Evolutionary Reverse Engineering of Gene Networks

THESE N° 4503 (2009)

PRESENTEE LE 9 OCTOBRE 2009

A LA FACULTE SCIENCES ET TECHNIQUES DE L'INGENIEUR
LABORATOIRE DE SYSTEMES INTELLIGENTS
PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Daniel MARBACH

acceptée sur proposition du jury:

Prof. M. Hasler, président du jury
Prof. D. Floreano, directeur de thése
Prof. S. Bergmann, rapporteur
Prof. F. Naef, rapporteur
Prof. G. A. Stolovitzky, rapporteur

ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Suisse
2009






Fiir Leonardo



© 2009, Daniel Marbach



Acknowledgments

First, I would like to thank Prof. Dario Floreano, my thesis director, and Clau-
dio Mattiussi, who was a great mentor to me. For my Masters degree, I had
specialized in artificial intelligence and robotics. Dario and Claudio encouraged
me to discover a new field, systems biology, which is now my great passion. I
am particularly grateful to Dario for giving me freedom in my research and for
his full support, trust, and encouragement during these four years. I also thank
Dario for creating such a great team and stimulating atmosphere at his labora-
tory. Claudio’s guidance and advice were crucial for this project, invaluable for
my professional experience, and decisive for my interpretation of probability. ..

I would like to acknowledge support from the Swiss National Science Foun-
dation (grant 200021-112060) and thank EPFL for providing an outstanding re-
search environment.

I thank Prof. Felix Naef, Prof. Sven Bergmann, Prof. Gustavo Stolovitzky, and
Prof. Martin Hasler for having accepted to be members of the thesis committee,
and for their time and interest in my work.

I am truly thankful to Prof. Sven Bergmann and Prof. Gustavo Stolovitzky
for being very helpful, friendly, and open to collaboration. The many interesting
and instructive discussions with Sven strongly influenced my view on systems
biology. I owe much to Gustavo for organizing DREAM, for entrusting me with
providing the in silico challenges, and for fruitful collaboration over the past
years.

A big “Thank you!” goes to my colleagues and friends from the Laboratory
of Intelligent Systems (even you, hardware people). Their honest feedback and
critical comments were invaluable for improving my work. I would like to thank
especially Peter Diirr and Claudio Mattiussi for sharing the beauties and worries



ii ACKNOWLEDGMENTS

of AGE; Thomas Schaffter for working through nights and weekends on GNW;
Sara Mitri, my most solicited proofreader and first assistant in the kitchen; Sara
Mitri, Peter Diirr, Claudio Mattiussi, and Steffen Wischmann for proofreading
parts of this thesis; and all members of the LIS for making it four unforgettable
years.

I would like to give special thanks to my brother Fred, my second most so-
licited proofreader, for many enlightening discussions and for priceless feedback
and encouragement. Thanks also to Denise Choiniere for proofreading several
manuscripts and for her unbounded motivation and friendship.

My biggest thanks go to my parents, Monique and Peter, for their love and
unconditional support throughout all these years. Loving thanks also to my
other brother, Christian, for making sure that I have a cultural and social life
besides my Ph.D. I would also like to thank my friends from Bern for all the
turkey diners and parties—spending less time with you was the only downside
of these years in Lausanne.

Finally, I thank my wife Melusina for her love, for her understanding, and
for being the best partner I could have wished for. I am also thankful to our son
Leonardo for sleeping quietly—most of the time—despite (or maybe thanks to)

the humming of my computer as I was writing this thesis.

Lausanne, October 2009



Abstract

The expression of genes is controlled by regulatory networks, which perform
fundamental information processing and control mechanisms in a cell. Unravel-
ing and modelling these networks will be indispensable to gain a systems-level
understanding of biological organisms and genetically related diseases. In this
thesis, we present an evolutionary reverse engineering method, which allows
to simultaneously infer both the wirings and nonlinear dynamical models of
gene regulatory networks from gene expression data. The proposed method
reconstructs gene networks by mimicking the natural evolutionary process that
constructed them. This is achieved by modelling both the way in which gene net-
works are encoded in the biological genome, and the different types of mutations
and recombinations that drive their evolution, using an artificial genome called
Analog Genetic Encoding (AGE). Since AGE mimics the evolutionary forces and
constraints that shape biological gene networks, the reconstruction is naturally
guided towards biologically plausible solutions. Consequently, the search space
is explored more efficiently, and the networks are recovered more reliably, than
with alternative methods. We have confirmed the state-of-the-art performance
of AGE both in vivo (on real gene networks) and in silico (on simulated net-
works). In particular, AGE achieved winning performance in the in vivo gene
network inference inference challenge of the 2nd DREAM (Dialogue on Reverse
Engineering Assessment and Methods) conference, which consisted in predict-
ing the structure of a synthetic-biology gene network in Saccharomyces cerevisiae
from time-series data.

In vivo performance assessment of network-inference methods is problematic
because it is in general not possible to systematically validate predictions, except
for few well-characterized gene networks. Consequently, in silico benchmarks
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iv ABSTRACT

are essential to understand the performance of network-inference methods. We
have developed tools to generate biologically plausible in silico gene networks,
which allow realistic performance assessment of network-inference methods. In
contrast to previous in silico benchmarks, we generate network structures by
extracting modules from known gene networks of model organisms, instead
of using random graphs. Furthermore, we simulate network dynamics using
more realistic kinetic models, which include both mRNA and proteins. We have
implemented this framework in an open-source Java tool called GeneNetWeaver
(GNW). Using GNW we have generated benchmarks for community-wide chal-
lenges of the 3rd and 4th DREAM conference (the DREAM in silico network
challenges). Here, we assess the performance of 29 network-inference methods,
which have been applied independently by participating teams of the DREAM3
challenge. Performance profiling on individual network motifs reveals that cur-
rent inference methods are affected, to various degrees, by three types of sys-
tematic prediction errors. We find that these errors are induced by inaccurate
prior assumptions of prevalent gene-network models. The evolutionary reverse
engineering approach, which would have ranked 3rd in this challenge, can be
used with a wide range of nonlinear models. It could thus provide the neces-
sary framework for the development of models that better approximate different
types of gene regulation, thereby enabling ever more accurate reconstruction of

gene networks.

Keywords: Analog Genetic Encoding (AGE), evolutionary algorithms, gene
regulatory networks, pathway inference, reverse engineering, systems biology



Zusammenfassung

Genetische Netzwerke kontrollieren die Aktivierung von Genen und erfiillen
damit grundlegende Informationsverarbeitungs- und Kontrollaufgaben in einer
Zelle. Das Entschliisseln und Modellieren dieser Netzwerke, das sogenannte
Reverse Engineering, ist eine Voraussetzung zum besseren Verstdndnis biol-
ogischer Organismen und genetisch bedingter Krankheiten auf Systemebene.
In dieser Dissertation prasentieren wir eine evolutiondre Reverse Engineering
Methode, die es ermoglicht gleichzeitig Verbindungsmuster und nichtlineare
dynamische Modelle von genetischen Netzwerken aus Genexpressionsdaten zu
rekonstruieren. Die vorgeschlagene Methode rekonstruiert genetische Netz-
werke durch Nachahmung jenes natiirlichen evolutiondren Prozesses, der diese
urspriinglich konstruierte. Dies wird mit einem kiinstlichen Genom, dem so-
genannten Analog Genetic Encoding (AGE), erreicht. AGE modelliert sowohl
die Art und Weise in welcher Gennetzwerke im biologischen Genom codiert
sind, als auch die Mutationen und Rekombinationen, die ihre Evolution vo-
rantreiben. Da AGE die evolutionédren Einfliisse und Einschrankungen, welche
biologische genetische Netzwerke formen, nachahmt, wird die Rekonstruktion
auf natiirliche Weise zu biologisch plausiblen Losungen gefiihrt. Folglich wird
der Suchraum effizienter erkundet und die Netzwerke werden zuverldssiger
rekonstruiert als mit anderen Methoden. In experimentellen Vergleichen zeigt
AGE sowohl in vivo (bei der Rekonstruktion echter genetischer Netzwerke) also
auch in silico (bei der Rekonstruktion simulierter genetischer Netzwerke) her-
vorragende Resultate. Insbesondere erreichte AGE die beste Leistung im in
vivo Reverse Engineering Challenge der zweiten DREAM (Dialogue on Reverse
Engineering Assessment and Methods) Konferenz. Dieser bestand daraus, ein

genetisches Netzwerk von Saccharomyces Cerevisiae aus Genexpressionsdaten zu
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rekonstruieren.

Die Leistungsbewertung von Reverse Engineering Methoden in vivo ist prob-
lematisch, da es, ausser fiir einige wenige gut charakterisierte genetische Net-
zwerke, nicht moglich ist, die Prognosen systematisch zu verifizieren. Folglich
sind in silico Tests unumgéanglich, um die Leistung von Reverse Engineering
Methoden zu beurteilen. Wir haben Tools zur Erzeugung von biologisch plausi-
blen in silico Netzwerken entwickelt, welche eine realistische in silico Leistungs-
bewertung ermoglichen. Im Gegensatz zu friitheren in silico Tests generieren
wir Netzwerkstrukturen, indem wir Module aus bekannten Netzwerken von
Modellorganismen extrahieren, statt willkiirlich generierte Strukturen zu ver-
wenden. Zudem wird die Netzwerkdynamik mit realistischeren kinetischen
Modellen simuliert, welche mRNA und Proteine beriicksichtigen. Wir haben
dieses Framework im open-source Javatool GeneNetWeaver (GNW) implemen-
tiert. GNW wurde zur Erzeugung von Benchmark-Tests fiir die sogenannten
“DREAM in silico Challenges” der dritten und vierten DREAM Konferenz einge-
setzt. In dieser Dissertation bewerten wir die Leistung von 29 Reverse Engineer-
ing Methoden, welche von den Teilnehmern des DREAM3 Challenges unab-
hédngig voneinander angewandt wurden. Eine Analyse der Rekonstruktion von
elementaren Verbindungsmustern der Netzwerke zeigt, dass gegenwirtige Re-
verse Engineering Methoden durch drei Arten von systematischen Pradiktions-
tehlern beeintrdchtigt werden. Wir stellen fest, dass diese Fehler durch inexakte
Pramissen von géangigen Reverse Engineering Methoden bedingt sind. Unsere
evolutiondre Methode, welche in diesem Challenge das drittbeste Resultat erzielt
hétte, kann mit einem breiten Spektrum von nichtlinearen Modellen verwendet
werden. Sie konnte deshalb das notwendige Fundament fiir die Entwicklung
von Modellen mit einer besseren Approximation der verschiedenen Arten von
Genregulation darstellen und damit eine genauere Rekonstruktion von Gennet-

zwerken ermoglichen.

Stichworter: Analog Genetic Encoding (AGE), evolutiondre Algorithmen,

genetische Netzwerke, Inferenz, Reverse Engineering, Systembiologie



Preface

One of the exciting aspects of systems biology is that it is a highly interdisci-
plinary field. During my thesis, I had the chance to interact with researchers
from very different backgrounds, which was an extremely enriching experience.
However, I have also learned that the gap between researchers from different
tields can be wider than one would think. For example, a computer scientist
may not know what a gene network is, and a biologist may not know what
reverse engineering is. After one of my initial presentations, where I may not
have paid sufficient attention to this “gap”, a colleague with a background in ex-
perimental biology told me: “Wow, this is really great work, very interesting—I
didn’t understand a thing, though”.

Therefore, I wrote this thesis keeping in mind an audience with very differ-
ent backgrounds. This came at the cost of simplifying some of the descriptions.
Whenever possible, I prefer common terms over (potentially more accurate) tech-
nical terms. Also, I often use simple diagrams and natural language to explain
algorithms, instead of relying on more formal specifications or pseudocode,
which may not be familiar to biologists. For readers with little experience in
molecular biology, the relevant notions are explained throughout the thesis.
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Introduction

Synopsis

In this chapter, we frame the problem of gene-network reverse engineering. We discuss
advantages and limitations of state-of-the-art methods for gene-network reverse engineer-
ing, and summarize how this thesis contributes to overcome some of these limitations.
Finally, we give an overview of the structure of the thesis and situate the subject of each

chapter in the global context.



2 INTRODUCTION

1.1 Introduction

Over the past decades, molecular biology has been extremely successful at iden-
tifying the functional components of cells. The genomes of many organisms have
been sequenced and, at least for model organisms, the majority of genes, RNA
transcripts, proteins, metabolites, etc., are known and have been catalogued in
dedicated databases. However, despite extensive knowledge of individual parts,
we are far from understanding how cells work, and how their functioning could
be easily manipulated or fixed in the case of disease (Cardelli, 2005). Lazebnik
(2002) illustrates this apparent paradox with a humorous touch by describing

how biologists would try to understand and repair a radio:

We would eventually find how to open the radios and will find ob-
jects of various shape, color, and size. We would describe and classify
them into families according to their appearance. We would describe
a family of square metal objects, a family of round brightly colored
objects with two legs, round-shaped objects with three legs and so on.
[...] Inspired by these findings, an army of biologists will apply the
knockout approach to investigate the role of each and every compo-
nent. [...] Eventually, all components will be cataloged, connections
between them will be described, and the consequences of removing
each component or their combinations will be documented. This will
be the time when the question, previously obscured by the excitement
of productive research, would have to be asked: Can the information
that we accumulated help us to repair the radio? (Lazebnik, 2002)

Clearly, characterizing individual components and connections is valuable,
but not sufficient to understand the functioning of a radio, or of a biological cell.
Instead, to gain a systems-level understanding, we also need to examine how the
components dynamically interact during operation (Kitano, 2002). Or, as Sauer
et al. (2007) put it:

The reductionist approach has successfully identified most of the
components and many interactions but, unfortunately, offers no con-
vincing concepts and methods to comprehend how system proper-
ties emerge. [...] the pluralism of causes and effects in biological
networks is better addressed by observing, through quantitative mea-
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sures, multiple components simultaneously, and by rigorous data in-

tegration with mathematical models. (Sauer et al., 2007)

Though this may not be a new insight, the necessary technology to quantitatively
measure activities of cellular components and to enable a systems approach in
biology has only recently become available, thus giving rise to the field of systems
biology (Kitano, 2002; Pennisi, 2003).

The work described in this thesis can be situated in the field of computa-
tional systems biology. It is our goal to develop computational tools to unravel
and model biological systems based on quantitative experimental data. Specif-
ically, we consider the problem of unraveling and modeling gene regulatory
networks. In the rest of this chapter, we will frame this problem and outline the

contributions of this thesis in more detail.

1.2 Reverse engineering gene networks

1.2.1 Gene regulatory networks

The expression (activity) of genes in a biological cell is controlled by gene regula-
tory networks (also called genetic regulatory networks, or simply gene networks).
Gene regulatory networks are composed of a collection of genes, which may in-
teract through their RNA and protein products as illustrated in Figure 1.1. For
example, a gene may code for a protein that can bind to the DNA (a so-called
transcription factor), thereby activating or inhibiting the expression of other genes
(transcriptional regulation).

Besides transcriptional regulation, there are a variety of other important
mechanisms that are employed by cells to regulate the expression of genes, work-
ing at different levels and time scales. At the level of RNA, the transcript of a
gene may be processed in different ways (Ladd and Cooper, 2002) or silenced by
microRNAs (Ambros and Chen, 2007), for instance. Proteins may also interact
with each other or with signaling molecules, thereby activating, suppressing, or
modifying their functionality. Gene regulatory networks are complex circuits of
such diverse regulatory interactions.

Depending on the external environment and internal state of a cell, differ-
ent genes need to be expressed more or less strongly to ensure its “optimal”

functioning. For example, the lac operon (an operon is a sequence of several
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genes that are transcribed together) contains genes that allow Escherichia coli to
use the sugar lactose for growth. However, E. coli prefers the sugar glucose, if
available. Thus, the cell uses signals indicating the levels of these two sugars
as inputs to control the expression of the lac operon in such a way to optimize
the cell growth rate (Setty et al., 2003; Dekel and Alon, 2005). In multicellular
organisms, gene regulatory networks also control processes such as develop-
ment, growth, and differentiation of cells (Yuh et al., 1998). For example, since
all cells of a multicellular organism have the same genome, different cell types
are defined through differential regulation of genes. Gene regulatory networks

are thus the basic control and computational systems of cells (Bray, 1995), and

/ﬁ ? (C) Proteins (D) Simplified representation
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Figure 1.1: lllustrative example of a gene regulatory network. (A) Genes are tran-
scribed to mRNA. The transcription rate may be regulated by proteins (incoming arrows).
(B) mRNA transcripts are processed and corresponding proteins are synthesized (trans-
lation). Some RNAs have a regulatory function and are not translated, e.g., transcript D
is a microRNA that silences transcript E. (C) Regulatory proteins (transcription factors)
bind to the DNA and enhance or inhibit the expression of genes. Proteins also interact
among each other, e.g., protein E binds to protein A, thereby changing the regulatory
effect of protein A on gene B. (D) Simplified representation commonly used in gene net-
work inference when only mRNA levels are measured. Each gene is represented by a
single node that represents its mRNA transcript. The links are regulatory influences be-
tween the transcripts. Note that protein-protein interactions can not be observed at this
level. Thus, the interaction between proteins A and E would be observed only indirectly
via its regulatory effect on transcript B, leading to links A—B and E—B in the simplified
representation.
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understanding them is a necessary first step to understand cells at a system level.

Gene networks are often represented in (even more) simplified form as graphs,
where each gene is represented by a single node, and the links are regulatory
influences between the genes. In gene-network reverse engineering (see next
section), gene expression levels are often measured in terms of mRNA concen-
trations. In this case, the nodes are associated with the mRNAs of the genes, and
the regulatory influences can be thought of as the “projection” of the different
types of regulatory interactions onto the “RNA space”, as shown in Figure 1.1D.

We have given here only a very brief and simplified description of gene reg-
ulatory networks, as excellent textbooks and review articles exist on this topic
(Bolouri and Davidson, 2002; Bower and Bolouri, 2004, Browning and Busby,
2004). Throughout this thesis, we will discuss several examples of gene net-

works and their properties in more detail.

1.2.2 Reverse engineering

Reverse engineering can be defined as the process of figuring out the design of
a system by studying its structure, function, and operation. The goal of reverse
engineering is typically to understand the target system to the point where it
can be rebuilt (copied) or reengineered (modified).

Reverse engineering has a long history in traditional engineering disciplines
(Ljung, 1999), mostly to understand competitor’s products. For example, during
the second world war, the Soviets reverse engineered the American B-29 strategic
bomber bolt-by-bolt, after three such planes had to do emergency landings in the
USSR after missions over Japan. Fridlyander, a Russian engineer who worked

on reverse engineering the aluminum alloys of the B-29, writes in his memoir:

We were US allies, and the American pilots expected a warm wel-
come. However, 1.V. Stalin interned the pilots without informing the
United States and ordered a replica of the B-29 to be made; any chan-
ges could be introduced only upon his authorization. [...] There
were very many difficulties, especially with regard to 30-meter plates
for the wings, but nobody dared to appeal to Stalin. In three years,
Soviet metallurgists and designers managed to manufacture 850 Tu-4
aircraft, which were replicas of the B-29 (such rates are impossible in
the early 21st century). (Fridlyander, 2008)
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(1) Unknown gene network (5) Predicted network

(6) Validation

Perturbation
experiments

(2) Gene expression data (4) Network inference method (3) Model type

Figure 1.2: Reverse engineering of gene networks. (1) Gene network of unknown
structure (the so-called target network). (2) Gene expression levels are measured after
applying different types of perturbations to the network. (3) A modeling framework (model
type) for the gene network needs to be defined. (4) The inference method predicts one
or several networks that are consistent with the available gene expression data. (5) De-
pending on the model type, only the structure or also a quantitative model of the network
can be inferred. (6) The predicted gene network is validated with additional experiments.

Fortunately, though bombers may be built at a lower rate than under Stalin,
biological systems are being reverse engineered at an unprecedented rate. Note
that according to the definition given above, the whole field of systems biology
may be considered reverse engineering (Csete and Doyle, 2002). However, the
term is often used in a more restrictive sense, to designate methods that un-
ravel (infer) biological networks based on measurements of the activity levels of
the network components. The goal of these reverse engineering methods (also
called inference methods) is to identify the regulatory links of the network, and
possibly to infer a quantitative model that can be used to predict the network dy-
namics. Practical applications of biological network inference may have a strong
impact on biotech and pharmaceutical industries, potentially setting the stage
for rational redesign of living systems and predictive, model-based drug design
(Gardner et al., 2003).
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Figure 1.2 illustrates the principle of gene-network reverse engineering. Tech-
nologies to assay gene expression levels in terms of mRNA or protein concentra-
tions are advancing at a fast pace. Using oligonucleotide chips or quantitative
PCR for instance, it is possible to probe a set of genes of interest that are part of
an uncharacterized gene network (the target network) under different conditions.
Two types of gene expression data are often used: time series and/or steady
state. Time series data is more difficult and expensive to obtain, but may contain
more information as it shows the dynamics of the network. Steady state data
shows the state of the network at a time where it is assumed to be in equilibrium.
Time series and/or steady state gene expression levels are typically measured
after applying different perturbations to the network. In the following chapters,
we will discuss different types of perturbations and technologies to measure
gene expression levels in more detail.

The choice of a suitable inference method depends both on the type of avail-
able gene expression data, and on the type of model used to describe the target
network. Here, we give only a brief overview of the three main approaches cur-
rently used in gene-network reverse engineering. The relevant state of the art

will be discussed more extensively in the introduction of each chapter.

Statistical approaches

If a gene A regulates a gene B, their expression profiles tend to be correlated
(statistically dependent). Statistical approaches predict regulatory interactions
between genes based on measures of similarity of their gene expression profiles,
for example conditional correlation (Rice et al., 2005) or partial correlation (de la
Fuente et al., 2004; Baralla et al., 2009).

A more general measure of similarity than correlation is mutual informa-
tion. Inferring regulatory interactions based on mutual information was first
proposed by Butte et al. (2000). Recently, several methods were proposed that ex-
tend this approach by using different strategies to statistically evaluate whether
the given values of mutual information are significant, and whether they cor-
respond to causal interactions (Basso et al., 2005; Faith et al., 2007; Watkinson
et al., 2009). An excellent introduction to information-theoretic approaches in
gene network inference is given in the review of Anastassiou (2007).

In contrast to the approaches described in the next sections, statistical meth-
ods do not require the definition of a detailed probabilistic or dynamical model
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of the gene network. This is an advantage, because the choice of the “right”
model type (step 3 in Figure 1.2) can be difficult in practice, as we will see
later in this thesis. Furthermore, statistical methods are scalable to large net-
works with thousands of genes, and they require less gene expression data than
other reverse engineering methods. This comes at the cost that only the net-
work structure is being inferred, and not a quantitative model that could be
used to simulate the network and predict its response for different conditions,

for instance.

Bayesian networks

Bayesian networks are probabilistic graphical models. Within this framework,
gene expression levels are represented as random variables X;, which are the
nodes of the network. The edges of the network represent direct dependen-
cies between the random variables, i.e., direct regulatory interactions. Each
gene i has an associated conditional probability distribution P(X;|R;), where
R; = {Xj, X, ...} is the set of regulators of gene i (also called the parents of
X; in the Bayesian network). Thus, inference of Bayesian networks amounts to
finding the direct dependencies between the genes and the corresponding con-
ditional probability distributions that are most likely, given the measured gene
expression data.

Originally proposed by Friedman et al. (2000), Bayesian networks have be-
come a very popular approach for gene network inference (Friedman, 2004;
Airoldi, 2007; Needham et al., 2007). A major limitation is that Bayesian net-
works are acyclic graphs, i.e., they can’t represent feedback loops in the net-
works. This limitation can be overcome by using dynamic Bayesian networks
(Nachman et al., 2004), however, these in turn have the limitation that they can

only be used with time series data.

Dynamical models

A large class of inference methods model gene regulatory networks as dynami-
cal systems, typically using ordinary differential equations (ODEs). Within this
framework, the dynamics of gene i are described by the equation

dxi .
= =™ (L.1)
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where x; is the expression level of gene i and x is the state vector containing the
expression levels of all genes. There are two main types of inference methods
for dynamical models, methods based on linear models (i.e., the function f(-) is
linear) and methods based on nonlinear models.

The linear model, which is a first-order approximation of gene expression
dynamics, is the most widely used dynamical model for gene network inference
(D'Haeseleer et al., 1999; de la Fuente et al., 2002; Kholodenko et al., 2002; Yeung
et al., 2002; Gardner et al., 2003; Brazhnik, 2005). Its main advantage is that
it can be inferred analytically using multivariate regression and other standard
techniques of system identification (Ljung, 1999). However, gene regulation is
known to be strongly nonlinear. Hence, the linearization is generally only valid
in a small regime, i.e., close to a specific steady state.

Some nonlinear models (those that are linear in the parameters) can also
be inferred using multivariate regression (Weaver, 1999; Chen et al., 2005; Gupta
et al., 2005; Bonneau et al., 2006). However, in general, nonlinear models can’t be
inferred analytically and numerical optimization methods have to be employed
(Mjolsness et al., 1991; Reinitz and Sharp, 1995; Moles et al., 2003; Jaeger et al.,
2004b; Perkins et al., 2006; Bongard and Lipson, 2007). The evolutionary reverse
engineering method proposed in this thesis aims at inference of such nonlinear
models. Thus, we will discuss reverse engineering methods based on dynamical

models in more detail in the following chapters.

1.3 Original contribution

The contribution of this thesis is two-fold. First, we present novel approaches
and methods for modeling and reverse engineering of gene networks. Sec-
ond, we introduce a framework for in silico performance assessment of reverse

engineering methods. Specifically, the main contributions of this thesis are

* an evolutionary reverse engineering method for gene networks, which em-
beds prior biological knowledge in the reconstruction process by mimick-
ing the way in which gene networks are thought to evolve in nature (Chap-
ter 2);

e validation of the state-of-the-art performance of the evolutionary reverse

engineering method on in silico and in vivo benchmarks of an international
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reverse engineering challenge (Chapters 3 and 5);

* a log-sigmoid model of gene networks that provides a better approxima-
tion to different types of gene regulation than existing models used in gene
network inference (Chapter 3);

* tools to generate realistic in silico benchmarks for performance assessment
of inference methods and their application to create a community-wide
reverse engineering challenge (the DREAMS3 in silico challenge, Chapters 4
and 5);

* methods to evaluate the performance and identify systematic errors of re-

verse engineering methods (Chapter 5)

* insight into the capabilities and limitations of prevalent reverse engineering
methods through analysis of 29 methods that were applied by participating
teams of the DREAMS in silico challenge (Chapter 5);

¢ an exploration of ensemble methods for gene network inference, which im-
prove the accuracy of predictions by combining multiple inferred networks,
instead of relying on individual inferred networks (Chapter 6).

Author contributions

At the beginning of each chapter, the publication(s) on which it is based are
indicated. All authors of these publications have contributed to the design of
the methods and experiments of the respective chapter, and have discussed the
results and implications. I have implemented the methods and performed the
experiments, with the following exceptions. Robert Prill has implemented and
performed the overall performance evaluation of predictions in the DREAM3
in silico challenge, whereas I have implemented and performed the network-
motif performance evaluation (Chapter 5). Gustavo Stolovitzky has organized
the DREAM3 challenge (Chapter 5). Thomas Schaffter has significantly con-
tributed to the implementation of a Java tool for the generation of in silico bench-
marks (Chapters 4 and 5), and has performed the community analysis described
in Section 6.5.2.
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1.4 Organization of the thesis

The dissertation is organized in seven chapters, including the introduction (Chap-
ter 1) and the conclusion (Chapter 7). At the beginning of each chapter, we in-
dicate the publication(s) on which it is based, and we include a synopsis, which

situates the chapter in the context of the thesis and summarizes its content.

¢ Chapter 2 Evolutionary reverse engineering of gene networks This chap-
ter introduces the evolutionary reverse engineering approach and its real-
ization using Analog Genetic Encoding (AGE). We demonstrate the appli-
cation of AGE on an in silico test case, which shows that—given sufficient
gene expression data—a near-perfect reconstruction of the target network

can be obtained.

e Chapter 3 Reverse engineering an in-vivo benchmark network in yeast
After the promising results on the in silico test case of Chapter 2, we con-
tirm the state-of-the-art performance of AGE on an in vivo benchmark that
was released as an international gene network inference challenge of the
DREAM?2 conference. Furthermore, we introduce a log-sigmoid model,
and show that it provides a better approximation to different types of tran-

scriptional regulation than a standard sigmoid model.

