can be seen as a lattice sound velocity scaling factor. This will have
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as an effect to give slightly different Hermite polynomials and expansion co-
efficients. In the sequel we will use this rescaling in order to give the right
implementation formulas (see Appendix A).

In order to finish the discretization of Eq. (2.39) one still has to project f (0)

on the truncated Hermite basis. The expansion coefficients are given by

a
(0)
0 = ρ, (2.94)

a
(1)
0 α = ρuα, (2.95)

a
(2)
0 αβ = ρuαuβ + c2l ρ(θ − 1)δαβ, (2.96)

a
(3)
0 αβγ = ρuαuβuγ + c2l ρ(θ − 1)(δαβuγ + δαγuβ + δβγuα), (2.97)

a
(4)
0 αβγδ = ρuαuβuγuδ + c4l ρ(θ − 1)2(δαβδγδ + δαγδβδ + δαδδβγ)

+ c2l ρ(θ − 1)(δαβuγuδ + δαγuβuδ + δαδuβuγ

+ δβγuαuδ + δβδuαuγ + δγδuαuβ). (2.98)

Defining fi as

fi(x, t) ≡
wi

ω(ξi)
f(x, ξi, t). (2.99)

we can rewrite the discretized equilibrium distribution function, truncated
at order four, as

f
(0)
i = wi

4
∑

n=0

1

c2n
l n!

a
(n)
0αH

(n)
iα ,

= wiρ

(

1 +
ξi · u
c2l

+
1

2c4l

[

(ξi · u)2 − c2l u
2 + c2l (θ − 1)(ξ2

i − c2lD)
]

+
ξi · u
6c6l

[

(ξi · u)2 − 3c2l u
2 + 3c2l (θ − 1)(ξ2

i − c2l (D + 2))
]

+
1

24c8l

[

(ξi · u)4 − 6c2l u
2(ξi · u)2 + 3c4l u

4

+ 6c2l (θ − 1)
(

(ξi · u)2(ξ2
i − c2l (D + 4)) + c2l u

2(c2l (D + 2) − ξ2
i )
)

+ 3c4l (θ − 1)2
(

ξ4
i − 2c2l (D + 2)ξ2

i + c4lD(D + 2)
)

]

)

, (2.100)

where H(n)
iα are the discretized Hermite polynomials. With these definitions
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we can also write the discretized force term, Fi (see Eq. (2.41))

Fi = wi

3
∑

n=1

1

n!c2n
l

H(n)
iα a

(n)
0α ,

= wiρ

(

ξiαgα

c2l
+

H(2)
iαβ

c4l
gαuβ +

H(3)
iαβγ

2c6l
gα

(

uβuγ + c2l (θ − 1)δβγ

)

)

= wiρ

(

ξi · g
c2l

+
1

2c4l

(

(ξi · u)(ξi · g) − c2l (g · u)
)

+
1

6c6l

[

(ξi · g)
(

(ξi · u)2 + c2l ξ
2
i (θ − 1)

)

− c2l
[

(ξi · u)
(

2(g · u) + (u2 + c2l (θ − 1)D)
)

+ 2c2l (θ − 1)(ξi · g)
]

]

)

. (2.101)

Finally, we can also rewrite the off-equilibrium term of the distribution func-
tion

f
(1)
i = −wi

τρθ

c2s

[

1

2
H(2)

iαβΛαβ +
1

6c2s
H(3)

iαβγ

(

Λαβuγ + Λαγuβ

+ Λβγuα + c2s (δαβ∂γθ + δαγ∂βθ + δβγ∂αθ)
)

]

. (2.102)

We now have the BGK equation, discretized in velocity space, for fN (we
omit the superscript N in the sequel) which reads

∂tfi + ξi · ∇fi = −1

τ

(

fi − f
(0)
i

)

+ Fi. (2.103)

The different moments that we used to describe the hydrodynamic observ-
ables are no longer computed as integrals over an infinite velocity set, but as
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weighted sums over a finite number of discrete velocities

ρ =
∑

i

fi, (2.104)

ρu =
∑

i

ξifi, (2.105)

ρǫ =
1

2

∑

i

c2
i fi, (2.106)

P =
∑

i

cicifi, (2.107)

q =
1

2

∑

i

cic
2
i fi, (2.108)

where ci = ξi − u is the discrete counterpart of the continuous microscopic
velocity vector in the comoving frame. It must be noted that because of the
renormalization of the Hermite basis we have the following expressions for
the viscosity, diffusivity and the perfect gas law

µs = c2l ρθτ, κ = c4l ρθτ, p = c2l ρθ. (2.109)

The degree of the quadrature determines the number of abscissae that have
to be used in order to evaluate exactly the Hermite coefficients. As seen in
the previous subsection, depending on the physics one wants to represent we
need a different number of these coefficients to be computed exactly. In the
incompressible case we need them up to order two, but up to order four in
the thermal compressible case. Thus for incompressible flows one will use
the degree five quadratures (the standard lattices) E9

2,5 or E19
3,5 depending

on the physical dimension, for isothermal flows the order seven quadrature
E17

2,7 or E39
3,7 and finally for the thermal case the order nine E37

2,9 or E121
3,9 (see

Appendix B for the definitions of the lattices EQ
D,m). Thus, increasing the

quadrature degree, implies huge differences in terms of the computational
power needed to perform the simulations. In two dimensions the memory
needs per node can be increased by a factor four whereas in three dimensions
it can reach a factor six. The price to pay for the simulation of more and
more complex cases is therefore quite high.

2.5 Time and space discretization

After discretizing the velocity space of the BGK equation, we are left with
the discretization of the convective term of (2.103). The idea for the time dis-
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cretization was first used in He et al. [49] and can also be found in Dellar [25].

We rewrite the discretized BGK Boltzmann equation (Eq. (2.103))

dfi

dt
= −1

τ
(fi − f eq

i ) ,

where f eq
i ≡ f

(0)
i + τFi. By direct integration of this equation one finds

fi(x + ξ∆t, t+ ∆t) − fi(x, t) =

− 1

τ

∫ ∆t

0

ds (fi(x + ξis, t+ s) − f eq
i (x + ξis, t+ s)) , (2.110)

where ∆t is the time increment to go from one timelevel to the next one.
The r.h.s. of this last equation can be approximated using the trapezoidal
rule

fi(x + ξi∆t, t+ ∆t) − fi(x, t) =

− ∆t

2τ
(fi(x + ξi∆t, t+ ∆t) − f eq

i (x + ξi∆t, t+ ∆t)

+fi(x, t) − f eq
i (x, t)) + O(∆t2). (2.111)

This second order approximation is implicit, but can be rendered explicit
thanks to an appropriate change of variables (∆t = 1 from now on)

f i(x, t) = fi(x, t) +
1

2τ
(fi(x, t) − f eq

i (x, t)) . (2.112)

Using this relation in Eq. (2.111) one gets

f i(x + ξi, t+ 1) − f i(x, t) = −1

τ

(

f i(x, t) − f eq
i (x, t)

)

. (2.113)

which is now an explicit equation and where we defined

τ = τ +
1

2
. (2.114)

We will therefore simulate these f i using the modified relaxation time τ . The
reader should remark that although this time-stepping looks like a first-order
upwind finite difference scheme for the time discretization, it is in reality a
second order approximation since the BGK equation has been approximated
using the trapezoidal rule.
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We still have to see what is the effect of the change of variables on the
moments of the distribution function. The first straightforward effect that
can be noticed is that we have to substitute τ by τ −1/2 in the computation
of the viscosity and of the diffusivity. We therefore have

µs = c2l ρθ

(

τ − 1

2

)

, κ = c4l ρθ

(

τ − 1

2

)

. (2.115)

We see appearing a so-called “lattice viscosity” (respectively diffusivity)
which is due to this change of variables that allows us to have a second
order explicit time-stepping. It can be seen as the price to pay to have a
better time discretization.

Since fi is now expressed in terms of f i we should see what changes are
implied for the different macroscopic variables. Let us compute ρ

ρ ≡
q−1
∑

i=0

f = ρ, (2.116)

where the last equality is the consequence of the fact that
∑

i fi =
∑

i f
(0)
i

and that
∑

i Fi = 0. For the momentum we have

ρu =
∑

i

ξif i = ρu − ρg/2. (2.117)

We see therefore that the velocity in terms of f i, that we will now note u is
not anymore the “physical velocity” which is the one given by the fi but is
computed as

u = u +
g

2
. (2.118)

The reader should therefore be aware that the physical velocity should always
be computed this way. Furthermore when doing the Chapman–Enskog ex-
pansion of the discrete scheme (see the books by Wolf-Gladrow [100] or Succi
[94]) the equilibrium distribution function should be taken with respect to
this velocity in order to get coherent results. Furthermore in order to be
able to compare the scheme with the a posteriori scheme proposed in Guo
et al. [45] we have to remember that f eq

i is given in terms of the physical
velocity and the physical relaxation time τ , which implies that the r.h.s. of
the numerical scheme (2.113) is given by

− 1

τ

(

f i(x, t) − f
(0)
i (ρ,u) − τFi(ρ,u)

)

,

= −1

τ

(

f i(x, t) − f
(0)
i (ρ,u)

)

+

(

1 − 1

2τ

)

Fi(ρ,u). (2.119)
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We therefore see that at order two in Hermite polynomials the scheme is the
same to the one proposed by Guo, but in our case was derived completely
a priori. In the sequel we will only use the overlined distribution functions
and relaxation times, and therefore we will omit this notation for simplicity.

2.6 Summary

In this section, we have shown how to discretize the BGK Boltzmann equa-
tion, in order to simulate the Navier–Stokes equations (also shown in the
diagram of Fig. 2.1). We have started by averaging the continuous BGK
equation and found the conservation equations (mass, momentum, and en-
ergy) but with generic pressure tensor and energy flux. In order to close the
system (find constitutive equations for the pressure tensor and the energy
flux), following the idea of Grad, we chose to project the BGK equation on
the Hermite basis and truncate the expansion. Then we have carried out
Chapman–Enskog expansion of this truncated Hermite basis projection. Us-
ing this expansion, the Newton’s law for the pressure tensor and the Fourier
law for the energy flux have been obtained. Furthermore it has allowed us to
relate the relaxation time, with the viscosity and thermal diffusivity. We have
also been able to express the distribution function in terms of macroscopic
quantities. We have then discretized the velocity space using the Gauss–
Hermite quadrature rule to evaluate the integrals as finite weighted sums.
The order of quadrature needed is obviously related to the order of quadra-
ture used to express the distribution function. Finally we have discretized
the equations in time and space by a second order trapezoidal integration.
This implicit scheme was cast into an explicit one by a change of variables,
which had as an effect to add a lattice viscosity and thermal diffusivity to
the physical ones. In this thesis we restrict ourselves to incompressible fluids,
and therefore use only the second order truncated Hermite representation.
Below are given the formulae that we have used for implementation purpose.
The different Hermite coefficients are obtained from Eqs. (2.94)-(2.96) by
setting θ ≡ 1 and (2.87)

a
(0)
0 = ρ, a

(1)
0α = ρuα, a

(2)
0αβ = ρuαuβ, (2.120)

a
(0)
1 = 0, a

(1)
1α = 0, a

(2)
1αβ = −2τρSαβ . (2.121)
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Fig. 2.1: A summary of the path followed to build the numerical scheme from
the continuous Boltzmann equation to simulate the compressible thermal
Navier–Stokes equations.

And therefore the f
(0)
i , f

(1)
i and Fi are given by

f
(0)
i = wiρ

(

1 +
ξi · u
c2l

+
1

2c4l
H(2)

iαβuαuβ

)

, (2.122)

f
(1)
i = −wiρ

c2l
H(2)

iαβSαβ, (2.123)

Fi = wiρ

(

ξi − u

c2l
− (ξi · u)ξi

c4l

)

· g, (2.124)

where u is the physical velocity of Eq. (2.118). The pressure tensor is given
by

P (0) = c2l ρI, P (1) = − τ

2c4l
S. (2.125)

Finally the numerical scheme is given by

fi(x+ξi, t+1)−fi(x, t) = −1

τ

(

fi(x, t) − f
(0)
i (ρ,u)

)

+

(

1 − 1

2τ

)

Fi. (2.126)

If we now turn our attention to the implementation of this method, we
see that it can be separated in two distinct steps : the collision and the
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propagation. Define f in
i and f out

i as the fi’s before and after the collision we
have the two following steps

1. The collision :

f out
i (x, t) =f in

i (x, t) − 1

τ

(

f in
i (x, t) − f

(0)
i (ρ,u)

)

+

(

1 − 1

2τ

)

Fi, (2.127)

2. The propagation :
f in

i (x + ξi, t+ 1) = f out
i . (2.128)

Each one of these steps must be applied to the whole system before the next
one can take place. The collision is a completely local operation while the
propagation only communicates with a few neighbors. This “locality” of the
scheme is particularly efficient for parallelization.



Chapter 3

Non-Newtonian fluid dynamics

In the last chapter we presented a general derivation of the equations gov-
erning the fluid dynamics and faced a closure problem for the stress tensor
and the heat flux. We now consider only isothermal flows and therefore focus
our attention only on the stress tensor. The single relaxation time model, al-
though being able to reproduce the complex physics behind compressible and
thermal flows can only describe Newtonian fluids (i.e. P = pI − µsΛ, with
µs = cte and Λ the extra-stress tensor). The sign convention used here is the
same as in Bird et al. [8], namely that negative (respectively positive) normal
stress corresponds to extension (respectively compression). In this chapter,
we will present more complicated closure (constitutive) relations which will
describe the mechanical behavior of more complex (viscoelastic) fluids. We
will also assume that the fluids are incompressible.

3.1 Generalized Newtonian fluids

The viscosity will be no longer considered as a constant viscosity, as in the
Newtonian model, but rather strain rate dependent. This leads to a stress
tensor

P = pI − 2µs(γ̇)S, (3.1)

where the shear rate γ̇ is defined as

γ̇ =
√

2S : S. (3.2)

These models describe successfully fluids like molten polymers, uncooked
paste or toothpaste. There exist a lot of different models for the dependence
of µs on γ̇ (see Agassant et al. [1] for a more complete list). One of the more
popular is the “power-law” model

µs(γ̇) = kγ̇n−1, (3.3)

where n is the non-dimensional power-law index, and k is a constant1. In
the limit n = 1 we recover the Newtonian case with µs = k. The cases n < 1

1The dimensions of k are dependent on n and are
[

kg · m−1 · sn−2
]

.
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and n > 1 represent respectively pseudoplastic (shear-thinning) and dilatant
(shear-thickening) fluids. The “power-law” fluids fail to represent real fluids
in the limits of small and high shear rate. Especially in the case where n < 1,
we have that µs → ∞ when γ̇ → 0, which of course is unphysical. To correct
these flaws other models have been proposed where we have two Newtonian
plateaus at low and high shear rate. In the Carreau–Yasuda which model
exhibits such a behavior we define

µs − µ∞

µ0 − µ∞
= (1 + (λγ̇)a)(n−1)/a , (3.4)

where λ is a time constant, a a dimensionless number, µ0 and µ∞ are the
viscosities at zero and infinite shear rate.

3.2 Viscoelastic fluids

The second class of non-Newtonian fluids that are presented here are those
that exhibit memory effects. This section follows the monograph of Lin [70].
For more informations the reader could also refer to Bird et al. [8], Larson
[63] or Fiétier [33]. The models presented here are not representing correctly
real viscoelastic fluid for all type of flows. In particular the Oldroyd-B model
is limited to small deformation rates whereas the FENE-P model is of low
accuracy for highly elongational flows. Although they are not able to repre-
sent correctly liquids that are subject to high deformations, their simplicity
make them good candidates for implementation and testing purposes. These
models are based on the representation of the polymers as dumbbells con-
nected by a spring that interact with a Newtonian solvent (see Fig. 3.1). We
will first present the effect of the solvent on the dumbbells and therefore their
evolution equation, and then we will discuss the action of the dumbbells on
the flow.

3.2.1 Action of the solvent on the polymers

The beads have mass m and radius a. Each bead experiences a force due
to the velocity difference between itself and the fluid surrounding it. This
force (Stokes formula) is opposite to the velocity difference and has a propor-
tionality constant, the mobility, ζ = 6πµsa, where µs is the solvent dynamic
viscosity. It is furthermore assumed that there are ρp dumbells per unit vol-
ume. We also introduce r (see Fig. 3.1) the configuration vector connecting
two beads of position r1 and r2

r = r2 − r1. (3.5)
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Fig. 3.1: The polymers are modelled by dumbbells connected by a spring.

