
EZ-Flow: Removing Turbulence in IEEE 802.11
Wireless Mesh Networks without Message Passing

Adel Aziz†, David Starobinski‡, Patrick Thiran†, Alaeddine El Fawal†
† School of Computer and Communication Sciences, EPFL, Switzerland

{adel.aziz, patrick.thiran, alaeddine.elfawal}@epfl.ch
‡ Boston University, USA

staro@bu.edu

ABSTRACT
Recent analytical and experimental work demonstrate that IEEE
802.11-based wireless mesh networks are prone to turbulence. Man-
ifestations of such turbulence take the form of large buffer build-up
at relay nodes, end-to-end delay fluctuations, and traffic conges-
tion. In this paper, we propose and evaluate a novel, distributed
flow-control mechanism to address this problem, called EZ-flow.
EZ-flow is fully compatible with the IEEE 802.11 standard (i.e.,
it does not modify headers in packets), can be implemented us-
ing off-the-shelf hardware, and does not entail any communication
overhead. EZ-flow operates by adapting the minimum congestion
window parameter at each relay node, based on an estimation of the
buffer occupancy at its successor node in the mesh. We show how
such an estimation can be conducted passively by taking advan-
tage of the broadcast nature of the wireless channel. Real experi-
ments, run on a 9-node testbed deployed over 4 different buildings,
show that EZ-flow effectively smoothes traffic and improves de-
lay, throughput, and fairness performance. We further corroborate
these results with a mathematical stability analysis and extensive
ns-2 simulations run for different traffic workloads and network
topologies.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Algorithms, Design, Experimentation

Keywords
Congestion control, multi-hop, wireless, IEEE 802.11, EZ-flow

1. INTRODUCTION
Wireless mesh networks (WMNs) promise to revolutionize In-

ternet services by providing customers with ubiquitous high-speed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

0 300 600 900 1200 1500 1800
0

10

20

30

40

50

Time

B
uf

fe
r

si
ze

 [p
ac

ke
ts

]

3−hop

Node 1
Node 2

0 300 600 900 1200 1500 1800
0

10

20

30

40

50

Time

B
uf

fe
r

si
ze

 [p
ac

ke
ts

]

4−hop

Node 1
Node 2
Node 3

Figure 1: Experimental results for the buffer evolution of each
relay node in 3- and 4-hop topologies. A 3-hop network is sta-
ble, whereas a 4-hop is turbulent with the buffer of its first re-
laying node building up until saturation.

access at low cost. Thus, several cities and communities have al-
ready deployed, or are about to deploy, WMNs within their bound-
aries [1, 2, 5]. Nevertheless, several technical obstacles must be sur-
mounted to allow for the widespread adoption of this technology. In
particular, a key challenge is to ensure a smooth and efficient traffic
flow over the backhaul, i.e., the multi-hop wireless links connecting
the end-users to the Internet (see Figure 2).

The Medium Access Control (MAC) protocol, used to manage
contention and avoid packet collisions on the shared channel, plays
a key role in determining the performance of the backhaul of a
WMN. Most WMNs use the IEEE 802.11 standard [8] as their
MAC protocol for the following reasons: (i) it is based on Carrier-
Sense Multiple Access (CSMA), a mechanism that naturally lends
itself to a distributed implementation; (ii) it has low control over-
head; (iii) it is ubiquitous and inexpensive to deploy.

The IEEE 802.11 protocol, however, was initially designed to
support single-hop, but not multi-hop communication, where mul-
tiple nodes must cooperate to efficiently transport one or multiple
flows. Recent analytical and experimental work [9, 12, 15] show
that 802.11-based wireless mesh networks are susceptible to turbu-
lence that takes the form of buffer build up and overflow at relaying
nodes, major end-to-end delay fluctuations, and reduced through-
put. In fact, the work in [9] rigorously proves the inherent insta-
bility of IEEE 802.11 WMNs longer than 3-hops. We depict in
Figure 1 the consequence of this unstable behavior by using data
collected from measurements on a real network with a greedy ac-
cess point. The figure shows the instantaneous buffer occupancy
at the relaying nodes for a (stable) 3-hop network and an (unsta-
ble) 4-hop network. In this scenario, the end-to-end throughput in
the 4-hop case is almost twice smaller than in the 3-hop case. The
intrinsic instability of IEEE 802.11 mesh networks that are longer
than three hops may explain why current implementations use only
a few hops [3].