* Chapter 4 Generating realistic in-silico benchmark networks In this
chapter, we present a method for generating biologically plausible in sil-
ico networks, which allow realistic performance assessment of network-
inference algorithms. The method is based on the extraction of modules
from known gene networks. Using the yeast transcriptional regulatory
network as a test case, we show that extracted modules have a biologi-
cally plausible connectivity because they preserve functional and structural
properties of the original network.

* Chapter 5 In-silico performance assessment in a community-wide exp-
eriment ~We present an in silico benchmark suite that we released as a
reverse engineering challenge for the DREAM3 conference. We assess the
performance of 29 methods, which have been independently applied by
different teams. Performance profiling on individual network motifs re-

veals that inference methods are affected, to various degrees, by three types
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of systematic prediction errors. The competitive performance of AGE is
confirmed.

Chapter 6 Wisdom of crowds in gene network inference In this chapter,
we consider the problem of combining the information contained within
multiple inferred networks in order to (1) make more accurate network
predictions and (2) estimate the reliability of these predictions. The poten-
tial of considering ensembles of networks, rather than individual inferred
networks, is demonstrated by showing how ensemble approaches achieve
the best performance both in the DREAM?2 and DREAM3 challenges.

Appendices The two appendices contain supplementary information for
Chapters 2 and 3.



Evolutionary reverse
engineering of gene networks

This chapter is based on the following publications:

* Marbach, D., Mattiussi, C., and Floreano, D. (2007). Bio-mimetic evolutionary
reverse engineering of genetic regulatory networks. In Proceedings of the 5th Euro-
pean Conference on Evolutionary Computation, Machine Learning and Data Mining in
Bioinformatics (EvoBIO 2007), pp. 155-165.

* Mattiussi, C., Marbach, D., Diirr, P.,, and Floreano, D. (2008). The age of analog
networks. Al Magazine, 29(3) pp. 63-76.

® Marbach, D., Mattiussi, C., and Floreano, D. (2009). Replaying the evolutionary
tape: Biomimetic reverse engineering of gene networks. Amnnals of the New York
Academy of Sciences, 1158 pp. 234-245.

Synopsis

In this chapter, we present a new approach for reverse engineering gene regulatory net-
works, which consists of using a reconstruction process that is similar to the evolution-
ary process that created these networks. The aim is to integrate prior knowledge into
the reverse engineering procedure, thus biasing the search towards biologically plausible
solutions. To this end, we propose an evolutionary method based on an artificial genome
called Analog Genetic Encoding (AGE), which abstracts and mimics the natural evolu-
tion of gene regulatory networks. We demonstrate the application of AGE on an in-silico
test case. The results of this chapter indicate that, given sufficient gene expression data,

AGE provides a perfect reconstruction of the target network.

13
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2.1 Introduction

Conceptually, there are three basic entities involved in the reverse engineering
procedure (Ljung, 1999). In the case of gene network reverse engineering, these
entities are: 1) A dataset of gene expression measurements; 2) A mathematical
model of gene regulation; 3) A search method that can find, within the frame-
work of the model, the networks that are most probable given the dataset and
possibly some prior knowledge. These three aspects must be balanced for effec-

tive reverse engineering.

The quantity and quality of available data strongly influences the choice of
a suitable model type and reverse engineering method. For example, microar-
rays simultaneously assess the expression of thousands of genes. This results in
an extremely high-dimensional search space. For such large-scale reverse engi-
neering, statistical methods (Basso et al., 2005; Faith et al., 2007) or regression
techniques relying on relatively simple dynamical models based on first-order
approximations of gene expression dynamics (Gupta et al., 2005; di Bernardo

et al., 2005) are typically used.

In this thesis, we aim at inference of small networks comprising only dozens
of genes (i.e., small modules of the complete gene network of an organism), but
using more accurate and biologically plausible, nonlinear gene network mod-
els. Microarray data is not well suited for this purpose. More selective and
accurate measurement of the expression level of single genes is possible using
quantitative Polymerase Chain Reaction (q-PCR, see next chapter) or fluorescent
transcriptional reporters, for instance. These technologies are advancing at a fast
pace. For example, Zaslaver et al. (2006) have constructed a library of transcrip-
tional reporters for the majority of promoters in E.coli, which allows the obser-
vation of gene expression rates in vivo with a temporal resolution of minutes. As
both the quantity and quality of the available gene expression data improve, we
can aim at a more faithful reconstruction of gene networks than what is possible

with the statistical methods and linear models mentioned above.

More sophisticated, nonlinear model types require the conception of ade-
quate reverse engineering algorithms that can navigate the more intricate search
space. Here, we propose to take inspiration from the evolutionary mechanisms
that have led to the emergence of complex, nonlinear gene regulatory networks
in nature, to design reverse engineering methods for these same networks. We
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present a biomimetic reverse engineering method that uses in silico evolution to
explore the search space in a similar way as gene networks are thought to evolve
in nature. In contrast to standard evolutionary or genetic algorithms (Back et al.,
2000; Floreano and Mattiussi, 2008), we model the way in which gene networks
are encoded in the biological genome, and the different types of mutations and
recombinations that drive their evolution, using a biomimetic artificial genome
called Analog Genetic Encoding (AGE) (Mattiussi, 2005; Mattiussi and Floreano,
2007).

AGE is compatible with a wide range of nonlinear gene network models, and
it permits simultaneous inference of both the network structure and the numeri-
cal parameter values of these models. More abstract, artificial genomes inspired
from gene regulatory networks have previously been used, mainly for study-
ing evolutionary network dynamics (Reil, 1999; Bongard, 2002; Watson et al.,
2004; Hintze and Adami, 2008). Unlike AGE, these artificial genomes were not
designed as tools for the evolution of dynamical models with real-valued pa-

rameters, and they are not suited for reverse engineering of gene networks.

Making effective use of prior knowledge (prior information) is crucial in any
inference problem (Jaynes, 1984), but it is particularly important in gene net-
work inference (van Someren et al., 2003). This is because gene expression data
is typically noisy and limited, leaving the inference problem underdetermined.
In other words, typically many different networks are consistent with the avail-
able gene expression data, and prior knowledge must be used to choose the
most plausible among them. Since gene networks are known to be sparsely
connected, most reverse engineering methods use explicit constraints to favor
sparse networks in the reconstruction process. This is typically done by impos-
ing a maximum number of regulators per gene (Gardner et al., 2003), iteratively
setting weak connections to zero (Wahde and Hertz, 2001), choosing the spars-
est among all possible solutions (Yeung et al., 2002; Gupta et al., 2005), or for-
mulating explicit constraints that punish connections (van Someren et al., 2003;
Kimura et al., 2005; Bonneau et al., 2006). However, the target network does not
necessarily correspond to the most parsimonious solution, and posing explicit
constraints that limit or punish connections is problematic because a priori, one

cannot be sure how densely connected an unknown gene network is.

Here, we advocate a new approach for embedding prior knowledge in a re-

verse engineering method. Instead of formulating ad hoc constraints, we employ
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Sparseness
Network Motifs
Robustness
Modularity
Evolvability
etc.

(B)

(A)

A possible design space Evolutionary constraints

Functional constraints ._

Search space -----

Figure 2.1: Evolutionary and functional constraints shape the design space of gene
networks (Kitano, 2007), which is characterized by “design principles” such as sparse-
ness, robustness, modularity, etc. (Alon, 2007a). In other words, from the space of all
possible networks (here represented as a plane), only a subset are likely to be found by
natural evolution. For example, the connectivity pattern (A) may be easier to create by
natural evolution than the connectivity pattern (B). It would thus be more likely to occur in
a natural gene network. By “replaying the evolutionary tape”, the biomimetic reverse engi-
neering approach aims at reproducing the evolutionary constraints of biological networks,
thereby partly biasing the search towards nature’s design space.

a search method that bears close similarity with the design method of the reverse
engineering target.! In the case of gene regulatory networks, the design method
is an evolutionary process that—like any other design method—implies specific
constraints on how the search space is explored. By reproducing, at a certain
level of abstraction, the evolutionary constraints of biological gene networks, the
reverse engineering process can be biased towards biologically plausible solu-
tions, thereby improving the accuracy of predictions (Figure 2.1).

In the next section, we describe the evolutionary reverse engineering method

based on AGE. We proceed by demonstrating its application using an in silico

!We use the term design method to refer to the process that created the target system without

implying that there is an intelligent designer involved. ..
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test case. The results reported in this chapter indicate that, given enough gene
expression data, AGE provides a perfect reconstruction of the target network. In
the following chapters, we will consider the more common scenario where the

data is not sufficient to uniquely determine the target network.

2.2 Evolutionary reverse engineering with AGE

The first step in the reverse engineering process generally consists in the choice
of a gene network model type (e.g., the sigmoid model that will be introduced
in Section 2.3.1). As mentioned above, AGE is not constrained to a specific
model type, but can be used with a large class of nonlinear models termed analog
networks (Mattiussi et al., 2008). An analog network is composed of a collection
of devices connected by links of different strengths. Here, devices are genes

and links correspond to regulatory interactions?

. Without limiting ourselves
to a specific model type, we assume that the gene network can be modeled
as a nonlinear dynamical system, where genes are characterized by a vector
of internal parameters p (e.g., decay rate, maximum transcription rate, etc.),
and regulatory links have a single parameter called weight w (the interaction
strength). Within this framework, reverse engineering requires the specification
of the network structure (size, topology) and the specification of the numerical
values of all gene parameter vectors p and connection weights w.

Using AGE, we encode both the network structure and the values of all nu-
merical parameters in a biomimetic artificial genome similarly to the way biolog-
ical gene networks are encoded in the genome in nature. The reverse engineering
process then amounts to the artificial evolution of gene networks that best match

the available gene expression data, as described in the following sections.

2.2.1 Artificial genome

We will now describe how networks are represented (encoded) in the AGE
genome. We would like to stress that the goal is not building a detailed model of

the workings of gene networks, but abstracting only key features believed to be

2In this thesis, we consider the simplest case where all devices are of the same type, but AGE
can also handle heterogeneous networks (Mattiussi et al., 2008). We plan to use several device
types in the future, e.g., for more accurate inference of gene-protein networks (see Section 7.2.2).
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important in their evolution. Specifically, we model three fundamental aspects of
the biological encoding, which are illustrated in Figure 2.2 and described in de-
tail below. Note that conventional genomes used in genetic algorithms typically
only capture the first of these three aspects.

1. The genome is a sequence of nucleotides. The AGE genome is constituted
by one or several chromosomes. A chromosome is a finite and nonempty
sequence of characters drawn from a genetic alphabet. The genetic alpha-
bet of the biological genome contains four letters, namely the nucleotide
bases adenine (A), guanine (G), cytosine (C), and thymine (T). In silico, we
are not limited by the substrate of DNA and are thus free to use another
genetic alphabet. In the experiments reported here, we use a 26 letter al-
phabet consisting of the characters (2-2).3

2. Genes can be located anywhere in the genome. In nature, the beginning
and the end of genes are marked by signals encoded in the DNA (promot-
ers and terminators). Analogously, we use special nucleotide patterns (GN
and TE) termed fokens to delimit genes in the artificial genome as illus-
trated in Figure 2.2. Consequently, genes may be located anywhere in the

genome. Sequences that are not part of a gene are non-coding.

Since the position of genes in the genome is not fixed, they may be moved
or copied to other positions. In other words, the genome does not have
a fixed structure, but can be reorganized by mutations, as described in
the next section. In particular, the number of genes (i.e., the size of the
gene network), but also the number of chromosomes and their length can

change in evolutionary time.

3. Implicit encoding of regulatory interactions. In a cell, the potential reg-

ulatory interaction between two genes A and B is not encoded explicitly in

*Note that the exact number of letters in the genetic alphabet is not a critical choice. A dis-
cussion of the advantages and disadvantages of large versus small genetic alphabets is given
by Mattiussi (2005). Here, we just note that the same information can be encoded in a shorter
genome sequence when using a larger genetic alphabet, which has practical and computational
advantages. Furthermore, by using a different alphabet we clearly distinguish the artificial
genome from real genome sequences and emphasize that we are not trying to build a model
that is as faithful as possible to the biological encoding, but rather a model that abstracts only
the functionally relevant concepts.
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Figure 2.2: Implicit encoding of genetic interactions in the biological and the ar-
tificial genome. (A) In a cell, transcriptional regulatory interaction between two genes
is the result of a biochemical process that depends among other things on the protein-
coding region (trans-acting region) of the first gene, which defines the characteristics of
the regulatory protein, and the cis-regulatory region of the second gene, which contains
the potential binding sites for the regulatory protein. (B) AGE abstracts the following three
aspects of the biological encoding: 1. The genome is a sequence of nucleotides. The
artificial genome is constituted by one or more chromosomes, which are sequences of
characters (a—z). 2. Genes can be located anywhere in the genome. The beginning
and the end of genes are marked by special motifs called fokens (GN and TE) analo-
gous to promoters and terminators of biological genes. 3. Implicit encoding of regulatory
interactions. The potential regulatory interaction between two genes is not encoded ex-
plicitly in the genome. Instead, genes have a cis-regulatory sequence and a frans-acting
sequence, which may interact via an interaction map that computes an “affinity” (inter-
action strength). The interaction map abstracts the complex biochemical processes of
transcription and translation illustrated on top.
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the genome, but follows implicitly from a biochemical process that depends
among other things on: (1) the protein-coding region (trans-acting region)
of gene A, which defines the characteristics of protein A, and (2) the cis-
regulatory region of gene B, which contains the potential binding sites for
the regulatory protein (Figure 2.2A; note that this is a simplified represen-
tation of transcriptional regulation, other mechanisms of gene regulation
will be discussed in Chapter 7). Thus, the strength of the interaction is
implicitly encoded by the respective cis- and trans-acting sequences. Hy-
pothetically, if we had unlimited understanding of all involved steps (tran-
scription, translation, protein folding, etc.), we could define a quantitative
model Z (Strans , Scis), Which we call interaction map, that would predict the
regulatory effect of gene A on gene B directly from the respective protein-

coding sequence sirans and cis-regulatory sequence sis.

Similarly, artificial genes in AGE have cis-regulatory sequences and trans-
acting sequences, which implicitly encode the regulatory interactions and
their strength (see Figure 2.2B). The weight w;;, which measures how strong
gene j regulates gene i, is decoded by an interaction map I that computes
an “affinity” between the two sequences: w;; = I (strans,j , Scis,i). The interac-
tion map I abstracts the complex, biological interaction map Z. It is based
on the local alignment score of the two sequences. Figuratively speaking,
the closer the match between two subsequences (“binding sites”) of s.s and

Strans, the stronger the interaction. For details, see Appendix A.

In summary, decoding of the AGE genome involves the identification of valid
genes, which must be correctly delimited by the corresponding tokens, and the
subsequent application of the interaction map to all pairs of cis- and trans-acting
sequences. The interaction strength between two sequences may be zero, in
which case there is no regulatory link between the two genes. Thus, the size of
the decoded network is given by the number of genes in the genome, and the
topology and weights w follow from the computed interaction strengths.

The exact implementation of the interaction map, described in Appendix A,
is not critical. What matters is the implicit nature of the encoding, i.e., the fact
that the N2 possible connections (where N is the network size) are encoded im-
plicitly in only N cis- and trans-acting elements. One of the consequences of the
implicit encoding is that a single mutation in a protein-coding or cis-regulatory

sequence may affect zero, one, or several regulatory interactions simultaneously.
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In contrast, in an explicit (direct) encoding a single mutation typically affects
only one characteristic of the network. This and other features discussed below
make the implicit encoding a more evolvable representation of networks than

conventional, direct encodings.

Encoding additional numerical parameters of genes

In the example of Figure 2.2B, genes are composed of two sequences s.s and
Strans, Which implicitly encode the network structure and the weights w of the
regulatory interactions. We will now describe how additional numerical param-
eters p of genes (e.g., the decay rate and the maximum transcription rate of the
model described in Section 2.3.1), are encoded in AGE.

The number of parameters depends on the type of gene network model used.
To encode P parameters, genes must have P additional sequences delimited by
tokens TE. For example, when using a model that has two numerical parameters
p1 and py per gene, a valid gene would be composed of the following sequences

s (see Figure 2.3 for an illustration)

gene := GN S¢s TE Sgrans TE Sp1 TE Spo TE (2.1)

The values of the parameters are decoded from the sequences using a map-
ping p; = J(sp,i)- The mapping is based on Center of Mass Encoding (CoME),
which is a self-adaptive, variable length encoding for real-valued parameters
(Mattiussi et al., 2007).

Invalid gene Valdgene
- [XOVEE GN ENBMIHDBEEOODFODDPWXXEEK CMREEZ 2K JUWPORE e
Non-coding Scis Strans Sp,1 Sp2 Non-coding

Figure 2.3: Syntax of a gene with two numerical parameters. In order to encode
numerical parameters p in addition to the weights of the regulatory interactions, genes
must have an additional sequence s, ; for every parameter i. Thus, a valid gene with two
gene parameters has four sequences separated by tokens TE. The token GN to the left of
the valid gene is not followed by the necessary four tokens TE, thus it is not coding.
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2.2.2 Mutation and recombination

One of the key features of AGE is the possibility to apply a wide range of bi-
ologically inspired genetic operators (mutations and recombinations) that are
known to play important roles in the evolution and complexification of natural
gene regulatory networks. From the point of view of the genetic operators, the
tokens that delimit the genes have no special meaning—there is no distinction

between tokens, coding, and non-coding genome fragments.

1. Single-nucleotide mutations

* Nucleotide substitution. Each nucleotide of the genome has probability

pn to be substituted with a random character from the genetic alpha-
bet.

* Nucleotide deletion. Each nucleotide is removed from the genome with
probability py.

* Nucleotide insertion. At any given position in the genome, a random

character from the genetic alphabet is inserted with probability pp.
2. Mutations that affect chromosome fragments

* Fragment deletion. For each chromosome, with probability p¢, the se-

quence between two randomly chosen positions is deleted.

» Fragment duplication. For each chromosome, with probability py, the
sequence between two randomly chosen positions is copied and in-
serted at a random position in the genome (the duplicated fragment

can be inserted in the same or in a different chromosome).

* Fragment transposition. For each chromosome, with probability py, the
sequence between two randomly chosen positions is removed and in-
serted at a random position in the genome (in the same or in a differ-

ent chromosome).
3. Mutations that affect entire chromosomes

® Chromosome duplication. Each chromosome is duplicated with proba-
bility pe.

* Chromosome deletion. Each chromosome is deleted with probability p..
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® Crossover. Crossover is performed with probability pcrossover When
producing offspring from two parents (see next section). We use the
crossover operator described by Mattiussi (2005), which ensures that
only homologous chromosome fragments are exchanged. Crossover
is only performed if the two parents have the same number of chro-
mosomes. If this is the case, chromosomes are paired in the order
as they appear in the genome. For every pair, a tentative crossover
point is randomly selected in the first chromosome. A subsequence
from the neighborhood of this point is then used as a template to
search for a homologous crossover point in the second chromosome
(Mattiussi, 2005). If a homologous crossover point can be established,
the corresponding chromosome fragments are swapped to form the

recombined chromosomes.

4. Mutations that affect the entire genome

* Genome duplication. The genome is duplicated with probability p,.

Some examples of these mutations, and their effects at the network level, are
shown in Figure 2.4. Since the genetic operators are applied probabilistically to
randomly chosen parts of the genome, they can invalidate genes (e.g., through
invalidation of a token) and transform the corresponding fragments into non-
coding genome, which may play the role of an evolutionarily useful repository
of genetic fragments. On the other hand, new genes can be created, for example
through the appearance of new tokens or the duplication of a genome fragment.

In the experiments reported in this thesis, we used the mutation probabilities
given in Table 2.1. AGE genomes are typically composed of a handful of chro-
mosomes and have a total length of several thousand nucleotides. With the given
mutation probabilities, there are thus on average several single-nucleotide mu-
tations per reproduced genome. In contrast, the more disruptive mutations that
affect larger chromosome fragments, entire chromosomes, or the entire genome,
have a low probability of occurrence in a given genome. We found that the ex-
act values of these parameters do not critically affect the results, as long as the
disruptive macro-mutations have a low chance to occur.
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Genome Corresponding network

(A) Before mutation
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Figure 2.4: Examples of mutations and their effects on the network. (A) On the
left, we show a possible subsequence of an AGE chromosome defining a gene. On the
right, this gene is highlighted in the complete decoded network. The darkness of the
links indicates the interaction strength. (B) Two examples of single-nucleotide mutations.
In the first example, a character is inserted in the frans-acting sequence of the gene,
potentially affecting its out-going connections. In the example shown here, a new regula-
tory link is created (1—3), and the strength of an existing link is decreased (1—2). The
second example shows a nucleotide substitution that happens to invalidate the token GN
that marked the beginning of the gene. Consequently, the sequence is now non-coding
and the gene is deleted from the network. (C) An example of a chromosome fragment
duplication that contains the highlighted gene. As a result, the gene is duplicated in the
network. Note that the copied gene inherits the interactions of the original gene.
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Table 2.1: Mutation probabilities used in the experiments of this thesis.

Mutation type Parameter  Value
Single nucleotides Pn 0.001
Chromosome fragments Pt 0.01
Entire chromosomes Pe 0.001
The entire genome Ps 0.001
Crossover Pcrossover 0.5

2.2.3 Evolutionary algorithm

The biomimetic genome, complemented with the bio-inspired mutation and re-

combination operators described above, allows us to evolve gene networks in

silico according to a given fitness criterion (the fitness function). Apart from the
bio-inspired genotype and genetic operators, the process of artificial evolution
is similar to a standard genetic algorithm (Béack et al., 2000). It consists of the

following steps, which are depicted in Figure 2.5.

0. Random initialization. Evolution starts from a population of randomly

created genomes. In the experiments reported here, genomes were initial-
ized with a random number of two to four chromosomes. Each chromo-
some is initialized with a random character sequence of length 100. To
accelerate the initial phase of evolution, we seed the genomes with ran-
domly created genes. A gene can be created by inserting a token GN at a
random position, followed by the required number of tokens TE to define
a valid gene (cf. Figure 2.3). We insert the tokens TE with a spacing of 20
characters (i.e., the sequences of the gene that they define have an initial
length of 20). The length of these sequences, as well as the number of chro-
mosomes and their length, are typically quickly adapted by evolution. The
choices for the random initialization described above are thus not critical,

they only affect the initial phase of evolution and not the final results.*

“Note that we purposely initialize the genomes at short length to avoid making them bigger

than needed, i.e., we let evolution grow them to the “right” size (the length of the genomes

typically grew to a few thousand nucleotides in the experiments reported here).
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. Selection. From the population of N genomes, which have each an as-

sociated fitness value (fitness evaluation is described below), M genomes
are selected for reproduction. Genomes with a better fitness are selected
with higher probability. Specifically, we use tournament selection (Back
et al., 2000), which consists in first choosing k genomes from the popu-
lation at random, and then selecting for reproduction the genome with
the best fitness among these k genomes. The parameter k is the so-called
tournament size, it can be used to adjust the selection pressure (the bigger
the tournament, the stronger the selection pressure). Tournament selection
is repeated M times to select M genomes for reproduction (note that the

same genome can be selected multiple times).

. Crossover and mutation. The M selected “parent” genomes are paired to

produce new “offspring” genomes. From each pair, O offspring genomes
are created by applying the crossover operator described in the previous
section (if no crossover is used, the genomes are simply copied). Finally, the

different types of mutation operators are applied to each offspring genome.

. Fitness evaluation. Next, the fitness of all genomes is evaluated. To evalu-

ate the fitness of a genome, we first decode the gene network as described
in Section 2.2.1. Remember that the decoded network is a nonlinear dy-
namical model, i.e., a system of ordinary differential equations.” The fit-
ness is a measure of how well this model reproduces the available gene ex-
pression data. The better the data fit, the better the fitness value assigned

to the genome (an example is given in the next section).

. Replacement. Finally, the genomes of the previous generation are replaced

with the newly produced offspring genomes. We use so-called elitism,
which means that the genome with the best fitness of the population (the
elite) is protected from replacement. In the experiments reported here, we
choose the population size N, the number of parents M, and the number
of offspring per parent O, so that N = M - O + 1. In other words, at ev-
ery generation the entire population, except for the elite, is replaced with

newly produced genomes.

Note that the AGE genome and the decoded network model are two completely separate en-

tities that do not interact. In contrast, in a biological cell the genome is part of the gene network,

and the dynamics of the network can affect its state, e.g., through chromatin modifications.
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Figure 2.5: The evolutionary algorithm. (0) Evolution starts from a population of ran-
domly initialized genomes. (1) Genomes with high fitness are selected for reproduction.
(2) New “offspring” genomes are produced from the selected “parent” genomes by ap-
plying crossover and mutation operators. (3) The fitness of the offspring genomes is
evaluated. This involves decoding the gene networks from the AGE genome and mea-
suring how well they reproduce the available gene expression data. The better the data
fit, the better the fitness. (4) Genomes of the previous generation are replaced by the
newly produced offspring.

The results presented in this thesis were obtained with the parameters of
the evolutionary algorithm set as specified in Table 2.2. The choice of these
parameters is not critical. They were determined heuristically based on a series

of test runs.

In summary, the evolutionary reverse engineering method consists in evolv-
ing, in silico, gene networks with an increasingly better fit to the gene expression
data. However, note that the primary goal of reverse engineering is not fitting
the data, but inferring the structure of the unknown target network. For now, we
simply assume that the network that best matches the data is the most plausible
reconstruction of the unknown target gene network. In the following chapters,
we will discuss this assumption in more detail, and consider the case where

many different networks are consistent with the available data.



28 EVOLUTIONARY REVERSE ENGINEERING OF GENE NETWORKS

Table 2.2: Parameters of the evolutionary algorithm.

Parameter Value
Population size N 101
Number of parents M 50
Number of offsprings per parent O 2
Tournament size k 2

2.3 Application to an in silico test case

When applying a novel reverse engineering technique directly to biological data,
performance evaluation is difficult because the target network is in general un-
known. Thus, we first tested AGE using gene expression data generated in
simulation from an in silico target gene network. Subsequently the inferred net-
works were compared with the target network in order to validate the results.
This is a standard approach to assess the performance of reverse engineering
methods (Mendes et al., 2003), its advantages and limitations will be discussed
in detail in Chapter 5.

The purpose of this section is to demonstrate the application of the evolution-
ary reverse engineering framework on a practical example. For this purpose, we
use a standard gene network model and noise-free data. In the following chap-
ters, we will discuss different types of gene network models and analyze the

performance of AGE in more realistic settings.

2.3.1 The test case
Gene Network Model

We demonstrate the application of AGE using a standard sigmoid model (Reinitz
and Sharp, 1995; Weaver, 1999; Wahde et al., 2001; Jaeger et al., 2004b) defined
by the system of state equations

dxl- N

E = m;- 0’( Zl w,]x]) — (51‘3(?1' (2.2)
]:

where the variable x; is the expression level of gene i, the parameter m; is the

maximum transcription rate, J; is the degradation rate, w;; represents the regula-
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tory influence of gene j on gene i, and N is the number of genes in the network.
The weight wj; is positive for enhancing, negative for repressing, and zero for
absent interactions. The so-called input function, which computes the level of
activation of the gene as a function of its inputs, is a sigmoid
1
o(z) = 1+e2
In this section, we use steady-state expression levels as input data for the

(2.3)

inverse problem, though AGE can as well be applied to time series data (see
Chapter 3). At steady state, the state equations become a set of algebraic equa-
tions

dx; )

JER;
In silico target network and expression data

We employ the topology of a nine-gene network of Escherichia coli (E. coli) de-
scribed by Gardner et al. (2003) as a test case. We refer to this topology as
SOS network, because it is part of the so-called SOS pathway involved in DNA
damage response.

There is no quantitative model of the SOS network available in the literature.
Hence, numerical parameter values for the weights w;; and the parameters p; of
the steady state equations (2.4) introduced above were sampled randomly.® The
signs of the weights were set according to the SOS network topology (positive
for enhancers and negative for repressors). The resulting in silico target gene
networks are random targets with a realistic topology, which is a biologically more
plausible approach than random generation of both topology and parameters
(see Chapter 4).