The position of the center of mass of the dumbbell, rc, is defined as

rc =
r1 + r2

2
. (3.6)

It is assumed that the fluid has a homogeneous velocity field in the vicinity
of the beads, which is a reasonable assumption if the dumbbell characteristic
size is low compared to the length scale of the velocity variations. We will
also define the probability distribution ψ(r, t), such that ψ(r, t)dr is the
probability that a randomly chosen dumbbell has a configuration vector r ∈
[r, r + dr]. We also normalize ψ in order to have

∫

dr ψ(r, t) = 1. (3.7)

With these assumptions one can show (see Lin [70]) that the time evolution

Fig. 3.2: The beads are at positions r1 and r2 respectively, while rc is the
position of the center of mass and r is the configuration vector.

of ψ is given by a Smoluchowski equation

∂tψ = −∇r ·
[

(

(∇xu)T · r
)

ψ − 2θ

ζ
∇rψ − 2sψ

ζ

]

, (3.8)



52 Chapter 3. Non-Newtonian fluid dynamics

where s is the connector (spring) force, which has the same direction as r.
We are now interested in the averaged quantities. As in the preceding chapter
we will define the average of the observable A is defined as

〈A(t)〉 =

∫

dr A(r)ψ(r, t). (3.9)

As a consequence we have that the time derivative of this averaged observable
is

d 〈A〉
dt

=

∫

drA∂tψ. (3.10)

Substituting Eq. (3.8) in this last equation and integrating by parts, we
obtain

d 〈A〉
dt

= −
∫

dr ∇r ·
[

A
(

(

(∇xu)T · r
)

ψ − 2θ

ζ
∇rψ − 2sψ

ζ

)]

+

∫

dr

(

(

(∇xu)T · r
)

ψ − 2θ

ζ
∇rψ − 2sψ

ζ

)

· ∇rA. (3.11)

Using the divergence theorem and the fact that ψ vanishes for r → ∞ we
find that the first integral above vanishes, and one is left with

d 〈A〉
dt

=

∫

dr

(

(

(∇xu)T · r
)

ψ − 2θ

ζ
∇rψ − 2sψ

ζ

)

· ∇rA. (3.12)

Integrating by parts the second term of this integral, and remembering that
ψ vanishes at infinity, we get

d 〈A〉
dt

=
〈

(∇xu)T · r · ∇rA
〉

+
2θ

ζ

〈

∇
2
rA
〉

− 2

ζ
〈s · ∇rA〉 . (3.13)

As it will become clearer later, the quantity of interest is the average of
the tensorial product 〈rr〉. It can be interpreted as the average size and
orientation of the dumbbells. Substituting A = rr in the preceding equation
one gets

d 〈rr〉
dt

=
〈

(∇xu)T · r · ∇r(rr)
〉

+
2θ

ζ

〈

∇
2
r(rr)

〉

− 2

ζ
〈s · ∇r(rr)〉 ,

= 〈rr〉 · ∇u + (∇u)T · 〈rr〉 +
4θ

ζ
I − 4

ζ
〈rs〉 . (3.14)

In order to clarify the notations, we remind the reader that the velocity
gradient ∇u is given in components by (∇u)αβ = ∂αuβ.
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3.2.2 Action of the polymers on the solvent

The dumbbells act on the fluid momentum through the stress tensor P . Fol-
lowing Lin [70], we will decompose it in two parts, the first, Ps, corresponding
to the Newtonian solvent and the second, Pp, to the polymer

P = Ps + Pp,

= pI + Λs + Π,

= pI − 2µsS + Π. (3.15)

where p = ps+pp, pp being an isotropic pressure, Π is the contribution to the
stress which vanishes at equilibrium (when the system is time independent,
and the velocity gradients go to zero). The stress is decomposed in this
fashion in order to obtain a non-zero contribution only when the system is off-
equilibrium. The viscoelastic stress tensor Π is determined as follows. When
considering a surface of fluid, there are two distinct possible contributions
from the dumbbells on the stress acting on this surface. The first one is the
action of the spring force when each bead of the dumbell is on one side of the
surface, Psp (see Fig. 3.3). The second one is the motion of the beads through
the surface that carry some momentum, Pme (see Fig. 3.4). The spring force

Fig. 3.3: The force s applied on
the surface of normal vector of
length unity.

Fig. 3.4: The momentum mv1 car-
ried by bead 1 through the surface
with normal vector n.

contribution, gsp, to the stress is computed as follows. Let us define a cubic
volume which contains one dumbbell. If the density of dumbells is defined
as ρp then this volume is

V = ρp. (3.16)

Let us also define a surface in this volume which will be identified by a normal
vector of unit length n. We now assume that the center of mass, rc, of a
dumbbell is at a random position inside this volume. Then the probability



54 Chapter 3. Non-Newtonian fluid dynamics

that a dumbbell of length r will cross the plane n is given by the ratio of the
projection of r on n over the side length of the cube V 1/3. This probability
must be multiplied by the probability distribution of having a dumbbell of
size r to get the specific statistical contribution due to dumbbells of size r.
Finally the force exerted by the spring on the surface defined by n is obtained
by multiplying by the spring force (see Fig. 3.3) and integrating over all the
possible configurations of springs which leads to

gsp = −ρpn ·
∫

dr rsψ. (3.17)

Using the fact that the force in the n direction is the stress projected on n

(gsp = Psp · n), the spring contribution to the stress tensor is

Psp = −ρp 〈rs〉 . (3.18)

We are now left with the evaluation of the contribution of the momentum
carried by the beads of the dumbbells to the polymer stress. This contribu-
tion is equal to the momentum flux, in the comoving frame, of the beads
through the surface defined by n. Thus, defining vi ≡ ṙi−ui, where i = 1, 2
is the index of each of the beads, and ui is the velocity of the fluid at the
position of bead i, the contribution of each bead is

m

∫

dṙ1dṙ2 vivi

2
∏

j=1

f (0) (vj) , (3.19)

where we assume that the dumbbells are at thermal equilibrium, and thus
f (0) (vj) is the Maxwell–Boltzmann distribution function

f (0) (vj) = ρp

( m

2πθ

)D/2

exp

(

−
mv2

j

2θ

)

. (3.20)

Carrying out this integral and summing over the two beads one gets, that the
contribution of the dumbbells, through momentum exchange, to the stress
tensor Pme is given by

Pme = 2ρpθI. (3.21)

Finally this gives us the total polymer contribution to the stress tensor

Pp = Psp + Pme = −ρp(〈rs〉 − 2θI). (3.22)

Using this relation in Eq. (3.15), the stress tensor is given by

P = psI − 2µsS − ρp(〈rs〉 − 2θI). (3.23)
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When the system is time independent and the velocity gradients are vanish-
ing, we have, using Eq. (3.14), that

〈rs〉|eq = θI, (3.24)

Therefore we get that the stress tensor is given by

pI = (ps + pp)I = P |eq = Ps|eq + Pp|eq = psI + ρpθI ⇒ pp = ρpθ. (3.25)

Using this relation in Eq. (3.22), we can identify the viscoelastic stress tensor
Π as

Π = Pp − ppI = −ρp(〈rs〉 − θI). (3.26)

We have made no hypothesis so far on the form of the force exerted by the
spring on the beads. Assuming it to be Hookean

s = Hr, H =
Dθ

r2
0

(3.27)

where H is the Hookean constant2, D is the physical dimension, and r0 the
length of the spring when the system is at equilibrium. We can rewrite Π as

Π = −Dρpθ

r2
0

〈rr〉 + ρpθI. (3.28)

We now would like to rewrite the constitutive equation in a more familiar way.
To do so we define the polymer viscosity and relaxation time, respectively,
µp and λ, as

µp ≡ ρpθλ, (3.29)

λ−1 ≡ 4Dθ

ζr2
0

. (3.30)

Inserting these relations in Eq. (3.28) we get

Π = −µp

λ
(A − I) , (3.31)

where we defined, A, the conformation tensor as

A ≡ D

r2
0

〈rr〉 . (3.32)

2At equilibrium, the energy contained in the spring must be equal to the thermal energy
E = Dθ/2 = Hr2

0
/2 and therefore H = Dθ/r2

0
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Expressing the constitutive equation (3.14) in terms of the conformation
tensor, we get

dA

dt
≡ ∂tA + (u · ∇)A = −1

λ
(A − I) + A · ∇u + (∇u)T · A. (3.33)

This equation is also often written in terms of the viscoelastic stress tensor
Π, and reads

dΠ

dt
= −1

λ
Π +

2µp

λ
S + Π · ∇u + (∇u)T · Π. (3.34)

This equation is known under the name of the Oldroyd-B constitutive equa-
tion and was derived by Oldroyd [77]. Although it exhibits the memory effects
that can be observed in polymers, this model constains one defect, which is
that the viscoelastic stress goes to infinity for a fixed elongation deforma-
tion. In order to correct this feature the FENE models (Finitely Extensible
Nonlinear Elastic) have been proposed. Among them the most popular was
devised by Peterlin [83] and is known under the name of FENE-P model.
The FENE-P model imposes a finite maximum elongation, noted re, to the
dumbbells. This additional constraint modifies Eqs. (3.33) and (3.34) in the
following way

dA

dt
= −1

λ
(hA − bI) + A · ∇u + (∇u)T · A., (3.35)

dΠ

dt
= −µp

λ

(

h

µp
Π − 2bS

)

+ Π · ∇u + (∇u)T · Π, (3.36)

where the Peterlin function h, and the parameter b are given by

h =
1

1 − trA/r2
e

, b =
1

1 − 3/r2
e

. (3.37)

The relation between the viscoelastic stress tensor, Π and the conformation
tensor A becomes

Π = −µp

λ
(hA − bI) . (3.38)

This dumbbell model although being able to reproduce some of the important
viscoelastic properties is still not really quantitatively representing a real
viscoelastic fluid (normal stresses effects). One of its major defects is that it
only possesses one relaxation time. In reality, the behavior of polymeric fluids
is governed by many different relaxation rates. This problem can be corrected
by considering long chains of dumbbells connected by spring with different
Hooke constants, as in the Rouse model (see Bird et al. [8]). An alternative is
to consider a set of equations, each one with a specific relaxation time λi and
viscoelastic stress Πi. The total viscoelastic stress being the sum of all the
viscoelastic stresses related to each equations, Π =

∑

i Πi, (see Bird et al.
[9] for more informations).
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3.2.3 Jeffreys model

The Jeffreys model is one of the very few “viscoelastic” models that has
been implemented with the lattice Boltzmann method (see Giraud et al.
[38], Lallemand et al. [62]). We will therefore shortly discuss it here and
compare it with the dumbbell model described in the previous section. For
more details one should refer to Bird et al. [8].

The Jeffreys model is a linear model (derived from the Maxwell model)
that relates the viscoelastic stress tensor to the history of the strain rate
tensor

Π + λ1∂tΠ = −2µs (S + λ2∂tS) , (3.39)

where λ1 and λ2 are the relaxation and the retardation time respectively. One
may note that the upper-convected derivative3 that accounts for the memory
effects is not present in this equation. This equation can be integrated, and
assuming that Π, S and ∂tS remain finite at t = −∞ we have

Π = −
∫ t

−∞
dt′

(

2µs

λ1

(

1 − λ2

λ1

)

e(−(t−t′)/λ1)S

)

− 2µsλ2

λ1

S,

= −
∫ t

−∞
dt′

(

2µs

λ1

(

1 − λ2

λ1

)

e(−(t−t′)/λ1) +
4µsλ2

λ1

δ(t− t′)

)

S, (3.40)

where δ is the Dirac delta function. We see more clearly with this formulation
that the viscoelastic stress is relaxing towards the strain rate. This model
is valid only if the deformations applied on the fluid are small (because of
its linearity). One of its major defects is its inability to describe the nor-
mal stresses difference phenomena, such as the climbing rod, or the tubeless
syphon (see Bird et al. [8] for more details) effects.

3.3 Summary

In this chapter we have presented a viscoelastic model of a solution of poly-
mers, that are described by dumbbells. This description couples the classical
fluid conservation equations for mass and momentum with the conforma-
tion tensor constitutive equation that dictates time evolution of the polymer

3The upper convected derivative of a tensor A,
▽

A, is defined as
▽

A≡ ∂tA + (u ·∇)A−
A · ∇u − (∇u)T · A.
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stress. Therefore the equations to be solved are in the Oldroyd-B case

∇ · u = 0, (3.41)

∂tu + (u · ∇)u = ∇ · (−pI + 2µsS −Π), (3.42)

∂tA + (u · ∇)A = −1

λ
(A − I) + A · ∇u + (∇u)T · A, (3.43)

where the relation between the conformation tensor A and the viscoelastic
stress tensor is characterized by Eq. (3.31)

Π = −µp

λ
(A − I) .

In the case of the FENE-P model the constitutive equation is modified, and
reads (see Eq. (3.35))

dA

dt
= −1

λ
(hA − bI) + A · ∇u + (∇u)T · A,

and the relation between Π and A is

Π = −µp

λ
(hA − bI) ,

with h = 1/(1 − trA/r2
e) and b = 1/(1 − 3/r2

e). These two constitutive
equations will be considered in the following chapters. Before proceeding
further with the method used to solve them numerically, we will define the
non-dimensional parameters that we will use later. The viscoelasticity of a
fluid is usually given in terms of the Weissenberg or Deborah numbers defined
in Chapter 1 as

Wi = λγ̇, De = λ
U

L
, (3.44)

where γ̇ is the rate of deformation of the fluid, and U and L the characteristic
velocity and length of the physical system of interest. The higher these num-
bers are, the higher the elastic effects. Finally we also define the kinematic
viscosity ratio Rν by

Rν =
νs

νp + νs

, (3.45)

where νp and νs are kinematic viscosities of, respectively, the polymer and
the solvent.



Chapter 4

Velocity boundary conditions in
the lattice Boltzmann method

In Chapter 2, the lattice Boltzmann scheme has been discussed, and we
have shown how to recover the Navier–Stokes equations from the simplified
BGK approximation. All this development did not take into account the
boundary conditions (BC). In this chapter we will discuss the difficulties
that arise when one tackles problems with boundaries while using the lattice
Boltzmann method. More details may by found in Latt et al. [69].

4.1 Description of the problem

A time step in the LBM is constituted of two principal parts : the collision
step and the propagation step. A cell next to a boundary will contain infor-
mation that is incoming from the wall, and therefore will be non-physical.
As can be seen on Fig. 4.1 the distributions number 3, 4, and 5 are pointing
in the domain. They can therefore be interpreted as incoming from a node
located inside the wall. Since the wall itself is not simulated these missing
distributions must be recomputed in an appropriate way in order to guar-
antee that the physics of the whole system remains correct. Fortunately,

b 6

781

2

3 4 5

Wall

Bulk

Missing fi

Fig. 4.1: A boundary node with the known (0, 1, 2, 6, 7, 8) and the missing
(3, 4, 5) population, fi.

59
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we do not only know the distribution functions that are incoming from the
bulk but we also have information about macroscopic observables. Usually,
in fluid flows, one knows the velocity (Dirichlet boundary conditions) or its
derivatives (Neumann boundary conditions). As we will see later this infor-
mation is enough to completely specify the system. We will discuss here only
the case of the homogeneous Dirichlet BC also known as the no-slip BC when
the boundary is a solid wall.

4.2 Proposed solutions

There has been a large number of boundary conditions that were developed
through the years. In this section we will only discuss the flat wall BC in order
to keep the discussion simple. But the reader should be aware that BC for
curved boundaries have also been developed (see Bouzidi et al. [14], Ginzburg
and d’Humières [36], Junk and Yang [57] for example).

Let us now study in more details four different BCs chosen among the
most popular ones :

• the Inamuro method (BC1),

• the Zou/He method (BC2),

• the regularized method (BC3).

• the finite difference method (BC4),

Of course this list does not intend to be exhaustive. Numerous other BC
have been developed (among others the articles by Ansumali and Karlin [4]
or Halliday et al. [46]). BC1 was developed in Inamuro et al. [54]. The BC2 is
a result of the work of Zou and He [104]. Finally BC3 is described in Latt
and Chopard [68]. Method BC4 is based on the work by Skordos [93] with a
slight modification.

4.2.1 General properties of the studied BC

The precited BC have several common points that will be described now.
First of all they are all “wet” BC, which means that the lattice nodes on which
the boundary treatment will be applied are located in the fluid infinitesimally
close to the wall1. This has as a consequence that the BGK collision must be
applied on the boundary cell after the recovery of the missing information.

1In opposition to the “dry” BC like the bounceback where the boundary node lies into
the wall
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Since the collision depends on the equilibrium distribution, and therefore on
the density and the velocity, we have the first constraint that in a boundary
node the density and the velocity must be exactly recovered according to
Eqs. (2.104) and (2.105). Since we assume Dirichlet boundary conditions,
the velocity is imposed and the density must be computed. Let us now
describe the procedure to determine it.