Internet

backhaul users

ä

LNK/ACT

INTERNET

accesswired

WAP

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET

ä

LNK/ACT

INTERNET APcTAP2

APa

APb

TAP1

TAP2
TAP3

TAP2

TAP3

TAP1

Figure 2: A wireless mesh network consists of a backhaul and
an access part.

The problem of devising distributed channel access mechanisms
to ensure stability in multi-hop networks has received much atten-
tion since the seminal work of Tassiulas et al. [30]. Most of the
solid, analytical work on this problem [11, 17, 29, 32, 34] follow a
“top-down” approach, i.e., they start from a theoretical algorithm
that provably achieves stability and then try to derive a distributed
version. The drawback of this approach is the difficulty of testing
the proposed solution in practice using existing wireless cards. In-
deed, despite all the previous theoretical work, no solution has been
implemented and tested to date. To bridge this gap, we instead re-
sort to a bottom-up approach, i.e., we start from the existing IEEE
802.11 protocol, identify the main causes of turbulence and insta-
bility, and then derive a practical and decentralized mechanism to
solve this problem.

In this paper, we propose, analyze, and report experimental re-
sults for a new, distributed flow-control mechanism, called EZ-flow,
that solves the turbulent behavior of IEEE 802.11 WMNs. EZ-flow
requires no modification to the IEEE 802.11 protocol and is readily
implementable with off-the-shelf hardware. EZ-flow runs as an in-
dependent program at each relaying node. By passively monitoring
buffer occupancy at successor nodes, it adapts an existing parame-
ter of IEEE 802.11, the minimum contention window CWmin.

The standard way to obtain buffer occupancy information is via
message passing. Message passing, however, may further exacer-
bate congestion and reduce resources available for sending useful
data [32]. To avoid this drawback, EZ-flow takes advantage of the
broadcast nature of the wireless medium to infer buffer occupancy
at successor nodes. Obtaining this information without message
exchanges represents one of the major advantages of EZ-flow as it
enables the network to achieve stability without incurring any com-
munication overhead.

The rest of this paper is organized as follows. After detailing
the problem and stating the design requirements of EZ-flow, we re-
view the related work in Section 2. The core of EZ-flow is based
on two modules: (i) a Buffer Occupancy Estimator (BOE), which
is responsible for inferring the buffer occupancy at the successor
node and (ii) a Channel Access Adaptation (CAA), which uses this
buffer information to appropriately adapt the channel access prob-
ability (i.e. the contention window CWmin). We thoroughly detail
the intuition behind the mechanism and the technical implementa-
tion challenges for both modules in Section 3. We demonstrate the
practical feasibility and performance gain achieved with EZ-flow in
Section 4, where we present our experimental testbed and describe
our measurement results. In Section 5, we extend our study to other
topologies and traffic matrices through simulations. In Section 6,

we mathematically prove the stabilization effect of EZ-flow for a
linear topology, via a Lyapunov stability analysis. We summarize
our findings in Section 7.

2. BACKGROUND

2.1 Problem Statement
We consider the case of a wireless multi-hop topology as the

one existing in the backhaul of a mesh network. As depicted in
Figure 2, the backhaul of a wireless mesh is composed of three
types of nodes: (i) a Wired Access Point (WAP) that plays the role
of gateway and is connected to the Internet, (ii) Access Points (APs)
that ensure the access part of the WMN by having the end-users
connected to them (note that usually the backhaul and access part
of a WMN run on independent channels to avoid interferences) and
(iii) Transit Access Points (TAPs) that transport the data packets
through multiple hops from the WAP to the AP and back.

2.2 System Requirements
In the design of our mechanism we focus on developing a practi-

cal, stabilizing solution that is compatible with current equipments
and protocols used in IEEE 802.11 wireless mesh networks. To-
ward this goal, we set four main requirements:

• Network stabilization: EZ-flow is designed mainly to en-
sure network stability, where we define a network to be stable
if all the relay nodes have their queue finite when equipped
with infinite buffers [9]. In practice, when buffers are finite,
this means that no queue builds up. Furthermore, as the en-
vironment changes in real networks, we require EZ-flow to
automatically adapt itself to changes in the traffic matrix.

• End-to-end delay reduction: The first implication of net-
work stability is a reduced end-to-end delay that should be
maintained low with EZ-flow compared to IEEE 802.11 alone.
Such a requirement of low delays is of utmost importance in
cases where a mesh network supports real-time, multimedia
services such as VoIP, video-on-demand or online-gaming.