Synthetic gene expression data was obtained by applying a perturbation to
the in silico target network and computing the steady state expression levels of all
genes.” This process was repeated for different perturbations to gather the nec-
essary gene expression data for reverse engineering. We simulated two different

*Weights w;j were initialized uniformly in the range [0.15,1.5] and parameters p; in the range
[0.5,2]. These ranges were selected empirically with the goal to obtain rich nonlinear dynamics
in the target networks, i.e., so that on average the total regulatory input for the sigmoid input
functions was neither completely saturated nor constrained to a very small, almost linear regime.

"We compute the steady states numerically using Powell’s method of the GNU Scientific
Library (GSL, http:/ /www.gnu.org/software/gsl).
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types of perturbations that are commonly used for gene network inference: gene
knockouts (silencing of a particular gene), and gene over-expression, which con-
sists in artificially boosting the transcription rate of a gene. A gene knockout
can be simulated by setting the rate parameter m; to zero. Consequently, the
expression level x; of this gene at steady state will be zero. Over-expression is
simulated by doubling the parameter m; of the affected gene.

For the experiments reported below we generated expression data from the
in silico SOS network for the wild type (unperturbed network) and for 9 knock-
out and 9 over-expression experiments (knockout and over-expression of every

gene).

2.3.2 Setup of AGE for the test case

As mentioned before, one of the advantages of the evolutionary reverse engi-
neering method with AGE is that it can be easily used with different types of
dynamical models and gene expression data. In order to set up AGE for a spe-

cific model and data type, one has to:

1. Specify the number of real-valued parameters of the gene model that
have to be encoded in the AGE genes in addition to the weights. Here, we
use the sigmoid model, which has only one such parameter per gene (p; in

Equation 2.4).

2. Define the fitness function that is used to evaluate the decoded networks.
Here, we use a least squares optimization criterion. Thus, the goal of the

evolutionary algorithm is to minimize the following fitness function

N
E Xij — xZ] (2.5)

:1:

[\12

where X is the synthetic gene expression data generated from the target
network (element x;; corresponds to the expression level of gene j in exp-
eriment i) and X are the corresponding expression levels in the inferred
network. M denotes the number of different perturbation experiments and

N is the number of genes.

With this setup, we evolve sigmoid gene network models that minimize the
square error with the in silico produced gene expression data of the test case.
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2.3.3 Results

The results of a batch of ten reverse engineering runs are shown in Figure 2.6.
For each run, we record the fitness of the best individual at every generation of
the evolutionary algorithm. Naturally, in addition to a good fit of the expres-
sion data, the structure of the inferred networks should match the target gene
network. In a real biological application, the structure of the target network is
unknown, but in the in silico test case employed here the accuracy of the inferred
network models can be measured. To this end, we use the mean square error
E(8) of all parameters 8 of the reverse engineered network (including all weights
w;; and gene parameters p;), compared to the true parameter values 6 of the in

silico target gene network

E(f) =

Rl

K
Y (6, —0y)? (2.6)
=1

where 0; denotes the I-th element of parameter vector 6, and K is the total num-
ber of parameters. We refer to E(f) as prediction error of the inferred network. In
addition we also count the number of false positives and false negatives.®

The ten runs shown in Figure 2.6 were executed for 100,000 generations of
the evolutionary algorithm. All ten runs achieved a fitness below 0.1. Since
titness is a sum of square errors, the individual expression levels were fitted
extremely accurately with a relative error in the order of 1%. As the reverse
engineering algorithm optimizes the fitness, the prediction error of the inferred
networks decreases. Four out of ten runs inferred the SOS network with high
precision (final prediction error between 0.02 and 0.03).9 In other words, these
runs closely matched the structure, weights, and gene parameters of the target
network. The other runs converged at prediction errors of about 0.1.

In a set of reverse engineering runs, one would like to choose the inferred
network with the lowest prediction error E (). However, since E(f) is unknown

in a real application, this is not possible. Hence, we choose the inferred network

8We count as false positive when a target weight wjj = 0 and the absolute value of the inferred
weight [@;;| > 0.1; a false negative occurs when w;; # 0 and |@;;| < 0.1.

9Further analysis indicates that the accuracy achieved by the best runs corresponds to a lower
bound given by the discretization of the search space due to the quantization of the parameters
and weights.
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Figure 2.6: Reverse engineering the SOS network—ten runs. (A) The fitness f(X) of
the best individual of each run. (B) The corresponding prediction error E(#) of the individ-
uals plotted on the left. As the fitness is optimized (i.e., minimized), the inferred networks
match the structure and parameters of the target network with increasing accuracy (the
prediction error goes down). The run with the best final fithess is highlighted.

with the best fitness as the most plausible reconstruction of the target network.!’
Here, the best run (see Figure 2.6) achieves a fitness of 0.02 and the correspond-
ing network has a very low prediction error of 0.03 with only one false positive

and one false negative out of a total of 81 possible connections (see Figure 2.7).

In additional experiments, using different random initializations of the SOS
network’s parameter values, we have obtained the same quality of results. AGE
infers networks with an excellent data fit in every run. Roughly 40% of the
runs also achieve very low prediction errors (i.e., they correctly infer the target,
having only few false positives and false negatives). Simpler networks, for ex-
ample cascades of size six, were inferred correctly in every run. In addition, we
have have also tested a gradient descent method. As expected, gradient descent
was not successful—even when restarted many times—because it prematurely
converged to local optima with a poor data fit and high prediction error.

101n a real application, one should not just consider the inferred network with the best fitness—
which merely corresponds to the network with the highest likelihood—but analyze all well-
scoring (i.e., probable) inferred networks (see Chapter 6).
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Figure 2.7: The inferred SOS network. (A) The structure of the E.coli SOS network
(Gardner et al., 2003). Arrows are enhancing, T-ends denote inhibitory interactions. (B)
The inferred structure by the run with the best final fithess. The predicted structure is
correct except for one false positive (bold) and one false negative (encircled).

2.4 Conclusion

In this chapter, we have presented a novel approach for reverse engineering
of gene regulatory networks, which consists of using a reconstruction process
that is similar to the evolutionary process that created these networks. By tak-
ing inspiration from the mechanisms that enable the evolution of complex gene
regulatory networks in nature, we have designed an evolutionary reverse engi-
neering method based on a novel, biomimetic artificial genome (AGE).

The aim of the evolutionary approach is to effectively integrate prior knowl-
edge in the reverse engineering procedure. Because biological networks are gen-
erally sparse, most state-of-the-art inference methods include an explicit bias
towards sparse networks (Weaver, 1999; Wahde et al., 2001; Gardner et al., 2003;
Tegner et al., 2003; Gupta et al., 2005), for example by constraining the maximum
number of connections per gene. Van Someren et al. (2003) have proposed to in-
corporate prior knowledge by formulating constraints for additional features of
biological gene networks—e.g., stability, modularity, and robustness—thus lead-
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ing to a multi-criterion optimization problem. However, the formulation and
weighting of ad hoc constraints is difficult in practice. The biomimetic approach
circumvents this problem by embedding prior knowledge at a more fundamen-
tal level, namely by using a search method that bears close similarity with the
evolutionary process (the “design method”) that created the reverse engineering
target. Thus, although the selection pressure that acts on biological gene net-
works is different from the fitness function used in our evolutionary algorithm,
the exploration of the search space is similar. The goal is to reproduce—at a
certain level of abstraction—evolutionary constraints of the biological genome,
thereby biasing the reverse engineering process towards biologically plausible

solutions and improving the accuracy of predictions.

For example, the biomimetic genome implies a bias towards sparse networks
because—as in biological gene networks—regulatory interactions need to be ac-
tively evolved through creation of appropriate motifs (“binding sites”) in the cis-
and trans-acting sequences. Links tend to be pruned by random mutations and
only the links under selective pressure (i.e., those that contribute positively to
the fitness) are maintained. Thus, given the choice between a highly connected
and a sparse network that fit the data equally well, the biomimetic algorithm
reconstructs the sparse network with a higher probability—consistent with our

prior knowledge that biological networks are generally sparse.

Conventional evolutionary algorithms have been previously used for gene
network inference (Wahde and Hertz, 2001; Iba and Mimura, 2002; Kikuchi
et al., 2003; Moles et al., 2003; Spieth et al., 2004; Deng et al., 2005; Kimura
et al., 2005; Bongard and Lipson, 2007). Corne (2004) have argued that genetic
algorithms may be particularly well suited for reverse engineering biological
networks, which are themselves a product of an evolutionary process. However,
these methods are based on direct encodings, where the genome is typically a
fixed-length vector of real-valued parameters. This type of encoding is funda-
mentally different from the implicit encoding of gene regulatory networks in the
biological genome, and can thus not be expected to reproduce its evolutionary

constraints.

The approach proposed here extends the evolutionary algorithm with a bio-
inspired artificial genome, which mimics the implicit encoding of natural gene
networks. The implicit encoding represents the many possible regulatory links
of the network not explicitly in the genome, but implicitly using only one cis-
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regulatory and one trans-acting (protein-coding) sequence per gene. This has
the advantage of reducing the number of elements that must be encoded in the
genome with respect to a direct encoding. Moreover, with an implicit encoding
a single mutation can have several, non-trivial effects on the network structure,
which implies that the search space is explored in a very different way compared
to a direct encoding. In particular, AGE permits mutation of single nucleotides,
but also rearrangement, duplication, and deletion of larger chromosome frag-
ments or entire chromosomes. It is also worth pointing out that AGE has a very
high neutrality in the search space, i.e., many mutations have no immediate ef-
fect on the network (they are neutral). This is because the implicit encoding of
the regulatory interactions with the interaction map, as well as the encoding of
the additional numerical parameters with Center of Mass Encoding (CoME), are
both highly redundant (many different character sequences produce the same
numeric value). Neutrality permits continuing the exploration of the genotype
space even when the algorithm is unable to find a network with a better fitness
than those of the current population. In this way the probability of a stalling of
the search is reduced (Huynen et al., 1996). In summary, the above-mentioned
features make AGE a more evolvable genetic representation for networks than

conventional encodings.

AGE can be used with a large class of nonlinear gene network models, and
it allows simultaneous inference of both the network structure and numerical
parameter values of these models. In fact, AGE has proven to be a powerful
search method for the (re)construction of nonlinear dynamical networks in a
range of applications besides reverse engineering of gene networks. For exam-
ple, instead of using dynamical models of genes, we can use models of electronic
components to evolve analog electronic circuits (Mattiussi, 2005; Mattiussi and
Floreano, 2007). AGE has also been applied to evolve different types of arti-
ficial neural networks (Diirr et al., 2006, 2008, 2009). In all these applications,
AGE achieved state-of-the-art performance when compared to the best domain-
specific methods documented in the literature.

In this chapter, we have demonstrated the application of AGE on an in silico
test case based on the structure of a nine-gene network of E. coli (the SOS net-
work). Despite the intricate wiring of the SOS network, which includes many
interlocked feedback loops, the evolutionary reverse engineering method cor-

rectly inferred both the network structure and the numerical parameter values
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of the nonlinear model from steady-state gene expression data alone. Compared
with time-series data, steady state data is easier to obtain experimentally and its
information content is potentially higher (samples in a time-series are not inde-
pendent). Recently, several methods have been proposed for inference of linear
models from steady-state perturbation data (Gardner et al., 2003; Brazhnik, 2005;
Kholodenko et al., 2002; de la Fuente et al., 2002). Here, we demonstrate that
steady state data is also suitable for inference of nonlinear models using AGE.
The gene expression data of our test case was noise-free and simulated using
the same model type that was also used for the reverse engineering (the sigmoid
model). Thus, the results of this chapter indicate that AGE provides a near-
perfect reconstruction of the target network, given data of sufficient quality and the
“right” model type. Testing a reverse engineering method under these conditions
is important, even though they are not met in real biological applications, be-
cause it shows whether the method is able to effectively navigate the enormous
search space and find the needle (the true network structure) in the haystack.!!
However, it is clear that this only corresponds to a necessary first step in perfor-
mance assessment. In the following chapters, we will analyze the performance

of AGE in more realistic settings.

HConsidering just the network structure and not the numerical parameter values, N genes
have N? possible regulatory links and 2V ’ possible network structures (each link can be present
or not). The SOS network is thus one out of about 10%* possible wirings of the nine genes.
However, note that due to the high neutrality of the AGE genotype space, there are effectively
many needles (many different genomes that correspond to the single true network structure), in
the haystack.



Reverse engineering an i1 vivo
benchmark network in yeast

This chapter is based on the following publication:

* Marbach, D., Mattiussi, C., and Floreano, D. (2009). Replaying the evolutionary
tape: Biomimetic reverse engineering of gene networks. Amnnals of the New York
Academy of Sciences, 1158:234-245.

Synopsis

In this chapter, we assess the performance of AGE on an in-vivo benchmark that was
released as an international gene-network inference challenge within the DREAM?2 con-
ference. The goal of this challenge was to infer the structure of a five-gene network, which
was unknown to the participants, from time-series gene expression data. The network
was in fact a synthetic-biology gene network that had been constructed in yeast, hence
its structure was known to the organizers and the submitted predictions could be sys-
tematically evaluated. Before applying AGE to the DREAM?2 challenge, we considered
the choice of the gene-network model type more carefully, and conceived a principled ap-
proach to compare candidate models. This has led us to design a new log-sigmoid model,
which provides a better approximation to different types of transcriptional regulation
than a standard sigmoid model. AGE, combined with the log-sigmoid model, achieved
the best performance in the DREAM? five-gene network challenge.

37
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3.1 Introduction

In silico performance assessment of network-inference methods can give insights
into their strengths and weaknesses, as demonstrated in Chapter 5. However,
the biological mechanisms involved in gene regulation are so complex that in
silico benchmarks—despite our efforts to make them as realistic as possible—can
never replace careful characterization of performance in vivo. Unfortunately, in
vivo performance assessment is extremely difficult, because network predictions
can in general not be systematically validated. Even in a best-case scenario,
only a very small subsample of predictions are typically validated using sound
experimental assays (Stolovitzky et al., 2009). To make matters worse, the few
hand-picked predictions that are selected for validation are usually those that
were made with highest confidence, and may thus not be representative for the
complete set of predictions.

To sidestep these difficulties, Cantone et al. (2009) propose to use synthetic-
biology gene networks for in vivo benchmarking of network-inference methods.!
Synthetic biology allows the construction of small gene networks in living or-
ganisms (Becskei and Serrano, 2000; Elowitz and Leibler, 2000; Gardner et al.,
2000; Ellis et al., 2009). In contrast to the endogenous (original) gene network
of the organism, the structure of an engineered synthetic-biology network is
perfectly known. Thus, if a network-inference method is tested on a synthetic-
biology network, the predictions can be systematically validated, enabling rig-
orous performance assessment in vivo. Cantone et al. (2009) have constructed a
tive-gene network in the yeast Saccharomyces cerevisiae specifically for this pur-
pose. The network is called IRMA (In vivo Reverse engineering and Modelling
Assessment).

Cantone et al. provided two time series from the IRMA network as a reverse
engineering challenge for the second DREAM conference (DREAM?2) (Stolovitzky
et al., 2009). This challenge became known as the DREAM? five-gene network chal-
lenge. The goal of the challenge was to predict the structure of the network from
the provided time-series data. The true structure of the network was unknown
to the participants prior to submission of their predictions (in fact, participants

didn’t even know that the network was synthetic and that it was in yeast). We

1To avoid confusion between in silico and in vivo synthetic networks, I consistently call the
former in silico networks and the latter synthetic-biology networks.
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participated in the DREAM?2 five-gene network challenge to allow direct com-
parison of AGE with other methods on a blinded benchmark, i.e., in the realistic
situation where the true network is not known in advance and methods can thus
not be “tuned” to the specific benchmark.

As discussed in the previous chapters, the choice of the gene-network model
type is a crucial step in reverse engineering. Genes can be combinatorially regu-
lated in different ways, i.e., they can have different cis-regulatory input functions
(the input function of a gene describes the combined effect of its regulators on
the transcription rate). Different models, such as the linear model (D'Haeseleer
et al., 1999; Gardner et al., 2003; Tegner et al., 2003), the log-linear model (Liao
et al., 2003; di Bernardo et al., 2005; Gupta et al., 2005), the sigmoid model (Mjol-
sness et al.,, 1991; Reinitz and Sharp, 1995; Weaver, 1999; Wahde et al., 2001;
Perkins et al., 2006), or S-Systems (Voit and Savageau, 1987; Kimura et al., 2005),
approximate different types of input functions more or less well. For example,
models based on additive terms would be expected to better approximate inde-
pendent regulation (OR-type input functions) than synergistic regulation (AND-
type input functions), whereas models based on multiplicative terms may better
approximate synergistic than independent regulation. However, we can’t know
which type of interactions occur in a given network a priori. Thus, it would be
desirable to have a gene network model that approximates all of them equally
well. We have designed a novel gene network model, called the log-sigmoid
model, which fulfills this requirement.

In the next section, we introduce the log-sigmoid model. We show that, in
contrast to the standard sigmoid model, it approximates different types of syner-
gistic and independent input functions equally well. We proceed by describing
an in silico benchmark that we use to assess the performance of AGE at differ-
ent levels of noise. Finally, we discuss the synthetic-biology benchmark of the
DREAM challenge, where AGE combined with the log-sigmoid model achieved

winning performance.

3.2 The log-sigmoid gene network model

Hill-type transcription kinetics are often used when building a quantitative model
of a well studied promoter bottom-up (Bower and Bolouri, 2004; Alon, 2007a).
This type of models are also called thermodynamical models, because the kinet-
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ics of transcription factor binding are derived from thermodynamics. The level
of detail and complexity of thermodynamical models is far beyond the scope
of gene network reverse engineering, which must rely on more simple, phe-
nomenological models. Such simplified models approximate the real gene ex-
pression dynamics with generic functions, thereby abstracting implementation
details of the network components and focusing on their functionality (Reinitz
and Sharp, 1995).

The following sigmoid model is arguably the most widely used nonlinear
model in gene-network reverse engineering (Mjolsness et al., 1991; Reinitz and
Sharp, 1995; Weaver, 1999; Wahde et al., 2001; Jaeger et al., 2004b; Perkins et al.,

2006).

dx; N

o = M 0(]; wiix; + bi) — 6iX; (3.1)
This model was already introduced in the previous chapter, it is repeated here to
allow direct comparison with the log-sigmoid model below. The state variable x;
is the expression level of gene i, the parameter m; is the maximum transcription
rate, b; is a bias that relates to the basal transcription rate, A; is the degradation
rate, w;; represents the regulatory influence of gene j on gene i (positive for
enhancers, negative for repressors, and zero for no interaction), and N is the
number of genes in the network. The so-called activation or input function o (-)
is a sigmoid (different sigmoids are used in the literature, the one given here

being the most common)
1

T 1+ec
The underlying assumptions and limitations of this type of phenomenological

o(z) (3.2)

modeling are well discussed in the pioneering work of Reinitz and Sharp (1995).
Here, we propose a log-sigmoid model that is identical to the standard sig-

moid model, except that the logarithm of the inputs is used

dx; al
d_tl = mi-0'<2wi]‘ log(x;) -l-bi) — Aix; (3.3a)
=1
M (xi/ ki)™
- m- HJ—L( i) o — Aixi (3.3b)
1+ Hj:1 (x]/kz) !

The second formulation (3.3b) is equivalent to the first one, it is obtained simply
by rewriting (3.3a) and substituting b; with a different parameter k;. The reader
acquainted with biochemistry may notice the similarity of the input function in
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(3.3b) with a Hill function. Indeed, if there is only one input, it is identical to a
Hill function. Thus, the parameter k; may be loosely interpreted as a dissocia-
tion constant and the weights w;; as Hill coefficients. Note that the log-sigmoid
model has the same number of parameters as the standard sigmoid model. As
for the standard sigmoid model, positive weights w;; correspond to enhancing
interactions, negative weights correspond to repressing interactions, and zero
weights mean that there is no interaction.

Unfortunately, the choice of a particular phenomenological model type is of-
ten based on hand-waving arguments. Here, we propose to choose the model
type based on objective criteria by comparing candidate models systematically
on diverse types of input functions. To this end, we have defined eight elemen-
tary types of two-dimensional input functions, which correspond to the eight
logic functions that can be performed on two inputs (AND, NAND, OR, NOR,
IMPLIES, NIMPLIES, EQUAL, and XOR). These elementary two-input functions
are shown in Figure 3.1A. They can all be realized by biological genes (Buchler
et al., 2003) and were defined using a thermodynamical model, as described in
Appendix B.

As mentioned above, the thermodynamical model is too complicated to be
used for network-inference and must thus be approximated using phenomeno-
logical models.>? We have compared how well the eight elementary two-input
functions are approximated by the standard sigmoid model and the log-sigmoid
model. The input functions of these two models are (rewritten here for two
inputs, cf. Equations 3.1 and 3.3b)

fsigmoid (¥1,%2) = U(w1x1 + waxp + b) (3.4)

(x1/K)" (x2/k)"™
—sigmoi ’ = w w 3.5
flog Slg d(xl xz) 1 —l— (x1/k> 1(x2/k) ) ( )

The best possible fits of the two models to the eight elementary input functions

described above are shown in Figure 3.1.3 As expected, the standard sigmoid

ZFor a gene with M inputs, the thermodynamical model has in the order of 2™ free param-
eters, compared to only in the order of M free parameters for the phenomenological models
typically used in gene network inference.

3Least—square fits were obtained with nonlinear minimization in Matlab, using the trust-
region reflective Newton method of Coleman and Li (1996). Diverse initial conditions converged
to the same best-fit solutions.
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Figure 3.1: Caption on next page.
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Figure 3.1: Comparison of the standard sigmoid and the log-sigmoid model on el-
ementary two-input functions. (A) Schematic representation of the logic computation
realized by the eight elementary two-input functions. (B) Heat maps of the elementary
two-input functions. The x- and y-axis correspond to the two regulatory inputs of the
gene. The color indicates the output, i.e., the relative activation of the gene (see legend).
At an activation of zero (black), the gene is shut off, at an activation of one (white), it is
maximally activated (the transcription rate is maximal). (C-D) Least squares fits of the
standard sigmoid and the log-sigmoid model to the elementary two-input functions. (E)
Mean square error of the fits. The standard sigmoid model approximates only OR- and
NOR-type functions well. The log-sigmoid model provides a reasonable, phenomenolog-
ical approximation for all linearly separable functions. Both models fail on non-linearly
separable functions (EQUAL and XOR, results not shown).

model performs well only on OR- and NOR-type functions (independent regula-
tion). In contrast, the log-sigmoid model provides a reasonable phenomenologi-
cal approximation for both independent and synergistic regulation. Both models
fail to express non-linearly separable functions (EQUAL and XOR). This is not a
big drawback, because we expect such functions to occur rarely, if at all, in gene
regulatory networks.* These observations extend to gene input functions with
more than two regulators (results not shown).

The comparison with the elementary two-input functions helps to under-
stand how the phenomenological models approximate different types of com-
binatorial gene regulation. However, biological input functions are likely to be
intermediates between the elementary logic functions considered above. As a
real biological example, we consider the input function of the E. coli lac-operon
(an operon is a sequence of several genes that are transcribed together, i.e.,
whose mRNA is synthesized in one piece). The input function of the lac operon
has been experimentally mapped out by measuring its activation with a GFP-
plasmid system for different levels of its two inputs (Setty et al., 2003; Mayo
et al., 2006). The two inputs are the signaling molecule cyclic AMP (cAMP) and
the artificial inducer isopropyl B-D-thiogalactoside (IPTG). These molecules reg-

ulate the promoter activation indirectly via the two transcription factors cAMP

“Whereas OR-type and AND-type functions can be easily realized by biological promoters
(Mayo et al., 2006), the non-linearly separable functions would be more difficult to evolve. In
fact, we are not aware of an example of an EQUAL or XOR function realized at the level of a
single promoter.
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receptor protein (CRP) and Lacl. cAMP binds to and activates CRP, which in
turn activates transcription. IPTG binds to and deactivates the repressor Lacl.
The input function of the lac operon and the fits of the two phenomenological
models are shown in Figure 3.2. In contrast to the sigmoid model, the log-
sigmoid model provides a reasonable qualitative approximation, though it can’t
describe the four characteristic plateaus. Note that more detailed kinetic models,
which could fit the four plateaus more accurately (Setty et al., 2003; Mayo et al.,
2006), are too complicated to be used for reverse engineering of gene networks.
In summary, the following points make the log-sigmoid model an interesting

choice:

* The log-sigmoid model is identical to the standard sigmoid model, except
that the logarithm of the inputs is used. This makes it compatible with
many reverse engineering methods originally developed for the standard

sigmoid model.

¢ In contrast to the standard sigmoid model, it approximates independent

and synergistic combinatorial regulation of genes equally well.

e It is similar to a Hill-type model, the parameters k; can be loosely inter-

preted as a dissociation constants and the weights w;; as Hill coefficients.

* Some types of gene expression data are naturally treated in log space, as

discussed in the next sections.

3.3 Benchmark networks and data

3.3.1 Synthetic-biology benchmark

The design of the IRMA synthetic-biology network provided by Cantone et al.
(2009) for the DREAM2 challenge is illustrated in Figure 3.3. The network has
been constructed in the yeast Saccharomyces cerevisiae. It consists of the five genes
SWI5, GALS80O, ASH1, CBF1, and GAL4, which code for the transcription factors
Swib, Gal80, Ashl, Cbfl, and Gal4. The network has a variety of different regu-
latory interactions, including transcriptional regulation and one protein-protein
interaction (between Gal80 and Gal4), thus capturing some features of large eu-

karyotic gene networks at a small scale. Despite its small size, it has an intricate
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Figure 3.2: Comparison of the standard sigmoid and the log-sigmoid model on the
input function of the E. coli lac-operon. (A) Activation of the /ac operon measured as
a function of cAMP and IPTG concentrations. The input function has four characteristic
plateaus I-IV. (B-D) Least squares fits of the standard sigmoid and the log-sigmoid model
to the /ac input function. The standard sigmoid model fails to capture the logic of the
lac operon. The fit with the log-sigmoid model is an intermediate between an AND-type
and OR-type function. Consistent with the experimental data, promoter activity is zero
in region |, below half-maximal activation in region Il, above half-maximal activation in
region lll, and maximal in region IV.
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(A) IRMA network (B) Graph representation
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Figure 3.3: IRMA synthetic-biology benchmark network. (A) Genes are represented
by rectangles, proteins by circles. Arrows are enhancing and T-ends inhibitory interac-
tions. The network has one protein-protein interaction between Gal80 and Gal4. (B)
Graph representation of the network. Figure adapted from Stolovitzky et al. (2009).
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structure with a positive feedback loop (GAL4 — SWI5 — CBF1 — GAL4) and
two negative feedback loops (GAL4 — SWI5 — GAL80 — GAL4 and GAL4 —
SWI5 — ASH1 — CBF1 — GAL4), potentially allowing for interesting nonlinear
dynamics. The IRMA network was designed so as to be completely independent
from the endogenous yeast gene network, i.e., it is only negligibly affected by
other genes of yeast (Cantone et al., 2009).

When the yeast is cultured in a glucose medium, the IRMA synthetic-biology
network is shut off because the Gal80 repressor binds to and inactivates Gal4.
The network can be “switched on” by shifting the cells from glucose to galac-
tose, which inhibits the Gal80 repressor, thereby activating Gal4 and the other
genes of the network. For the DREAM2 challenge, Cantone et al. recorded two
time-series of the network after such a “switch-on” shift by measuring the ex-
pression level of the five genes at different time points (Stolovitzky et al., 2009).
Expression levels were measured using quantitative real-time polymerase chain
reaction (q-PCR). The first time series consists of 15 samples, taken at intervals of
3 hours, and the second time series of 11 samples, taken at intervals of 5 hours.
As mentioned above, only the two time series were provided to the participants
of the DREAM2 challenge, and we neither knew the underlying network nor the
nature of the perturbation that was applied to the network.
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3.3.2 In silico five-gene repressilator

As a further test case, we have constructed an in silico gene network of the same
size as the synthetic-biology network of the DREAM2 challenge. The struc-
ture this network is a loop of five inhibitory connections. We call this network
five-gene repressilator because of its similarity with the so-called repressilator of
Elowitz and Leibler (2000) (a loop of three inhibitory connections). We chose
this structure because it is the most simple possible wiring that supports rich
temporal dynamics of the network, including oscillations (Elowitz and Leibler,
2000) (a method to generate network structures for in silico benchmarks in a more
principled way will be introduced in the next chapter). The dynamical model of
the five-gene repressilator is based on the log-simgoid model, it is included in
Appendix B.