4.2.2 Computation of the density

The procedure describe below can also be found in Zou and He [104]. If n is
the unit vector normal to the wall pointing outwards of the computational
domain, we define three quantities, ρ0, ρ− and ρ+ as

ρ0 =
∑

i∈I0

fi, where I0 = {i | ξi · n = 0} (4.1)

ρ− =
∑

i∈I−

fi, where I− = {i | ξi · n < 0} (4.2)

ρ+ =
∑

i∈I+

fi, where I+ = {i | ξi · n > 0} (4.3)

The density is therefore given by

ρ = ρ0 + ρ+ + ρ−. (4.4)

Then defining u⊥ as the projection of the velocity on n

u⊥ = u · n. (4.5)

and the preceding definitions one has for u⊥ (see also Eq. (2.105))

u⊥ = (ρ+ − ρ−)/ρ. (4.6)

Combining this result with Eq. (4.4) we find

ρ =
1

1 + u⊥
(2ρ+ + ρ0). (4.7)

Since ρ+ and ρ0 are always known on a boundary cell, it can be seen that
imposing u⊥, one can compute ρ or vice versa. The relation between u⊥
and ρ allows us to impose either velocity or pressure BC. Of course these
results are only true for flat walls. In the case of corners, for example, the
missing information is too important to be recovered from the few available
fi’s. Therefore one needs to interpolate the missing quantities from the bulk,
using finite difference schemes for example.
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4.2.3 Replacing only the missing populations or all of

them

Having determined the density and the velocity we are able to compute the
equilibrium distribution function. Only the unknown particle distribution
functions are lacking. There are two approaches to solve this problem. The
first one consists in keeping the known distributions and therefore in using
the information incoming from the bulk, by building only the missing ones.
This is the path followed by BC1 and BC2. The other approach is to re-
place all the distribution functions using only the macroscopic information
available, such as the density, the velocity and higher order moments. This
is the approach used for BC3 and BC4. A naive approach when using the
technique of replacing all distribution functions could be to give all the fi’s
their equilibrium value. Although the density and the velocity will be cor-
rectly recovered, the result is of rather low quality, since the approximation
of the fi will be of only O(Kn0) whereas the approximation made for the
distribution functions in the Chapman–Enskog expansion is of O(Kn1). One
example of this BC can be found in Fig. 4.2. One immediately sees that
the hydrodynamics are only qualitatively recovered. In fact in order to get
the expected accuracy, we do not only need to get the correct density and
velocity but also the strain rate tensor.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y−position in channel

u x

 

 

Poiseuille profile
Equilibrium on boundary
Regularized boundary condition BC3

Fig. 4.2: 2D channel flow, simulated once with an equilibrium distribution
on boundaries, and once with the Regularized boundary condition BC3. The
solid line plots the analytic Poiseuille profile. Although only 11 data points
are used to resolve the channel width, the result obtained with BC3 is visually
indistinguishable from the Poiseuille profile. With equilibrium boundaries on
the other hand, the velocity gradients are ill represented on boundary nodes,
which impairs the accuracy of the whole simulation.
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Method Replaces all fi’s Local Explicit in 3D
BC1 (Inamuro) No Yes No
BC2 (Zou/He) No Yes Yes
BC3 (Regularized) Yes Yes Yes
BC4 (FD) Yes No Yes

Table 4.1: The boundary conditions analyzed

4.3 Description of the boundary conditions

The four BC listed in Table 4.1 are analyzed in this chapter. The table
specifies whether a BC replaces all the populations by a new value, or only
the unknown ones. It also states whether they are local to a given bound-
ary node, or if they need to access neighboring nodes in order to execute
their algorithm. The original papers on boundary conditions most often con-
centrate on 2D implementations. Table 4.1 specifies whether there exists a
straightforward way to extend them to 3D, or if this requires the solution of
an implicit equation. In the remaining part of this section, the four analyzed
BC are introduced within a common framework. A formalism is used in
which all particle populations fi on a boundary node are replaced by alter-
native populations hi resulting from the boundary condition algorithm. It is
stated explicitly when some of the original fi’s are kept. It is then assumed
that a BGK collision is applied to the populations hi, followed by a streaming
step. Explicit formulas are given for the D2Q9 lattice of Fig. 4.3 and for a
top grid node as in Fig. 4.1. Furthermore, it is explained how the algorithms
can be extended to 3D lattices.

781

2

3 4 5

Fig. 4.3: The D2Q9 lattice.

All presented BC are shown to recover the desired hydrodynamic behavior.
According to the discussion in Chapter 2, this amounts to showing that the
expected value for the boundary velocity is obtained from Eq. (2.105), and
that the deviatoric stress tensor P (1) calculated from Eq. (2.71) is consistent
with its hydrodynamic value predicted by Eq. (2.90). These requirements
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are enforced by construction in the BC3, and BC4, and are therefore valid
for obvious reasons. However, for the BC BC1 and BC2 only the value of the
velocity is explicitly enforced. In this thesis, the value of the deviatoric stress
tensor is therefore evaluated separately for the D2Q9 lattice, as a proof of
validity. For this, the six known particle populations are assumed to obey the
value predicted by the perturbative analysis in Eq. (2.88), and thus to depend
on ρ, u and the gradients of u. Based on this assumption, the missing particle
populations are evaluated from the algorithm of the boundary condition, and
the deviatoric stress tensor P (1) is computed from Eq. (2.71).

4.3.1 The Inamuro method (BC1)

The boundary condition BC1 by Inamuro et al. originates from the kinetic
theory of gases to find an appropriate value for the missing particle popula-
tions. It assumes that the missing populations are at a local thermohydrody-
namic equilibrium and thus yield the discrete analog of a Maxwell-Boltzmann
distribution. This distribution is however centered around a fictitious den-
sity ρ′ and velocity u′, both of which are different from the macroscopic fluid
variables ρ and u. While ρ′ is a free variable, u′ is assumed to differ from u

only by a “slip velocity” δu, which is tangential to the wall: u′ = u + δu.
These assumptions introduce a set of 2 unknowns in 2D, and 3 unknowns in
3D. For an upper boundary on a D2Q9 lattice, they read

hi = f
(0)
i (ρ′, ux + δux, uy) for i = 3, 4, 5, (4.8)

where f
(0)
i is the equilibrium distribution described by Eq. (2.83). As has

been emphasized in Section 4.2.1, the value of the velocity u needs to be
enforced on the boundary via Eq. (2.105). This system of two equations can
be solved for the two unknowns ρ′ and δux, with the following result:

ρ′ = 6
−ρuy + f1 + f7 + f8

1 + 3u2
y − 3uy

, (4.9)

δux = −ux + 6
ρux + f1 + f2 − f6 − f7

ρ′(1 − 3uy)
. (4.10)

In these relations, the lattice constants have been replaced by their numerical
value for the D2Q9 lattice. The missing populations are now evaluated with
the help of Eq. (4.8), and the other populations are left unchanged:

hi = fi for i = 0, 1, 2, 6, 7, 8. (4.11)

In 3D, the slip velocity δu has two independent components. The unknowns
thus add up to 3, which matches the number of closure relations introduced
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by Eq. (2.105). This system of equations is more difficult to solve than in the
2D case, and to our knowledge, no analytic solution is presently known. For
the 3D benchmarks in Section 4.4, the lattice Boltzmann code solves these
equations numerically on each boundary cell and at every time step with the
help of a multivariate Newton–Raphson method [85].

The velocity u is explicitly enforced by this boundary condition, but nothing
is known a priori about the value of the deviatoric stress tensor. The method
described in the introduction of Section 4.3 is now applied to evaluate P (1)

for the D2Q9 lattice, by making use of a computer algebra system. The
following values are found:

P (1)
xx =

τρ

9(1 − 3uy)2( 1
τ
− 2Syy − 3

τ
uy + 3

τ
u2

y)
· (4.12)

(

10SxxSyy(1 − 3uy)
2 + 6S2

xy(1 − 3uy + 3u2
y)

− 1

τ
(3uy − 1)

(

5Sxx(−1 + 6uy − 12u2
y + 9u3

y)

+ Syyu
2
x(3 − 9uy) + 18uxSxy(

1

3
− uy + u2

y)
)

)

,

P (1)
yy = −2τ

3
ρSyy, and (4.13)

P (1)
xy = −2τ

3
ρSxy. (4.14)

The tensor components P
(1)
yy and P

(1)
xy yield an exact match with the value

expected from Eq. (2.90). As has been pointed out in Section 4.2.1, this is a
direct corollary of the fact that the equation for the velocity, Eq. (2.105), is
satisfied. The component Pxx is the only free parameter on a D2Q9 lattice,
and can be viewed as a signature of how the boundary condition influences the
dynamics of the fluid. In its present form, Eq. (4.12) is not very enlightening,
and we present therefore two limit values. The first represents the case of a
no-slip wall, with vanishing values of u:

P (1)
xx = ρ

−5Sxx + 2τ(3S2
xy + 5SxxSyy)

9
τ
− 18Syy

when u = 0. (4.15)

For the second limit case, P
(1)
xx is expanded into a finite Taylor series for

small values of the components Sxx, Syy and Sxy. It is assumed that, in the
limit of fluid incompressibility, the Mach number Ma, and thus the velocity
u in lattice units, scales like the Knudsen number (see the book of Hänel
[47]). The components of the strain rate tensor S exhibit therefore order
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Kn2 scaling. From the above Taylor series, only terms of order Kn2 are
retained, and terms of the form SαβSγδ or Sαβuγ are neglected. This leads
to the following approximation of Eq. (4.12):

P (1)
xx = −5τ

9
ρSxy + O(Kn3). (4.16)

This expression is identical to the hydrodynamic tensor value in Eq. (2.90),
except for the factor 5/9, which differs from the expected value 2/3 by
20%. This error has however no important effect in practice, as the Ina-
muro method is found to be equally or even more accurate than the other
approaches in low-Reynolds applications (see Section 4.4). One may however
point out that as a consequence of Eq. (4.16), the trace of P (1) is non-zero
with BC1. This is a huge defect since it is a violation of the continuity equa-
tion, because Eqs. (2.90) and (2.86) show that the trace of P (1) is propor-
tional to ∇ · u in the hydrodynamic limit (a detailed discussion about mass
conservation of boudary conditions can be found in Chopard and Dupuis
[19]).

4.3.2 The Zou/He method (BC2)

The boundary condition BC2 by Zou and He is based on an idea referred to
by its authors as “applying the bounce-back rule to off-equilibrium parts”.
This expression can be understood as a reference to a symmetry property of
the variables f

(1)
i that follows from Eq. (2.88). Let the opposite opp(i) of a

lattice direction i be defined by the relation ξopp(i) = −ξi. Then, Eq. (2.88)
is symmetric under the operation of taking the opposite direction :

f
(1)
i = f

(1)
opp(i). (4.17)

This relation can be used to copy data from known particle populations to
the opposite, unknown ones. It may however not be applied blindly to all
unknown particle populations, because this would lead to a conflict with
Eq. (2.105) for the velocity. On a D2Q9 lattice for example, there is really
only one degree of freedom left on which the boundary condition may have
an influence. The choice made in the case of BC2 was to apply Eq. (4.17)
to the unknown particle population whose lattice vector is parallel to the
boundary normal. Thus, for an upper boundary on a D2Q9 lattice, the
following relation is applied:

h
(1)
4 = f

(1)
8 . (4.18)
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The remaining two unknown populations h
(1)
3 and h

(1)
5 are computed by en-

forcing the values of the velocity through Eq. (2.105). On a D2Q9 lattice,
the obtained values are

h
(1)
3 = f

(1)
7 +

1

2
(f

(1)
6 − f

(1)
2 ) and (4.19)

h
(1)
5 = f

(1)
1 +

1

2
(f

(1)
2 − f

(1)
6 ). (4.20)

The value of the unknown particle populations is constructed by adding
equilibrium and off-equilibrium parts:

hi = f
(0)
i (ρ,u) + h

(1)
i for i = 3, 4, 5. (4.21)

All other populations are kept as they are:

hi = fi for i = 0, 1, 2, 6, 7, 8. (4.22)

Like the Inamuro method BC1, the Zou/He method BC2 enforces the value
of the velocity explicitly, but does not specify anything about the deviatoric
stress tensor. The values of P (1) can again be computed for the D2Q9 lattice,
using the procedure described in the introduction of Section 4.3. The result-
ing expressions match exactly the hydrodynamic values of P (1) claimed in
Eq. (2.90). This confirms analytically the validity of the Zou/He boundary
condition for 2D simulations.

This algorithm cannot be used as it is in 3D. In that case, Eq. (2.105) yields
three independent equations, but the number of unknowns is larger (5 or
9). In that case, Zou and He [104] suggest to proceed as follows. To begin
with, the “off-equilibrium bounce-back” rule, Eq. (4.17), is applied to assign
a value to all missing particle populations. By doing this, the exact value of
the component uα is recovered for the index α in direction of the boundary
normal. To keep this relation valid, the sum over the value of the unknown
particle populations is kept invariant during subsequent operations. The
excess of momentum is then evaluated in the remaining directions:

δβ ≡
∑

i

fneq
i ξiβ for β 6= α. (4.23)

Finally, the values δβ are redistributed over the unknown particle popula-
tions, in order to find an exact match for Eq. (2.105):

hneq
i = fneq

i −
∑

β 6=α

1

nβ
ξiβδβ for all unknown fi’s, (4.24)

where nβ is the number of unknown particle populations for which ξiβ is
non-zero.
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4.3.3 The Regularized method (BC3)

The method by Latt and Chopard (see Latt and Chopard [68]) replaces all
particle populations on a boundary node. It first evaluates the value of P (1),
based on the knowledge of the known particle populations. Then, the equa-
tions of the perturbative analysis in Chapter 2 are used to reconstruct all
particle populations from ρ, u and P (1) in a way consistent with the hydro-
dynamic limit of the model. With the use of Eq. (2.90), and by exploiting

the symmetry of tensors H(2)
iαβ and of tensor P (1), Eq. (2.88) is rewritten as

follows:

f
(1)
i ≈ −ρwiτ

c2l
H(2)

iαβSαβ =
wi

2c4l
H(2)

iαβP
(1)
αβ . (4.25)

With this relation, the off-equilibrium part of the particle populations can be
reconstructed from the tensor P (1). This procedure is called a regularization
of the particle populations, because it compels the f

(1)
i to respect exactly

(without numerical error) the symmetry properties of Eq. (2.90), such as the
symmetry explicited in Eq. (4.17).

The tensor P (1) is evaluated as follows. First, all unknown particle pop-
ulations are assumed to take the value obtained by a “bounce-back of off-
equilibrium parts”, as in Eq. (4.17). Thus, their value is described as fi =

f
(0)
i (ρ,u)+ fopp(i) − f

(0)
opp(i). It was emphasized in Section 4.3.2 that this rela-

tion may not be used to define a boundary condition, because it prohibits an
exact implementation of Eq. (2.105). It it therefore used temporarily only,
to evaluate the value of P (1) by means of Eq. (2.71).
After this, Eq. (4.25) is used to construct all particle populations:

hi = f
(0)
i (ρ,u) +

wi

2c4l
H(2)

iαβP
(1)
αβ for i = 0, ..., q − 1. (4.26)

It is obvious that not only ρ and u, but also the tensor P (1) are recovered
appropriately by this boundary condition.

4.3.4 The Finite-difference velocity gradient method

(BC4)

In the regularized approach of BC3, the deviatoric stress tensor P (1) is eval-
uated on the boundary from information locally available on the cell. The
boundary condition BC4 computes P (1) from Eq. (2.90) instead, by relat-
ing it to the strain rate tensor S. The components of S are evaluated by
a second-order accurate finite-difference scheme, which accesses the value of
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the velocity on neighboring grid cells. The algorithm of BC4 is summarized
by the following equation:

hi = f
(0)
i (ρ,u) − ρτwi

c2l
H(2)

iαβSαβ for i = 0, ..., q − 1, (4.27)

where the strain rate tensor S is defined as in Eq. (2.86). The velocity gra-
dients of S that run along directions parallel to the boundary are evaluated
by a symmetric finite difference scheme. This presumes the knowledge of
the velocity on nearest-neighbor cells. Velocity gradients along the bound-
ary normal use non-symmetric finite differences, which access the velocity on
nearest and next-to-nearest neighbors. Please note that, instead of evaluat-
ing the symmetric tensor S, one may alternatively compute all components
of the non-symmetric tensor ∇u and calculate the population functions from
Eq. (2.88). These two ways of constructing the boundary condition are alge-
braically equivalent.

This boundary condition was published in 1993 in a pioneering article by Sko-
rdos [93]. It should be mentioned that Skordos makes a slightly different
assumption on the asymptotic value of P (1), as it uses the following expres-
sion instead of Eq. (2.90), in which the density ρ resides inside the spatial
derivative:

P (1) = −c2l τ
(

∇(ρu) + (∇(ρu))T
)

. (4.28)

It has however been shown that Eq. (2.90), which predicts the proper devi-
atoric strain rate for a compressible fluid, can be recovered in a perturba-
tive analysis by taking into account derivatives of non-linear velocity terms
(cf. Dellar [25], Guo et al. [45], Latt [66]). The difference between Eqs. (2.90)
and (4.28), however subtle, may have a noticeable effect in compressible flu-
ids. We decided therefore to depart from the original article on this point, but
emphasize that the credit for this boundary condition should be attributed
to Skordos [93]. It should also be mentioned that Skordos discusses both
first- and second-order accurate finite difference approximations to velocity
gradients, but only second-order schemes are presented here and for a wall
like described in Fig. 4.1 are given by

∂xu(x, y) =
u(x+ 1, y) − u(x− 1, y)

2
, (4.29)

∂yu(x, y) =
−3u(x, y) + 4u(x, y − 1) − u(x, y − 2)

2
. (4.30)

An interesting discussion of BC with finite-difference approximation to
velocity gradients is presented in Halliday et al. [46]. This paper points out
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that other choices than Eq. (4.27) also lead to the expected value of the
deviatoric stress tensor, and it proposes different closure schemes that are
compatible with the hydrodynamic limit of the model.