• Unmodified MAC layer: We require that the IEEE 802.11
MAC layer remains unmodified in order to ensure the com-
patibility of our solution with the mesh networks already de-
ployed. To meet this objective, we propose to implement EZ-
flow as a separate program that interacts with the MAC layer
solely through the contention window CWmin parameter of
IEEE 802.11.

• Backward compatibility: We ensure the backward compat-
ibility of EZ-flow by having each node derive the needed in-
formation without message passing. This approach allows
for the possibility of an incremental deployment of EZ-flow
in an already existing mesh.

In addition to these requirements we add two properties that are
not primary goals of EZ-flow, but that are still desired properties
that appeared in all our simulations and experimental deployments:

• Fairness improvement: We take IEEE 802.11 as a base-
line for EZ-flow and note that fairness is improved through a
higher Jain’s fairness index value

FI =
(
P

xi)2

(nflows ·
P

x2
i)

(1)

where nflows is the total number of flows and xi is the through-
put achieved by flow i.

• Fair throughput improvement: Low delays and high through-
put are often seen wrongly as antagonist goals to be pursued.
Of course, reducing the application throughput to a very low
value will always ensure low delays. Nevertheless, we do
not want our mechanism to limit itself to ensuring delay at
the price of throughput. For the same level of fairness, we
therefore require that EZ-flow achieves a global throughput
that is higher than with IEEE 802.11 alone.

2.3 Related Work
Much effort has been put into understanding how IEEE 802.11

behaves in a multi-hop environment. Previous work show the inef-
ficiency of the protocol in providing optimal performance, as far as
delay, throughput and fairness are concerned [15]. In [24], Nandi-
raju et al. propose a queue management mechanism to improve
fairness. However, as they mention in their conclusion, a solution
to the inherent unfairness of the IEEE 802.11 MAC layer is needed
for their mechanism to work properly. In [19], Jindal et al. claim
that the performance of IEEE 802.11 in multi-hop settings is not as
bad as it could be expected. For instance, they show an example
through simulation where IEEE 802.11 achieves a max-min alloca-
tion that is at least 64% of the max-min allocation obtained with a
perfect scheduler. Our experiments, in Section 4, show that the per-
formance may actually be much worse. We believe that the cause of
the discrepancy is that [19] assumes that flows are rate-controlled
at the source, whereas we do not make such an assumption.

References [9, 28] propose analytical models to explain the causes
of network instability and flow starvation occurring in WMNs. Our
previous work [9] shows that IEEE 802.11 networks with more than
3 hops are intrinsically unstable. This work also proposes a penalty
strategy that efficiently stabilizes a network through the use of a
throttling factor q ∈ [0, 1] for each flow, where q is the ratio be-
tween the contention window at the source node and at the relay
nodes. Despite its efficiency, this penalty strategy has a drawback
in that the parameter q is topology-dependent. Hence, we need to
develop a self-adaptive algorithm such as EZ-flow to automatically
discover a contention window distribution (i.e., q) that stabilizes
the network independently of the topology.

A first analytical solution to the stability problem in multi-hop
networks is discussed in the seminal work of Tassiulas et al. [30],
which introduces a back-pressure algorithm. Their methodology
uses a centralized scheduler that selects for transmission the link
with the greatest buffer difference, i.e. the greatest difference in
buffer occupancy between the MAC destination node and the MAC
source node. Such a solution works well for a wired network, but
is not adapted to a multi-hop wireless network where decentralized
schedulers are needed due to the synchronization problem. Exten-
sions from this work to distributed scheduling strategies have been
discussed in works such as [11], where Chapokar et al. propose a
scheduler that attains a guaranteed ratio of the maximal through-
put. Another effort to reduce the complexity of back-pressure is
presented in [34], where Ying et al. propose to enhance scalabil-
ity by reducing the number of queues that need to be maintained
at each node. The interaction between an end-to-end congestion
controller and a local queue-length-based scheduler is discussed by
Eryilmaz et al. in [13]. The tradeoff that exists in each scheduling
strategy between complexity, utility and delay is discussed in depth
in [32]. One of the drawbacks of these previous methods is that
they require buffer information from other nodes. The usual solu-
tion is to use message passing, which produces an overhead and is
thus costly even if it is limited to the direct neighbors.