We used the five-gene repressilator to generate two time series with the same
number of samples as the DREAM challenge dataset described above. Different
levels of log-normal noise were added to the simulated data. We assume log-
normal noise on the data because microarrays and q-PCR assess gene expression
on a logarithmic scale. Hence, the measurement error is expected to be approxi-
mately log-normal. Furthermore, there is experimental evidence that biological
noise in gene regulation may also be approximated by a log-normal distribu-
tion (Rosenfeld et al., 2005). The simulated gene expression datasets from the

tive-gene repressilator are available upon request.

3.4 Reverse engineering method

We used AGE with the log-sigmoid model for the network inference. In this
section, we describe the setup of AGE for the experiments reported in this chap-
ter, including the fitness function used to evaluate the networks. Finally, we
explain how we analyzed the inferred networks to estimate confidence levels for

regulatory link predictions, as required for the DREAM challenges.

3.4.1 Setup of AGE

As described in the previous chapter, preparing AGE for a reverse engineering
experiment amounts to specifying the number of gene parameters and the fit-
ness function that is used to evaluate the evolved networks. Here, we use the
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log-sigmoid model. Thus, genes have three additional parameters besides the
weights w;;, namely the maximum transcription rate m;, the parameter k;, and
the degradation rate A; (cf. Equation 3.3b).

The evolved gene networks are evaluated according to how well they repro-
duce the measured data. Let J?f‘(t) denote the estimated gene expression level of
gene i at time point t of the k’th time series, obtained by simulating the evolved
gene network,” and z¥(t) the corresponding logarithmic expression level of the
measured target dataset (i.e., the negative q-PCR log-expression ratio). The fit-

ness f of the evolved network is then given by the sum of squares error
F=Y Y Y r(r) —2k(1))2  with 25(t) = log,(£5(1)) (3.6)
kit

Note that the square error is defined on a logarithmic scale, consistent with
our assumption of log-normal noise (see previous section). In other words, we
fit the networks to the original q-PCR log-expression ratios, without first trans-
forming the data to a linear scale.®

3.4.2 Predictions and confidence levels

It is clear that with the noisy and relatively small datasets available, it is im-
possible to infer regulatory links with 100% certainty. Within this context, the
goal of reverse engineering is not identifying a single “true” network, but rather
making a set of predictions of regulatory links, which can have different con-
tidence levels. Such a list of predictions is the official format in which reverse
engineering results are to be submitted to the DREAM challenge.

If the reverse engineering problem is underdetermined by the available data,

multiple runs of a stochastic inference method (as the evolutionary method pro-

5The gene networks are simulated by integrating the system of differential equations (3.3b).
The measured expression levels at the first time point are used as initial conditions. We also
tried to infer the initial conditions by encoding them as additional parameters of the genes in
AGE, however, this had no effect on the accuracy of the inferred networks. Thus, we kept to the
more simple solution of taking directly the first time points as initial conditions, even though
this may be less robust to noise. Numerical integration is done using the Runge-Kutta-Fehlberg
(4,5) method of the GNU Scientific Library (GSL, http://www.gnu.org/software/gsl).

®Using the in silico benchmark, we have confirmed that fitting the data on a logarithmic scale
allows a more faithful reconstruction of the network in the presence of log-normal noise than
fitting the data on a linear scale, as expected.
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posed here) typically converge to different networks. From N runs, we thus
expect to get a set of N different inferred networks. Analyzing such an ensem-
ble of inferred networks to make predictions and assign confidence levels is not
trivial. For now, we simply define the confidence level of a regulatory link as the
fraction of times that it was present in the set of inferred networks. Enhancing
and inhibitory links are counted separately, i.e., the predictions are signed. A
detailed discussion of different methods to extract predictions and confidence
levels from ensembles of inferred networks is the focus of Chapter 6.

3.5 Results

3.5.1 Evaluating the accuracy of predictions

We use the scoring metrics proposed by the organizers of the DREAM2 chal-
lenge to measure the quality of the network predictions. Here, we give only a
brief description of these scoring metrics, a detailed discussion is available in
Stolovitzky et al. (2009).

Network predictions are represented as lists of predicted edges with their
assigned confidence levels, constructed in decreasing order of confidence from
the most reliable to the least reliable prediction. The quality of such a list of edge
predictions is defined as the area under the precision-versus-recall (PR) curve,
a standard metric used in the field of machine learning (Davis and Goadrich,
2006).” The precision and the recall of the first k predictions of the list are

defined as

precision, = TP/k (3.7)
recall, = TP/P (3.8)

where TPy is the number of correct predictions (true positives) up to prediction
k, and P is the total number of true links (positives) in the target network. PR

curves are drawn by incrementing k from the first until the last element of the

’PR curves are closely related to the more widely known receiver operating characteristic
(ROC) curves. However, since gene networks are sparsely connected, there are many more
negatives (links that are not part of the true network) than positives (links of the true network),
i.e., the dataset is highly skewed. In this situation, PR curves are more informative than ROC
curves (Davis and Goadrich, 2006).
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ranked list of predictions. The area under the PR curve is computed as described
in Davis and Goadrich (2006).

The DREAM?2 challenge had different categories for signed and unsigned
predictions. For signed predictions, participants were asked to submit two sepa-
rate lists, one for the predicted excitatory interactions and one for the predicted
inhibitory interactions. The area under the PR curve was computed for both lists

separately (Stolovitzky et al., 2009).

3.5.2 In silico benchmark results

We first applied the reverse engineering method to the in silico data from the five-
gene repressilator at different levels of noise. The results obtained from a batch
of 25 runs on the dataset with log-normal noise of standard deviation 1.0 are
shown in Figure 3.4. All runs seemed to fit the noisy data reasonably well—the
best run with a mean square error of 0.76 (the corresponding data fit is shown in
Figure 3.4B) and the worst run with a mean square error of 1.04. Note that there
is no overfitting to the noise, i.e., the dynamics of the inferred networks are close
to the “true” noise-free dynamics of the repressilator (result not shown). Four
out of the five inhibitory links of the target network were correctly inferred in
over 95% of the runs. The fifth link was also correctly predicted, though with a

Figure 3.4: (A-C) In silico benchmark. (A) The structure of the in silico target network
(the five-gene repressilator described in Section 3.3) is a loop of five inhibitory connec-
tions. (B) Normalized gene expression levels—plotted on a logarithmic scale—for the
two time series. The points are the noisy data used as input for the reverse engineering
method. The lines are the time courses of the inferred network with the lowest square
error (best fitness). They fit the input data without overfitting to noise. (C) The regulatory
interactions of the target network were correctly predicted with high confidence levels.
Arrows are enhancing, T-ends denote inhibitory interactions. (D-F) Synthetic-biology
benchmark of the DREAM2 challenge. (D) The topology of the in vivo target network
was not disclosed prior to submission of our predictions. (E) The points are the dataset
of the DREAM2 challenge, i.e., the experimentally measured expression levels (negative
g-PCR log expression ratios). The lines are the time courses of the inferred network with
the lowest square error. (F) Compared to the in silico benchmark, the predicted regu-
latory interactions have lower confidence levels, which indicated that they would be less
accurate already before the true structure of the network was disclosed.
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Figure 3.5: PR curves of the in silico benchmark at different levels of noise. The
quality of the predictions is measured by the area under the curve (AUC). With log-normal
noise of standard deviation o = 1, AGE achieves a perfect network prediction (AUC = 1).
Up to standard deviation o = 2, the network predictions are still near perfect. For noise
with standard deviation ¢ > 2, the performance degrades rapidly.

lower confidence level of 76%. All other links had confidence levels below 60%
(Figure 3.4C). When adding more noise to the dataset (standard deviations 1.5
and 2.0), the network predictions were still near perfect: four of the five true
links were correctly identified and put at the top of the list of edge predictions.
With noise of standard deviation 2.5, the predictions were not accurate anymore.
Thus, the performance seems to be quite resistant to noise up to a critical thresh-
old (here standard deviation 2.0), after which it degrades rapidly. The PR curves

at the different levels of noise are shown in Figure 3.5.

3.5.3 Synthetic-biology benchmark results

We launched 50 runs of the evolutionary reverse engineering method on the
synthetic-biology benchmark of the DREAM2 challenge. The inferred networks
tit the g-PCR data with a mean square error between 0.36 (best run) and 0.50
(worst run). The data fit of the best run is shown in Figure 3.4E. The predictions
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Table 3.1: DREAM2 challenge rankings for excitatory, inhibitory, and undirected
unsigned link predictions. The identities of teams have not been revealed, except for
the best performers. There were nine teams in total (the numbers correspond to their
identifiers on the DREAM website).

Excitatory links Inhibitory links Undirected unsigned
Team AUC Team AUC Team AUC
Fuente et al. | 0.72 AGE 0.14 AGE 0.87
AGE 0.43 Team 107 0.13 Team 40 0.79
Team 110 0.41 Fuente et al. | 0.12 Team 80 0.78
Team 40 0.41 Team 110 0.11 Team 110 0.48
Team 107 0.35 Team 40 0.06
Team 60 0.17 Team 60 0.06
Team 119 0.17 Team 119 0.06

of the regulatory interactions (Figure 3.4F), in particular those of the inhibitory
links, have lower confidence levels than those of the in silico benchmark. Thus,
already before the true structure of the DREAM?2 network was disclosed, the
estimated confidence levels indicated (correctly, as we will see below) that the
predictions would be less accurate. Estimating confidence levels correctly is im-
portant in real biological applications to guide further experimental design. In
this case, we would have concluded that a costly validation of the network pre-
diction would be premature, and instead further gene expression data should be
obtained from additional experiments to infer the network more reliably. Evi-
dently, we didn’t have the possibility to request additional data in the DREAM?2
challenge, and we submitted our predictions for validation despite their rela-

tively low confidence levels.

Predictions for excitatory and inhibitory interactions were evaluated sepa-
rately by the DREAM organizers. In order to compare our approach with reverse
engineering methods that produce undirected and unsigned network predic-
tions, we removed the signs and directionality of our predictions (as described
in Chapter 6) and participated in these categories of the DREAM challenge as
well. The rankings of all teams for the different types of predictions, along with
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Figure 3.6: PR curves of the DREAM2 challenge predictions. The plots show the PR
curves for excitatory, inhibitory, and undirected-unsigned link predictions obtained with
AGE.

their area under the curve (AUC) scores, are given in Table 3.1. The correspond-
ing PR curves are shown for AGE in Figure 3.6.

Overall, the evolutionary method based on AGE has a very competitive per-
formance, ranking second for excitatory, first for inhibitory, and first for directed-
unsigned link predictions. The DREAM organizers have statistically analyzed
predictions by comparing them to a null hypothesis of random network predic-
tions (Stolovitzky et al., 2009). The prediction of highest statistical significance
of the challenge was obtained in the undirected unsigned category by AGE (the
tirst four most confident edge predictions were all correct). Here, we focus our
discussion on the directed signed predictions, which are the primary output of
AGE. The other categories are discussed in Chapter 6. Additional information,
including the areas under the ROC curves, are available on the DREAM web-
site.

Despite the competitiveness of our results, it has to be stressed that the ac-
curacy of the predictions of all participating teams (including us) is rather low.
According to the statistical test against random network predictions mentioned
above, the predictions of inhibitory links were not significant at a level of 5%
(Stolovitzky et al., 2009). However, note that our method assigned low confi-
dence levels to these predictions, i.e., it correctly signaled that inhibitory links
were difficult to identify from the provided data (Figure 3.4F). Even though the
results of the other categories are significant according to this test, overall, the
inferred networks are not close to the true topology.

SDREAM?2 results: http:/ /wiki.c2b2.columbia.edu/dream, we are team 55.
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The method of Baralla, Mentzen, and de la Fuente achieved the most accurate
predictions of excitatory links (Table 3.1) (Baralla et al., 2009). Their method is
actually very similar in spirit to AGE:

* Both methods are based on nonlinear dynamical models. De la Fuente
et al. use so-called S-systems, a model that may approximate—similar to
the log-sigmoid model—different types of nonlinear dynamics (Voit and
Savageau, 1987).

¢ Both methods fit the nonlinear models to the data using evolutionary algo-
rithms. De la Fuente et al. use standard evolutionary algorithms of the bio-
chemical simulation and parameter estimation software COPASI (Hoops
et al., 2006), whereas we use AGE.

¢ Both de la Fuente et al. and us use an ensemble approach (see Chapter 6) to
estimate confidence levels from a set of inferred networks. De la Fuente
et al. ran their method on different variations of the data provided in the
challenge: the first time series only, the second time series only, and both
time series combined. These three combinations were fitted both on a lin-
ear scale and on a logarithmic scale, yielding six predictions of the network
that were averaged to produce the final prediction. We only used one of
these six possible variations (both time series combined, fitted on a loga-
rithmic scale), but we run the evolutionary algorithm multiple times and
combined the predictions from the different runs. In agreement with our
results of Chapter 6, which show that the ensemble approach significantly
improved our predictions, de la Fuente et al. confirmed that averaging over
the six variations of the dataset significantly improved theirs. For example,
when using only the variation that we used (both time series on a logarith-
mic scale), they obtained a similar AUC score (0.42) than AGE (0.43) for
the excitatory interactions (Baralla et al., 2009) (see Chapter 6 for details).

We do not know the details of the methods used by the other participants
of the challenge, as they remain anonymous. However, the organizers of the
challenge conducted a survey among the participants to extract some lessons
also from the strategies that performed sub-optimally, and they concluded:

The best performers [de la Fuente et al. and AGE] modeled the five-
gene network system using the knowledge that the system consisted of a
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gene regulatory network. Even though the details are different both best
performers used kinetic models to represent the evolving system and
found the best models that fit the data. The poorly performing meth-
ods, instead, used Bayes network inference and regression models
and attempted to use probability theory to capture a causal kinet-
ics that was probably better modeled by rate equations. (Stolovitzky
et al., 2009) [emphasis added]

In summary, making use of the prior knowledge that the reverse engineering
target is a gene network was the distinguishing feature of the best-performing
methods,” which highlights the importance of devising effective strategies for
this purpose. Here, we have proposed two such strategies, one for the design
of the dynamical model and one for the design of the search method. Namely,
the dynamical model was designed by considering different types of input func-
tions that are known to occur in gene networks, and the search method was
designed by mimicking the mechanisms that enable the evolution of complex

gene regulatory networks in nature.

3.6 Conclusion

In this chapter, we described the application of AGE to a reverse engineering
challenge of the DREAM2 conference, which was based on a synthetic-biology
network in yeast. This has led us to consider more carefully the problem of how
to choose between different phenomenological model types. To this end, we
have proposed a principled approach, which consists in systematically compar-
ing the performance of candidate models on different types of independent and
synergistic transcriptional regulation. We have introduced a novel log-sigmoid
model, which provides a better approximation to these different types of regu-
lation than a standard sigmoid model. This was confirmed using experimental
data from the E. coli lac-operon.

The reverse engineering benchmarks considered here are underdetermined
by the available data. Hence, individual runs of the evolutionary algorithm con-

verge to different networks that fit the data approximately equally well. Yet, we

9A third team also integrated prior knowledge, however, using a linear model and regression
(Parisi et al., 2009).
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have shown that by considering the set of inferred networks obtained from mul-
tiple runs, the network topology of the in silico benchmark could be successfully
predicted despite high levels of noise in the gene expression data.

The evolutionary reverse engineering method based on AGE was the best
performer of the DREAM?2 five-gene-network challenge, obtaining the result
of highest statistical significance and performing competitive in all categories.
However, the accuracy of the predictions submitted by the participants in this

challenge (including us) is not satisfactory.

The fact that several state-of-the-art reverse engineering methods, applied
by different participating teams, have failed to predict the true topology with
reasonable accuracy gives strong reason to believe that the network is not identi-
tiable from the provided dataset. Even though the two time series of the dataset
were obtained after application of the same initial perturbation (a shift from a
glucose to a galactose medium), the dynamics are quite different in the two cases
(Figure 3.4E). A possible explanation for the discrepancies between the two time
series may be that the synthetic-biology network, unlike real biological networks,
has not evolved to be robust to noise (Yokobayashi et al., 2002). However, an un-
derlying assumption of deterministic models (used by de la Fuente et al. and us)
is that the target network has a certain robustness towards noise, so that stochas-
tic fluctuations are kept small. This assumption is reasonable for many biological
networks, which have evolved to give reproducible responses to stimuli despite
noise in gene expression and external conditions (Kitano, 2004). However, this
assumption may be unfounded for synthetic-biology networks, which are ex-
tremely difficult to synthesize so as to perform reliably (Yokobayashi et al., 2002;
Ellis et al., 2009). We believe that a high level of noise in the synthetic-biology
network, which reduces the information content of the data and makes com-
mon deterministic models inadequate, is the most likely explanation for the low

prediction accuracy of all participating teams.

These observations point to a possible pitfall of the synthetic-biology bench-
marking approach, namely, the fact that a synthetic network has been con-
structed in a living cell does not necessarily imply that it is a biologically plausi-
ble network. Above, we have discussed the issue of robustness. A more obvious
question is actually whether the structure of the network is biologically plau-
sible. For example, the IRMA network provided by Cantone et al. (2009) for
the DREAM challenge is certainly not representative for prokaryotic gene net-
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works, which have a hierarchical structure with very few feedback loops at the
transcriptional level (Ma et al., 2004b). The question whether the three tightly
interlocked feedback loops of the IRMA network are a common wiring pattern
in eukaryotic gene networks has not been considered by Cantone et al. (2009).
In the next chapter, we address the problem of how to generate realistic network
structures for synthetic benchmark networks. We use these network structures
to generate in silico networks, however, the same approach may also be used to

guide the design of biologically more plausible synthetic-biology networks.



Generating realistic in silico
benchmark networks

This chapter is based on the following publication:

* Marbach, D., Schaffter, T., Mattiussi, C. and Floreano, D. (2009) Generating Real-
istic In Silico Gene Networks for Performance Assessment of Reverse Engineering
Methods. Journal of Computational Biology, 16(2) pp. 229-239.

Synopsis

Reverse engineering methods are typically first tested on simulated data from in-silico
networks, for systematic and efficient performance assessment, before an application to
real biological networks. In this chapter, we present a method for generating biologi-
cally plausible in-silico networks, which allow realistic performance assessment of net-
work inference algorithms. Instead of using random graph models, which are known to
only partly capture the structural properties of biological networks, we generate network
structures by extracting modules from known biological interaction networks. Using the
yeast transcriptional regulatory network as a test case, we show that extracted modules
have a biologically plausible connectivity because they preserve functional and struc-
tural properties of the original network. In the next chapter, we will describe how we
applied this approach to generate the benchmark networks for the gene-network inference
challenge of the DREAM3 conference.
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4.1 Introduction

As discussed in the previous chapter, it is difficult to evaluate the performance
of gene network inference methods in vivo, because it is seldom possible to sys-
tematically validate the predictions of unknown interactions (Figure 4.1A). We
have seen that an elegant approach to circumvent this problem is using as bench-
marks data from in vivo synthetic-biology gene networks. Unfortunately, only
very small gene networks can be constructed with the current technology, and
it is difficult to make them perform reliably. In fact, the IRMA network de-

scribed in the previous chapter is currently the only available synthetic-biology
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Figure 4.1: Validation strategies for network inference methods. (A) The “true” net-
work structure of biological gene networks is in general unknown or only partly known,
which hinders systematic performance evaluation. (B) Since the structures of in silico
networks are known, predictions can be validated.
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benchmark. Consequently, simulated data from in silico gene networks is of-
ten the only possibility for systematic performance assessment (Figure 4.1B). In
simulation, all aspects of the networks and experiments are under full control.
This allows characterization of reverse engineering methods for different types
of data and levels of noise. In addition to performance assessment, in silico stud-
ies are of great relevance for optimal experimental design for subsequent real

biological applications (Tegner et al., 2003).

However, results are only meaningful if the in silico benchmarks are biologi-
cally plausible. Creating such benchmarks involves: (1) generating realistic gene
network structures, and (2) generating realistic data from these networks using
adequate dynamical models. In this chapter, we consider the first problem, that
is, how to generate network topologies with the same structural properties as

real gene networks.

Apart from manual design of small benchmark networks (Zak et al., 2003;
Tegner et al., 2003; Kremling et al., 2004), Erdos-Rényi and scale-free (Albert—
Barabdsi) random graph models are currently the predominant approaches for
generating in silico gene network structures (Mendes et al., 2003; van den Bul-
cke et al., 2006; Wildenhain and Crampin, 2006; Camillo et al., 2009; Haynes
and Brent, 2009). However, random graphs capture only few of the structural
properties of real biological gene networks (van den Bulcke et al., 2006). For
example, scale-free random graphs approximate the power-law degree distribu-
tion of biological gene regulatory networks, but do not model other important
properties such as modularity (Ravasz et al., 2002) or the occurrence of net-
work motifs, which are statistically overrepresented circuit elements (Shen-Orr
et al., 2002). Instead of constructing more complex random graph models, which
would be difficult to justify and might wrongly favor some reverse engineering
algorithms over others, we believe that the fairest way to compare reverse en-
gineering methods is based on real biological network structures. Nowadays,
rough drafts of the complete gene regulatory network of model organisms are
available in dedicated databases (we call such networks global interaction net-
works). Global interaction networks can be used as “templates” for generating
realistic network structures. Rice et al. (2005) have generated a single in silico
network from the structure of the global E. coli transcription network. In order
to generate multiple networks, which is necessary for collecting statistics on the
performance of reverse engineering methods, van den Bulcke et al. (2006) extract
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random subnetworks from global interaction networks.

We argue that global interaction networks should be sampled in a biologically
meaningful way for generating plausible benchmarks. The approach introduced
in this chapter is based on the extraction of modules, i.e., groups of genes that
are more highly connected than expected in a random network. We show that
topological modules extracted with the method described here correlate with
functional modules of the global interaction network. Thus, the obtained net-
work structures are realistic targets for reverse engineering, given that in a real
application, one typically tries to reverse engineer the topology of a set of func-
tionally related (and not randomly selected) genes.

4,2 Results

4.2.1 Module extraction from global interaction networks

We have devised a method to generate in silico network structures by extracting
modules from a given global interaction network (the so-called source network).
The modular subnetwork extraction method, or short module extraction method,
starts from a seed node that is selected randomly among the nodes of the source
network. From this seed, a subnetwork is grown by iteratively adding nodes
to it until a desired size is reached. At each step, from all neighbors of the
subnetwork, we select the node that leads to the highest modularity Q, where

Q = (number of edges within the subnetwork)

— (expected number of such edges in a randomized graph)

The method outlined above, and described in detail in Methods (Section 4.4),
can be applied repeatedly to extract different subnetworks of a desired size M
from a source network of size N > M by selecting different seed nodes.

Before applying the module extraction method to real biological networks,
we demonstrate it on the hierarchical scale-free network model of Ravasz et al.
(2002), which has a scale-free topology with embedded modularity similar to
many biological networks. The network consists of a repeated four-node-motif,
which is hierarchically grouped into clusters. As shown in Figure 4.2, the mod-
ule extraction method tends to first add nodes from the four-node-motif of the
seed, then it expands to other four-node-motifs of the same cluster, and only
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Figure 4.2: Module extraction vs. random sampling of a hierarchical scale-free
network. Starting from the central hub (the seed node), subnetworks of size 10 and 25
are extracted. (A) Module extraction leads to subnetworks of high modularity Q. Most
importantly, these subnetworks have the same functional building blocks and structural
properties as the source network. (B) Randomly extracted subnetworks have a low mod-
ularity Q and very different structural properties than the source network.
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if the desired size has not yet been reached it will start to include nodes from
another cluster.

The example in Figure 4.2 illustrates how subnetworks obtained with module
extraction are more representative samples of the source network structure than
randomly extracted subnetworks (random subnetwork extraction is described in
Methods). Similar to the source network, the subnetworks resulting from module
extraction are built from four-node-motifs that are organized in a hierarchical
modular structure. In contrast, the randomly sampled subnetworks do not share
these structural properties with the source network.

It has been suggested that network motifs correspond to functional units
of biological networks (Alon, 2007b). Assuming that the four-node-motifs in
the artificial source network considered here also correspond to functional units
(organized hierarchically into higher-level functional modules), the method de-
scribed above allows the extraction of different combinations of such functional
units and modules. In the following sections, we show that module extraction
indeed permits sampling of functional units and modules in real gene regulatory

networks.

4.2.2 Topological modules correlate with functional modules in

the yeast gene network

As a test source network, we used the transcriptional regulatory network of the
yeast Saccharomyces cerevisiae as described by Balaji et al. (2006). With 4,441 genes
and 12,873 interactions, this network is one of the most comprehensive drafts of
a eukaryotic transcriptional regulatory network so far.

We used module extraction and random subnetwork extraction to generate
subnetworks of sizes 25, 100, and 400 from the yeast gene network. For each size,
20 subnetworks were generated starting from different randomly chosen seed
nodes. We confirmed that the subnetworks obtained with the module extraction
method described here indeed correspond to topological modules (densely in-
terconnected subnetworks) of the gene network, as their modularity Q is positive
and significantly higher than for randomly extracted subnetworks (Figure 4.3).
For small networks of size 25 the difference of the mean modularity Q com-
pared to randomly extracted subnetworks is smaller than for large subnetworks,
but it is still statistically significant (p-value < 10~° using the Wilcoxon-Mann-
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Figure 4.3: Boxplots for Q-values of subnetworks obtained with module extrac-
tion and random subnetwork extraction from the yeast gene network. As expected,
module extraction leads to subnetworks with significantly higher modularity Q.

Whitney rank-sum test).

To check whether these topological modules also correspond to functional
modules, i.e., groups of genes that have a related function, we considered the
Gene Ontology (GO) functional annotation of the genes in the Saccharomyces
Genome Database (Hong et al., 2008). For a given subset of genes (a sub-
network), we identified all GO terms that are enriched (statistically overrep-
resented), i.e., that occur more frequently than expected compared to their back-
ground frequency in the complete set of all genes (see Methods).

With module extraction, we find a high total number of enriched GO terms:
111, 282, and 444 for the 20 subnetworks of sizes 25, 100, and 400, respectively.
For random subnetwork extraction, the total number of enriched GO terms is
much lower: only 10, 9, and 112 for the same three network sizes. As can be
seen in Figure 4.4A from the distribution of the p-values of these GO terms,
module extraction leads not only to a higher number of enriched GO terms, but
the enrichment also tends to be more significant.

In the previous paragraph we have looked at the fotal number of enriched
GO terms of the 20 subnetworks for the three sizes. Let’s now consider the
number of such terms per subnetwork. The median number of terms per subnet-
work is significantly higher for module extraction than for random subnetwork

extraction (p-value < 1073 using the Wilcoxon-Mann-Whitney rank-sum test),
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Figure 4.4: Enriched functional annotations (GO terms) in subnetworks obtained
with module extraction and random subnetwork extraction from the yeast gene
network. (A) Histograms with the total number of GO terms of 20 subnets of sizes
25, 100, and 400. Module extraction leads to a higher number of enriched GO terms,
and the enrichment tends to be more significant (lower p-values). (B) Boxplots (see
Figure 4.3 for legend) of the number of enriched GO terms per subnetwork. The median
number of enriched terms is significantly higher with module extraction, except for small
subnetworks of size 25.
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except for subnetworks of size 25, where both medians are zero (Figure 4.4B).
Remember that for small subnetworks of size 25 the modularities Q obtained
with module extraction are not very high and only slightly superior to those of
random subnetworks (Figure 4.3). Thus, it is not surprising that for this network
size, there are also fewer enriched GO terms than for larger subnetworks.

In summary, our results demonstrate that module extraction is a more bio-
logically meaningful way of sampling gene networks than random subnetwork
extraction (especially for medium and large subnetworks). Moreover, they con-
tirm the hypothesis that topological modules correspond to functional entities
of gene regulatory networks, as treated in more detail in Discussion (Section 4.3).
As an example, Figure 4.5 shows the structure and function of two extracted

modules.

4.2.3 Module extraction preserves structural properties of the

yeast gene network

After having studied the functionality of extracted subnetworks, we turned our
attention to their structural properties. First, we considered the degree distri-
butions!. We found that both modularly and randomly extracted subnetworks
have a very similar degree distribution as the complete yeast gene network: the
Pearson correlation between the degree distribution of the complete network
and the mean degree distribution of the 20 subnetworks of size 400 is 0.92 for
module extraction, and it is 0.93 for random subnetwork extraction (Figure 4.6).
Thus, both strategies yield network structures with a biologically plausible de-
gree distribution.