4.4 Benchmarks

This section produces the results of lattice Boltzmann simulations, based on
the four reviewed boundary conditions. For some of the simulated problems,
analytical solutions are known which describe the steady state of the flow.
In that case, the simulation is iterated until a steady state is reached. Then,
the numerical result is validated against the analytical solution on every grid
point, and the mean discrepancy between these two values is evaluated as a
measure of quality for the implemented boundary condition. Other bench-
marks focus on the time evolution of the flow. They keep track of the time-
evolution of a scalar quantity (such as the average energy in Section 4.4.3), or
the occurrence of a particular event (as the maximum value of the enstrophy
in Section 4.4.4). Several 2D benchmarks are presented, implemented on a
D2Q9 lattice, and one 3D benchmark on a D3Q19 lattice.

The simulated domains of all presented problems have a rectangular shape.
This raises the issue of how to implement corner nodes and, in 3D, edge nodes
that lie on the connection between two plane walls. Although some authors
of boundary conditions make suggestions on how to treat these cases, some
authors do not. To guarantee an equal treatment, the present work treats
corners and edges always in the same way, independently of the boundary
condition that is being tested. The finite-difference algorithm of BC4 was se-
lected to implement these special boundary nodes. This approach is straight-
forward, because the velocity gradients referred to in Eq. (4.26) can be eval-
uated on corners and edges just like everywhere else. It must furthermore
be pointed out that Eq. (4.7) for the particle density cannot be evaluated on
corners and edges. In those cases, the density is extrapolated with second-
order accuracy from neighboring cells.

In all benchmark problems, a velocity U and a length L are selected so that
thay are characteristic of the flow. The dynamics of the flow is then described
in a system of dimensionless variables, independent of the numerical grid, in
which U = 1 and L = 1. The equations of motion depend only on the
dimensionless Reynolds number, defined as a function of the kinematic fluid
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viscosity ν:

Re =
UL

ν
. (4.31)

The parameters used for the numerical implementation are described by the
number N , which is the number of grid nodes used to resolve the length L,
and the velocity Ulb, representing the velocity U in a system of lattice units.
This is a common choice in LB simulations, because Ulb is proportional to
the Mach number of the fluid. It can therefore be fine-tuned to make sure
the flow is close enough to the limit of incompressibility. For the numeri-
cal implementation of the benchmarks, the prescribed velocity field for the
initial and/or boundary condition needs to be converted from dimensionless
variables to lattice units. This is simply done by multiplying the dimension-
less velocity by Ulb. From these definitions, the discrete parameters of the
simulation are characterized as follows. The grid interval ∆x is given by

∆x =
1

N − 1
. (4.32)

The time lapse of an iteration ∆t is defined through the relation U =
∆x/∆tUlb, which recovers the lattice-independent form of the velocity. Given
our choice of U = 1, this leads to

∆t = ∆xUlb. (4.33)

At a given time step, the numerical error is evaluated by computing a L2-
norm of the difference between the simulated velocities ulb(xk) on grid nodes
located at position xk, and the dimensionless analytical solution uanalytic(xk):

E =

√

√

√

√

1

M

M−1
∑

k=0

∥

∥

∥

∥

ulb(xk)

Ulb

− uanalytic(xk)

∥

∥

∥

∥

2

, (4.34)

where the sum runs over all M nodes of the numerical grid.
The parameters of the simulation for a varying resolution N are adapted
in order to keep the value of the Reynolds number constant, and to prevent
effects of fluid compressibility from interfering with the accuracy of the result.
Compressibility errors Ecompr are known to scale like the square Mach-number
and are therefore estimated by Ecompr = O(U2

lb). This error is required
to decrease at least as fast as the discretization error E∆x = O(1/L2

lb) =
O(1/N2). It follows from Eq. (4.31) that this is achieved by keeping the
viscosity νlb constant when the grid resolution is modified.

The benchmark codes can be retrieved from the Internet address [13].
The programs are based on the open source, C++, parallel, lattice Boltzmann
library OpenLB [86], which is publicly available.
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4.4.1 Steady plane channel flow (2D)

This 2D stationary flow evolves in a straight channel, which extends in x-
direction between x = 0 and x = lx. The walls of the channel are parallel
to the x-axis, and defined by the equations y = 0 for the lower wall, and
y = ly for the upper wall. A no-slip condition for the velocity is enforced
on these walls. The flow is characterized by a constant pressure drop along
the channel. This pressure drop can be obtained by using pressure boundary
conditions on the inlet and the outlet. An alternative approach, which is
used in this benchmark, is to enforce the velocity profile from the analytical
solution of the flow on the inlet and on the outlet. The velocity is parallel
to the walls, and the only non-zero component ux is independent of x: ux =
ux(y). The height ly of the channel is taken to represent the characteristic
length L. The maximum value of the velocity, which is measured in the
middle of the channel, is selected for the characteristic velocity U . The
analytic solution to this flow is given by the parabolic Poiseuille profile,
which, in dimensionless variables, reads

ux(y) = 4(y − y2). (4.35)

The pressure drop amounts to ∂xp = −8/Re.
The two-dimensional channel flow is for many reasons an inappropriate bench-
mark, and it is presented here in a historical spirit, to conform with some
authors of boundary conditions that use it as a basic test case for their
algorithm. One shortcoming of this flow as a benchmark case is that the
components Sxx and Syy of the strain rate tensor S vanish in the analytical
solution. Boundary conditions that replace only unknown particle popula-
tions (BC1 and BC2 in this work) are therefore automatically exempt from
numerical errors. This follows from the discussion in Section 4.2.1, where the
components P

(1)
xx (on horizontal boundaries) and P

(1)
yy (on vertical boundaries)

of the stress tensor are shown to be the only degrees of freedom for which the
boundary condition could possibly be wrong. If the corner nodes are imple-
mented in an appropriate way, these two methods are shown in Refs. Inamuro
et al. [54], Zou and He [104] to solve the 2D channel flow with a precision
close to machine accuracy (the best accuracy one can expect to obtain, given
the limited precision of floating point arithmetic on a computer), indepen-
dent of the grid resolution. Machine accuracy is however not exhibited in
the present benchmark, because we chose to implement corner nodes in a
generic way that works for all boundary conditions and for all types of flows.
In this benchmark, the channel has square shape (lx = ly = 1), the grid
resolution is varied from N = 25 to N = 400, and the Reynolds number
is Re = 10. Compressibility effects are controlled by setting Ulb = 0.01 at
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Fig. 4.4: (a) Numerical accuracy in a 2D channel flow. (b) Numerical stability
in a 2D channel flow. The maximum Reynolds number which can be reached
before numerical instabilities appear is plotted.

a grid resolution N = 50. As discussed in the previous paragraph, the ve-
locity Ulb is recomputed for different values of N in such a way as to keep
the viscosity νlb constant from one grid to another. Fig. 4.4 (a) shows that
all reviewed boundary conditions lead to the expected second-order accuracy
with respect to grid resolution. Boundary conditions BC1 and BC2 are dis-
tinctly more accurate, because their overall accuracy is only affected by the
error in corner nodes. The numerical stability of boundary conditions is ex-
plored in Fig. 4.4 (b) by means of the maximum Reynolds number which can
be reached before numerical instabilities occur. The most accurate boundary
conditions, BC1 and BC2 are also the distinctly least stable. The most stable
boundary condition is based on a non-local algorithm, i.e. BC4.

4.4.2 Oscillating plane channel flow (2D)

This laminar channel flow is also known as “Womersley flow” on ground of
the analytical solution proposed by Womersley [101]. It is defined by the
same geometry as the steady flow in Section 4.4.1. The pressure gradient is
however not constant, but oscillates in time. Before the reference velocity U
can be defined, the equations of the flow are written in an arbitrary system
of units, other than the dimensionless one. In this system, the amplitude of
the oscillations is denoted by A, and the frequency by ω:

∂xp = −A cos(ωt). (4.36)
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In the low-frequency limit ω → 0, the solution to this flow is defined by a
succession of Poiseuille profiles, with oscillating amplitude:

ux(y, t) =
A

2ν
(lyy − y2) cos(ωt). (4.37)

The maximum velocity of the flow, reached in the middle of the channel at
time t = n2π/ω for any integer value n, is found to be

umax =
A

8ν
L2. (4.38)

This value umax is used to define the reference velocity U , as it characterizes
the flow reasonably well when oscillations are slow. The reference length
L is described by the channel height ly. As the flow depends on time, it
is characterized by two dimensionless parameters, which are the Reynolds
number Re defined in Eq. (4.31), and the Womersley number α, defined as

α =
L

2

√

ω

ν
. (4.39)

In a system of dimensionless variables described by U and L, the time-
dependent solution to this flow is given by the Womersley profile (see the
works of Womersley [101] or Cosgrove et al. [23] :

ux(y, t) =

Re



ei α2

Re
t 8

iα2



1 − cosh
(√

2(α+ iα)
(

y − 1
2

))

cosh
(√

2
2

(α+ iα)
)







 , (4.40)

where i is the imaginary unit, and Re means that the real part of the formula
needs to be evaluated.

The error E of the numerical result with respect to the analytical solution
of Eq. (4.40) is computed at each time step by evaluation of Eq. (4.34) over
the whole computational domain. The overall error E of the simulation is
defined as an average of E over one time period. Only the asymptotic value
of E, reached after a large number of iterations, is accounted for. One should
not pay attention to the initial transient regime of the fluid, and consequently
the choice of the initial condition.
Although this benchmark is time dependent we will not discuss the time ac-
curacy of the model. As discussed in the beginning of this section, we have
to decrease the time-stepping ∆t like ∆x2 in order to get rid of the compress-
ibility errors and therefore the time discretization is completely determined
by the space discretization.
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Fig. 4.5: Numerical accuracy in an oscillating channel. (a) α = 2 (slow
oscillations), (b) α = 5 (fast oscillations).

In this simulation, the geometry is quadratic (lx = ly = 1). The Reynolds
number is Re = 1, and the lattice velocity is set to Ulb = 0.01 at a reference
resolution of N = 10. The numerical results are plotted in Fig. 4.5 (a) for a
value of α = 2 and on Fig. 4.5 (b) for a value of α = 5. All other parameters
are chosen to be the same as in the steady channel flow. Fig. 4.4 (a) in
Section 4.4.1 can also be included in this discussion, as it corresponds to
the limit α = 0 in which the flow does not oscillate. It should be pointed
out that, as α increases, inertial effects on the flow dominate over viscous
effects. The velocity profile in the bulk becomes progressively independent
of the boundary condition. As it can be seen from the simulations (see
Fig. 4.5 (b)), the result is practically independent of the chosen boundary
condition at a value of α = 5.

4.4.3 Periodic array of vortices (2D)

The following benchmark measures the energy dissipation during time evo-
lution of a laminar flow without external energy input. The initial velocity
field consists of an array of counter-rotating vortices (see Walsh [99]). The
flow is described by its value inside a periodic box of size L × L. The flow
velocity u0 at any time t0 is derived from its stream function Ψ0, which is
an eigenfunction of the Laplacian operator with eigenvalue λ:

∇2Ψ0 = λΨ0. (4.41)

The time evolution of this flow is characterized by an exponential decrease
of the velocity amplitude:

u(t) = u0e
λν(t−t0) for t ≥ t0. (4.42)
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Among all eigenfunctions of the Laplacian, the following initial stream func-
tion Ψ0 was selected for the benchmark (expressed in dimensionless vari-
ables):

Ψ0(x, y) =
1

2π
√
m2 + n2

cos(2πmx) cos(2πny), (4.43)

where x and y are contained in the interval [0, 1] and label the two space
directions. The velocity field is given by

ux,0(x, y) =
∂Ψ0

∂y
=

− cos(2πmx) sin(2πny)
√

m2

n2 + 1
(4.44a)

and

uy,0(x, y) = −∂Ψ0

∂x
=

sin(2πmx) cos(2πny)
√

n2

m2 + 1
. (4.44b)

It is clear that ‖u0(x, y)‖ ≤ 1 for all values of x and y, which justifies the
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Fig. 4.6: Time-evolution of the average energy in the 2D periodic array of
vortices. The curves for the linear and the non-linear finite difference methods
overlap as far as one can distinguish visually. Therefore, only the linear case
is presented. A boundary condition is considered to be of good quality if the
point at which the curve oscillates and departs from an exponential decay
occurs late.

choice of the reference velocity U . The decay rate λ is found by solving the
eigenvalue problem (4.41):

λ = −(m2 + n2). (4.45)

The initial pressure distribution of the flow is evaluated by solving the Poisson
equation ∇2p = −(u · ∇)u:

p = −(n2 cos(4πmx) +m2 cos(4πny)). (4.46)
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The dimensionless pressure p is converted as follows to the density ρlb, ex-
pressed in lattice units: ρlb = 1 + p∆x2/(c2l ∆t

2), where the discrete steps
∆x and ∆t are defined as in Eq. (4.32). This benchmark is formulated as an
initial value problem. The initial condition is therefore set up with special
care, using an approach described in Latt and Chopard [67] and based on
an original suggestion of Skordos [93]. The particle populations are first ini-
tialized at an equilibrium distribution, based on the desired value of u and
p. The off-equilibrium parts of the particle populations are then instantiated
with the help of Eq. (2.123), with numerically computed velocity gradients.
Although the flow is periodic in both space directions, non-periodic bound-
ary conditions are used, and the boundary velocity is explicitly imposed by
use of the reviewed boundary conditions. The velocity along the boundaries
of this sub-domain is set to the analytical value of Eq. (4.42) at every time
step with the help of the five tested boundary conditions.

Fig. 4.6 displays the time-evolution of the average energy with different
boundary conditions at a resolution N = 8 and a resolution N = 32. The
Reynolds number is Re = 1, and the reference velocity in lattice units is set
to Ulb = 0.01 at a grid resolution N = 8. In an initial regime, the energy
decay is in all cases exponential, as predicted by Eq. (4.42). After reaching
a critical value of the time t, the curve starts oscillating and deviates from
the theoretical prediction. For the non-local boundary condition BC4, this
deviation occurs earlier than for the local ones. It is therefore concluded that
the non-local boundary condition are less accurate for this problem.

4.4.4 Dipole-wall collision (2D)

This benchmark, based on Refs. Clercx and Bruneau [22] and Latt and
Chopard [67], analyzes the time evolution of a self-propelled dipole con-
fined within a square box. The box is located in the geometrical domain
[−L,L] × [−L,L] and implements no-slip walls. The initial condition de-
scribes two counter-rotating monopoles, one with positive core vorticity at
the position (x1, y1) and one with negative core vorticity at (x2, y2). This is
obtained with an initial velocity field u0 = (u0, v0) which reads as follows in
dimensionless variables:

u0 = −1

2
‖ηe‖ (y − y1)e

−(r1/r0)2 +
1

2
‖ηe‖ (y − y2)e

−(r2/r0)2 and (4.47a)

v0 = +
1

2
‖ηe‖ (x− x1)e

−(r1/r0)2 − 1

2
‖ηe‖ (x− x2)e

−(r2/r0)2 , where (4.47b)

ri =
√

(x− xi)2 + (y − yi)2
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Here, the distance to the monopole centers is defined as ri, the parameter r0
labels the diameter of a monopole and ηe its core vorticity.
The average kinetic energy of this system at a given time is defined by the
expression

E(t) =
1

2

∫ 1

−1

∫ 1

−1

‖u‖2 (x, t)d2x, (4.48)

and the average enstrophy by

Ω̄(t) =
1

2

∫ 1

−1

∫ 1

−1

η2(x, t)d2x, (4.49)

where η = ∂xv − ∂yu is the flow vorticity.
The dipole described by Eqs. (4.47a) and (4.47b) develops a net momentum
directed in the positive x-direction and is self-propelled toward the right wall.
The collision between the dipole and the no-slip wall is characterized by a
turbulent dynamics where the wall acts as a source of small-scale vortices
that originate from detached boundary layers. This problem is therefore
particularly interesting as a test for the ability of boundary conditions to
reproduce the dynamics of boundary layers during collision. For this purpose,
the maximum value of the flow enstrophy, which is reached during the dipole-
wall collision, is evaluated and retained for a comparison among boundary
conditions. As no analytical result for this flow is known, the measured values
are compared against benchmark results obtained with a spectral method
in Clercx and Bruneau [22].
In the benchmark, the initial core vorticity of the monopoles is fixed to
ηe = 299.5286, which leads to an initial average kinetic energy of E(0) =
2. Furthermore, the Reynolds number and the monopole radius are set to
Re = 625 and r0 = 0.1. The lattice velocity is set to Ulb = 0.01 at a
reference resolution of N = 300. The monopoles are aligned symmetrically
with the box, in such a way that the dipole-wall collision is frontal and takes
place in the middle of the wall. The position of the monopole centers is
(x1, y1) = (0, 0.1) and (x2, y2) = (0,−0.1). As in Section 4.4.3, we use the
approach described in Latt and Chopard [67] to set up the initial condition.
The initial pressure is evaluated numerically, by solving the Poisson equation
with a successive overrelaxation (SOR) scheme, using an algorithm described
e.g.Griebel et al. [42]. The off-equilibrium parts of the particle populations
are then instantiated with the help of Eq. (2.123), with numerically computed
velocity gradients.

The boundary conditions BC1 and BC2 could not be used for this prob-
lem, because they experienced numerical instabilities at the required Re num-
ber (the benchmark values in the literature start at Re = 625). These insta-
bilities are due to an inherent limitation of the boundary conditions, and do
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Fig. 4.7: Accuracy on the value of the enstrophy peak in a 2D dipole-wall
collision at Re = 625. Boundary conditions BC1 and BC2 could not be
tested, because they are numerically unstable at this Reynolds number.

not originate from the way the initial condition or the boundary condition
in corner nodes are treated. This possibility was ruled out by initializing
the population functions with an equilibrium distribution, and keeping the
corner nodes at an equilibrium distribution with constant pressure through-
out the simulation. Although this approach to setting up initial states and
boundaries tends to be exceptionally stable, the simulations using BC1 and
BC2 were still subject to numerical instabilities.

The numerical results are presented in Fig. 4.7. Please be aware that a
resolution of N = 300, for example, stands for a total grid size of 600× 600,
as the size of the system is 2 × 2 in dimensionless variables. For a Reynolds
number Re = 625, both boundary conditions BC3, BC4, the error decreases
roughly at a second-order rate. The local boundary condition BC3 is however
an order of magnitude more accurate than the other candidates. This is
striking, because BC3 is less accurate in all benchmarks of laminar flows.
It is concluded that the local, cell-based approach of BC3 is particularly
well adapted to reproduce the dynamics of a boundary layer. A possible
interpretation is that the finite difference approximation of velocity gradients
in BC4 becomes inaccurate in presence of a turbulent boundary layer due to
small-scale velocity variations.

4.4.5 Rectangular steady channel flow (3D)

This problem is a 3D generalization of the channel flow presented in Sec-
tion 4.4.1. This time, the channel extends in z-direction. At every fixed
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value of z, the cross section is rectangular, extending from x = 0 to x = L,
and from y = 0 to y = ζL, where ζ is the aspect ratio of the cross section.
The pressure is independent of the x- and the y-coordinates, and decreases
linearly as a function of z. The velocity has a non-zero component in z-
direction only, and depends on x and y: uz = uz(x, y). As in the 2D case,
nonlinear contributions to the Navier–Stokes equation cancel out, and the
velocity profile uz is described as a solution of the following Poisson equa-
tion:

∇2uz ≡
∂2uz

∂x2
+
∂2uz

∂y2
=
∂p

∂z
. (4.50)

As this equation is non-homogeneous, the general solution is described as the
sum of a particular solution up and a general solution uh to the homogeneous
problem ∇2uz = 0. The particular solution can be taken from the 2D flow
in Section 4.4.1. In dimensionless variables, it reads

up(x, y) = 4(x− x2). (4.51)

This settles the choice for the reference velocity U as being the maximum
velocity reached in a 2D channel. The pressure drop is the same in the 3D
as in the 2D case: ∂p/∂z = −8/Re. The complete analytic solution to this
3D channel flow can be found for example in Yih [102]

uz(x, y) =4(x− x2) +
32

π3

+∞
∑

n=0

(

(−1)n

(2n+ 1)3
(4.52)

cos ((2n+ 1)πx)
cosh

(

(2n+ 1)πy
ζ

)

cosh
(

(2n + 1)π
2
ζ
)

)

.

Fig. 4.8 (a) shows results of numerical accuracy at Re = 10. The reference
velocity is Ulb = 0.01 at N = 50, and the aspect ratio is ζ = 1. Numerical
stability is explored in Fig. 4.8 (b) for a varying grid resolution. The numer-
ical results in this 3D benchmark are similar to those of the 2D application
in Section 4.4.1. The boundary condition BC1 is again much more accurate
than boundary conditions that replace all particle populations. As in the 2D
case, all but one component of the strain rate tensor vanish in this flow, and
some potential deficiencies of BC1, as the one shown in Eq. (4.16), might not
be visible in the benchmark. An unexpected result is that boundary condi-
tion BC2, which in 2D applications achieves results very similar to those of
BC3, falls in the same category as the non-local boundary condition BC4 in
this 3D case. Another remarkable difference with respect to 2D results is
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Fig. 4.8: (a) Numerical accuracy in a 3D channel flow. (b) Numerical stability
in a 3D channel flow. The maximum Reynolds number which can be reached
before numerical instabilities appear is plotted. Boundary condition based
of finite difference approximation (BC4) are unconditionally stable at high
grid resolution. Numerical values are therefore only reported in the unstable
regime, up to N = 25 for BC4.

that the non-local boundary conditions achieve unconditional numerical sta-
bility in 3D, as soon as the grid resolution exceeds a certain threshold value.
At this point, further investigations would be needed to decide if this differ-
ence is due to different flow geometries (the analytical solutions in Eqs. (4.35)
and (4.52) are qualitatively different) or if 3D simulations are inherently more
stable than 2D ones for this type of boundary conditions.

4.5 Discussion

As it is concluded from applying the results of a perturbative analysis to
boundary nodes, all methods are second-order accurate with respect to the
grid resolution. This implies that their error varies asymptotically at the
same rate. Beyond this asymptotic estimate, the accuracy experienced in
numerical simulation differs however from one boundary condition to an-
other, depending on the flow geometry and the grid resolution. A way to
understand these differences might be to take the perturbative analysis to a
higher order O(Kn2) and discuss the couplings between higher order terms
and the hydrodynamic scales. This technique, employed for example in Dellar
[26], is used understand the asymptotic low Mach-number behavior of a fam-
ily of lattice Boltzmann models. Instead of doing this, this thesis produces
benchmark results for the boundary conditions in many different geometries.
Those results are intended to serve as a reference to help select the most
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appropriate boundary condition for a given lattice Boltzmann simulation. It
is emphasized once more that the results are valid only for straight bound-
aries which are aligned with the numerical grid. Different conclusions can be
expected when off-lattice boundaries are implemented.

In 2D simulations and at low Reynolds numbers, the Inamuro and Zou/He
boundary conditions BC1 and BC2 are found to produce the most accurate
results. Both of them preserve the known particle populations on a boundary
node, a fact which probably explains their excellent benchmark performance.
They retrieve a large amount of information from the bulk of the fluid, and
manipulate only few particle populations (3 out of 9). It seems plausible that
by doing this, they retain information on higher order terms which are not
visible in the hydrodynamic terms of the perturbative analysis. The Inamuro
method is also very accurate in the 3D benchmark, but this performance is
not reproduced by the Zou/He condition, which in this case compares to
non-local boundary conditions. The main deficiency of BC1 and BC2 is that
they are numerically unstable at (even moderately) high Reynolds numbers.
They could for example not be used to simulate the turbulent dipole-wall
collision presented in Section 4.4.4.

In conclusion, BC1 and BC2 are the boundary conditions of choice for the
simulation of laminar 2D flows, when high accuracy is important. The Ina-
muro boundary condition BC1 is also a good candidate for laminar 3D flows,
although it is not an explicit method, and thus tends to be complicated to
implement. The extension of BC2 to 3D flow does not seem to make much
sense, as it does not exhibit exceptional accuracy, and is less stable than
other approaches.

The Regularized boundary condition BC3 uses a hybrid approach, as it is
local like BC1 and BC2, but it replaces all particle populations like BC4. As
such, it is less accurate than BC1 and BC2 in laminar flows, but it has the
ability to reach much higher Reynolds numbers. Furthermore, simulations
of a turbulent dipole-wall collision show that it reproduces the dynamics of
boundary layers more accurately than all other boundary conditions. Be-
cause of its numerical stability, and because it is easy to implement in 2D
and 3D applications, BC3 is a good general-purpose method, and seems to
be the best candidate for high Reynolds number flows.

The non-local boundary condition BC4, which use a finite difference scheme
to approximate the off-equilibrium part of particle populations, exhibit the
best numerical stability. In the laminar 3D benchmark, it is even uncon-
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ditionally stable on a sufficiently large grid. Its main disadvantage is the
non-locality of its algorithm. This is at odds with the basic principles of the
LBM, and may substantially increase the complexity of a code, and may even
be an obstacle to parallelizing the program in a straightforward way. On the
other hand, the boundary condition BC4 are very general and may adapt
well to a larger software project. They are for example not bound to the
lattice structure, and can be extended to the case of off-lattice boundaries,
like the one described in Guo and Zheng [43].
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Chapter 5

Simulation of non-Newtonian
fluids

In this chapter we will discuss the numerical schemes used to simulate two
classes of non-Newtonian fluids, namely the generalized Newtonian and vis-
coelastic fluids.

5.1 Generalized Newtonian fluids

The method presented in this section can be found in Malaspinas et al. [71].
As seen in Chapter 2 the relaxation time τ and the kinematic viscosity ν are
related through

ν = c2l

(

τ − 1

2

)

. (5.1)

The generalized Newtonian fluids have a constitutive equation that expresses
the kinematic viscosity as a function of the shear rate γ̇ (see Eq. (3.2) for the
definition of γ̇)

ν = F (γ̇) , (5.2)

Eliminating ν from these equations, one has that the relaxation time is re-
lated to the shear rate through the function F

τ(x, t) =
F (γ̇(x, t))

c2l
+

1

2
. (5.3)

Furthermore we know that the shear rate can be computed from the shear
rate tensor S, through (see Agassant et al. [1] for example)

γ̇ =
√

2SαβSαβ . (5.4)

Then using Eq. (2.125), we find

γ̇ =
1

2c2l ρτ

√

P
(1)
αβ P

(1)
αβ . (5.5)

85
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As a consequence, we can compute the relaxation time with the second order
moment of the off-equilibrium part of the distribution functions

P (1) =
∑

i

ξiξif
(1)
i , f

(1)
i = fi − f

(0)
i . (5.6)

Since the space and time dependence of τ does not change the Chapman–
Enskog expansion of Section 2.3, we only need to specify the function F in
order to be able to recompute τ at each lattice point and timestep. Unfor-
tunately, since γ̇ also depends on τ (see Eq. (5.5)) the equation to solve in
order to recompute the relaxation time is in general implicit.

In this thesis we used the Carreau constitutive equation, which has al-
ready been presented in Section 3.1 and for which the F function is given
by

F (γ̇) = (ν0 − ν∞)
(

1 + (λγ̇)2
)

n−1
2 + ν∞. (5.7)

Using Eqs. (5.5) and (5.3), we can write the relation between the deviatoric
stress tensor, P (1), and the relaxation time, τ , for the Carreau model

τ =

(

ν0 − ν∞
c2l

)(

1 +
λ2

4c4l ρ
2τ 2

P
(1)
αβ P

(1)
αβ

)
n−1

2

+
ν∞
c2l

+
1

2
(5.8)

As pointed out previously, these equations are implicit in τ and therefore
in order to be completely general, one must solve them using a root finding
algorithm like the Newton–Raphson method (see [85] for example). An alter-
native faster method would be to use fixed-point iterations. Anyway, this is
very expensive in terms of computing time, and is unnecessary when dealing
with stationary flows, where one can just replace τ in the r.h.s. by its value
at the preceding timestep

τ(x, t) =

(

ν0 − ν∞
c2l

)(

1 +
λ2

4c4l ρ
2τ(x, t− 1)2

P
(1)
αβ P

(1)
αβ

)
n−1

2

+
ν∞
c2l

+
1

2
. (5.9)

The method can also be applied to simulate the flow of materials with
yield stress (viscoplastic) with same regularization technique for low shear
rates [98].

5.2 Viscoelastic fluids

As seen in Chapter 3 the coupling between the constitutive equations and
the incompressible Navier–Stokes equations is done through the velocity field
and the viscoelastic stress tensor. On the other hand, the interaction of the
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fluid with the viscoelastic stress tensor is only an effect of the velocity and its
gradient. The idea used in order to do this coupling is similar to what is done
in Denniston et al. [27]. The Navier–Stokes equations are simulated with the
weakly compressible scheme (see Eq. (2.126)), and each component of the
constitutive equation will be modelled with a lattice Boltzmann advection–
diffusion scheme, to which a source term is added.

5.2.1 The advection–diffusion with source scheme

To simulate each component of the constitutive equation, we will use a modi-
fied version of the advection–diffusion LBM (for a reference on the advection–
diffusion scheme see for example Guo et al. [44], Latt [66], Chopard et al.
[21]). In order to simplify the notations, we first discuss the general al-
gorithm and then apply it to the viscoelastic fluids. We modify the BGK
equation and add an “external source” term G

∂tf + ξ · ∇f = −1

τ

(

f − f (0)
)

+
1

ρ
Gf. (5.10)

We will also assume that the density flux, j, is different if computed from f
than from f (0) (i.e. j =

∫

dξ ξf 6=
∫

dξ ξf (0)). The generic mass conserva-
tion equation obtained from Eq. (2.11) with A = 1 is

∂tρ+ ∇ · j = G. (5.11)

One needs to compute j. To this aim, we will use the Chapman–Enskog
expansion (as in Section (2.3)) to get it.

Before proceeding further we will expand the Maxwell–Boltzmann equilib-
rium distribution f (0) up to order one in Hermite polynomials

f (0) = ω(ξ) (ρ+ ξ · (ρu)) . (5.12)

Replacing f by f (0) in Eq. (5.10) and projecting it on the Hermite polynomial,
one gets

∂ta
(n)
0α + ∇ · a(n+1)

0α +
(

∇a(n−1)α + perm
)

=
G
ρ
a

(n)
0α , (5.13)

where “perm” represents all the cyclic index permutations. For n = 0, one
gets from Eq. (2.44)

∂tρ+ ∇ · (ρu) = G. (5.14)

We now use the multiscale Ansatz, f = f (0) + f (1) in Eq. (5.10), and project
it on the Hermite basis, and we find in a similar way as for Eq. (2.52)

∂ta
(n)
0α + ∇ · a(n+1)

0α +
(

∇a
(n)
0α + perm

)

= −1

τ
a

(n)
1α +

G
ρ
a

(n)
0α . (5.15)
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Because of the orthogonality properties of the Hermite polynomials, we have
that a

(n)
0α = 0, for n ≥ 2. Therefore for n = 1, this last equation becomes

−1

τ
a

(1)
1α = ∂ta

(1)
0α + ∇a

(0)
0α − G

ρ
a

(1)
0α,

= ∂t(ρu) + ∇ρ− Gu,

= ρ∂tu − u∇ · (ρu) + ∇ρ, (5.16)

where in the last line we used Eq. (5.14). The flux j = j(0) + j(1) is therefore
given by

j = ρu − τ (ρ∂tu − u∇ · (ρu)) . (5.17)

We finally we find the following macroscopic equation

∂tρ+ ∇ · (ρu) = G + κp∇
2ρ+ ∇ · [τ (ρ∂tu − u∇ · (ρu))] , (5.18)

where κp = τ stands for the diffusivity coefficient. Comparing this equation
with the form of the constitutive equation, we see that the two last terms of
its r.h.s are in excess (we will discuss them later). These terms simply reflect
the fact that the BGK Boltzmann equation is not representing correctly the
macroscopic advection–diffusion, since the underlying model is designed to
mimic the physics of fluids.

We now have to discretize the velocity space using the Gauss–Hermite quadra-
ture. In this case, we need the quadrature to be exact only up to the third
polynomial degree (see Appendix B). Following the same procedure as in

Section 2.4 we have the equilibrium distribution function f
(0)
i is given by

f
(0)
i = wiρ

(

1 +
ξi · u
c2l

)

. (5.19)

Because of the rescaling of the quadrature abscissae, also discussed in Sec-
tion 2.4, we have that a

(1)
1α is modified in the following way

a
(1)
1α = −τ

(

ρ∂tu − u∇ · (ρu) + c2l ∇ρ
)

. (5.20)

As a consequence the macroscopic Eq. (5.18) remains unchanged, but the
diffusivity, κp is rescaled

κp = c2l τ. (5.21)

Finally we can reconstruct the off-equilibrium distribution function, f
(1)
i as

f
(1)
i = −wiτ

c2l
ξi ·
(

ρ∂tu − u∇ · (ρu) + c2l ∇ρ
)

. (5.22)
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We are now left with the time discretization of Eq. (5.10). Following the same
procedure as in Section 2.5 we define a “effective equilibrium” distribution
function

f eq
i ≡ f (0) + τ

G
ρ
f

(0)
i . (5.23)

Applying the change of variables of Eq. (2.112) will lead to the following
numerical scheme

f i(x + ξi, t+ 1) − f i(x, t) = −1

τ

(

f i(x, t) − f
(0)
i (ρ,u)

)

+

(

1 − 1

2τ

) G
ρ
f

(0)
i (ρ,u), (5.24)

where τ = τ − 1/2. The change of variables has an effect on the diffusivity
κp

κp = c2l

(

τ − 1

2

)

, (5.25)

and the computation of the physical density ρ

ρ = ρ+
G
2
. (5.26)

The physical velocity, u, will not be simulated by this scheme but given as
an external field determined by solving the Navier–Stokes equations. It will
therefore remain unaffected by the change of variables.