In the previous section we have shown that subnetworks obtained with mod-
ule extraction correlate with functional modules, whereas randomly extracted
subnetworks do not. It has been hypothesized that network motifs (statistically
overrepresented sub-circuits) are functional building blocks of gene networks
(Alon, 2007b). Thus, we would expect to find these motifs in the subnetworks ob-
tained with module extraction, and not in the randomly sampled subnetworks.

To verify this, we compared the subnetworks based on their triad significance
profile (Milo et al., 2004), which indicates for each three-node-motif the degree

IThe degree distribution P(k) is defined as the fraction of genes that have k connections
(degree k).
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Figure 4.5: Two example subnetworks of size 100 obtained with module extraction
from the yeast gene network. We have zoomed in on two groups of functionally re-
lated genes (colored circles), illustrating two different types of modules. The functional
annotation of genes is taken from the Saccharomyces Genome Database (Hong et al.,
2008) and p-values are calculated as described in Methods. (A) In the first subnetwork,
genes related to mitochondrial electron transport are enriched with a p-value < 10~1°.
The structure of this module can be described as a set of co-regulated genes. (B) The
module of the second subnetwork is a more complex regulatory circuit related to amino
acid metabolism (p-value < 107%). Note that in both subnetworks there are additional
functional modules, which are not shown here.
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Figure 4.6: Degree distributions of modularly and randomly extracted subnet-
works. The degree distribution of the complete yeast gene network compared to the
mean degree distribution of 20 subnetworks of size 400 obtained with (A) module ex-
traction and (B) random subnetwork extraction. Both strategies lead to subnetworks with
similar degree distributions as the complete network.
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to which it is statistically over or underrepresented (see Methods). As shown in
Figure 4.7, the significance profile of the complete gene network is indeed very
similar to the mean significance profile of extracted modules (it falls within the
range of one standard deviation). In contrast, randomly extracted subnetworks

have a completely different profile.

In summary, we have confirmed that subnetworks obtained with module
extraction have a biologically plausible connectivity because they preserve func-
tional and structural properties of gene networks such as degree distribution
and network motifs. Incidentally, our finding that functional modules preserve
network motifs, whereas non-functional subnetworks (random subnetworks) do
not, supports the hypothesis that network motifs are functional building blocks

of modules in gene regulatory networks.
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Figure 4.7: Network-motif profiles of modularly and randomly extracted subnet-
works. The thick line is the triad significance profile (SP) of the complete yeast gene
network. The thin lines correspond to the the mean SP of 20 subnetworks of size 400
obtained with module extraction and random subnetwork extraction. The error bars indi-
cate the standard deviation. The SP of the complete network falls within the range of one
standard deviation from the mean SP of modularly extracted subnetworks. In contrast,
the SP of randomly extracted subnetworks is opposite to the SP of the complete network.
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4.3 Discussion

We have presented a method that permits the generation of biologically mean-
ingful network structures for performance assessment of reverse engineering
methods. The method is based on the extraction of topological modules from
global interaction networks. In this chapter we have focused on gene regula-
tory networks, but the same approach could be used for other types of cellular

networks.

Using the yeast transcriptional regulatory network as a test case, we have
shown that topological modules extracted with the method described here have
a high number of enriched functional annotations, indicating that they correlate
with functional modules of this network. Furthermore, extracted modules pre-
serve structural properties of the original network, such as degree distribution
and network motifs. We conclude that subnetwork extraction is a biologically
meaningful way of sampling gene networks both from a functional and struc-

tural point of view.

The approach described in this article was originally motivated by the hy-
pothesis that topological modules in gene networks coincide with functional
modules. Such a separation of functions into more or less structurally isolated
modules is thought to favor network evolvability and robustness (Hartwell et al.,
1999). Indeed, it has been shown that topological modules in the E. coli transcrip-
tional regulatory network can be assigned specific functions (Resendis-Antonio
et al., 2005; Ma et al., 2004a). Our results from the yeast network indicate that this
may also be true for eukaryotic transcriptional regulatory networks, which have
an increased number of interconnections and cannot be as clearly decomposed

into distinct topological modules.

An example application of module extraction is the generation of realistic
benchmark networks for the DREAM challenges. For the DREAM? in silico net-
work challenges (Stolovitzky et al., 2009), Mendes et al. (2003) provided one
benchmark network with a random Erdds-Rényi structure and one with a ran-
dom scale-free structure. The goal of the challenge was to infer the structure
of these networks (which was not disclosed to the participants) from simulated
gene expression data. Interestingly, the best-performing method of this chal-
lenge (Gardner et al., 2003) had a much better performance on the Erdos-Rényi
network than on the scale-free network. Indeed, the performance of reverse en-
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gineering methods can be very sensitive to the type of network structure that
they are applied to (Rice et al., 2005; Wildenhain and Crampin, 2006; Mukherjee
and Speed, 2008). We have confirmed this by showing that the performance of
reverse engineering methods depends strongly on the frequency of the differ-
ent motifs that occur in the target network (see next chapter). Thus, for a fair
comparison of methods in the DREAM challenge, it is crucial that the bench-
mark networks have a realistic structure. We have applied the module extraction
method to provide the in silico network challenges of DREAMS3, which will be
described in the following chapter.

Here, we have focused on the generation of realistic gene network structures.
The design of dynamical models and initialization of numerical parameters to
obtain biologically plausible network dynamics are equally important challenges
(Nykter et al., 2006; Roy et al., 2008). We have developed a framework for this
purpose (see next chapter), but module extraction can be employed with any
dynamical modeling approach of choice. Note that the structure of biological
networks often confers robustness towards perturbations and variations in ki-
netic parameters (von Dassow et al., 2000). Thus, network structures obtained
with module extraction may actually facilitate the initialization of models with
biologically plausible network dynamics and enable the design of truly realistic

in silico reverse engineering benchmarks.

44 Methods

441 Subnetwork extraction

The module extraction method grows a subnetwork of desired size M starting
from a seed node, which can be selected randomly or manually from the source
network. The procedure starts with a subnetwork containing only the seed node.
Additional nodes are added iteratively until the subnetwork reaches the desired
size.

Nodes are selected for addition as follows. First, the set of all neighbors
of the subnetwork is constructed (a neighbor is a node of the source network
that is connected by a direct link to at least one node of the subnetwork). Sec-
ond, we compute for each neighbor the modularity Q of the subnetwork after
adding only this neighbor to the subnetwork. Finally, we select the neighbor
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that obtained the highest modularity Q for addition to the subnetwork (if sev-
eral neighbors obtained the same modularity, we randomly choose one of them).

The modularity Q is defined as the number of edges within the subnetwork
minus the expected number of such edges in a randomized network with the

same degree sequence (Newman and Girvan, 2004; Newman, 2006b)
Q= 1 s 4.1)
= )

where m is the total number of edges in the network, s is the index vector
defining the subnetwork (s; = 1 if node i is part of the subnetwork, s; = —1
if not), and B is the so-called modularity matrix with elements B;; = A;; — Dj;.
Ajj is the actual number of edges between node i and j, and P;; = kik;/2m is
the expected number of edges in a randomized network (k; being the degree of
node 1).

There exist methods to find a globally optimal decomposition of a complex
network into a set of modules (Newman, 2006a). Here, our goal is not the identi-
tication of optimal modules, but the extraction of diverse subnetworks of prespec-
ified size and reasonably high (not necessarily globally optimal) modularity Q.
Classical modularity detection algorithms are not well suited for this purpose.

Note that neighboring seeds may converge to identical or very similar (over-
lapping) subnetworks. The diversity of subnetworks can be increased by adding
some randomness to the module extraction: instead of always selecting the
neighbor that leads to the highest modularity Q, one can randomly select among
the top k percent of all neighbors. For k = 100%, this amounts to the random
neighbor addition strategy used by van den Bulcke et al. (2006). Varying k be-
tween 0% and 100% allows for tuning of the sampling strategy from pure mod-
ule extraction to random subnetwork extraction.

Apart from the case of neighboring seeds mentioned in the previous para-
graph, module extraction from different random seed nodes typically leads to
very diverse subnetworks. In principle, every extracted subnetwork may be
considered a realistic network structure for a reverse engineering benchmark
because they all correspond to modules of a real biological network. In prac-
tice, one may have additional criteria and discard certain types of modules. For
example, for the benchmark networks of DREAM3 we did not include subnet-
works that only contained a global regulator and its direct targets, because this

is not a very challenging network structure for a reverse engineering benchmark.
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4.4.2 Identification of enriched functional annotations

We identify enriched functional annotations in a subset of genes (a subnetwork)
using the GO::TermFinder tool (Boyle et al., 2004). GO::TermFinder calculates
p-values to determine whether any GO term occurs more frequently in the sub-
set of genes than expected by chance. The p-value of a term corresponds to
the probability of obtaining an equal or greater frequency of this term when
randomly selecting genes from the background set of genes (in our case, the
background set is the set of all genes of the network). Bonferroni correction is
used for multiple hypothesis testing.

4.4.3 Network motif significance profiles

The triad significance profile (SP) indicates for each type of three-node-subgraph
whether it is over or underrepresented in a given network. The statistical signif-

icance of triad i is measured by its Z score

_ Nreal; — (Nrand;)

i std(Nrand;) (42)

where Nreal; is the number of times the triad occurs in the network. (Nrand;)
and std(Nrand;) are the mean and standard deviation of its occurrences in an
ensemble of randomized networks with the same degree sequence. The SP cor-

responds to the normalized Z vector. For details, refer to Milo et al. (2004).
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This chapter is based on the following manuscript:

* Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano, D., and Stolovitzky,

G. Critical assessment of methods for gene network inference. In preparation.

Synopsis

Due to the difficulties of evaluating the performance of gene-network inference methods
discussed in the previous chapters, their comparative performance remains poorly under-
stood. Here, we introduce a framework for critical performance assessment of network
inference methods. We assess the performance of 29 methods, which have been indepen-
dently applied by different teams to the same in-silico benchmark suite. Performance
profiling on individual network motifs reveals that inference methods are affected, to
various degrees, by three types of systematic prediction errors. In particular, all but the
best-performing method failed to accurately infer multiple requlatory inputs (combina-
torial regulation) of genes. The results of this community-wide experiment give unique
insight into the capabilities and limitations of current network inference methods. Fur-
thermore, they confirm the competitive performance of AGE, which ranks third out of
the 29 applied methods.
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5.1 Introduction

Spurred by advances in experimental technology over the past decade, a plethora
of modeling approaches and methods for gene network inference have been
developed. However, the problem of rigorously assessing the performance of
these methods has received little attention until recently (Stolovitzky et al., 2007).
Consequently, we lack a clear understanding of the capabilities, limitations, and

comparative performance of reverse engineering methods.

To foster a concerted effort to address this issue, the DREAM (Dialogue on
Reverse Engineering Assessment and Methods) project was initiated (Stolovitzky
et al., 2007, 2009). One of the key aims of DREAM is the development of
community-wide challenges for objective assessment of methods for inference
of biological networks. Similar efforts have been highly successful in the field
of protein structure prediction (Moult et al., 2007). However, the design of such
benchmarks for biological network inference is problematic. On the one hand,
well-known networks cannot be used because their identity is not easily hidden
from the participants to create “blinded” challenges. On the other hand, there
is not yet a gold-standard experiment for establishing the ground truth (the true
network structure) for unknown in vivo networks, as discussed in Chapter 3.
Consequently, in silico benchmarks (i.e., simulated networks and data) remain
the predominant approach for performance assessment of reverse engineering
methods: in simulation, the ground truth is known and predictions can be sys-
tematically and efficiently validated (Mendes et al., 2003), as discussed in the

previous chapter.

Here, we describe a gene-network reverse engineering challenge that we or-
ganized within the DREAM3 conference, held at the Broad Institute of MIT and
Harvard in October 2008. The challenge is based on a series of in silico net-
works (Figure 5.1), which we created using a new approach for the generation
of biologically plausible network structures and dynamics. Instead of using ran-
dom graphs, we generate network structures by extracting modules from known
gene networks of model organisms, as described in the previous chapter. Here,
we introduce in addition a dynamical model that is biologically more plausible
than previously used models in gene-network reverse engineering benchmarks
(Mendes et al., 2003; van den Bulcke et al., 2006; Roy et al., 2008; Camillo et al.,
2009; Haynes and Brent, 2009). This framework allows reverse engineering meth-
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ods to be tested in silico on networks with similar types of structural properties
and regulatory dynamics as occur in biological gene networks.

With 29 participating teams, the DREAMS in silico challenge has become by
far the most widely used gene-network reverse engineering benchmark in the
community. The participants have submitted almost 400 network predictions,
which we have evaluated in a double-blind manner (Figure 5.1).

The Java tool—called GeneNetWeaver (GNW)—that was used to generate
the in silico benchmarks and to assess the predictions is available open-source at:
http://gnw.sourceforge.net.

Here, we analyze the performance of all 29 applied methods. First, we as-

(2) Synthetic gene expression data Rt ’(3) Network inference method
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Figure 5.1: Double-blind performance assessment of reverse engineering meth-
ods. Steps 1-2: From a set of in silico benchmark networks (the so-called gold stan-
dards), steady-state and time-series gene expression data was generated and provided
as a community-wide reverse engineering challenge. Steps 3-4: Participating teams
were asked to predict the structure of the benchmark networks from this data. They were
blind to the true structure of these networks. Step 5: We evaluated the submitted pre-
dictions, being blind to the inference methods that produced them. This allowed for a
double-blind performance assessment.
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sess the overall (global) prediction accuracy of the different network inference
methods. We proceed by analyzing their performance profiles on local connec-
tivity patterns (network motifs), which reveals their strengths and weaknesses
in predicting different types of sub-circuits of the networks. Finally, we assess

the performance of AGE on this benchmark suite.

5.2 Framework for critical assessment of network

inference methods

For critical assessment of gene-network inference methods, it is essential that
¢ the benchmarks are blinded,

¢ the inference methods are evaluated on several networks to assess the sta-

tistical significance of results,

¢ in addition to the overall performance, the types of prediction errors and
the relative strengths and weaknesses of the different methods are evalu-
ated.

The framework that we propose for this purpose consists of: (1) tools for gen-
erating realistic in silico benchmarks, (2) an annual community-wide network
inference challenge, and (3) tools for evaluating the performance and analyzing
the prediction errors of the applied inference methods. In the following three
sections, we briefly describe each of these elements.

5.2.1 Generating realistic in silico benchmarks

To assess the performance of gene-network inference methods in silico, it is es-
sential that the benchmarks are biologically plausible. This involves generating
realistic topologies for the benchmark networks, generating the corresponding
kinetic models, and using these models to produce synthetic gene expression
data by simulating different biological experiments.

We produce realistic network structures by extracting modules from known
biological interaction networks. In the previous chapter, we have described this
method and shown that it produces network topologies that preserve functional
and structural properties of the original network.
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Next, we generate kinetic models for the gene networks based on the ex-
tracted network topologies, as described in Methods. The kinetic models include
both transcription and translation. Instead of using phenomenological terms, the
input functions! of the genes are derived from thermodynamics (Ackers et al.,
1982), which allows us to model the rich types of transcriptional regulatory logic
that occur in biological gene networks (cf. Figure 3.1 A-B). In particular, both
independent (“additive”) and synergistic (“multiplicative”) interactions occur in
the networks.

Finally, we use the in silico gene networks to produce different types of
steady-state and time-series gene expression data that are commonly used for
gene network inference. For the DREAMS in silico challenges described below,
we generated the following types of data:

* Wild-type steady state. The steady-state gene expression levels of the un-
perturbed network.

* Gene knockouts. The steady-state levels of single-gene knockout (dele-
tion) experiments. An independent knockout is provided for every gene of
the network. A knockout is simulated by setting the transcription rate of
this gene to zero. In vivo, such experiments are commonly done by deleting
genes, manipulating their promoter sequences, or using RNA interference,
for instance (Cantone et al., 2009).

* Gene knockdowns. The steady-state levels of single-gene knockdown
experiments. A knockdown of every gene of the network is simulated.
Knockdowns are obtained by reducing the transcription rate of the corre-
sponding gene by half. The same techniques as mentioned above for the
knockouts can be used to perform knockdowns in vivo. E.g., for heterozy-
gous organisms, knockdowns can be obtained by deleting one of the two
copies of a gene.

e Time series. The time series data shows how the network recovers from
multifactorial perturbations. In contrast to the targeted genetic perturba-
tions described above (knockout or knockdown of one gene at a time), a

multifactorial perturbation affects the expression level of many genes at the

IThe input function of a gene describes the combined effect of its regulators on the transcrip-
tion rate, as described in Chapter 3.
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same time. For example, this could be a physical or chemical perturbation
applied to the cells (e.g., heat shock or a change of the growth medium),
which would—via regulatory mechanisms not explicitly modeled here—
increase or decrease the expression level of numerous genes by different
amounts. At the first measured point of the time series (t=0), the network
is in the perturbed state. At this time point the perturbation is removed,
so the trajectories show how the gene expression levels go back from the
perturbed to the wild-type state.

A more detailed description of the different types of experiments and gene ex-

pression data is given in Methods.

5.2.2 The DREAM in silico network challenge

Using the tools described in the previous section, we generated in silico bench-
mark suites that we released as community-wide challenges within the DREAM
project. Here, we focus on the first edition, the so-called DREAMS3 in silico net-
work challenge, which was held within the DREAMS3 conference. A description
of the next edition (the DREAM4 in silico network challenge), for which teams
are invited to submit predictions by October 2009, is available on the DREAM
website (http://wiki.c2b2.columbia.edu/dream).

The DREAM3 challenge had three separate sub-challenges with networks
of 10, 50, and 100 genes, respectively. For each size, five in silico benchmark
networks were generated as described in the previous section. Two are based on
topologies extracted from an E. coli transcriptional regulatory network (Shen-Orr
et al., 2002), and three are based on topologies from a yeast genetic interaction
network (Reguly et al., 2006). For each network, we generated steady-state and
time-series gene expression data as described in the previous section.

The gene expression data was provided to the participants in the form of
normalized mRNA concentrations with Gaussian noise (we did not simulate
any particular measurement technology, see Methods). The protein concentra-
tions were not provided. From the given gene expression datasets, participants
were asked to predict the underlying networks, which were unknown to them.
An archive containing the 15 benchmarks of the challenge is available on our
website (http://gnw.sourceforge.net). In addition to the provided gene
expression datasets and the topologies of the benchmark networks, the archive
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also contains supplementary information such as the noise-free datasets, the
protein concentrations, and the kinetic models of the gene networks. The kinetic
models can be loaded with GNW to generate additional datasets, for example
with other perturbations or types of noise than those used in the challenge.

5.2.3 Evaluating the performance of network inference methods

In the DREAM3 challenge, we exclusively evaluated the ability of inference
methods to predict the presence of regulatory interactions between genes (some
inference methods may predict additional aspects of the networks, which were
not evaluated). Participants were asked to submit network predictions in the
form of ranked lists of predicted edges. Each prediction was a list of edges
ordered according to the confidence of the predictions, so that the first entry
corresponds to the edge predicted with highest confidence (Figure 5.2B). A dis-
cussion of this format is given by Stolovitzky et al. (2009).

For networks of size 10, 50, and 100, the length of a complete list of predic-
tions is 90, 2450, and 9900 edges (the number of possible edges in the network
without autoregulatory interactions, which were not asked to be predicted). Ac-
cording to this format, a perfect network prediction is a list of all possible edges
of the network, ordered such that the true edges of the target network are at
the top of the list. We statistically evaluate predictions by computing a p-value
indicating the probability that a random list of edge predictions would be of the
same or better quality (see Figure 5.2 and Methods).

As mentioned in the previous section, each sub-challenge has five networks.
To participate, teams were required to submit a prediction for each of the five
networks. We computed an “overall p-value” by taking the mean of the p-values
of the five network predictions. The final score used to assess the performance
is the negative log-transformed overall p-value: for example, an overall p-value
of 1072 gives a score of 2, an overall p-value of 1073 gives a score of 3. Thus,
larger scores indicate smaller p-values, hence better predictions (see Methods for
details).

This approach to measure the overall accuracy of network predictions will be
applied in the next section to evaluate the performance of inference methods in
the DREAMS3 challenge. In Section 5.3.2, we will then introduce an approach to
analyze the different types of prediction errors that network inference methods

make.
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Figure 5.2: Example illustrating the evaluation of network predictions. (A) The
true topology of the target network (the example shown here is the first network of the
DREAMS3 challenge). (B) Example of a submitted network prediction (it is the prediction
of the best-performing team). The format is a ranked list of predicted edges, represented
here by the vertical colored bar. The white stripes indicate the true edges of the target
network. A perfect prediction would have all white stripes at the top of the list. The inset
shows the first ten predicted edges: the top four are correct, followed by an incorrect
prediction, etc. The color indicates the precision at that point in the list. Until the first
four predictions, the precision is 1 (4 correct predictions out of 4 predictions). After the
first ten predictions, the precision is 0.7 (7 correct predictions out of 10 predictions). (C)

The network prediction is evaluated by computing a p-value that indicates its statistical
significance compared to random network predictions.
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5.3 Results

5.3.1 Performance assessment of 29 network inference methods

In total, 29 teams participated in the challenge. The majority of teams submitted
predictions for all three network sizes (10, 50, and 100 genes): the correspond-
ing sub-challenges had 29, 27, and 22 participants, respectively, which makes
a total of 390 submitted network predictions (there are five networks of each
size). According to a survey that we conducted among the participants, the ap-
plied inference methods span a wide range of approaches commonly used to
reverse-engineer gene networks (data not shown), including statistical methods
(Yip et al., 2009), Bayesian networks (Li et al., 2009), and methods based on dy-
namical models (Gardner et al., 2003; de la Fuente and Makhecha, 2006, Bonneau
et al., 2007) (references describe methods that were applied by some of the teams
that agreed to disclose their participation). The scores of the top ten teams for
each sub-challenge are shown in Figure 5.3. The complete set of results, includ-
ing the AUROC, AUPR, and p-values for all network predictions, is available on
the DREAMS3 website (http://wiki.c2b2.columbia.edu/dream).

The method of Yip et al. (2009), which will be further discussed in the follow-
ing sections, obtained the best performance on all three network sizes. The over-
all p-values of their predictions are several orders of magnitude more significant
than those of the next-best methods. On networks of size 100, the predictions of
Yip et al.’s method were the only ones with a p-value below the numerical pre-
cision of Matlab (indicated as a score of infinity in Figure 5.3C). A representative
prediction of Yip et al.’s method is shown in the example of Figure 5.2: most
links are correctly recovered, but there are also some incorrect edges among the
high-confidence predictions at the top of the list (the origin of these errors will
become apparent in the network-motif analysis in Section 5.3.2).

As can be seen in Figure 5.3, several other methods achieved highly signifi-
cant predictions. For example, on networks of size 100, the three next best teams
after Yip et al. all had scores above 30 (i.e., overall p-values smaller than 10~30).
However, for the majority of methods the precision of the predictions is rather
low (< 0.5, blue tones in Figure 5.3). In addition, a surprisingly large number of
methods (11 out of the 29) produced, on average, network predictions that are
not significantly better than random guessing (overall p-values > 0.01).

The performance of most methods is consistent on different network sizes.
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Figure 5.3: Performance of the best ten teams for each of the three sub-challenges.
The bar plots on top show the overall scores, and the color bars below show the precision
of the corresponding lists of predictions, as explained in Figure 5.2 (since each sub-
challenge has five networks, this is the average precision of the five lists). In addition
to the submitted network predictions (methods A-O), we always show the plots for a
hypothetical perfect prediction P (all true edges at the top of the list) and a randomly
generated prediction R, which allows to visually appreciate the quality of the submitted
predictions. Remember that for networks of size 10, 50, and 100, the length of the lists
is 90, 2450, and 9900 edges. Note that for networks of size 50 and size 100, we have
zoomed in to the top 20% and 10% of the lists, respectively.

From the 29 methods that were applied to the networks of size 10, all but two
were also applied to the networks of size 50. The two teams that participated
only in the sub-challenge with networks of size 10 did not benefit from spe-
cializing on small networks. They ranked 22nd and 27th, and their predictions
were not significantly better than random predictions (overall p-values of 0.24
and 0.44, respectively). After removing these two methods from the ranking, we
compared the relative performance of methods on networks of size 10 and size
50 (Figure 5.4A). The methods of Yip et al. (2009) and Li et al. (2009) ranked first
and second in both sub-challenges. The methods from ranks 3 to 7 are also the
same for both network sizes, though not in the same order. Thus, the methods
that performed best on the small networks of size 10 also performed best on the

intermediate networks of size 50.

Similar observations can be made when comparing the ranking of the 22
methods that were applied both to networks of size 50 and 100 (Figure 5.4B). In
this case, the correlation between the two rankings is even stronger. A notable
exception is the method of Li et al. (2009), which ranked second on networks of
size 10 and size 50, but ranked only 15th on networks of size 100. Even though
the predictions of this method were of excellent quality for networks of size 50
(overall p-value < 10731), they were barely significant for networks of size 100
(overall p-value = 0.01). In summary, the ranking is similar in the three sub-
challenges, with few exceptions. Thus, the performance of most methods was
not dependent on the network size.
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Figure 5.4: The performance of most methods is consistent on different network
sizes. (A) The rankings of the 27 teams that participated both in the sub-challenges
with networks of size 10 and 50. The methods with a good rank on networks of size
10 also performed well on networks of size 50 (points in the bottom-left corner of the
plot). (B) The rankings of the 22 teams that participated both in the sub-challenges with
networks of size 50 and 100. The ranking is very similar in the two sub-challenges. A
notable exception is the method of Li et al. (2009), which had an excellent performance
on networks of size 10 and 50 (2nd place) but a poor performance on networks of size

100 (15th place, indicated by the arrow).
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5.3.2 Network-motif analysis reveals three types of systematic

prediction errors

In the previous section, we have evaluated the overall performance of the ap-
plied inference methods. However, in order to understand the differences in
performance of inference methods, we need to know what types of prediction
errors they make. To this end, we have analyzed the performance of inference
methods on the basic building blocks of networks, the network motifs (Milo
et al., 2002). More precisely, we have analyzed how well the inference methods
predict edges pertaining to different network motifs, which revealed systematic

prediction errors.

We use the inference method applied by Madar and Bonneau (Bonneau et al,,
2006, 2007), which ranked second on the networks of size 100, as an illustrative
example to introduce the network-motif analysis. A more detailed description is
given in Methods. The first column of Figure 5.5A shows the four types of motifs
that occur in the benchmark networks of the challenge (fan-in, fan-out, cascade,
and feed-forward loop), while the second column shows how well their links
were predicted, on average, by the inference method of Madar and Bonneau. It
can be seen that not all links of the motifs are predicted with the same median
prediction confidence (see Section 5.5.4 for a definition)—some are predicted less
reliably (at lower confidence) than others. Furthermore, some links tend to be

incorrectly predicted, for example the “shortcut” (1—3) in the cascade motif.

In order to evaluate whether some edges of motifs were systematically pre-
dicted less reliably than others, we compared their median prediction confidence
to the background prediction confidence, which is the median prediction confidence
of all links of the network (independently of which motifs they belong to, see
Methods for details). If the motifs had no effect on the prediction confidence,
the edges pertaining to different motifs would all be inferred, on average, with
the background prediction confidence. This is not the case, as can be seen in
Figure 5.5C, which shows the divergence of the median prediction confidence of
motif edges from the background prediction confidence. We evaluated the statis-
tical significance of the divergence at a level of 0.01 using a two-sided Wilcoxon-
Mann-Whitney rank-sum test and Bonferroni correction for multiple Hyothesis
testing. We found three types of significant, systematic errors in the prediction
of motifs (cf. Figure 5.5C):
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e The fan-out error corresponds to a tendency to incorrectly predict edges
between co-regulated nodes (2—3 and 3—2). The expression levels of co-
regulated genes are often correlated. The fan-out error occurs when this

correlation is wrongly interpreted as an interaction between the two genes.

* The fan-in error is a reduced prediction confidence for multiple inputs. In
other words, fan-in links (2—1 and 3—1) are predicted less reliably than
other links of the target network. This error is due to difficulties in accu-
rately modeling and inferring combinatorial regulation of genes (regulation

of genes by several inputs).

* The cascade error is a tendency for incorrectly predicted “shortcuts” in
cascades. This error occurs when indirect regulation (1—2—23) is misinter-
preted as direct regulation (1—3). In addition to the incorrectly predicted
link (1—3), there is often a slightly reduced prediction confidence for the
links (1—2) and (2—3).2 This may be due to incorrect prediction of the
shortcut (1—3) instead of (and not in addition to) the true links (1—2—3).