5.2.2 Constitutive equation simulation

We have described in the last section the generic numerical scheme to be
used. More details about how to apply it to the viscoelastic constitutive
equation are given here. In fact the evolution of each component of the
conformation tensor A is simulated, by a separate “advection–diffusion with
source” lattice Boltzmann model. Defining fiαβ as the distribution functions
that describe the components of the conformation tensor, Aαβ and Gαβ the
components of the source term

Aαβ =
∑

i

fiαβ +
Gαβ

2
, (5.27)

we can rewrite the equilibrium distribution function as

f
(0)
iαβ = Aαβ

(

1 +
ξi · u
c2l

)

, (5.28)
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This leads to the macroscopic equations by replacing ρ by Aαβ(see (5.18))

∂tAαβ + (u · ∇)Aαβ =κp∇
2Aαβ + Gαβ

+
κp

c2l
∇ · (Aαβ∂tu − u∇ · (Aαβu)) , (5.29)

where Gαβ depends on the constitutive equation. For the Oldroyd-B and the
FENE-P model it is given respectively by (see Eqs. (3.33) and (3.35))

Gαβ = −1

λ
(Aαβ − δαβ) + Aαγ∂γuβ + ∂γuαAγβ, (5.30)

Gαβ = −1

λ
(hAαβ − bδαβ) + Aαγ∂γuβ + ∂γuαAγβ . (5.31)

As can be seen by comparing Eq. (5.29) with Eq. (3.33) (or Eq. (3.35)) in
the macroscopic equation obtained from the Boltzmann equation we have
a “diffusive term” and two “error terms”. As has been shown in El-Kareh
and Leal [32], this diffusive term is present in real fluids, but is very small,
therefore making the diffusivity very small (τ → 1/2) will also make the error
terms negligible. In our simulations we will fix it by making it much smaller
than the polymer viscosity. Typically we will have κp/µp ∼ 10−6.

The numerical scheme will be the following. At time t the conformation
tensor A is computed and converted into the viscoelastic stress tensor Π
according to Eqs. (3.31) and (3.38). Then, using a finite difference scheme,
its divergence is evaluated and considered as a force that will be commu-
nicated to the Navier–Stokes scheme according to Eq. (3.42). In turn, the
velocity gradient will be determined by a finite difference scheme once the
Navier–Stokes equations are solved for the velocity field and used as given
data in the constitutive equations according to Eq. (3.43) (see Fig. 5.1 for
a schematic view of the communication needed at time t). This method re-
lies on a decoupled approach in the sense that the Navier–Stokes and the
constitutive equations are solved independently at each time iteration.

5.2.3 Conformation tensor boundary conditions

As seen in Chapter 4 we have missing distribution functions on the bound-
aries. We therefore need to impose some quantities in order to recover them.
In the case of the advection–diffusion, the Gauss–Hermite quadrature is only
needed to be exact up to order three, thus we only need the D2Q5 or D3Q7
lattices (see Appendix B) and hence we only have one unknown population
(see Fig. 5.2). It follows that we need only one constraint in order to impose
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Fig. 5.1: The communication steps that need to be done between two time
steps.

the missing distribution function. Unfortunately there exists no equivalent
to the Newtonian fluid no-slip boundary condition for the viscoelastic tensor.
In some rare cases we know analytical solutions for the value of the confor-
mation tensor, A (see Subsection 6.2.3), but in simulations with complex
geometries we need of course more generic solutions. It is therefore needed
to interpolate the value of the viscoelastic tensor on the boundaries of our
domain. In order to explain the method we will consider the upper flat 2D
wall case (see Fig. 5.2), although the method can be generalized straightfor-
wardly to the 3D case. In the case of the scheme for the viscoelastic fluid,

b 3

4

1

2

Wall

Bulk

Missing fi

Fig. 5.2: A boundary node with the known fi’s (0, 1, 3, 4) and the missing
one (2).

we know that the distribution function has the following Chapman–Enskog
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expansion (see Eqs. (5.19), and (5.22))

fiαβ =wiAαβ

(

1 +
ξi · u
c2l

)

− wiτ

c2l
ξi ·
(

Aαβ∂tu − u∇ · (Aαβu) + c2l ∇Aαβ

)

. (5.32)

The rest population, i = 0, contains the information about the conformation
tensor, since

Aαβ =
f0αβ

w0
. (5.33)

Using this equation, the missing population can be computed straightfor-
wardly as (see Eq. (2.104))

Aαβ = f0αβ + f1αβ + f2αβ + f3αβ + f4αβ, (5.34)

which leads to

f2αβ = −f0αβ

(

1 − 1

w0

)

− f1αβ − f3αβ − f4αβ . (5.35)

This boundary condition is not the only one that can be implemented. We
can also interpolate the value of the conformation tensor by using the term
∇Aαβ contained in fiαβ. Then using a backward finite difference scheme, we
can compute the value of the conformation tensor. For the wall in Fig. 5.2
a decentered second order finite difference scheme give us for estimating the
conformation tensor gradient

∂yAαβ(x, y) = −1

2
(Aαβ(x, y − 2) − 4Aαβ(x, y − 1) − 3Aαβ(x, y)) . (5.36)

From Eq. (5.32) we have that ∂yAαβ(x, y) is contained in f4αβ and given by

∂yAαβ =
1

τ

(

−f4αβ

w4
+ Aαβ

)

. (5.37)

Replacing this relation in Eq. (5.36) one can solve for Aαβ

Aαβ(x, y) =
2τ

2 − 3τ

(

f4αβ

w4τ
− 1

2
(Aαβ(x, y − 2) − 4Aαβ(x, y − 1))

)

(5.38)

and then recompute the missing distribution function f2αβ from Eq. (5.35).
We can also, for steady state simulations and for no-slip walls, simplify the
Oldroyd-B constitutive equation as

−1

λ
(Aαβ − δαβ) + Aαγ∂γuβ + ∂γuαAγβ = 0, (5.39)
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which gives us an algebraic system of equations to solve, since the velocity
gradient can be computed from the Navier–Stokes solver by using a finite
difference scheme (see Eqs. (4.29) and (4.30)). Using a numerical solver, one
can compute the roots of this system and get the values of the components
of the conformation tensor Aαβ on the boundaries. Then from Eq. (5.35)
one can recover f2αβ . Unfortunately these two methods did not improve the
results obtained with Eq. (5.35).

5.3 Description of the algorithm

We have shown how the lattice Boltzmann scheme for advection-diffusion
with source can simulate the constitutive equation. We are now going to
describe the algorithm used in the following section. A time-step will be
composed of four distinct operations. The first and the second will be the
resolution, respectively, of the incompressible Navier–Stokes and of the con-
stitutive equations (see Eqs. (2.16), (2.91) and (3.33))

∇ · u = 0, ∂tu + (u · ∇)u = −∇ · (−pI + 2µsS −Π) ,

∂tA + (u · ∇)A = −1

λ
(A − I) + A · ∇u + (∇u)T · A.

The third step will be the coupling between the bulk of the two schemes: the
advection-diffusion with source will receive the velocity field and the “source”
term (see Eq. (5.30))

Gαβ = −1

λ
(Aαβ − δαβ) + Aαγ∂γuβ + ∂γuαAγβ,

from the Navier–Stokes scheme, and the Navier–Stokes solver will receive an
external forcing term (see Eq. (3.31))

ρg = ∇ · Π = ∇ ·
(

−µp

λ
(A − I)

)

, (5.40)

computed from the advection-diffusion with source scheme. Finally the
boundaries will be coupled. A more detailed explanation of the procedure can
be found below (we discuss the 2D case for simplicity, but the generalization
to 3D is straightforward):

1. Collision and propagation of the advection–diffusion with source scheme
(see Eq. (5.24))

fiαβ(x + ξi, t+ 1) = fiαβ(x, t) − 1

τ

(

fiαβ(x, t) − f
(0)
iαβ(Aαβ,u)

)

+

(

1 − 1

2τ

) Gαβ

Aαβ

f
(0)
i (Aαβ ,u).
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2. Collision and propagation of the forced Navier–Stokes scheme (see
Eq. (2.126))

fi(x + ξi, t+ 1) − fi(x, t) = −1

τ

(

fi(x, t) − f
(0)
i (ρ,u)

)

+

(

1 − 1

2τ

)

Fi,

where ρg = ∇ ·Π.

3. Coupling of the bulk of the two schemes. On the one hand, with the
Navier–Stokes scheme, we compute the velocity and its gradients which
will be used for the computation of the equilibrium and the source of
the advection–diffusion scheme. The velocity gradients are computed
with a centered finite difference scheme

∂xu(x, y) =
u(x+ 1, y) − u(x− 1, y)

2
,

∂yu(x, y) =
u(x, y + 1) − u(x, y − 1)

2
.

On the other hand the advection–diffusion scheme gives us the confor-
mation tensor, which we transform into the viscoelastic stress tensor,
Π, using Eq. (3.31). We then compute the divergence of Π using a
centered finite difference scheme

∂xΠ(x, y) =
Π(x+ 1, y) −Π(x− 1, y)

2
,

∂yΠ(x, y) =
Π(x, y + 1) − Π(x, y − 1)

2
.

We then communicate ρg = ∇ · Π to the Navier–Stokes solver.

4. Coupling of the boundaries of the two schemes. On the boundaries,
the regularized technique of Latt and Chopard [68] is applied for the
Navier–Stokes solver and the scheme discussed in the preceding sub-
section (see Eq. (5.33) and (5.35)) is applied for the constitutive equa-
tion. The divergence of the viscoelastic stress and the velocity gradients
cannot be computed using a centered finite difference for the direction
perpendicular to the wall. Therefore the finite difference scheme used
is the same as the one described in Subsection 4.3.4, and for a wall as
described by Fig. 5.2 is given by

∂yu(x, y) =
−3u(x, y) + 4u(x, y − 1) − u(x, y − 2)

2
,

∂yΠ(x, y) =
−3Π(x, y) + 4Π(x, y − 1) −Π(x, y − 2)

2
.
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At this point all the schemes have the needed information to proceed
to the next time-step.
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Chapter 6

Numerical results

In this chapter we will validate our models by comparing the correspond-
ing results to analytical solutions, or to those of other numerical methods.
For the generalized Newtonian fluids, the benchmarks used are the 2D pla-
nar Poiseuille flow, and the 2D planar 4:1 contraction for the generalized
Newtonian fluids. For the viscoelastic fluids, we will also use the 2D planar
Poiseuille flow, the steady 2D simplified four-roll mill and the 3D Taylor–
Green vortex decay flow. All the codes of the present chapter were produced
with Palabos [87] (the successor of OpenLB and xFlows [86]), an open source
library for the lattice Boltzmann method.

6.1 Generalized Newtonian fluids

In this section we will present the planar Poiseuille and the 4:1 contraction
benchmarks that we carried out for the Carreau model. We will validate and
also briefly discuss the accuracy of the method. The results presented in the
sequel can be also found in Malaspinas et al. [71].

6.1.1 Steady planar Poiseuille flow

The 2D planar Poiseuille flow is the first benchmark that we performed us-
ing the model of the generalized Newtonian fluids presented in Section 5.1.
Thanks to the simplicity of the geometry of the problem one is able to com-
pute semi-analytical solutions and therefore make a quantitative analysis of
the accuracy of our model. This is the aim of this subsection.
The planar Poiseuille flow is the steady flow between infinite parallel plates.
The height of the channel is Ly and the flow is driven by a constant pres-
sure gradient ∂xp (see Fig. 6.1). The symmetries of the numerical geometry
reduce the incompressible Navier–Stokes equations to

−∂xp+ ∂y (ν∂yux) = 0, (6.1)

97
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Fig. 6.1: The 2D planar Poiseuille, where Ulb is the maximum velocity of the
flow.

where we remind the reader that ν depends on ∂yux. Integrating this equation
one gets

−∂xpy + C1 + ν∂yux = 0. (6.2)

By symmetry we have ∂yux(Ly/2) = 0 and therefore

C1 = ∂xp
Ly

2
. (6.3)

In the case of the Carreau model described in Section 3.1 the kinematic
viscosity is given by

ν = (ν0 − ν∞)
(

1 + (λ∂yux)
2
)(n−1)/2

+ ν∞. (6.4)

We are therefore left with

−∂xp

(

y − Ly

2

)

+
(

(ν0 − ν∞)
(

1 + (λ∂yux)
2
)(n−1)/2

+ ν∞

)

∂yux = 0. (6.5)

Although there exists no analytical solution for this equation it can be easily
integrated numerically with high accuracy. We will note this solution unum.
The velocity profile computed this way will be used as boundary conditions
for our benchmark. According to this solution, the velocity field is imposed
at inlet and outlet and and is zero on the upper and bottom walls. We have
two non-dimensional parameters for our simulation : the Reynolds number,
Re, and the Carreau number, Cu, which are defined as

Re =
UlbLy

ν0
, Cu = λ

Ulb

Ly
. (6.6)

The Carreau number represents the ratio between the characteristic time of
the Carreau model, λ and the characteristic time of the inertial effects of
the flow. Therefore the highest the Cu, the more “non-Newtonian” the fluid



6.1. Generalized Newtonian fluids 99

Fig. 6.2: The velocity profile of the planar Poiseuille for a fluid with a Carreau
viscosity model for n = 0.1, 0.5 and for the Newtonian case n = 1.

is. We have tested the accuracy of the approach by using the same method
as in Section 4.4. The size of the grid has been increased while keeping
the kinematic viscosity, ν0 constant and compared the solution with unum

(the solution found by integrating numerically Eq. (6.5)). The comparison
between the two profiles is done by computing the L2-error

E =

√

√

√

√

1

M

M−1
∑

k=0

∥

∥

∥

∥

ulb(xk)

Ulb
− unum(xk)

∥

∥

∥

∥

2

, (6.7)

where M is the total number nodes in our simulation. The simulations were
performed for Re = 1, for Cu = 1, 10, 100 and n = 0.1, 0.5. The error with
respect to the grid resolution is plotted in Fig. 6.3. As can be seen in Fig. 6.3

Fig. 6.3: The plot of the error with respect to the grid resolution in log-log
scale, with Re = 1, Cu = 1, 10, 100, and n = 0.1 (left) and n = 0.5 (right).

for n = 0.5 second order accuracy for all Cu numbers is observed, whereas
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for n = 0.1 the accuracy is second order for Cu = 1 but for Cu = 10, 100 the
accuracy is respectively of order 1.8 and 1.7.

6.1.2 4:1 contraction

In this subsection, results related to the 4:1 axi-symmetric contraction as de-
scribed in Fig. 6.4 are presented. The fully developed solution corresponding
to the Poiseuille case is imposed at the inlet of width Lu and a zero gradient
velocity is prescribed at the outlet. The sizes of the channel upstream and
downstream of the contraction are noted Lu and Ld with Lu/Ld = 4. In
our simulations we took that the length of the geometry, Lx, was given by
Lx = 2Lu. We will study the non-dimensional reattachment length X

Fig. 6.4: The 2D planar 4:1 contraction.

X ≡ xr

Lh
, (6.8)

where xr is the length of the recirculation zone and Lh the height of the step
(see Fig. 6.4). This reattachment length will be compared with results ob-
tained with the commercial finite element method (FEM) code, COMSOL c©.
The simulations are performed at Re = 1, for Cu = 1, 10 and for n rang-
ing from 0.1 to 0.9. As expected, the corner vortices are present and tend
to disappear with a decreasing n and increasing Cu number (see Fig. 6.5).
Furthermore a good agreement can be observed between the FEM solution
and the lattice Boltzmann model for all values of n in the range [0.1, 1].

6.2 Viscoelastic fluids benchmarks

In this section, the numerical scheme presented in Section 5.2 is tested. We
will first use a periodic domain in order to test the scheme without boundary
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Fig. 6.5: The reattachment length, X, with respect to the power-law expo-
nent, n, for Cu = 1 (left) and Cu = 10 (right).

conditions. There are two benchmarks (one in 2D and one in 3D) that
are used for this purpose. Both are derived from the Taylor–Green vortex
problem. We will then add boundaries to show that the approach for the
boundary treatment discussed in Subsection 5.2.3 is correct. This test will
be done on the 2D planar Poiseuille geometry. For these benchmarks we
will fix the value of the diffusion constant of the advection–diffusion scheme
relatively to the viscosity of the polymer such that

κ

µp
= 10−6. (6.9)

6.2.1 Taylor–Green vortex

In order to validate the numerical scheme discussed in Chapter 5, we will use
the Taylor–Green vortex benchmark (see Brachet et al. [16]). The simulation
setup is the following. The physical domain is a periodic box [0, 2π]×[0, 2π]×
[0, 2π], where we have a prescribed velocity profile at time t = 0 (see Fig. 6.6)

ux(x, t = 0) = − 1√
3

sin(x) cos(y) cos(z), (6.10)

uy(x, t = 0) = − 1√
3

cos(x) sin(y) cos(z), (6.11)

uz(x, t = 0) =
2√
3

cos(x) cos(y) sin(z). (6.12)

Initially, the viscoelastic stress tensor is taken equal to zero everywhere (equi-
librium state). We will then let the time go forward and compare the energy
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of the solvent and of the dumbells with a high accuracy Fourier pseudospec-
tral algorithm designed by Boeckle [10]. The kinetic and the spring energies
are computed as

Ekin =
1

M

∑

k

u2(xk)

2
, (6.13)

Espring =
1

M

∑

k

tr(Π(xk))

2
, (6.14)

where k ranges over all the nodes of the simulation, and M is their total num-
ber. As in Boeckle [10], the benchmarks will be run until t = 5 dimensionless
units for Re = 1, Wi = 1, 5, 10, and Rν = 0.1, 0.7.

Fig. 6.6: The velocity norm at time t = 0 (left) and the spring energy at
t = 1.8 and Wi = 10 (right) of the Taylor–Green vortex for θ = π/2 with
isocontours.

Before proceeding with the simulation, special care of the initial solution
must be taken. As discussed in Mei et al. [75] or Latt [66] for a proper
initialization of the problem the distribution functions, fi must be given by
their Chapman–Enskog expansion. For the incompressible Navier–Stokes
model, it can be deduced from Eqs. (2.122) and (2.123) that

fi = f
(0)
i + f

(1)
i = wiρ

(

1 +
ξi · u
c2l

+
H(2)

i : uu

2c4l

)

− wiτρ

c2l
H(2)

i : S. (6.15)

The velocity field and therefore the strain rate tensor are known. We are
only left with the computation of the initial density field ρ. It is determined
by taking the divergence of the momentum conservation equation. Using the
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incompressibility condition, ∇ · u = 0, we find that the pressure field must
be solution of a Poisson equation

∇
2p = ∇u : ∇u. (6.16)

In our case this equation has an analytical solution given by (see Appendix C)

p(x, t = 0) =
1

6

(

1

4
cos(2y) +

1

4
cos(−2y + 2x) +

1

4
cos(2x+ 2y) + cos(2z)

+
1

24
cos(−2z + 2y) +

1

24
cos(2z + 2y) +

1

24
cos(2z + 2x)

+
1

24
cos(−2z + 2x) +

1

4
cos(2x) − 1

)

. (6.17)

Then from the perfect gas law we get the initial density as

ρ =
p

c2l
.

For the simulation of the constitutive equation, we have that the fiαβ ’s must
be equal, according to Eqs. (5.19) and (5.22), to

fiαβ = wiAαβ

(

1 +
ξi · u
c2l

)

− wiτ

c2l
ξi ·
(

Aαβ∂tu − u∇ · (Aαβu) + c2l ∇Aαβ

)

, (6.18)

where u is given by Eqs. (6.10)-(6.12). Since the viscoelastic tensor is null
everywhere, we have that the components of the conformation tensor for the
Oldroyd-B constitutive equation are

Aαβ = δαβ . (6.19)

Note also that the initial velocity field is incompressible and therefore the
second term in Eq. (6.18) vanishes. We finally have

fiαβ = wiAαβ

(

1 +
ξi · u
c2l

)

. (6.20)

As can be seen on Figs. 6.7 and 6.8 the energy curves for all Wi numbers
tested coincide for N = 100.

Let us discuss briefly the simulated physical phenomenon. At start of the
simulation the dumbells are at equilibrium. Then due to the friction between
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the solvent and the beads, the dumbbells start to stretch. When all the ki-
netic energy is transformed in spring potential energy, the velocity gradients
are no longer strong enough to continue stretching the beads. As a conse-
quence, the dumbbells start to give back their energy to the solvent. Then a
peak of kinetic energy is reached which in turn coincides with a minimum of
spring energy. This process continues until all the energy of the dumbbells
and of the solvent has been dissipated through viscous processes. As can also
be noticed from the plots, the higher the Wi number is the longer the period
between two peaks can be observed. The lowest the value of Rν , the high-
est the peaks of spring energy are. These effects can be easily understood,
since a high Wi number means a high relaxation time of the dumbbells and
a low value of Rν means a high polymer viscosity, and thus a high coupling
with the solvent. A simulation with the non-linear FENE-P model was
performed for Wi = 1 and Rν = 0.1 with the maximum dumbbells length
r2
e = 10, 25. As can be seen in Fig. 6.9 the energy curves have a shape simi-

lar to those obtained with the Oldroyd-B model. Furthermore, as expected,
the FENE-P energy curves are approaching those of the Oldroyd-B model
for re → ∞. After testing the accuracy of the scheme by comparing it to
the pseudo-spectral code, we have also performed a stability test. There,
accuracy is not the main issue, but rather the numerical stability in high
Wi numbers. We have fixed Rν = 0.1 for all tests. The simulations are
stopped when the total energy falls below 0.1% of its initial value, which
means E = Ekin + Espring ∼ 0.03. All the tests were carried out with a reso-
lution of N = 25 and up to Wi = 1000. The scheme was found numerically
stable for all values of Wi.

6.2.2 The four–roll mill (simplified)

This test case consists in four cylinders that rotate to create an elongational
flow in the vicinity of a stagnation point between the rollers. A sketch of the
situation can be found in Fig. 6.10. For more detailed informations about
this benchmark see Thomases and Shelley [95]. Here the rollers are replaced
by a body force to drive the flow. This has as an effect to produce four
vortices at the location of the rollers. Furthermore we take the boundary
conditions to be periodic.

At the central hyperbolic point, the state of the fluid is described by a simple
elongational flow, which enables us to compute analytically local solutions
at steady state that will be compared with our simulations. The geometry is
a 2D periodic box of size [0, 2π]× [0, 2π]. The flow is supposed to be at very
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Fig. 6.7: Kinetic (left column) and spring (right column) energy evolution
with time in non-dimensional units for Rν = 0.1 and Wi = 1 (top row),
Wi = 5 (middle row) and Wi = 10 (bottom row). The solid line is the
reference solution while the circles and the dots are solutions of the LBM
simulation for N = 25 and N = 100.

small Re number and is imposed by a body force

g = (2νs sin(x) cos(y),−2νs cos(x) sin(y)) , (6.21)



106 Chapter 6. Numerical results

Fig. 6.8: Kinetic (left column) and spring (right column) energy evolution
with time in non-dimensional units for Rν = 0.7 and Wi = 1 (top row),
Wi = 5 (middle row) and Wi = 10 (bottom row). The solid line is the
reference solutions while the circles and the dots are solution of the LBM
simulation for N = 25 and N = 100.

computed in order to impose a velocity field given by

u = (sin(x) cos(y),− cos(x) sin(y)) . (6.22)
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Fig. 6.9: Kinetic (left) and spring (right) energy evolution with time in non-
dimensional units for Rν = 0.1 and Wi = 1. The solid line is the solution
obtained with the Oldroyd-B model while dotted and dashed lines are the
FENE-P model with r2

e = 10 and r2
e = 25.

Fig. 6.10: The 2D projection of the four–roll mill.

The initial viscoelastic stress tensor is set to zero. In the central region, near
the stagnation point (x = π, y = π), the velocity field is given by

u = (ε̇x, ε̇y) = (∂xux(π, π), ∂yuy(π, π)), (6.23)

where ǫ̇ is the elongational rate and the “effective” Weissenberg number,
Wieff , as

Wieff = ε̇Wi, (6.24)

with Wi = λUmax/L (with Umax the maximum velocity of the flow and
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L = 2π). When the simulation reaches steady state (t → ∞), according
to Thomases and Shelley [95] the components of the conformation tensor
can be expressed in a good approximation with

Axx(π, y) =
1

1 − 2Wieff
+ C|y|

(1−2Wieff)

Wieff , (6.25)

Ayy(π, y) =
1

1 + 2Wieff
+ |y|(2+1/Wieff ), (6.26)

Axy(π, y) = 0. (6.27)

where C is a constant. These values will be compared with the results of
our simulations. As an illustration, in Fig. 6.11 the vorticity and the spring
energy at time t = 10 are depicted. For our simulations we initialize the ve-

Fig. 6.11: The vorticity for Wi = 0.6 and Wi = 5 (middle and far right) and
the spring energy for Wi = 0.6 and Wi = 5 (far and middle left) at time
t = 10. The colormap is white for high and black for low values.

locity field with Eqs. (6.22) and density ρ = 1. The body force of Eq. (6.21)
is applied on the domain. Before coupling the system with the viscoelastic
fluid, we first let the Navier–Stokes scheme converge, which means that we
start with a Newtonian velocity field. Once this step is completed we start
the real simulation by coupling the fluid with the Oldroyd-B constitutive
equation solver. The values of the conformation tensor and of the elonga-
tional rate ε̇ are then taken when the simulation has reached steady state,
which happens between time t = 10 and t = 15 depending on the Wi num-
ber. From Fig. 6.12 we see that ε̇ is decreasing with increasing Wi. This
result seems qualitatively very close to the results found in Thomases and
Shelley [95]. The Figs. 6.13-6.14 show a very good agreement between our
simulations and the analytical results of Eqs. (6.25)-(6.27) for the conforma-
tion tensor values. Nevertheless, one can notice that the component Axy of
Fig. 6.14, at values of Wieff close to one start to deviate from zero. This
“discrepancy” should be compared with the characteristic value of Axy at
the given Wieff which is of several orders of magnitude higher.



6.2. Viscoelastic fluids benchmarks 109

Fig. 6.12: The elongational rate ε̇ with respect to the Wi number (left) and
the effective Weissenberg number Wieff with respect to the Wi number.

6.2.3 Steady planar Poiseuille flow

In order to test our numerical scheme on domains with boundaries, we have
selected the Poiseuille geometry. The geometry, already discussed in Subsec-
tion 6.1.1, is depicted in Fig. 6.1. In order to avoid corners in the geometry,
the flow is imposed by a body force, Fx, and the domain is made periodic in
the x-direction. The top and bottom walls have no-slip boundary conditions.
There exists an exact solution for the Oldroyd-B constitutive equation which
can be found for example in the thesis of Fiétier [33] and which is given by

ux = −Fx

2

(

y2 − Lyy

νs + νp

)

, uy = 0, (6.28)

Axx = 1 +
F 2

xλ
2νp(−2y + Ly)

2

2(νs + νp)2
, (6.29)

Axy = −Fx

2

λ(2y − Ly)

νs + νp
, (6.30)

Ayy = 1. (6.31)

Defining the velocity of reference as the maximum velocity of the flow as Ulb,
which by symmetry is located at y = Ly/2, we have that the force is given
by

Fx =
4

L2
y

(νs + νp)Ulb. (6.32)

In Figs. 6.15-6.17, we plotted the velocity field and the components of the
conformation tensor obtained from the numerical simulations for Wi = 0.1, 1
and from the analytical solution. As in Subsection 6.1.1 we also compute
the error between the lattice Boltzmann solution and reference solution for
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Fig. 6.13: The Axx components in function of the y position for x = π at
Wi = 0.3 (left) and Wi = 1.0 (right). The dots are the results of the LBM
simulation, while the plain line is the analytical result of Eq. (6.25), where
we fitted the constant coefficient C.

this flow and measure its accuracy order. However this time we will not
only measure the order of accuracy for the velocity field but also for the
conformation tensor. The errors are defined as

Eu =

√

√

√

√

1

M

M−1
∑

k=0

∥

∥

∥

∥

ulb(xk)

Ulb

− ua(xk)

∥

∥

∥

∥

2

, (6.33)

EAαβ =

√

√

√

√

1

M

M−1
∑

k=0

∥

∥

∥
Alb(xk)αβ − Aa(xk)αβ

∥

∥

∥

2

, (6.34)

and again the sum is performed on the M nodes of the lattice, which are
located on xk. The simulations were run at Re = 1, Rν = 0.1, 0.7 and
Wi = 0.1, 1. We have also tested the numerical stability of the code. In this
case the resolution of the lattice was fixed (Nx = Ny = 25), the viscosity
ratio was varied in the range Rν = [0.1, 0.9] and the maximum stable Wi was
measured.

As can be seen in Figs. 6.18 and 6.19, the error of the velocity field, in
the Wi = 0.1 and Wi = 1 cases, is decreasing with order two. The errors are
of the same order magnitude for Rν = 0.1 or Rν = 0.7. For the conformation
tensor, it can be observed that the errors on the components Axx and Axy

are decreasing more slowly, in fact the order is of 1.5 and 1.4 for respectively
Wi = 0.1 and Wi = 1. For the Ayy component the accuracy seems to have
reached its minimum value for all the lattice resolutions since it does not
really decrease (or increase) when the resolution is increased.
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Fig. 6.14: The Axy (left) and Ayy (right) components in function of the
effective Weissenberg number Wieff at the stagnation point. The dots are the
LBM measures while the plain line is the analytical solution of Eqs. (6.27)
and (6.26).

For the stability test, we found that the maximum Wi number that was
simulated was related to the viscosity ratio, Rν, ranging from Wimax = 1 for
Rν = 0.1 to Wi = 7 for Rν = 0.6. For the chosen resolution, the Wi number
could not be increased higher than seven for any Rν . All these tests were
performed for κp/µp ∼ 10−6. Discussion of possible reasons for the failure of
the simulations at higher values of Wi are postponed till Section 6.4.

6.3 Parallelization of the viscoelastic model

The lattice Boltzmann method is known for having a very good scalabil-
ity on a parallel computer. The parallel implementation, which is the one
of Palabos [87], is a so-called multiblock approach (see Heuveline and Latt
[51]). In this section we will use the Taylor–Green benchmark presented in
Subsection 6.2.1 to test the computational efficiency of our viscoelastic model.

A reference quantity is the Mega Sites Updates per Second (MSUPS) which
is, in millions, the number of collision-propagation steps on a single cell
done per second in a simulation and which is a common measure for lattice
Boltzmann simulations. For comparison we will also show the results for
the incompressible Newtonian case of the Taylor–Green vortex. The cluster,
Pleiades 2, that has been used for this study is composed of 210 Intel Wood-
crest 5150 (quadcore processors) nodes with 8Gb of memory per node. The
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Fig. 6.15: The velocity field with respect to the y position in lattice units for
Wi = 0.1, 1, Rν = 0.1, and Re = 1 for the LBM simulation and the analytical
solution.

corresponding network is a SWITCH Black diamond 8810 432Gb/s.

As can be seen from Fig. 6.20, the MSUPS in the Newtonian case is about
an order of magnitude higher than for the viscoelastic one. This result is
not really surprising, since there are more than three times more distribution
functions on each node in the viscoelastic case and additional computations
must be done on each node for the viscoelastic model to incorporate the force
term and the source term for the Navier–Stokes and the advection–diffusion
schemes respectively (see Eqs. (2.126) and (5.24)). It can be inferred from
Fig. 6.20 that the parallelization efficiency for the Newtonian case is better
than in the viscoelastic one. This is due to the higher amount of information
that must be transmitted across the network. In the Newtonian case only 19
distribution functions must be communicated while 61 distribution functions
and twelve additional scalars (three for the force, three for the velocity field
and six for the source terms) have to be communicated for the viscoelastic
case, which makes a total of 73 communicated values. A typical time for the
simulation of the viscoelastic case, for N = 100, and ∆t = 1.33 · 10−4 on
four processors for five time units (about 37’000 iterations) is of about three
hours.

It must also be noted that the parallelization efficiency on the Pleiades 2
cluster is much lower than the current “state-of-the-art”, because of the rel-
atively slow interconnexion between the nodes. A benchmark on the 3D
lid-driven cavity of domain size of 40133, conducted by J. Latt, on thousands
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Fig. 6.16: The Axx component of the conformation tensor with respect to the
y position in lattice units and the analytical solution for Rν = 0.1, Wi = 0.1
(left) and Wi = 1 (right).

of cores of a Blue Gene/L machine using the Palabos library shows a quasi
linear scalabity for thousands of cores (see Fig. 6.21). The viscoelastic flow
could also benefit from this computer architecture.

6.4 Discussion

In this chapter we validated the numerical schemes for generalized Newto-
nian fluids and the Oldroyd-B class of viscoelastic fluids.

The generalized Newtonian scheme was compared to a semi-analytical solu-
tion for the Poiseuille flow. We have shown that its accuracy was between
order 1.7 and 2 depending on the parameters of the simulation. Especially
the more non-Newtonian the less accurate the scheme proved to be. We have
also computed the reattachment length in the case of the planar abrupt 4:1
contraction, and showed that we were in good agreement with a FEM com-
mercial solver.

For the viscoelastic scheme we were able to compare the scheme with a high
accuracy Fourier pseudospectral algorithm for the Taylor–Green vortex case
and found identical results for the energy decay of the solvent and of the
polymers, using the Oldroyd-B constitutive equation. Furthermore the code
was shown to be unconditionally stable, even at very high (unphysical) Wi
numbers. We also showed that in principle the FENE-P model could also be
implemented with our model.
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Fig. 6.17: The Axy (left) and Ayy (right) components of the conformation ten-
sor with respect to the y position in lattice units and the analytical solutions
for Rν = 0.1 and Wi = 0.1, 1.

In the simplified four–roll mill we were able to reproduce accurately the an-
alytical results for an elongational flow that were obtained by Thomases and
Shelley [95] in the steady state limit.