¢ The three links of feed-forward loops (FFLs) all have a reduced prediction
confidence. This can be explained by the same types of systematic errors
that occur in fan-ins and cascades. The links 1—3 and 2—3 of FFLs form
a fan-in, and are thus affected by the fan-in error. The links 1—2—3 form
a cascade, thus, they have a reduced prediction confidence for the same

reason as the corresponding links in the cascade motif.?

We performed the network-motif analysis for all inference methods that were

applied to the networks of size 50 and 100 (networks of size 10 are too small for

2In the example of Figure 5.5C, the reduced prediction confidence for the link 2—3 is not
statistically significant at a level of 0.01, but for other inference methods we do observe a signif-
icantly reduced prediction confidence for this link (see Figure 5.6C).

30ne minor effect remains to be explained: in FFLs, the prediction confidence was often
slightly lower for edge 1—3 than for edge 2—3. For example, this is the case for all except Yip
et al.’s method in Figure 5.6C. It seems that in addition to the fan-in error, which affects both
these edges, the edge 1—3 is also affected by an additional, minor source of errors, which could
be called the FFL-error. This error occurs when a method interprets the variation of gene 3 to
be due solely to the indirect regulation via gene 2 (1—2—23), instead of both the indirect and the
direct regulation (1—-2—3 and 1—3). However, since this effect was negligible compared to the
fan-in error that affects these edges, we did not consider it as a fourth type of main prediction

error.
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a statistically significant analysis). We did not observe other types of systematic
errors than the three discussed above (except for some methods that failed to
correctly infer the directionality of links). However, we found that inference
methods are affected to various degrees by these errors—they have different error
profiles. This can be clearly seen in Figure 5.6, which shows the network-motif
analysis for the best five inference methods on the networks of size 100. Whereas
some inference methods are more robust to certain types of error, they are more
strongly affected by other types of errors. For example, only methods E, C, and F
are affected by the fan-out error. All methods are affected by the fan-in error, but

the method of Yip et al. to a lesser degree than the others. However, the method

Figure 5.5: Systematic errors in the prediction of motifs (figure on previous page).
(A) The first column shows the true connectivity of the motifs. As an example, we show
to the right how the motifs were predicted on average by the method that ranked sec-
ond on the networks of size 100 (Bonneau et al., 2007). The level of gray of the links
indicates their median prediction confidence. (B) The background prediction confidence,
which is the median prediction confidence of all links of the network, independently of
which motifs they belong to. (C) The divergence of the prediction confidence of the differ-
ent motif edges from the background prediction confidence. The darkness of the links is
proportional to the difference of the motif prediction confidence (A) from the background
prediction confidence (B). Dashed arrows indicate a reduced, solid arrows an increased
median prediction confidence. All differences are statistically significant (see main text),
except for the marked edge (*). We can identify three types of systematic prediction er-
rors: the fan-out error corresponds to a tendency for incorrectly predicted edges between
co-regulated nodes; the fan-in error is a reduced prediction confidence for multiple in-
puts; and the cascade error is a tendency for incorrectly predicted “shortcuts” (1—3). On
feed-forward loops (FFLs), we observe the same type of error as on fan-ins (reduced pre-
diction confidence for multiple inputs). The reduced prediction confidence for links 1—2
in cascades and FFLs is discussed in the main text.

Figure 5.6: Inference methods are differentially affected by systematic prediction
errors (figure on next page). Same as Figure 5.5, but for the best five inference meth-
ods on the networks of size 100. (A) Median prediction confidence of the different motif
edges. Note that methods C and F apparently can’t distinguish the directionality of edges.
(B) The background prediction confidence. (C) Divergence of the median prediction con-
fidence of motif edges (A) from the background prediction confidence (B). All differences
are statistically significant (see main text), except for the three marked edges (*).
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of Yip et al. is more strongly affected by the cascade error than other inference
methods (indeed, in the example prediction of this inference method shown in
Figure 5.2B, the three incorrect predictions among the first ten edge predictions
all correspond to “shortcuts” in cascades). Note that, since methods C and F
can’t infer the directionality of interactions, the wrongly predicted “shortcut” in

cascades appears in both directions.

5.3.3 Most inference methods fail to accurately predict combi-

natorial regulation

The network-motif analysis of the previous section has shown that all inference
methods are affected, to various degrees, by the fan-in error. The fan-in error is a
reduced prediction confidence for multiple inputs (combinatorial regulation) of
genes. Here, we analyze this type of error in more detail. Specifically, we com-
pare how well, on average, inference methods predict the regulatory input(s) of
genes with a single input (indegree 1), two inputs (indegree 2), three inputs (in-
degree 3), etc. The results of this analysis are shown in Figure 5.7A for the best
tive inference methods on networks of size 100. These data show that several
methods predict single inputs of genes with high confidence. However, for all
but the best-performing method, the prediction confidence degrades drastically
as the number of inputs increases. For example, method F reliably identified
links that are the only input of their targets (median prediction confidence 97%),
but did no better than random guessing in predicting inputs of genes with inde-
gree nine (median prediction confidence 46%).

As a control, we did the same analysis also for the outdegree of the genes.
In contrast to multiple inputs of target genes, there is no particular reason why
multiple outputs of regulators would make these edges more difficult to predict:
in the network-motif analysis, we did not observe a reduced prediction confi-
dence for edges in fan-outs (1—2 and 1—3 in Figure 5.6C). Indeed, in contrast
to the indegree, the increasing outdegree of genes does not affect the prediction
confidence of links (Figure 5.7B). The same observations can also be made on the
networks of size 50 (Figure 5.8). Note that the results for the smaller networks of
size 50 are noisier, and the confidence intervals wider, due to the smaller sample
sizes.

Here, we have analyzed only the best five methods of the networks of size 50
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Figure 5.7: How the indegree and outdegree of genes affects the prediction con-
fidence. The plots show the median prediction confidence for the best five methods on
networks of size 100. The shaded areas indicate 95% confidence intervals for the medi-
ans. (A) Median prediction confidence for links that target genes of increasing indegree.
Single-input links were reliably predicted with a similar, high prediction confidence by the
best four methods (points in the top left corner). However, the performance of methods E,
C, and F drops drastically for higher indegrees. In contrast, the best-performing method
(Yip et al.) is less affected by the indegree of genes. (B) Median prediction confidence
for outgoing links of regulators with increasing outdegree. In contrast to the indegree
of target genes, the outdegree of regulators does not affect the prediction confidence of
their links.

and 100. We have performed the same analysis for all inference methods of the
two sub-challenges, which confirmed the observations reported here for the best
tive methods (results not shown). In particular, we find that Yip et al.’s method
has the most robust performance of all inference methods on high indegrees.

It is not unexpected that edges that are the sole input of their target gene are
easier to infer than edges towards genes with many inputs. If a gene has only
one regulator, and this regulator is being perturbed, the gene would show a clear

response. In contrast, if a regulator of a gene with other regulatory inputs is
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Figure 5.8: How the indegree and outdegree of genes affects the prediction
confidence—network size 50. Same as Figure 5.7, but for the best five methods of
the networks of size 50, instead of 100. (A) The top five inference methods all reliably
predicted single-input links with high prediction confidence. As for networks of size 100,
the method of Yip et al. has the most robust performance on high indegrees. (B) The
outdegree does not affect the prediction confidence.

being perturbed, the effect may be partially buffered or even completely masked
by the other inputs, which would make this edge more difficult to infer.* Thus, it
is not surprising that all methods have a reduced prediction confidence for high
indegrees. However, the results of this section show that the best-performing
method of the challenge can cope with this difficulty much better than the other

applied inference methods. In Section 5.4.2, we will discuss why this is the case.

“We have confirmed that edges that were missed by many teams, i.e. that were difficult to
predict, targeted genes with a high indegree, and they had a weak regulatory effect on these
genes (results not shown)
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5.3.4 Performance of AGE on the DREAMS3 benchmarks

We have also tested AGE on the benchmarks of the DREAMS in silico challenge.
Since AGE has been designed for inference of small modules of gene networks
using nonlinear models, we have only applied it to the networks of size 10.> It
should be noted that, unlike for the participants of the challenge, the benchmarks
were obviously not blinded for us. However, we used the exact same model type
(the log-sigmoid model) and setup of AGE as for our earlier experiments on the
synthetic-biology benchmark network described in Chapter 3. In other words,
we applied our method “as is”, without adapting it to the DREAMS3 challenge,
thus allowing for a fair comparison with the participating teams.

In our earlier experiments, we used either steady state (Chapter 2) or time
series gene expression data (Chapter 3) for reverse engineering, but not both
together. AGE could be easily adapted for the joint use of steady state and time
series data.® However, as mentioned above, we didn’t want to adapt AGE specifi-
cally for the DREAMS challenge. Thus, we exclusively used the steady state data
(the wild type and the gene knockouts) for the reverse engineering. Evaluating
whether the performance could be improved by combining the steady state and
time series data is a topic for future work.

We performed 20 runs for each of the five networks. The confidence level of
a regulatory link was defined as the fraction of times that it is present in the set
of inferred networks, as described in Section 3.4.2. As shown in Figure 5.9, AGE
achieved a score of 3.02, which is the third best performance of the 29 inference
methods that have been applied in the challenge.

AGE clearly outperformed regression methods based on linear dynamical
models (marked with an L in Figure 5.9). However, note that the linear re-
gression methods have the advantage that they are scalable to larger networks.
The best-performing method, which will be discussed in Section 5.4.2, relied
strongly on a statistical approach to predict interactions in a first phase. In a
second phase, dynamical models were used as well, but the predictions from

these models were not accurate (Yip et al., 2009). The second best inference

AGE is not scalable to networks of size 50 or 100. For large networks, statistical methods or
regression methods based on linear models should be used, as discussed in Section 7.2.1.

®To use both steady state and time series data together, a measure of the overall data fit would
have to be defined. This could be, for example, the average of the square error on the steady
state and the time series data.
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Figure 5.9: Performance of AGE on the DREAM3 networks of size 10. AGE achieves
the third best performance of the 29 applied methods. For the 14 teams that have replied
to our survey, the type of inference method is indicated: L for regression approaches
based on linear dynamical models; B for methods based on Bayesian networks; and H
for hybrid methods that rely both on statistical approaches and dynamical models.

method is based on Bayesian networks. We conclude that AGE obtained the best
performance of all applied methods that reverse engineer dynamical models.
The networks of size 10 are too small for a statistically significant network-
motif analysis. Thus, we cannot study the error profile of AGE as we did for
the methods that were applied to the networks of size 50 and 100. Potentially,
the network-motif analysis could be performed if AGE would be applied to a
large number of different networks—we will consider this possibility in future

studies.

5.4 Discussion

5.4.1 A word of caution

The in silico benchmarks presented here are based on networks with similar
types of structural properties and regulatory dynamics as occur in biological
gene networks. In particular, the network structures correspond to modules of
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known gene networks of model organisms, and the kinetic model is based on
a thermodynamical approach (Ackers et al., 1982), which has been shown to
provide a good approximation to different types of transcriptional regulation
(Setty et al., 2003; Ellis et al., 2009). However, this model is still extremely sim-
plified compared to the real biological mechanisms. Furthermore, additional
layers of control, such as post-transcriptional regulation and chromatin states,
are not modeled. Thus, even though the benchmarks presented here are biolog-
ically more plausible than previously used in silico benchmarks in gene-network
reverse engineering, they do not replace the need for careful characterization of
performance in vivo (Cantone et al., 2009). However, they remain an important
tool to systematically assess the performance of inference methods on multiple

networks, because this is currently not possible in vivo.

A general issue of benchmarks, be it in silico or in vivo, is that the measured
performance of methods is always specific to the particular networks that were
being used, and does not necessarily generalize to other, unknown networks,
which may have different properties. Indeed, one of the main conclusions of
this chapter is that the performance of current network inference methods is
strongly dependent on the properties of the network that is being inferred. For
example, since methods were found to have very different network-motif error
profiles, their performance depends on how many instances of each motif type

are present in the network.

Thus, the overall performance (score) of the inference methods should be
considered with caution, as it may vary on networks with different properties.
For example, the best-performing method of the challenge relies strongly on
the prior assumption that the noise in the gene expression data is Gaussian
(Yip et al., 2009). This assumption was correct for the in silico benchmarks of
the challenge, but may be inaccurate in a biological application, which could
negatively affect its overall performance on real gene networks.

In contrast to the overall performance, which may vary, the systematic er-
rors identified with the network-motif analysis are expected to be less variant on
different networks. For example, a method that failed to accurately infer combi-
natorial regulation of genes (fan-in error), or to distinguish direct from indirect
regulation (cascade error), would be expected to have similar difficulties also on
biological gene networks.
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5.4.2 Systematic prediction errors are induced by inaccurate prior

assumptions

One of the difficulties that participants of the DREAM challenge had to face was
that they did not know details of the kinetic model that was used to generate
the gene expression data. This difficulty is even more pronounced in biological
applications, where the mechanisms and kinetics of gene regulation underlying
the expression data are more complicated, and also not known in advance. Thus,
inference methods are bound to make simplifying prior assumptions, e.g., by

adopting a linear gene network model, to name just one example.

However, if the prior assumptions are inaccurate, they may lead to systematic
prediction errors. For example, the best-performing team mainly relied on an
inference method based on a very simple principle: it predicts an interaction
from gene A to gene B if, after a knockout of A, there is a significant change
in the expression level of B. The significance of a change in the expression level
was estimated using a Gaussian model of the noise in the gene expression data
(Yip et al., 2009). This method is based on the inaccurate prior assumption that
the change in the expression level of gene B is always due to a direct regulatory
interaction A—B (in reality, it may also be due to an indirect interaction via
other genes, e.g. A—C—B). This inaccurate prior assumption induces systematic

cascade errors, as shown in Figure 5.6.

However, the best-performing inference method was also the most robust of
all applied methods to the fan-in error. Interestingly, it makes a strong prior
assumption on the type of noise in the gene expression data, but remains un-
committed to the type of regulatory dynamics in the networks. In contrast, ac-
cording to our survey among the participants, other inference methods tend to
make strong assumptions on the regulatory dynamics (e.g., by adopting simple,
often linear, phenomenological functions to approximate combinatorial regula-
tion of genes by multiple regulators). These assumptions are partly inaccurate
compared to the more detailed, kinetic model of the benchmarks (they may be
even less accurate compared to the complicated mechanisms and kinetics of bi-
ological gene networks). Consequently, these methods have a strongly reduced
performance on genes with multiple regulatory inputs (the fan-in error), where

their prior assumptions are inaccurate.
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5.4.3 Conclusion

We have presented a framework for critical performance assessment of gene-
network inference methods. This framework has allowed, for the first time, a
large number of reverse engineering methods—applied independently by dif-
ferent teams—to be statistically compared on multiple benchmark networks. In
addition to assessment of the overall prediction accuracy, we have evaluated
the performance of the applied inference methods on individual network mo-
tifs. This network-motif analysis revealed that current inference methods are
affected, to various degrees, by three types of systematic prediction errors: the
fan-out error (incorrect prediction of interactions between co-regulated genes),
the fan-in error (inaccurate prediction of combinatorial regulation), and the cas-
cade error (failure to distinguish direct from indirect regulation).

Distinguishing between direct and indirect regulation is a well-known dif-
ficulty in network inference (Friedman, 2004), but was never quantitatively as-
sessed. The network-motif analysis makes it possible to quantify how well this
difficulty is resolved by different methods. Furthermore, it revealed two other
types of systematic errors, which are equally important for the overall quality of
predictions. The network-motif analysis, demonstrated here using basic three-
node motifs, could be extended to colored motifs, higher-order motifs, or to
the network dynamics by considering activity motifs (Chechik et al., 2008), for
instance.

One of the main problems in gene-network reverse engineering is often con-
sidered to be the limited data, which may leave the inference problem under-
determined (Gardner and Faith, 2005). This chapter highlights another major
difficulty, which has received considerably less attention: due to the complexity
and our incomplete understanding of biological networks, inference methods
are bound to make simplifying assumptions. One generally hopes that accurate
predictions can be made despite the simplicity of currently used gene network
models, i.e., that there will be a graceful degradation of performance when prior
assumptions are not fully met. We have shown that this is, in general, not the
case: inaccurate prior assumptions induced systematic prediction errors, which
profoundly affected the performance of the applied network inference methods.

The best-performing team has demonstrated a possible paradigm for the de-
velopment of reverse engineering methods that have a more robust performance

despite uncertainty about the type of mechanisms (the “model”) underlying the
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data. In fact, they applied four distinct inference methods, each one being based
on a different type of model. Subsequently, they analyzed and combined the pre-
dictions of the four inference methods to form a potentially more robust group
prediction (Yip et al., 2009). We call this an ensemble approach, because it does
not rely on a single network prediction, but on the combination of an ensemble
of predictions. In the next chapter, we show that ensemble approaches indeed
lead to more robust predictions in a variety of situations. In particular, we show
that the predictions of several participating teams of the DREAM challenge can
be combined to form “community predictions” that would have ranked first in
two of the three sub-challenges.

The application of AGE to the DREAM3 challenge networks of size 10 con-
firmed its state-of-the-art performance for inference of dynamical models of
small gene networks. AGE obtained the third best performance out of the 29
inference methods that were applied in this sub-challenge, and the best perfor-

mance of all methods that reverse engineer dynamical models.

5.5 Methods

5.5.1 Gene network model

We model transcriptional regulatory networks consisting of genes, mRNA, and
proteins. The state of the network is given by the vector of mRNA concentra-
tions x and protein concentrations y. We model only transcriptional regulation,
where regulatory proteins (transcription factors) control the transcription rate

(activation) of genes. The gene network is modeled by the system of differential

equations
dx;
— = mifily) = A (5.1)
dy; r
dytl = riox = ATy (5-2)

where m; is the maximum transcription rate, r; the translation rate, /\}{NA and
APt are the mRNA and protein degradation rates, and f;(-) is the so-called
input function of gene i. The input function computes the relative activation of the
gene, given the transcription factor (TF) concentrations y. The relative activation
is between 0 (the gene is shut off) and 1 (the gene is maximally activated).
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Gene regulation is modeled using a standard approach based on thermody-
namics (Ackers et al., 1982; Shea and Ackers, 1985). Good introductions to this
type of models are given by Bower and Bolouri (2004) and Bintu et al. (2005).
The basic assumption of this approach is that binding of TFs to cis-regulatory
sites on the DNA is in quasi-equilibrium, since it is orders of magnitudes faster
than transcription and translation. In the most simple case, a gene i is regulated
by a single TF j. In this case, its promoter has only two states: either the TF
is bound (state Sp) or it is not bound (state Sp). The probability P{S;} that the
gene i is in state S; at an instant in time is given by the fractional saturation, which

depends on the TF concentration y;

P{S1} = ; i] 7 with o) = (z—:})"] (5.3)
where k;; is the dissociation constant and #;; is the Hill coefficient. At concen-
tration y; = k;; the saturation is half-maximal, i.e., the promoter is bound by
the TF 50% of the time. Many TFs bind DNA as homo-dimers or higher homo-
oligomers. This and other mechanisms that affect the effective cooperativity of
promoter binding are approximated by the Hill coefficient n;;, which determines
the “steepness” of the sigmoid described by Equation (5.3).

The bound TF activates or represses the expression of the gene. In state Sy the
relative activation is ag and in state S; it is 1. Given P{S;} and its complement
P{Sp}, it is straightforward to derive the input function f;(y;), which computes

the mean activation of the gene as a function of the TF concentration y;

X + a10;

f(y;) = aoP{So} + a1 P{S1} = 5o

(5.4)

This approach can be used for an arbitrary number of regulatory inputs. A
gene that is controlled by N TFs has 2V states: each of the TFs can be bound or

not bound. Thus, the input function for N regulators would be

2N—1
f(y) =Y. auP{Su} (5.5)
m=0
Using thermodynamics, the probability P{S,,} can be computed for every
state m. For example, the resulting expression for two regulatory inputs is

np + 101 + ap Uy + a3 p U107

5.6
1+v;+v2+pvivn (5:6)

fyy2) =
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where p is the cooperativity factor for the two TFs.

We non-dimensionalize the gene network models as described by von Das-
sow et al. (2000) in the supplementary information of their paper. As von Das-
sow et al. note: “This entails replacing every occurrence of dimensioned state
variables (concentrations of molecular species and time) with scaled products
yielding new state variables free of units. [...] The dimensionless model is
identical to the dimensional one since it is merely an algebraic transformation.”
One of the advantages of non-dimensionalization is that the generation of bio-
logically plausible instances of the dimensionless model is easier (von Dassow
et al., 2000).

5.5.2 Simulation of gene expression data

Gene knockouts were simulated by setting the maximum transcription rate m;
of the deleted gene to zero, knockdowns by dividing it by two. Time series
experiments were simulated by integrating the networks using different initial
conditions. For the networks of size 10, 50, and 100, we provided 4, 23, and 46
different time series, respectively.”

For each time series, we used a different random initial condition for the
mRNA and protein concentrations. The initial mRNA concentrations x;(0) were
obtained by adding a random number from a Gaussian distribution with mean
zero and standard deviation 0.5 to the wild-type steady-state level of every gene.
We assume that the multifactorial perturbation that led to the perturbed state
x;(0) (see Section 5.2) was applied for sufficient time for the protein levels to
stabilize at their new steady state. Thus, the initial protein concentrations were
obtained by setting dy;/dt = 0 in Equation 5.2

i(0) = it - %i(0) 57)

Each time series consists of 21 time points (from t=0 until t=200). Trajectories

were obtained by integrating the networks from the given initial conditions using

"For networks of size 50, we provided the same number of time series (23) as Pedro Mendes
did for his networks of size 50 in the DREAM?2 in silico challenges, to allow comparison of results
between the two challenges. For networks of size 10 and 100, we scaled the number of provided

time series with the network size (two times more for size 100, five times less for size 10).



5.5. METHODS 103

a Runge-Kutta 4/5 solver with variable step size of the Open Source Physics
library (http://www.opensourcephysics.org).

White noise with a standard deviation of 0.05 was added after the simulation
to the generated gene expression data. Concentrations that became negative due

to the addition of noise were set to zero.

5.5.3 Evaluation of predictions

As described in Section 5.2, the submission format of predictions was a list of
predicted edges with their assigned confidence measures, constructed in de-
creasing order of confidence from the most reliable to the least reliable predic-
tion. Note that the confidence measures were exclusively used to verify the order
of the lists of predictions and were not used in the evaluation of the results other-
wise. The quality of the predictions was measured by the area under the receiver
operating characteristic curve (AUROC) and the area under the precision-recall
curve (AUPR). The AUROC summarizes the tradeoff between the true positive
rate and the false positive rate, and the AUPR summarizes the tradeoff between
precision, which is a measure of fidelity, and recall, which is a measure of com-
pleteness. A detailed description of this approach for measuring the quality of
network predictions is given by Stolovitzky et al. (2009).

In addition to the AUPR and AUROC values, we statistically evaluated pre-
dictions by computing corresponding p-values (pauroc and paupr), which are
the probability that a random list of edge predictions would obtain the same or
better AUROC and AUPR than a given network prediction. Distributions for
AUROC and AUPR were estimated from 100,000 instances of random lists of
edge predictions. The overall p-value of the five networks of a sub-challenge was
defined as the geometric mean of the individual p-values: (p; - pa - ...- p5)'/°.
The final score of a method is the log-transformed geometric mean of the overall
AUROC p-value (pauroc) and the overall AUPR p-value (paupr):

score = —0.5 - 10g10(fAUROC - PAUPR)-

5.5.4 Network-motif analysis

The goal of the network-motif analysis is to evaluate, for a given network infer-
ence method, whether some types of edges of motifs are systematically predicted
less (or more) reliably than expected. This involves: (1) determining the predic-


http://www.opensourcephysics.org
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tion confidence of edges pertaining to different motifs, (2) determining the ex-
pected prediction confidence independently of motifs (the background prediction
confidence), and (3) evaluating whether divergences of the prediction confidence
of motif edges from the expected prediction confidence are statistically signifi-

cant.

Definition of prediction confidence. Given a network prediction in the for-
mat described in the previous section, we define the prediction confidence of
edges as their rank in the list of edge predictions. We scale the prediction confi-
dence such that the first edge in the list has confidence 100%, and the last edge
in the list has confidence 0%.

Determining prediction confidence of motif edges. First we need to identify
all three-node motif instances in the target network (the same approach could be
used for higher-order motifs). We use the efficient algorithm of Wernicke (2005)
for this purpose. Next, for every type of motif edge, we determine the prediction
confidence of all its instances. For example, we identify all links of type 1—2
of cascades in the target network (the numbering of the nodes of the motifs
is defined in Figure 5.5), and we record the prediction confidences that were
assigned to these links by the given network inference method. More formally,
we construct the set Cg;cza de = 1k}, where ¢y is the prediction confidence of the
link 1—2 in the k’th cascade of the target network. Note that we also record the
prediction confidences of “absent edges” of the motifs, for example, Cga_sél de 18
the set of prediction confidences of the “shortcuts”.

For every motif type m, we determine the set of prediction confidences as-
signed by the inference method to each of its six possible edges (C}, 72, C}73,
C2~1, 223, C3~1 and C3°2). Note that fan-in and fan-out motifs are symmet-
ric: nodes 2 and 3 can’t be distinguished (see Figure 5.5). Thus, fan-ins and
fan-outs have only three types of edges: 1—2, 2—1, and 2—3. The edges 1—3,
3—1 and 3—2 are equivalent to 1—2, 2—1, and 2—3, respectively. The predic-
tion confidence of equivalent edges is recorded in the same set. For example, the
set CL 2 contains all prediction confidences assigned by the inference method
to outgoing edges of fan-outs (1—2 or 1—23).

Determining the background prediction confidence. Before we can analyze
the effect of motifs on the edge prediction confidence, we first need to determine
the expected edge prediction confidence independently of motifs. There are
three types of predicted edges:
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¢ Predicted edges that are true edges of the target network. Their background
prediction confidence is given by Ciye edge, Which is the set of prediction
confidences that were assigned by the inference method to the edges that
are part of the target network.

¢ Predicted edges for which the directionality is incorrect. We call these back
edges. Their background prediction confidence is given by Chack_edge which
is the set of prediction confidences assigned to edges B—A that are not
part of the target network, but for which the edge in the opposite direction
A—B is part of the target network.

¢ Predicted edges between two nodes that are not connected by an edge in
the target network. We call these absent edges. Their background prediction
confidence is given by Cypsent_edge, Which is the set of confidences of pre-
dicted edges between nodes that are not directly connected in the target

network.

Note that in Figures 5.5B and 5.6B, we have only shown the median predic-
tion confidence of true edges (1—2) and back edges (2—1)—the median prediction
confidence of absent edges was not shown.

Evaluating the divergence of the prediction confidence of motif edges from
the background prediction confidence. We use the Wilcoxon-Mann-Whitney
rank-sum test to compare the motif edge prediction confidences with their cor-
responding background prediction confidence. The prediction confidence of true
edges of motifs (e.g., Cg;cza 4o and Cga_s’ci g4o) are compared with Cirye_edge, the pre-
diction confidence of back edges of motifs (e.g., C2.21 . and C32 . ) are com-

pared with Cpack_edge, and absent edges of motifs (e.g., Cé;g; 4e and Cg’a;la 4e) are

compared with Capsent_edge- We use Bonferroni correction for multiple hypothe-

sis testing.
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Wisdom of crowds in gene
network inference

This chapter is based on the following publication:

¢ Marbach, D., Mattiussi, C. and Floreano, D. (2009) Combining Multiple Results of
a Reverse Engineering Algorithm: Application to the DREAM Five Gene Network
Challenge. Annals of the New York Academy of Sciences, 1158 pp. 102-113.

Synopsis

In the previous chapters, we have seen that the gene-network inference problem is often
underdetermined, and one is thus often confronted with an ensemble of inferred networks
that are consistent with the prior knowledge and the experimentally measured data. Such
an ensemble of “plausible” networks may be the output of a single reverse engineering
method, or it may have been obtained using alternative reverse engineering methods, dif-
ferent model types, and/or variations of the data. In this chapter, we consider the problem
of combining the information contained within such a “crowd” of inferred networks in
order to (1) make more accurate network predictions and (2) estimate the reliability of
these predictions. We review existing methods, discuss their limitations, and point out
possible research directions towards more advanced methods for this purpose. The poten-
tial of considering ensembles of networks, rather than individual inferred networks, is
demonstrated by showing how ensemble approaches achieved the best performance both
in the DREAM?2 five-gene network challenge and in the DREAM3 in-silico network
challenge.
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6.1 Introduction

In the previous chapters, we have seen that there are two major difficulties
in gene-network reverse engineering. The first difficulty is that the network-
inference problem is in general underdetermined by the available gene expres-
sion data. The second difficulty is that current reverse engineering methods are
not robust—their performance strongly depends on features of the target net-
work that are a priori unknown, such as its structural properties and types of
regulatory dynamics. This makes it virtually impossible to know in advance, for
an unknown target network, which reverse engineering method would give the
best prediction. In this chapter, we show that both difficulties can be partly over-
come by using ensemble approaches, i.e., by combining the information contained
in ensembles of inferred networks instead of focusing on individual inferred
networks (Figure 6.1).

In the following, we focus on the first of the above-mentioned difficulties,
i.e., the situation where a specific reverse engineering method is used, but the
inference problem is underdetermined and one is thus confronted with an en-

semble of plausible networks. In Section 6.5, we will come back to the second

(A) Focus on individual inferred networks : (B) Focus on ensembles of inferred networks

(Datase) s (Datase)
Possibly perform

Reverse engi- multiple runs Reverse engi-
neermg method(s neermg method(s

N i':?.:":::;f;ﬁ“m N
EE>-bF) | R -BR)

Select “best” i Combine infor-
network ! mation contained

i within ensemble

Figure 6.1: Ensemble approach in gene network inference. (A) The most common
approach in reverse engineering aims at identifying a single “best” network, e.g., the one
with the best data fit and the fewest connections. (B) The approach considered here
aims at integrating the information from ensembles of “plausible” networks in order to
make one or several network predictions and estimate the reliability of these predictions.

Predictions

'/
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difficulty, and show how the results of a set of reverse engineering methods can
be combined to yield a more robust network prediction.

With the typically noisy and relatively small datasets available, there are in
general many different networks that are consistent with the prior knowledge
and the data—the inference problem is underdetermined. Some methods at-
tempt to identify a unique “best” network from this ensemble according to
some additional criteria (Gupta et al., 2005; Gardner et al., 2003; Tegner et al.,
2003), for example by posing constraints on the connectivity of the network (Fig-
ure 6.1A). Here, we advocate an alternative approach, which aims at integrating
the information contained within ensembles of plausible networks that are con-
sistent with the prior knowledge and the data (Figure 6.1B). Even though many
methods have been proposed to construct such ensembles of networks, e.g.,
Monte Carlo techniques (Battogtokh et al., 2002), simulated annealing (Reinitz
and Sharp, 1995; Jaeger et al., 2004a), or genetic algorithms (Kimura et al., 2005),
the problem of how to optimally analyze the ensemble in order to estimate the
“true” structure of the underlying gene network has received relatively little
attention.

Below, we first motivate the use of ensemble methods in gene network re-
verse engineering and then proceed by formalizing the problem from a proba-
bilistic perspective. In Section 6.2, we review existing approaches and describe
a simple voting method that we use to process ensembles of inferred networks
obtained with AGE. In Section 6.3, we revisit the in silico benchmark and the
DREAM?2 synthetic-biology challenge of Chapter 3. We find that in the presence
of noise, predictions obtained from ensembles of inferred networks are more
accurate than any of the individual networks taken alone. Finally, we consider
the advantages of combining the predictions from multiple reverse engineering
methods, and we show that such “community predictions” outperform individ-
ual methods in the DREAMBS in silico challenge.

6.1.1 Ensemble methods

The classic example of an ensemble based system in decision making is the pop-
ular game show “Who wants to be a millionaire?”. When unsure about a ques-
tion, the contestant has the possibility to either call a friend who he/she knows
to be particularly knowledgeable (an “expert”), or to poll the studio audience,
which immediately votes on the question. At first sight, one might think that
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the experts would offer better help than “random crowds of people with noth-
ing better to do on a weekday afternoon than sit in a TV studio” (Surowiecki,
2004). It turns out the opposite is true: the audience gives the correct answer
with a surprisingly high accuracy of about 90%, as compared to only 65% for
the experts (Surowiecki, 2004; Polikar, 2006). This is just one of many examples
where ensembles of diverse individuals outperform a single expert on average.

Consider an ensemble of inferred networks obtained by a gene network re-
verse engineering method from a dataset of gene expression measurements.
Each of these networks is a hypothesis on the true network structure, giving a
prediction on the presence or absence of a regulatory link for every pair of genes.
Now assume that the prediction of links is correct with probability p > 0.5 (bet-
ter than random guessing) and that the errors in the prediction of links are
uncorrelated between the different networks of the ensemble. In this case, the
prediction obtained from the ensemble by voting (see next section) is on average
more accurate than any of the individual networks of the ensemble (Dietterich,
2000).

In practice, the picture is more complex. First, since the different networks of
the ensemble are inferred from the same dataset, the error of a given link may be
correlated between the networks (e.g., all networks have a tendency to wrongly
predict a given link). Second, there may be a correlation between the different
links within the networks (e.g., in a given network, there is either link A or link B,
but not both). The simple voting methods typically used in gene network reverse
engineering ignore these correlations. Despite these limitations, we will see that
in practice even simple ensemble methods are useful to process the output of
reverse engineering methods and often allow to improve the accuracy compared

to individual inferred networks of the ensemble.

6.1.2 A probabilistic formalization

The aim of the somewhat simplistic description above was to give an intuitive
understanding of the potential advantages of ensemble methods. We now pro-
ceed with a more rigorous probabilistic formalization. Assume the reverse engi-
neering target is a gene regulatory network of N genes (henceforth called target
network). We assume that the reverse engineering method is based on the fitting
of a model to the gene-expression dataset. The majority of data-fitting reverse
engineering algorithms represents the target network by an NxN weight ma-
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Figure 6.2: Schematic representation of possible posterior distributions in a re-
verse engineering problem. The horizontal plane represents the search space of all
possible networks and the vertical axis corresponds to the score (e.g., the posterior prob-
ability). The dots are tentative networks inferred by a reverse engineering algorithm. (A)
The data is sufficient to identify a unique, distinctive global optimum. (B) The problem
is underdetermined by the available data—there are many different networks that score
approximately equally well. (C) There are several distinctive classes of networks that fit
the data well.

trix W. The entries w;; of this matrix give the strength of the regulatory effect
of gene j on gene i (positive for enhancers, negative for repressors, and zero
for no interaction). For simplicity, let’s assume that we want to determine just
the weight matrix—additional parameters of the genes could be treated in an
analogous way. We possess a collection D of noisy observations of the activity
of the network, from which the reverse engineering algorithm infers (possibly
using multiple runs) an ensemble of tentative networks. Each network has an
associated score s that indicates how well it fits the data. The ensemble is thus
a collection E = {(Wjy,sx)}. The problem we consider is how to process the

ensemble E to obtain an estimate of the “true” weight matrix W.

From a probabilistic perspective, the aim is to estimate the posterior proba-
bility p(W|D, I) for W, given the dataset D and the prior knowledge I. The en-
semble is a collection of samples from this distribution (Battogtokh et al., 2002;
Hartemink et al., 2002) (Figure 6.2). From this perspective, the goal of reverse en-
gineering is not just to find the solution that maximizes the posterior probability,
but rather to integrate the information contained within the complete ensemble
to make predictions on the target network.
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6.2 Methods for combining ensembles of inferred

networks

6.2.1 Selecting the “best” network from the ensemble

If the quantity and quality of the data is sufficient to uniquely identify the target
network (Figure 6.2A), it can be sufficient to simply select the network W with
the highest score s; as the most plausible network prediction and discard the
information contained within the rest of the ensemble (Reinitz and Sharp, 1995;
Moles et al., 2003; Kimura et al., 2005). For example, this is usually done when
several independent runs of a stochastic search algorithm converge to this same
optimal network, which is then assumed to represent the global optimum and
most plausible network prediction (Reinitz and Sharp, 1995).

We used this approach in our initial experiments with noise-free data from an
in silico network, reported in Chapter 2 (the SOS network test case). Remember
that in this test case, we selected the network with the best data fit from 10
evolutionary runs as the final network prediction. This strategy worked well,
because the noise-free dataset that we used in this test case was sufficient to
uniquely identify the target network.

6.2.2 Analysis of the posterior weight distributions

Another popular approach is to analyze the posterior distribution weight by
weight, i.e., without considering possible correlations between the weights. The
goal is to qualitatively judge how reliable the different weights are determined
by the ensemble. The more closely the collection of inferred values for a specific
weight w;; are clustered together, the more reliably it is assumed to be predicted.
Whether the ensemble of inferred values for w;; indicates a reliable prediction
or not is often judged qualitatively by considering the standard deviation and
plotting the distribution of inferred weights (Wahde et al., 2001, Wahde and
Hertz, 2001; Jaeger et al., 2004a; Deng et al., 2005).

In general, this type of qualitative analysis is done in combination with the
strategy described above: the network with the best score is chosen as the most
plausible network prediction, and the posterior weight distributions are used
only to indicate which of the weights are predicted reliably. Instead of taking
the weight values of the best network from the ensemble, one may also consider
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using the average of the predicted values (possibly weighted using the scores sy)
(Battogtokh et al., 2002).

As discussed in the introduction, using the ensemble average instead of tak-
ing simply the best network of the ensemble often leads to more robust pre-
dictions. However, averaging multiple networks only makes sense if they agree
more or less on a similar network prediction. If the networks of the ensemble are
very different, e.g., they fall within two categories as in Figure 6.2C, averaging
leads to a meaningless “blur” of alternative structures. In this case, a more so-
phisticated analysis taking into account the joint probability distributions would

be required.

6.2.3 Majority voting on the network structure

The quantity and quality of available data is often not sufficient to precisely infer
numerical values for the weights. In this case, one may be satisfied with predict-
ing only the network structure from the ensemble and disregard the numerical
values of parameters. A straightforward approach to do so is majority voting
(the same method as the audience polling in the game show mentioned above).
Every network of the ensemble votes on the classification of a given link as exci-
tatory (w;; > 0), inhibitory (w;; < 0), or absent (w;; = 0 or smaller than a certain
threshold). The type of the link is then defined by the majority of the votes. In
addition, the votes could also be weighted by the scores of the networks.

Unsigned predictions can be treated analogously. For example, Hartemink
et al. (2002) use weighted voting with Bayesian scores to estimate the probability
that a given link is present in the target network. As for the averaging of the
weights described in the previous section, the underlying assumption is that
regulatory links are predicted independently from each other.

For signed predictions, the basic voting scheme described above may not be
optimal because it treats the three possible types of a link (excitatory, inhibitory,
and zero) all equal. For example, assume that two links A and B are predicted
to be excitatory by 80% of all networks of the ensemble. However, link A is pre-
dicted to be zero by the remaining 20%, and link B is predicted to be inhibitory
by the remaining 20%. The basic voting would predict both links to be excitatory
with equal probability of 0.8. However, one may argue that in this situation 20%
of inhibitory votes should be weighted stronger than 20% of zero votes because
they directly oppose the excitatory predictions. The voting scheme introduced
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in the next section addresses this issue.

6.2.4 Signed voting on the network structure

We have devised a simple voting scheme, which we call signed voting, that
is suitable for predicting signed regulatory links from an ensemble of inferred
networks. In addition, signed voting estimates a confidence level (reliability) for
these predictions. In contrast to majority voting, excitatory and inhibitory votes
cancel each other out, whereas votes for the absence of a link are neutral.
Assume that network structures are represented by a matrix A, where 4;; = 1
if the link is excitatory (w;; > 0), a;; = —1 if the link is inhibitory (w;; < 0),
and a;; = 0 if the link is absent (w;; = 0). Suppose we have an ensemble of
K networks, and the structure of the k’th network is defined by the matrix A*
(entries af.‘].). We define the signed vote v;; for link 4;; as
vij = (6-1)
The vote v;; equals 1 if the corresponding link is excitatory in all networks
of the ensemble, and -1 if it is inhibitory in all networks. We now define a

confidence level I that a given link 4;; is excitatory or inhibitory
l{al-]- =+1} = Vjj (6.2)
l{ai]- = —1} = —?Ji]' (6.3)

Thus, the confidence level that a link a;; is excitatory is 1 if there is strong
supporting evidence (all networks agree on the excitatory connection), it is 0 if
there is no supporting evidence (e.g., half of the networks vote inhibitory and
half excitatory, or all vote for a zero connection), and it is -1 if there is strong
evidence to the contrary (all networks vote for an inhibitory connection).

Note that in contrast to majority voting, the absence of links is not explicitly
predicted. Instead, one assumes that a connection is zero if there is no strong
evidence for an excitatory or an inhibitory link, i.e., if the absolute value of the
signed vote is smaller than some threshold |v;;| < c. The smaller c, the more
(uncertain) links are included in the final network prediction. As in any classi-
fication problem, the choice of the threshold is a tradeoff between the number
of false positives (links that are predicted present, but are absent in the target
network) and false negatives (links that are predicted zero, but are present in the
target network).
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6.3 Ensemble predictions from multiple runs of AGE

In this section, we use AGE and the same in silico and in vivo benchmark net-
works as in Chapter 3 (the five-gene repressilator and the synthetic-biology net-
work of the DREAM2 challenge) for demonstrating the potential of ensemble
approaches in gene-network reverse engineering. Note that the ensemble voting
methods used here are not specific to AGE, they can be applied to ensembles

generated by any other suitable reverse engineering method.

6.3.1 Constructing the ensembles

For generating the ensembles of tentative networks, we use the log-sigmoid
model and the evolutionary reverse engineering method based on AGE as de-
scribed in Chapter 3. Each run of the evolutionary algorithm evolves a pop-
ulation of networks that fit the data well. We found that an evolutionary run
typically converges to a single network structure, i.e., in the final population the
structures of most networks are identical and only the numerical values of the
weights vary slightly. This is expected, because we do not use techniques that
enforce diversity in the population after convergence. Thus, a single population
is not well suited to construct the ensemble in our case. Instead, we construct the
ensemble from multiple runs of the evolutionary algorithm. From each run, only
the network with the best fitness is included in the ensemble. In the experiments
reported here, we did 50 runs for every dataset.

6.3.2 Combining the ensembles and evaluating the predictions

We used the evaluation protocol of the DREAM2 challenges to assess the accu-
racy of network predictions. Remember that inhibitory and excitatory links were
predicted separately in DREAM2. A confidence level had to be assigned to each
of the N2 possible links of the network, indicating the degree of belief that this
link is excitatory/inhibitory. The network prediction is given by a list of links,
ranked according to the confidence levels, and the performance is measured by
the area under the precision versus recall curve (AUC) (Stolovitzky et al., 2009).

We compared three strategies to predict the network structure from the en-
semble of inferred networks: (1) simply take the network with the best data fit
from the ensemble and use the strength of the connections (the weights w;;) as
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confidence levels, (2) use signed voting, and (3) use signed voting, but allow
only the M highest scoring network to vote. For the results reported here we
used M = 10 networks (the top 20% of the ensemble).!

6.3.3 Ensemble voting outperforms individual networks in the

presence of noise

We first tested the ensemble approach on the time-series datasets from the in
silico five-gene repressilator of Chapter 3 at different levels of log-normal noise.
Remember that the structure of the repressilator is a loop of inhibitory connec-
tions (Figure 6.3A) and the dynamics are simulated with the log-sigmoid model.

Figure 6.3B shows a dataset with log-normal noise of standard deviation 0.5,
and the fit by an ensemble of networks, which were inferred with AGE. Besides
from few outliers that prematurely converged to local optima, the majority of
the networks fit the data reasonably well, without overfitting to noise. However,
even though most networks fit the data well, they have very different numerical
values for the weights (Figure 6.3C). The same is true for the gene parameters m;,
b;, and A; of the model (data not shown). This indicates that for the model type
used here, the reverse engineering problem is underdetermined by this relatively
small and noisy dataset.

Still, the inhibitory links of the target network are correctly predicted (i.e., are
assigned highest confidence of all possible links) both by the best network of the
ensemble and by signed voting of the top 20%. Signed voting by the complete
ensemble performs slightly worse (Figure 6.4, top three rows). Probably, the
information contained in this dataset is sufficient to constrain the network struc-
tures that can fit the data to a relatively narrow peak in the fitness landscape
(Figure 6.2A), and this peak seems to coincide with the true network structure.
In this situation, it is not surprising that the best scoring network performs as
good or better than ensemble voting.

As we add more noise to the data (standard deviation 1.0), the information

!We also considered taking the average of the inferred weights of the ensemble and using
the standard deviations as a measure of confidence (the approach described in Section 6.2.2).
However, this approach performed much worse than signed voting (results not shown), because
the test cases that we consider here are underdetermined and the inferred weights therefore all
have very high standard deviations.
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Figure 6.3: Data fit and inferred weights of 50 evolutionary runs on the in silico
benchmark. (A) The target network is the five-gene repressilator. (B) Normalized gene
expression levels—plotted on a logarithmic scale—for the two time series. The points are
the input dataset with log-normal noise of standard deviation 0.5. The lines show the data
fit by the 50 inferred networks of the ensemble. (C) The inferred weights by the networks
of the ensemble (the weights that correspond to the true links of the repressilator are
highlighted). Despite a good data fit by the majority of networks, the numerical values of
their weights vary a lot, which indicates that the problem is underdetermined.
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content is reduced and the distribution of network structures that can fit the data
broadens. Consequently, the individual networks of the ensemble are expected
to be more diverse and predict the target network less accurately. Indeed, the
network that fits the data best now performs poorly in predicting the network
structure and has a low AUC score of 0.5. In contrast, signed voting of the
top 20% still correctly predicts the network structure with a perfect AUC score
of 1. Again, signed voting by the complete ensemble performs slightly worse
(Figure 6.4, middle three rows).

The vastly superior performance of the ensemble as compared to the network
with the best data fit can be explained as follows. The individual networks of
the ensemble consistently include the five inhibitory links correctly (the signed
vote is close to -1 for these links), but in addition also have many false positives.
However, it seems that the false positives are sufficiently uncorrelated between
the networks of the ensemble to partly “even out” and obtain a lower confidence

level than the true positives.

When adding excessive noise (standard deviation 1.5), the network structure
is not predicted accurately anymore. Still, the AUC score is doubled by signed
voting of the top 20% compared to the network with the best data fit (Figure 6.4,
last three rows).

The same quality of results was obtained on four different datasets with log-

normal noise of standard deviations 0.5, 1.0, 1.5, and 2.0 (results not shown).

Figure 6.4: Predictions obtained from ensembles of inferred networks are more
accurate than the “best” individual networks. For three datasets with different levels
of log-normal noise (standard deviations 0.5, 1, and 1.5), we compare the predictions
obtained from signed voting by the complete ensemble, signed voting by the top 20% of
the ensemble, and the inferred network with the best data fit. (A) Data fit of the inferred
networks (only the first time series of the first gene is shown). (B) Predictions of regulatory
links (the true links are highlighted). (C) From the precision-versus-recall curves and the
AUC scores, it can be seen that at intermediate and strong levels of noise, ensemble
voting (especially by the top 20%) predicts the network structure much more accurately
than the network with the best data fit.
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6.3.4 Ensemble voting achieves best performance in the DREAM2
synthetic-biology network challenge

The in vivo synthetic-biology benchmark network and the q-PCR time-series
dataset provided by Cantone et al. (2009) for the DREAM2 challenge have been
described in Chapter 3. We have mentioned before that de la Fuente et al. and
us, the two best performers of this challenge, both used an ensemble approach to
post-process predictions and estimate confidence levels. Here, we first explain
how we derived directed-signed, as well as undirected-unsigned link predic-
tions from ensembles of inferred networks, and we analyze the performance of
the ensemble approach compared to individual inferred networks with AGE. In
Section 6.4, we will discuss the ensemble approach and results of de la Fuente

et al.

Directed-signed link predictions

For our submission to the DREAM2 challenge, we predicted excitatory and in-
hibitory links using AGE coupled with signed voting by the complete ensemble of
inferred networks. As for the in silico test case, the majority of the runs fit the
data well (see Figure 3.4 for an example). However, the values of the inferred
weights are very scattered (Figure 6.5, first row) and the reverse engineering
problem seems to be largely underdetermined. In contrast to the in silico test
case, the network structure is not accurately predicted and the AUC scores of
excitatory link predictions, and in particular inhibitory link predictions, are low
(Figure 6.5, second row). Note, however, that these scores compared well to
other participating teams (2nd and 1st rank for excitatory and inhibitory predic-
tions, respectively). These results, and in particular possible explanations for the

low AUC scores, have been discussed in Chapter 3.

Undirected-unsigned link predictions

In order to compare our approach with reverse engineering methods that pro-
duce undirected and unsigned network predictions, we have participated also
in these categories of the DREAM challenge. Confidence levels ! for directed-
unsigned links and undirected-unsigned links were derived from the signed
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Figure 6.5: Performance of AGE, coupled with ensemble voting, on the synthetic-
biology benchmark of the DREAM2 challenge. The ensemble of inferred weights is
very diverse (first row). The ranking of AGE combined with ensemble voting is competitive
compared to the other participating teams, but the accuracy of the predictions is not
satisfactory.
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votes v;; of the ensemble (cf. Equation 6.1)

IH{l]aj| =1} = |vjj| (directed-unsigned)
I{(la;jl =1) or (Ja| =1)} = w (undirected-unsigned)

Note that ensemble voting is done first, and the sign is removed afterwards
by taking the absolute value of the signed votes v;;. Thus, if there are incon-
sistent signed predictions for a link (e.g, 50% excitatory, 50% inhbitory), the
corresponding unsigned prediction is still zero. This would not be the case if
signs were removed first, and ensemble voting done afterwards.

Our predictions derived in this way are competitive with methods that di-
rectly produce undirected and unsigned predictions (Figure 6.5, last two rows).
At first sight, the AUC score seems to be very high for the undirected-unsigned
predictions as compared to the directed-signed predictions that they were de-

rived from. Is water (inaccurate directed-signed predictions) made into wine
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Figure 6.6: Ensemble voting outperforms the network with the best data fit in the
DREAM2 challenge. Same analysis as in Figure 6.4, but for the synthetic-biology bench-
mark of the DREAMZ2 challenge. (A) The data fit by the inferred networks (normalized,
negative g-PCR log expression ratios). (B) The predictions of the regulatory links. (C)
As in the in silico test case, the accuracy is improved by ensemble voting. For excitatory
links, the AUC is roughly doubled compared to the network with the best data fit.
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(accurate undirected-unsigned predictions)? Certainly not. The undirected tar-
get network has the same number of true links, but only half as many possible
links as the directed version. This makes it much easier to obtain a high AUC

score.

Ensemble voting outperforms individual networks in the DREAM challenge

After the true structure of the target network was published on the DREAM
website (http:/ /wiki.c2b2.columbia.edu/dream), we analyzed the performance
of ensemble voting on this benchmark. The observations on the in silico test case
with intermediate and strong levels of noise are confirmed on the real DREAM
challenge dataset. The AUC score is roughly doubled by ensemble voting com-
pared to the network with the best data fit. Signed voting by the complete
ensemble and by the top 20% perform approximately equally well (Figure 6.6).

6.4 Ensemble predictions from variations of the data

As discussed in the introduction, ensemble based systems are only interesting if
the individual members of the ensemble are diverse. For example, if all inferred
networks of the ensemble are affected by the same prediction errors, there is
nothing to be gained in combining them. In the previous sections, we have
demonstrated one approach to generate ensembles of diverse networks, namely
by performing multiple runs of a stochastic reverse engineering method such
as AGE. However, since each run uses the same gene-expression dataset, the
errors in the inferred networks are certainly not completely uncorrelated. By
using different variations of the dataset for each run, the errors between the
networks could potentially be further decorrelated, and the performance of the
ensemble prediction thus improved. Indeed, in the field of machine learning,
the individual classifiers of an ensemble system are typically generated from
different subsets of the training dataset (Dietterich, 2000; Polikar, 2006).

De la Fuente et al. used this approach in the DREAM2 synthetic-biology net-
work challenge, where they obtained, together with AGE, the best performance
(Baralla et al., 2009; Stolovitzky et al., 2009). Here, we briefly describe these re-
sults, as they illustrate a promising approach to generate ensembles of diverse
networks and were not discussed in this context by de la Fuente et al.
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De la Fuente et al. used different variations of the provided dataset as input
for their reverse engineering method. Specifically, they considered three combi-
nations: the first time series alone, the second time series alone, and both time
series together. For each of the three combinations, two variations were obtained
by using for one the original g-PCR log expression ratios, and for the other one
the same data transformed to a linear scale. Thus, they considered a total of six
variations of the dataset. The network was inferred from each of these varia-
tions, yielding and ensemble of six network predictions. These predictions were
averaged to produce the final, submitted network prediction (Baralla et al., 2009).

After the true network structure of the challenge was released, de la Fuente et
al. compared the performance of the six individual network predictions with the
ensemble prediction (Figure 6.7). Indeed, for excitatory and directed-unsigned
links, the ensemble prediction is more accurate than any of the individual net-
work predictions. For undirected-unsigned links, it is about as good as the best
individual network prediction. Only for inhibitory links, which were predicted
with very low (not significant) AUC scores, the ensemble prediction does not
perform better than individual network predictions.

The results of Fuente et al. support our conclusion of the previous sections,
namely that ensemble predictions are generally more accurate than individual
network predictions. Furthermore, their results indicate that using variations of
the dataset to construct the ensembles, an approach that is widely used in the
field of machine learning, is promising. However, a more systematic study on
a number of different networks will be necessary to understand the advantages

and disadvantages of this approach in gene network inference.

6.5 Ensemble predictions from a community of

reverse engineering methods

In the previous chapter, we have seen that reverse engineering methods are af-
fected, to various degrees, by systematic prediction errors. If a single reverse
engineering method is used to infer an ensemble of network predictions, they
are all affected by the same systematic errors. These errors are correlated and
would thus not be reduced by an ensemble approach. However, if each net-

work prediction of the ensemble is obtained using a different reverse engineer-
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Figure 6.7: AUC scores of de la Fuente et al.'s method for predictions obtained
from variations of the dataset [data from Baralla et al. (2009), Table 2]. The four plots
correspond to excitatory, inhibitory, directed-unsigned, and undirected-unsigned link pre-
dictions (from top to bottom). Network predictions were obtained from six variations of the
dataset (time series A, time series B, time series A+B, all both on linear and logarithmic
scale). Unfortunately, the results of one variation (time series B on a linear scale) were
not reported by Baralla et al. (2009) because it did not produce significant predictions.
Overall, the ensemble prediction performs better than the predictions of any variation
taken alone.
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ing method, the errors are less correlated and could potentially be averaged out
by an ensemble approach. In this section, we show that ensemble predictions
obtained from multiple reverse engineering methods are often more accurate

than the predictions from the individual methods taken alone.

In order to distinguish ensemble predictions obtained using a single reverse
engineering method, as described in the previous sections, from those obtained
using different reverse engineering methods, we call the latter community predic-
tions. When analyzing the results of the DREAM?2 BCL6 challenge (the goal of
this challenge was to predict targets of the transcription factor BCL6), Stolovitzky
et al. (2009) observed that a very accurate community prediction could be ob-

tained by combining the predictions of the three best performing teams:

Clearly, this shows that the “intelligence” behind the three meth-
ods can be easily aggregated to produce an integrative approach
that is better than any method in isolation. This calls for a reverse-
engineering-by-consensus approach that has not yet been explored
by the community. (Stolovitzky et al., 2009)

The DREAMS3 in silico network challenge gives us the opportunity to explore this
approach in more detail, as for the first time, dozens of network-inference meth-
ods have been applied to the same benchmark. In the following, we first describe
how we combined predictions of participating teams, and then we analyze the

performance of the resulting community predictions.

6.5.1 Forming community predictions

Remember that the submission format of the DREAMS in silico challenge is a
ranked list of edge predictions. The question is thus how to optimally combine
an ensemble of such lists, submitted by different participating teams, to form a

community prediction.