In the Poiseuille flow case we showed that the numerical result was com-
patible with the analytical solution and therefore the boundary condition
treatment for flat walls seems to be correct. Unfortunately we were unable
to determine boundary conditions for more complicated geometries, includ-
ing corners, (the simulation of the 4:1 contraction were always unstable even
at low Wi number). In order to improve this defect one should make a
massive effort in the modelling of the boundaries for such flows. The stabil-
ity of the code did not allow us to reach a Wi number higher than one for
Rν = 0.1. Although results were better with higher Rν (up to Wi of seven
were simulated), one of the major issues here is the lack of understanding
of the behavior of the viscoelastic stress tensor at the boundaries. The tests
performed by applying the analytical solution for the conformation tensor on
the boundaries allowed to simulate flows with much higher Wi numbers. It
must also be noted that increasing the “polymer diffusion” κp also increased
the stability of the model. This is simply because the relaxation time of the
advection–diffusion scheme departs from 1/2 as κp is increased1.

A possible solution for the boundary conditions problem would be to cou-
ple the LBM solver with a molecular dynamics solver (see Hernández-Ortiz

1The limit τ → 1/2 is well known stability issue for the lattice Boltzmann.
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Fig. 6.18: The L2-error of the conformation tensor and of the velocity with
respect to the resolution in lattice units for Re = 1, Rν = 0.1 and Wi = 0.1
(left) and Wi = 1 (right).

et al. [50] and Izmitli et al. [56]). Having a physically relevant value for
the conformation tensor on the boundaries would allow us to impose a physi-
cally meaningful boundary condition for the viscoelastic constitutive scheme.
Thus there would be no need for use of interpolated or extrapolated values
that are mainly responsible for the lack of stability of our code.
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Fig. 6.19: The L2-error of the conformation tensor and of the velocity with
respect to the resolution in lattice units for Re = 1, Rν = 0.7 and Wi = 0.1
(left) and Wi = 1 (right).

Fig. 6.20: The Mega Sites Updates per Second (MSUPS) with respect to the
processor number for the viscoelastic (left) and Newtonian (right) cases, on
the Taylor–Green benchmark for Re = 1, Rν = 0.1 and Wi = 1.
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Fig. 6.21: The speedup for case of the 3D lid-driven cavity for a domain of
40133 nodes on a Blue Gene/L machine.
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Chapter 7

Conclusions and perspectives

In this thesis we have first presented a modern approach of deriving the lattice
Boltzmann method directly from the continuous BGK Boltzmann equation.
In addition, we have shown how to incorporate an external force in a consis-
tent manner. We also have presented three different discretizations that allow
to simulate Newtonian fluids in different limits : the weakly compressible,
the compressible isothermal, and the compressible thermal cases. This dis-
cretization which is also compatible with the 13-Grad’s moments equations,
offers in principle the possibility to simulate high Knudsen number flows and
opens therefore new possibilities for the applications of the LBM. These more
complex fluid simulations are theoretically possible, but there remains a step
before being able to perform them since the boundary conditions problem is
not solved yet.

The boundary conditions are a recurrent issue for the lattice Boltzmann
method and thus we have presented a review and analysis of some of the more
popular ones for the weakly compressible fluids case. It has been observed
that in order to be satisfactory, that is, accurate and numerically stable, these
boundary conditions should not only recover the correct density and velocity
on the walls, but also the correct deviatoric stress tensor. The benchmarks
performed on the dipole-wall collision show this fact clearly, since only the
boundary conditions with a correct deviatoric stress were able to reproduce
the physics of the problem.

The lattice Boltzmann scheme was then applied to tackle non-Newtonian
fluid flows. We first presented an algorithm to simulate generalized Newto-
nian fluids and applied it to the Carreau model, and showed that in the case
of the Poiseuille flow, the method was second order accurate in space. We also
showed that there is good agreement between the lattice Boltzmann method
and the commercial finite element solver COMSOL for the 4:1 contraction
benchmark. We made full use of the properties of the lattice Boltzmann
method, since the strain rate tensor was computed locally without resorting
to any finite difference scheme.

One of the novelties of this thesis was the simulation of viscoelastic fluids
which exhibit memory effects, using the Oldroyd-B and FENE-P models.
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Our methodology proved successful in solving the Taylor–Green decay vortex
case, the steady simplified 2D four-roll mill and the 2D channel flow. In the
Taylor–Green vortex benchmark we have reproduced accurately the results
obtained with a high accuracy spectral method for Weissenberg (Wi) numbers
that were ranging from one to ten. At higher Wi numbers the simulation was
shown to be also stable and the overall shape of the energy curves remains
the same, but the simulation time becomes much longer since the “bounces”
observed in Figs. 6.7-6.8 take longer time as Wi increases. The analytical
results for the 2D four-roll mill case were reproduced accurately. We also
have presented a method for taking into account flat wall boundaries in
our simulations, which represents a first step towards the study of more
complex geometries. We have been able to compare our simulation results
with the analytical solution given for a 2D Poiseuille flow and showed that
at moderate Wi numbers the accuracy was second order in space, while it
was decreased to order 1.5 for Wi = 1. In agreement with results of other
methods, we also observed that the stability of our model strongly depends
on the viscosity ratio. The advection–diffusion with source model that was
used for performing all these simulations with the Oldroyd-B model can in
principle describe any constitutive equation which has the same form. This
allowed to implement the FENE-P model and to apply it on the 3D Taylor-
Green vortex decay.
Our tool could now be applied to more challenging cases like the tracking of
elastic instabilities for shear flows, as the Kolmogorov flow (see Berti et al. [6])
or the elongational flows (see Poole et al. [84] and Arratia et al. [5]). Other
more sophisticated constitutive equations, which would contain more physical
ingredients and therefore reproduce better the behavior of the viscoelastic
fluids, could also be easily implemented.
The next issue to be investigated is to obtain a better understanding of the
boundaries in order to be able to use the ability of the lattice Boltzmann to
easily simulate complex geometries. To this effect, it could be interesting to
try to couple molecular dynamics models with the lattice Boltzmann method,
since in this case it is easier to introduce more refined mesoscopic modellings
(see Hernández-Ortiz et al. [50] and Izmitli et al. [56] for example).



Appendix A

Properties of the Hermite poly-
nomials

In this appendix we will discuss different properties of the Hermite poly-
nomials. The results that are presented here are a summary of the work
by Grad [39]. We will first give relations in the continuous case and then in
the discretized one.

Continuous case

The Rodrigues’ formula gives the Hermite polynomial of degree n in a D
dimensional space

H(n) =
(−1)n

ω(ξ)
∂n

ξα
ω(ξ), (A-1)

and the definition of the weight function associated with the Hermite poly-
nomials ω(ξ)

ω(ξ) =
1

(2π)D/2
exp

(

−ξ2/2)
)

. (A-2)

Four our purpose we will need the Hermite polynomials up to order four.
With these formulas one can easily compute them

H(0) = 1, (A-3)

H(1)
α = ξα, (A-4)

H(2)
αβ = ξαξβ − δαβ , (A-5)

H(3)
αβγ = ξαξβξγ − (δαβξγ + δαγξβ + δβγξα) , (A-6)

H(4)
αβγδ = ξαξβξγξδ − (δαβξγξδ + δαγξβξδ + δαδξβξγ

+δβγξαξδ + δβδξαξγ + δγδξαξβ)

+ (δαβδγδ + δαγδβδ + δαδδβγ) . (A-7)
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There also exists a recurrence relation between the polynomials

ξα0H(n)
α1...αn

= H(n+1)
α0...αn

+
n
∑

i=1

δα0αi
H(n−1)

α1...αi−1αi+1...αn
. (A-8)

Using Eq. (A-2) one can also rewrite the expression ∇ξ

(

ωH(n)
)

∇ξ(ωH(n)) = (−1)n
∇

n
ξω = −ωH(n−1). (A-9)

Discrete case

When discretized using the Gauss–Hermite quadrature, the ξi must be re-
scaled in order to recover the standard formulation of the lattice Boltzmann
method. This rescaling has as an effect to modify the discrete Hermite poly-
nomials in the following way

H(0)
i = 1, (A-10)

H(1)
iα = ξiα, (A-11)

H(2)
iαβ = ξiαξiβ − c2l δαβ , (A-12)

H(3)
iαβγ = ξiαξiβξiγ − c2l (δαβξiγ + δαγξiβ + δβγξiα) , (A-13)

H(4)
iαβγδ = ξiαξiβξiγξiδ − c2l (δαβξiγξiδ + δαγξiβξiδ + δαδξiβξiγ

+δβγξiαξiδ + δβδξiαξiγ + δγδξiαξiβ)

+ c4l (δαβδγδ + δαγδβδ + δαδδβγ) . (A-14)

The orthogonality of the basis vectors expresses now

∑

i

wiH(m)
α1...αm

H(n)
β1...βn

= δmnc
2m
l (δα1β1 · · · δαmβn + perm), (A-15)

where “perm” yields all the αi permutations in the first index and βi per-
mutations in the second index of the δαiβi

. In particular, we have for the



123

non-vanishing products

∑

i

wiH(0)
i H(0)

i = 1, (A-16)

∑

i

wiH(1)
iα H(1)

iβ = c2l δαβ , (A-17)

∑

i

wiH(2)
iαβH

(2)
iγδ = c4l (δαγδβδ + δαγδβδ) , (A-18)

∑

i

wiH(3)
iαβγH

(3)
iδεζ = c6l

(

δαδ(δβεδγζ + δβζδγε)

+ δαε(δβδδγζ + δβζδγδ)

+ δαζ(δβδδγε + δβεδγδ)
)

. (A-19)

Finally the expansion in Hermite polynomials of a quantity fi reads

fi = wi

∞
∑

n=0

1

c2n
l n!

H(n)
i : a(n), (A-20)

where a(n) =
∑

i wiH(n)
i fi is the expansion coefficient of order n.
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Appendix B

Gauss–Hermite quadrature
formulae

This Appendix is a short introduction on Gaussian quadrature and summa-
rizes the important results that are used in the lattice Boltzmann method.

For a given function p(ξ), Gaussian quadrature seeks to obtain the best

estimate of the integral
∫ b

a
ω(ξ)p(ξ) dξ by choosing the optimal set of abscissae

ξi, i = 1, · · · , n such that

∫ b

a

ω(ξ)p(ξ)dξ ≃
n
∑

i=1

wip(ξi),

where wi, i = 1, · · · , n is a set of constant weights.

A quadrature rule is said to have an algebraic degree of precision m if for
any p that is a polynomial of a degree up to m, exact equality holds in the
above equation.

We copy here the Gauss–Hermite quadrature weights and abscissae for alge-
braic degree up to degree 9 for regular lattices (for details on the derivation
see the papers by Shan et al. [92] and by Nie et al. [76]). The subscript FS
represents a fully symmetric set of velocities. The EQ

D,m quadrature rule is of
algebraic degree m, in D dimensions with Q abscissae. We find here the stan-
dard lattices for weakly compressible fluidsD2Q9,D3Q15,D319 andD3Q27,
which are nearest neighbors lattices, as well as extended neighborhood lat-
tices which can be used for isothermal and thermal compressible fluids. Also
listed here the D2Q5 and D3Q7 lattices that do not have enough isotropy
to represent correctly fluids, but are adequate for the advection–diffusion
schemes
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Rule Lattice ξi wi

E5
2,3 D2Q5 (0, 0) 1 − 2c2l

(cl, 0)FS c2l /2

cl <
√

1/2
E7

2,5 D2Q7 (0, 0) 1/2
2(cos nπ

3
, sin nπ

3
) 1/12

n = 1, · · · , 6

E9
2,5 D2Q9 (0, 0) 4/9

(
√

3, 0)FS 1/9

(±
√

3,±
√

3) 1/36

E17
2,7 D2Q17 (0, 0) (575 + 193

√
193)/8100

(cl, 0)FS (5555 − 91
√

193)/18000

(±cl,±cl) (655 + 17
√

193)/27000

(±2cl,±2cl) (685 − 49
√

193)/54000

(3cl, 0)FS (1445 − 101
√

193)/162000

cl =
√

(125 + 5
√

193)/72

E37
2,9 D2Q37 (0, 0) 0.23315066913235250228650

(cl, 0)FS 0.10730609154221900241246
(±cl,±cl) 0.05766785988879488203006
(2cl, 0)FS 0.01420821615845075026469
(±2cl,±2cl) 0.00101193759267357547541
(3cl, 0)FS 0.00024530102775771734547
(cl, 2cl)FS 0.00535304900051377523273
(cl, 3cl)FS 0.00028341425299419821740

cl = 1.19697977039307435897239

Table B.1: Gauss-Hermite quadrature formulae in two dimensions.
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Rule Lattice ξi wi

E7
3,3 D3Q7 (0, 0, 0) 1 − 3c2l

(cl, 0, 0)FS c2l /2

cl <
√

1/3
E15

3,5 D3Q15 (0, 0, 0) 2/9

(
√

3, 0, 0)FS 1/9

(±
√

3,±
√

3,±
√

3) 1/72

E19
3,5 D3Q19 (0, 0, 0) 1/3

(
√

3, 0, 0)FS 1/18

(
√

3,
√

3, 0)FS 1/36

E27
3,5 D3Q27 (0, 0, 0) 8/27

(
√

3, 0, 0)FS 2/27

(
√

3,
√

3, 0)FS 1/54

(±
√

3,±
√

3,±
√

3) 1/216

E39
3,7 D3Q39 (0, 0, 0) 1/12

(cl, 0, 0)FS 1/12
(±cl,±cl,±cl) 1/27
(2cl, 0, 0)FS 2/135
(2cl, 2cl, 0)FS 1/432
(3cl, 0, 0)FS 1/1620

cl =
√

3/2
E121

3,9 D3Q121 (0, 0, 0) 0.03059162202948600642469
(cl, 0, 0)FS 0.09851595103726339186467
±cl,±cl,±cl 0.02752500532563812386479
(cl, 2cl, 0)FS 0.00611102336683342432241
(2cl, 2cl, 0)FS 0.00042818359368108406618
(3cl, 0, 0)FS 0.00032474752708807381296
(2cl, 3cl, 0)FS 0.00001431862411548029405
(±2cl,±2cl,±2cl) 0.00018102175157637423759
(cl, 3cl, 0)FS 0.00010683400245939109491
(±3cl,±3cl,±3cl) 0.00000069287508963860285

cl = 1.19697977039307435897239

Table B.2: Gauss-Hermite quadrature formulae in three dimensions.
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Appendix C

Initial pressure field for the
Taylor–Green vortex

The Taylor–Green benchmark is the time evolution of the initial condition

ux(x, t = 0) =
2√
3

sin

(

θ +
2π

3

)

sin(x) cos(y) cos(z), (C-1)

uy(x, t = 0) =
2√
3

sin

(

θ − 2π

3

)

cos(x) sin(y) cos(z), (C-2)

uz(x, t = 0) =
2√
3

sin (θ) cos(x) cos(y) sin(z), (C-3)

where θ = π/2. We are looking for the initial pressure. Which should be
given by the solution of the incompressible Navier–Stokes equations,

∇ · u(x) = 0, (C-4)

∂tu + (u(x) · ∇)u(x) = −∇p(x) + ν∇2u(x). (C-5)

One can easily show that the divergence of the velocity field is null for this
initial condition. Taking divergence of Eq. (C-5) and use Eq. (C-4), and one
gets

(∇u) : (∇u) = ∇
2p. (C-6)

Therefore one must solve

2

3
(cos2 z + cos2 y cos2 z + cos2 z cos2 x− 2 cos2 y

+ 4 cos2 x cos2 y − 2 cos2 x) = −∇
2p. (C-7)

Let us now for simplicity just rename the l.h.s. of this last equation as f(x)

f(x) ≡ 2

3

(

cos2 z + cos2 y cos2 z + cos2 z cos2 x

− 2 cos2 y + 4 cos2 x cos2 y − 2 cos2 x
)

.
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We now expand f(x) and p(x) in Fourier series

f(x) =
∑

k∈Z

f̃k exp (ik · x), (C-8)

p(x) =
∑

k∈Z

p̃k exp (ik · x), (C-9)

where

f̃k =
1

8π3

∫∫∫ π

−π

d3x exp (−ik · x)f(x), (C-10)

p̃k =
1

8π3

∫∫∫ π

−π

d3x exp (−ik · x)p(x). (C-11)

Substituting this in Eq. (C-7) one gets

p̃k =
f̃k

||k||2 . (C-12)

And therefore

p(x) =
∑

k∈Z

f̃k

||k||2 exp(−ik · x) (C-13)

The only relevant terms in this last sum are for kx, ky, kz ∈ {−2, 0, 2}. And
therefore one gets

p(x) =
1

6

(

1

4
cos(2y) +

1

4
cos(−2y + 2x) +

1

4
cos(2x+ 2y) + cos(2z)

+
1

24
cos(−2z + 2y) +

1

24
cos(2z + 2y) +

1

24
cos(2z + 2x)

+
1

24
cos(−2z + 2x) +

1

4
cos(2x) − 1

)

. (C-14)
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