We use a straightforward approach to combine the ensemble of edge-prediction
lists, which consists of simply taking the average rank for each edge. Thus, the
list of edge predictions of the community is ordered according to the average
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Figure 6.8: Example of a community prediction formed from two individual network
predictions. (A) The target network of this example is a loop of four genes. (B) Two pos-
sible lists of edge predictions. The lists are ranked according to the confidence levels of
the edges, the most confident prediction at the top of the list has rank 1. The true edges
of the target network are highlighted. (C) The community prediction is obtained by taking
for each edge the average of its rank in the two individual predictions. Here, the commu-
nity prediction is perfect (all true edges are at the top of the list). This example illustrates
how a community prediction can be more accurate than the individual predictions that it

is composed of.
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ranks of the edges in the ensemble, as illustrated in Figure 6.8. 2

6.5.2 Community predictions are more robust than individual

predictions

To gain a sense of the performance of community predictions in the DREAM3
in silico challenge, we systematically formed communities composed of the top-
two methods, the top-three methods, the top-four methods, etc., until the last
community, which contains all applied methods of a particular sub-challenge
(there are three sub-challenges corresponding to networks of size 10, 50, and
100). For each of these communities, we derived community predictions for the
five networks of the sub-challenge. The accuracy of the community predictions
was evaluated using the same method that had also been used to evaluate the
predictions of the individual teams (see Section 5.5.3).

The scores of both the community predictions and the individual teams are
shown in Figure 6.9. Some of the community predictions outperform the best-
performing team on networks of size 10 and size 50. For example, the commu-
nity of the top-five teams would have won these two sub-challenges. As more
and more teams with a bad performance are added to the community, the ac-
curacy of the community prediction decreases. However, the performance is
surprisingly robust. Even when combining all methods, the majority of which
have low scores (remember from the previous chapter that about a third of the
methods did not perform better than random guessing), the community predic-
tion still ranks second on networks of size 10 and 100, and third on networks of
size 50.

Note that in a real application to an unknown network, the performance
of alternative methods is obviously not known in advance. Our results show
that, instead of choosing a single method to trust, a more robust strategy is to
apply all methods at hand and form a community prediction. When using a
single method, one risks a very bad performance if the wrong choice is made.

2An alternative way to form a community prediction would be to take the average of the con-
fidence levels assigned to each link by the participants. However, the confidence levels produced
by the different methods have different meanings and scales, thus, averaging them makes no
sense (e.g., one method may formally estimate posterior probabilities, and another method may
use a more qualitative approach such as ensemble voting).
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Figure 6.9: Community predictions in the DREAMS in silico challenge. The filled
circles are the scores of the individual teams. The diamonds correspond to the scores
of the different community predictions, obtained by combining the two best teams, the
three best teams, the four best teams, etc. Filled diamonds indicate that the community
prediction is better than the best-performing team. The performance of the community is
extremely robust. Even when including all teams (rightmost diamonds), the score of the
community is better than the second-best method on networks of size 10 and 100, and
better than the third-best method on networks of size 50.
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However, the community prediction is consistently as good or better than the
best methods of the ensemble, and this even when the majority of the methods

of the ensemble have a low performance.

6.6 Conclusion

In this chapter, we have demonstrated the power of ensemble approaches in
gene network inference. We have considered three strategies to construct diverse
ensembles of network predictions: (1) performing multiple runs of a stochas-
tic reverse engineering method such as AGE, (2) using variations of the gene-
expression dataset, and (3) using a set of different reverse engineering methods.
We have analyzed these strategies on a number of in silico and in vivo bench-
marks. In all cases, the ensemble predictions were remarkably accurate and
robust, having similar or better performance than the best individual network

predictions of the ensemble:

* (1) Performing multiple runs of a stochastic reverse engineering method.
As discussed in the introduction, ensemble voting boosts the performance
compared to individual members of the ensemble if the prediction errors
are uncorrelated. This seemed unlikely for the first of the three above-
mentioned strategies, where the ensemble is inferred from the same dataset
and using the same method. Yet, our results show that in practice, the
prediction errors in ensembles of reverse engineered networks are suffi-
ciently uncorrelated for ensemble voting to drastically improve the accu-
racy of predictions from noisy datasets. This was confirmed both on in
silico benchmarks and on the in vivo synthetic-biology benchmark network
of the DREAM?2 challenge.

* (2) Using variations of the gene-expression dataset. The second strategy,
that is, using variations of the dataset for inference of a diverse ensemble
of networks, was applied by de la Fuente et al. in the DREAM2 challenge
(Baralla et al., 2009). This approach seems promising, as it allowed de la
Fuente et al. to significantly improve their predictions. However, so far it
has only been tested on one network and will thus have to be studied more
systematically to prove its merits.
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* (3) Using a set of different reverse engineering methods. In the pre-
vious chapter, we have shown that gene-network inference methods have
different strengths and weaknesses. Here, we have established that the pre-
dictions from different inference methods can easily be combined to form
more robust and accurate “community predictions”, which is the third of
the above-mentioned strategies. This corresponds to a completely new
paradigm in gene network inference: instead of attempting to design the
right model and inference method, one would design a set of complemen-
tary models and inference methods, which would then be used to form a

community prediction.

The goal of a reverse engineering method is often seen to consist in reliably
tinding the global optimum, i.e., the best scoring network. Here, we advocate
for a different view, where the goal of reverse engineering is to construct an
ensemble of diverse, good scoring networks (repeatedly recovering the global
optimum is contrary to this aim). The results that we have obtained with AGE
show that it is possible to make accurate predictions from such ensembles even
if the problem is underdetermined and many different networks fit the noisy
data equally well.

The ensemble approach, be it the first and/or the second strategy, holds the
promise to improve the accuracy of any reverse engineering method that can
produce sufficiently diverse network predictions. However, AGE is particularly
well suited for this purpose because it reproduces, at a certain level of abstrac-
tion, the structure and evolutionary constraints of the biological genome. We hy-
pothesize that this is an effective approach to incorporate prior knowledge and
bias the search towards biologically plausible solutions (see Chapter 2). Ensem-
bles generated by “replaying the evolutionary tape” may thus provide a better
sampling of the posterior distribution than ensembles generated with other opti-
mization methods, because the fundamental prior that biological gene networks
originate from an evolutionary process is taken into account.

The straightforward methods used here (signed voting for ensemble pre-
dictions with AGE, and averaging of ranks for community predictions in the
DREAMB3 challenge) have an intuitive appeal, and our results show that they
work well in practice. However, we believe that there is a need for more so-
phisticated tools for a rational, probabilistic analysis of ensembles of inferred
networks, and we hope that the encouraging results presented in this chapter
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will stimulate further research in this direction.



Discussion and outlook

Synopsis

In this chapter, we summarize the results presented in this thesis and discuss implica-
tions for future research. In particular, we discuss limitations of the current version of
AGE, and how AGE could be used to infer more accurate, heterogeneous gene network
models. We also consider limitations and directions for improvement of the in-silico

reverse engineering benchmarks.
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7.1 Accomplished work

7.1.1 Evolutionary reverse engineering of gene networks

The evolutionary reverse engineering method presented in this thesis allows to
simultaneously infer both the wirings and nonlinear dynamical models of gene
regulatory networks from gene expression data. The proposed method recon-
structs gene networks by mimicking the natural evolutionary process that con-
structed them. It is based on in silico evolution of gene networks by means of
a biomimetic artificial genome called Analog Genetic Encoding (AGE), which
models both the way in which gene networks are encoded in the biological
genome, and the different types of mutations and recombinations that drive
their evolution. The reverse engineering method based on AGE has the follow-
ing key features:

* domain-specific prior knowledge is directly built into the search method;
* it is compatible with a wide range of nonlinear gene network models;

e it can be used with different types of steady-state and time-series gene

expression data.

The flexibility of AGE allows for the exploration of novel model types for
gene regulatory networks, such as the log-sigmoid model introduced in Chap-
ter 3. The log-sigmoid model provides a better approximation to different types
of combinatorial regulation than commonly used models for gene network in-
ference.

We have assessed the performance of AGE on a series of in silico and in vivo
benchmarks. Given sufficient data, AGE provides a near-perfect reconstruction
of in silico networks (Chapter 2). If the inference problem is underdetermined
due to insufficient or noisy gene expression data, multiple runs of AGE can be
used to construct an ensemble of plausible networks (Chapter 3). We have shown
that accurate predictions can be derived from such sets of inferred networks
using ensemble approaches that are well known in the field of machine learning,
but haven’t previously been applied in gene network inference (Chapter 6). To
allow direct comparison with other network inference methods, we have applied
AGE to an in vivo reverse engineering challenge of the DREAM?2 conference,
where it obtained the best performance (Chapter 3).
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7.1.2 Critical performance assessment of inference methods

This thesis introduces a framework for critical performance assessment of re-

verse engineering methods, which consists of:
* tools for generating realistic in silico benchmarks;
* a community-wide network inference challenge;

* tools for evaluating the performance and analyzing the prediction errors
of inference methods.

The generation of realistic in silico benchmark networks is based on the ex-
traction of modules from known gene networks. We have shown that in silico
networks generated in this way preserve functional and structural properties of
the original gene network. We have applied this approach to generate bench-
mark suites that we released as community-wide challenges for the DREAM3
and DREAM4 conferences. With 29 participating teams, the DREAM3 challenge
has become the most widely used benchmark in the field. The DREAM4 chal-
lenge, which was released in June 2009, has already been downloaded over 80
times in these past two months.

Our analysis of the 390 submitted network predictions of the DREAMS3 chal-
lenge participants gives unprecedented insight into the capabilities and limita-
tions of prevalent reverse engineering methods. Performance profiling on indi-
vidual network motifs reveals that the applied inference methods are affected,
to various degrees, by three types of systematic prediction errors. In particular,
all but the best-performing method fail to accurately infer multiple regulatory
inputs (combinatorial regulation) of genes.

The Java tool, called GeneNetWeaver (GNW), that was used to generate the
DREAM in silico challenges and to perform the network-motif analysis is avail-

able open-source at: http://gnw.sourceforge.net.
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7.2 Outlook

7.2.1 Current limitations of AGE

In this thesis, we have presented one possible implementation of an evolution-
ary, biomimetic reverse engineering approach. This implementation is based on
AGE as a model of the biological encoding and the evolution of gene regulatory
networks. Even though AGE successfully captures some of the fundamental
evolutionary principles of gene networks, in particular the implicit encoding
and the different types of possible mutations and recombinations, limitations of
the current version have also become apparent.

One limitation is the absence of a mechanism to explicitly prevent interaction
between genes. Due to the implicit encoding, the more genes (cis- and trans-
acting sequences) there are, the more difficult it becomes for evolution to pre-
vent interference (unwanted interactions) between them. This hinders evolution
of large networks. In biological gene networks, there are a number of important
mechanisms to prevent regulatory interactions, for example via silencing chro-
matin or insulators (Burgess-Beusse et al., 2002). Preliminary results show that
allowing for similar mechanisms in AGE indeed significantly improves evolv-
ability (Peter Diirr, personal communication).

As discussed in Chapter 2, the aim of the evolutionary approach is reverse
engineering of small modules of gene networks using nonlinear models. With
AGE, we have successfully reverse engineered networks up to size 10. The evo-
lutionary approach is not suited for reverse engineering of large networks with
hundreds or thousands of genes, for which statistical methods or regression
methods based on linear models should be used. Note that limited scalability
is inherent to any stochastic search method (global optimization method), not
just AGE. For example, Moles et al. (2003) have compared seven state-of-the-
art global optimization methods on a pathway inference problem with 36 free
parameters. This is considerably less than the 130 free parameters of a gene
network of size 10 (using a log-sigmoid model). Nevertheless, only one type of
stochastic optimization method (Evolutionary Strategies) could solve this infer-
ence problem, which demonstrates the challenging nature of inferring nonlinear
dynamical models (Moles et al., 2003). Fortunately, gene regulatory networks
have a modular architecture (Hartwell et al., 1999), which lends itself to the
study of small modules often comprising only a handful of genes that dynami-
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cally interact to perform a specific function (von Dassow et al., 2000; Manu et al.,
2009).

7.2.2 Reverse engineering heterogeneous networks

A limitation of prevalent methods for inference of dynamical models of gene
networks is that each gene of the network is modeled with the same generic
function dx;/dt = f(x) (see Equation 1.1). Only the inferred parameters of this
function (e.g., the weights of the interactions) differ from gene to gene. We call
this a homogeneous network because all the regulatory interactions and genes are
modeled in the same way.

However, biological gene networks are highly heterogeneous. For example, a
tirst gene may be regulated independently by two proteins that bind separately
from each other to its cis-regulatory region. A second gene may be regulated
synergistically by two proteins that first have to bind to each other, forming a
heterodimer, and only this heterodimer has the ability to bind the cis-regulatory
region of the gene. Consequently, the independent regulation of the first gene
may be, for example, well described by dx;/dt = f(x), but the synergistic regu-
lation of the second gene may require a different model dx,/dt = g(x).

In other words, different mechanisms of independent and synergistic combi-
natorial regulation of genes require different model types to be accurately de-
scribed (and reverse engineered). It is thus not surprising that current infer-
ence methods, which infer homogeneous networks, make systematic errors in
predicting the combinatorial regulation of genes (the fan-in error discussed in
Chapter 5).

To overcome this limitation, a paradigm shift in the design of reverse engi-
neering methods is required. Instead of relying on a single, fixed model type,
which is the same for all genes and interactions, a set of alternative model types
that account for different regulatory mechanisms need to be defined. The ap-
propriate model types for the different genes and interactions of the network
would then be inferred from the gene expression data, in addition to the network
structure and the numerical parameter values of these models, as illustrated in
Figure 7.1.

In this thesis, we have inferred homogeneous networks. However, the evo-
lutionary approach based on AGE could also be used to reverse engineer het-
erogeneous networks with different types of components and interactions. In
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Figure 7.1: Reverse engineering heterogeneous networks. This diagram was used
in Figure 1.2 to explain reverse engineering. Here, we have added the dashed arrow,
representing a new approach for which the model type is not fixed beforehand. Instead,
the network inference method uses the information contained in the gene expression
data to infer both the network structure and the model types for the different genes and
interactions. Consequently, the predicted networks may be heterogeneous (composed of
different types of genes and interactions).

fact, we are already applying AGE to evolve heterogeneous networks in other
domains than gene-network reverse engineering. For example, AGE has been
used to evolve analog electronic circuits, which are composed of different com-
ponents such as transistors and capacitors (Mattiussi and Floreano, 2007). We
are also using AGE to evolve artificial neural networks (ANNSs) for classification
and robotic control problems. These ANNs are composed of different types of
neurons, such as input and output neurons, hidden neurons, and modulatory
neurons (Diirr et al., 2008, 2009).

Studying the feasibility and data requirements for reverse engineering of het-
erogeneous gene networks with AGE is an important field of enquiry for future
research efforts.
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7.2.3 Realistic in silico performance assessment:
DREAM or reality?

Due to the complexity and our incomplete understanding of the biological mech-
anisms of gene regulation, reverse engineering methods are forced to make sim-
plifying assumptions. For example, such assumptions may concern the structure
of the networks (e.g., Bayesian networks are based on the assumption that there
are no cycles), the noise in the gene expression data (e.g., assumption of Gaus-
sian noise), or the dynamics of the networks (e.g., assumption that a particular
phenomenological model type provides a good approximation of regulatory dy-
namics). For realistic in silico performance assessment, it is essential that the
benchmarks are not based on the same simplifying assumptions as the reverse

engineering methods.

In this thesis, we present tools for the generation of such benchmarks. Even
though these in silico benchmarks are far from being realistic to the extent that
they could replace in vivo performance assessment, they are based on more ac-
curate and realistic models and assumptions than common reverse engineering
methods. For example, the kinetic model—though still extremely simplified
compared to the real biological mechanisms—does not make two of the key
simplifying assumptions of most reverse engineering methods. First, mRNA
and proteins are not lumped into a single state variable. Second, the regulation
(input function) of genes is not phenomenologically approximated by additive

or multiplicative terms, but is derived using the thermodynamical approach.

In the DREAMS in silico challenge, we added Gaussian noise to the gene
expression data. In recent work for the DREAM4 in silico challenge, which will
be described elsewhere, we have adopted a more realistic approach to model
the noise. First, we use stochastic simulations to model internal noise in the
dynamics of the networks (Gillespie, 2000). Second, we add measurement noise
to the generated gene expression datasets using a model of noise observed in

microarrays (Tu et al., 2002).

In future work, we will further extend the kinetic model to include interac-
tions between proteins and signaling molecules. As our understanding of other
regulatory mechanisms progresses (e.g., the regulatory functions of non-coding
RNAs and chromatin states), these mechanisms could also be modeled in the in
silico networks to further improve the realism of the benchmarks.
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7.3 Conclusion

In this thesis we demonstrate that, by taking inspiration from the mechanisms
that enable the evolution of complex gene regulatory networks in nature, it is
possible to design powerful reverse engineering methods for these same net-
works. The proposed evolutionary reverse engineering approach addresses two
key problems in gene network inference. First, it permits prior biological knowl-
edge to be embedded in the reverse engineering method. Second, it is compat-
ible with a broad range of nonlinear models, which permits the exploration of
more detailed and accurate model types than those currently used in gene net-
work inference. For example, the evolutionary approach could provide the nec-
essary framework for inference of heterogenous networks, where not all genes

and interactions are modeled in the same way.

In an insightful article, Fisher and Henzinger (2007) distinguish between
mathematical models and executable models of biological systems. An executable
model is “an algorithm for an abstract execution engine to mimic a design or
natural phenomenon” (Fisher and Henzinger, 2007). AGE is such an executable
model of the evolution of gene regulatory networks. So far, we have applied
AGE primarily as a tool for evolutionary synthesis and reverse engineering of
dynamical networks. However, AGE could also be used as a model to study
evolutionary dynamics of gene regulatory networks. Previously, conventional
evolutionary algorithms—which are based on fundamentally different genetic
encodings than biological evolution—were used for this purpose, for exam-
ple to study emergence of robustness (Siegal and Bergman, 2002), evolvability
(Bergman and Siegal, 2003; Ciliberti et al., 2007), and modularity (Kashtan and
Alon, 2005). AGE would be ideally suited to study evolutionary dynamics of
gene regulatory networks in a more realistic setting. The insights thus gained
may in turn be used to further improve AGE for the purpose of evolutionary

reverse engineering.

Nowadays, computer-aided design (CAD) is essential in many disciplines
and industries. For example, cars are being designed and even crash-tested in
simulation, before expensive physical prototypes are built. Early attempts in
the 1980s to crash-test cars in simulation (i.e., to do in silico performance assess-
ment) were unfortunately “not taken very seriously since the underlying models
were very primitive and inaccurate” (Thomke, 1998). However, the accuracy of
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advanced crash simulations can now exceed prototype-to-prototype variation of
physical crashes (Thomke, 1998). Similar to the early attempts of simulating car
crashes, current inference and simulation methods for gene regulatory networks
may be considered “primitive and inaccurate”. However, we are convinced
that—as the young field of computational systems biology matures—simulation
tools will play an equally important role in molecular biology, biotechnology,

and drug design, as they do now in traditional engineering disciplines.
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Supplementary information
of Chapter 2

A.1 Implementation of the implicit encoding

As described in Section 2.2.1, each gene has a sequence s.s and Stans, Which
implicitly encode the regulatory interactions and their strength (see Figure 2.2).
In this Appendix, we define the interaction map I that is used to decode the

strength of the regulatory interactions from the respective sequences

Wij = I(Strans,j ’ Scis,i) (A1)

Mattiussi (2005) derived a set of requirements that the interaction map should
meet in order to be evolvable. We will not include a detailed discussion here, but
merely mention some of the most important requirements that were considered

in the choice of the interaction map. The interaction map must
* possess a many-to-one nature in order to allow for neutral evolution;

¢ permit both gradual changes and major reorganizations of the network

structure and interaction strengths;

* be able to determine multiple interactions that can evolve independently

from each other, i.e., that are encoded by distinct subsequences of s.s and

Strans;
* be applicable to sequences of variable length;
* have reasonably low computational complexity.

Simple techniques of sequence comparison, such as Hamming distance, do
not comply with these requirements. Mattiussi (2005) proposed an interaction
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map based on local alignment of the two sequences, which does fulfill the above
requirements. Below, we give a brief description of this interaction map—a
detailed discussion is provided by Mattiussi (2005).

A.1.1 The interaction map

We define the interaction map I as a composed map, which is formed by a generic
interaction map L(Strans , Scis) and a model-specific map N (1)

w = I(Strans ’ Scis) = N(L(Strans ’ Scis)) (A.2)

The generic interaction map L(Stans,Scis) i defined as the local alignment
score of the two sequences (Gusfield, 1997), using the alignment parameters
specified by Mattiussi and Floreano (2007). Figuratively speaking, the closer the
match between two subsequences of s.s and sirans, the stronger is the interaction.

The network-specific map N : [limin, Imax] — [0, Wmax] transforms integer local
alignment scores [ into floating-point weights. Alignment scores smaller than
the threshold Iy, are mapped to zero (no interaction), scores greater than /max
are truncated to wmax, and scores in between are mapped linearly or logarith-
mically onto the positive interval [0, wmax|. In the experiments reported in this
thesis, we always used a linear mapping. For the experiments with the standard
sigmoid model (Chapter 2), we set Inin = 11, Imax = 31, and wmax = 2. For the
experiments with the log-sigmoid model (Chapters 3 and 5), we set Inin = 10,
Imax = 41, and wWmax = 5.

The alignment score given by the interaction map is always positive. In or-
der to represent negative weights, genes actually have two sequences Sians+ and
Strans—, Which define enhancing and repressing regulatory interactions, respec-
tively (for simplicity, only one sequence sirans Was described in Section 2.2.1).

The weight is defined by the stronger interaction

(A.3)

w = +I(5trans+/ Scis) if I(Strans+/ Scis) > I(Strans—z Scis)
—I(Strans—, Scis ) otherwise

Thus, there are two types of interactions in the networks (enhancing and re-
pressing), which are defined by distinct sequences Strans+ and Strans—- In the same
way, additional types of interactions could be encoded for reverse engineering

of heterogeneous networks (see Section 7.2.2). For example, sequences Sgs or and
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Scis_and could be defined for regulatory inputs that act independently (OR-type
inputs) and synergistically (AND-type inputs), respectively.
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Supplementary information
of Chapter 3

B.1 Elementary two-dimensional input functions

Here, we define the eight elementary types of two-dimensional input functions
on which the standard sigmoid model and the log-sigmoid model were com-
pared in Section 3.2. We define these input functions using the thermodynamical
model of transcriptional regulation that is described in Section 5.5.1. Remember
that the input function f(y1,y2) computes the relative activation of the gene, given
the transcription factor (TF) concentrations y; and y, (cf. Equation 5.2). The rel-
ative activation is between 0 (the gene is shut off) and 1 (the gene is maximally
activated).

A gene that is regulated by two transcription factors (TFs) has four states (see
Figure B.1): none of the TFs is bound (Sp), only the first TF is bound (S1), only
the second TF is bound (Sy), or both TFs are bound (S3). The mean activation of
the gene can be computed from the probability of each state (cf. Equation 5.5)

f(y1,y2) = woP{So} + a1P{S1} + aaP{S2} + a3P{S3} (B.1)

where «; € [0,1] is the relative activation of the gene in state S;. Using thermo-
dynamics, the probability P{S,,} can be computed for every state m, given the
TF concentrations y; and y;. The resulting expression for the two-input function

is (cf. Equation 5.6)

Xo + a1 U1 + ap U2 + a3 p U1V ) Yi\ "
flpyp) = LA TR T REAR i o = () 82

1+vy+v2+pvyvm j

where kj are the dissociation constants, n; the Hill coefficients, and p is the
cooperativity factor of the two TFs. For p = 1, the binding of the two TFs to the
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Figure B.1: A gene that is regulated by two TFs has four states. Either none, only
the first, only the second, or both TFs are bound. The gene may have a different relative
activation «; in each state.

Table B.1: Parameter values defining the elementary two-input functions.

OR | NOR | AND | NAND | IMPLIES | NIMPLIES | XOR | EQUAL
a || 0 | 1 0 1 1 0 0 1
ap || 1] 0 0 1 1 0 1 0
wl| 1] 0 0 1 0 1 1 0
az | 1| 0 1 0 1 0 0 1

cis-regulatory region of the gene is independent; for p > 1, it is cooperative; and
for p < 1, it is competitive (e.g., their binding sites are overlapping).

The eight elementary two-input functions correspond to the eight logic func-
tions that can be performed on two inputs (AND, NAND, OR, NOR, IMPLIES,
NIMPLIES, EQUAL, and XOR). They are defined by choosing different relative
activations a;, for Equation (B.2), as specified in Table B.1. The Hill coefficients
n1 and ny only affect the steepness of the transitions and not the regulatory
logic of the gene. The same is true for parameters k; and kp, which only define
the thresholds of the transitions. For the elementary input functions, we set all
these parameters to one: ny = ny = ky = ko = 1. The cooperativity factor p is
also set to one. The resulting input functions are shown in Figure B.2 (see also
Figure 3.1B), they could be realized at the level of a gene as follows:

* OR The OR input function can be realized by two activators (enhancing
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Figure B.2: The eight elementary two-input functions.
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TFs) that have the capacity to fully activate gene expression independently
from each other. In other words, the relative activation is zero when no
activator is bound and it is maximal when the first or the second activator
is bound.

NOR The NOR input function can be realized in the same way as the
OR input function, but with two repressors instead of two activators. The
activation is maximal when no repressor is bound (i.e., the gene is con-
stitutively active) and transcription is shut off when either the first or the

second repressor is bound.

AND There are two different possibilities to realize an AND input func-
tion. The first possibility is with two TFs that bind independently (o = 1),
but form together a platform that initiates gene expression. Hence, there is
only activation when the first and the second TF are bound at the promoter
at the same time (state S3). The second possibility to realize an AND input
function is through strong cooperative binding of the two TFs (o > 1). In
the extreme case, the two TFs first form a hetero-dimer and this complex

binds to the promoter and activates gene expression.

NAND The NAND input function may be realized by two repressors
analogous to the implementation of the AND module by two activators.
The first possibility is that the two repressors bind independently (o = 1),
but are only effective when they are both bound simultaneously. Similar
to the AND input function, the NAND input function can also be realized
through strong cooperative binding of the two repressors (o > 1).

IMPLIES The IMPLIES and NIMPLIES input functions are realized by
an activator and a repressor. Without loss of generality we can assume
that the first TF is the activator and the second TF is the repressor. The
IMPLIES input function can be realized by a gene that is constitutively
active, but transcription is shut off when the repressor is bound (xy = 1,
ay = 0). However, the activator can disable the repressor, thereby restoring
transcription (a1 =1, a3 = 1).

NIMPLIES The NIMPLIES input function is similar to the IMPLIES in-

put function, but now the gene is only active when the activator is bound
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and not the repressor. Thus, the relative activation is one in state S; and

zero in all other states.

* XOR The XOR input function could be realized by two activators that,

when both present, form a complex that is not activating anymore.

e EQUAL The EQUAL input function is the counterpart to the XOR input
function, using two repressors instead of two activators. It could be real-
ized by two repressors that, when bound together, form a complex that is

not repressing anymore.

As discussed in Section 3.2, biological input functions are likely to be inter-
mediates between these elementary input functions (i.e., the relative activations

would be continuous values between zero and one).

B.2 Five-gene repressilator

In this section, we describe the complete model of the in silico five-gene network
that we used in Chapter 3 as test case. The structure of this network is a loop of
tive inhibitory connections (see Figure 3.4). The dynamics are based on the log-
sigmoid model, which can be written in simplified form because the network
has only one input per gene (cf. Equation 3.3b)
. i
% = m; - Tb]xw] — Aix; (B.3)
]
where x; is the expression level of gene i and x; the expression level of its re-
pressor. The parameter m; is the maximum transcription rate, b; is the bias that
relates to the basal transcription rate, w;; is the weight of the repressing interac-
tion, and A; is the degradation rate. The values of these parameters are specified
in Table B.2.

We simulated two time-series of the same duration and with the same num-
ber of time points as the data of the DREAM2 challenge (see Section 3.3). The
initial conditions that we used in the two time-series for the five genes are given
in Table B.3.
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Table B.2: Parameter values for the five genes of the repressilator.

Parameter Value

mq 0.9
b1 3.2
M 0.15
W15 -3.6
my 1.1
b 2.2
Ao 0.20
W1 -4.1
m3 0.6
bs 5.0
A3 0.09
w3 -4.3
My 1.1
by 3.7
Ay 0.12
Wy3 -39
ms 1.0
bs 4.0
As 0.10
Wsyg -3.3

Table B.3: Initial conditions used for the two time-series of the repressilator.

Variable Time-series 1 Time-series 2

x1(0) 1.0 0.8
x2(0 7.6 0.2
x3(0 0.1 0.3

(0)
(0)

x4(0) 40 1.7
(0) 0.1 7.1
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