Some recent work propose schedulers that do not require buffer
information from other nodes. In [17], Gupta et al. propose an algo-

rithm that uses the maximum node degree in the network. Proutiere
et al. [25] propose another algorithm, where each node makes the
scheduling decision based solely on its own buffer. Finally, most
recently Shin et al. propose an algorithm that achieves stability
and where each node uses its own buffer occupancy with a log log
function to make the scheduling decision [29]. Nevertheless, even
though their algorithm is efficient for the case of a perfect CSMA,
it requires a very large buffer size (i.e., in the order of thousands of
packets). Such a requirement presents two drawbacks: First, large
buffers imply a large end-to-end delay; second, the requirement of
such large buffers does not match with current hardware, which
usually have a standard MAC buffer of only 50 packets. To sum
up, despite recent and significant progress on the theoretical side,
almost all the existing solutions are still far from being compati-
ble with the current IEEE 802.11 protocol. One exception, which
was developed in parallel with our work, is the hop-by-hop con-
gestion control scheme in [31]. In their paper, Warrier et al. pro-
pose and deploy DiffQ, which is a protocol implementing a form
of backpressure (i.e., prioritizing links with large backlog differ-
ential). To achieve this implementation, DiffQ makes each node
inform its neighbors of its queue size by piggybacking this infor-
mation in the data packet (i.e., modifying the packet structure by
adding an additional header) and then schedules the packets in one
of the four MAC queues (each with different CWmin value) de-
pending on the backlog difference. Our approach differs in two
ways: (i) we use the next-hop buffer information instead of the
differential backlog, which results in an implicit congestion signal
being pushed back more rapidly to the source; (ii) as opposed to
DiffQ, we do not modify the packet structure in any way as we pas-
sively derive the next-hop buffer occupancy without any form of
message passing. To the best of our knowledge, EZ-flow is the first
implementation that solves the turbulence and instability problem
in real 802.11-based multi-hop testbed without modifying the pack-
ets and without any form of message passing. Our approach differs
from all the previous works in the sense that we propose a practical
solution, implemented with off-the-shelf hardware, where we take
advantage of the broadcast nature of the wireless medium to derive
the buffer information of neighboring nodes. We also highlight that
the novel passive buffer derivation methodology of our BOE mod-
ule is potentially compatible with new algorithms such as DiffQ,
and it could allow them to eliminate the need to piggy-back the
buffer information (resulting in unmodified packet structure).

Another line of work, parallel to ours, tackles congestion at the
transport layer rather than the MAC (link) layer. In [26], Rangwala
et al. present limitations of TCP in mesh networks and propose a
new rate-control protocol named WCP that achieves performances
that are both more fair and efficient. Similarly, Shi et al. focus on
the starvation that occurs in TCP when a one-hop flow competes
with a two-hop flow and they propose a counter-starvation policy
that solves the problem for this scenario [28]. Garetto et al. also
tackle the starvation problem at an upper layer [16]. They pro-
pose a rate-limiting solution and evaluate it by simulation. Their
major motivation for not using MAC-based approach is to ensure
compatibility with 802.11-based mesh network currently deployed.
EZ-flow is also fully compatible with the existing protocol since
it only varies the contention window CWmin, a modification al-
lowed by the standard. Our approach differs from previous work in
the sense that we tackle the problem at the MAC layer and that our
methodology solves the problem both for bi-directional traffic (e.g
TCP) or uni-directional traffic that cannot count on feedbacks from
the final destination to adapt its rate (e.g. UDP). The work of Yi et
al. showing that a hop-by-hop congestion control outperforms an
end-to-end version further motivates our approach [33].

Finally, another kind of work, which is similar to ours in the
idea of exploiting the broadcast nature of the wireless medium, is
found in cooperative diversity and network coding. In [21], Katti et
al. propose that relay nodes listen to packets that are not necessar-
ily targeted for them in order to code the packets together later on
(i.e. XOR them together) and thus increase the channel capacity.
In [10], Biswas et al. present a routing mechanism named ExOR
that takes advantage of the broadcast nature to achieve cooperative
diversity and thus increase the achievable throughput. Furthermore,
in [18] Heusse et al. also use the broadcast nature of IEEE 802.11
to improve the throughput and fairness of single-hop WLANs by
replacing the exponential backoff with a mechanism that adapts it-
self according to the number of slots that are sensed idle. Our work
follows the same philosophy of taking advantage of the “free” in-
formation given by the broadcast nature. Apart from that, our ap-
proach is different, because we do not use cooperation and network
coding techniques at relay nodes, but instead in a competitive con-
text we derive and use the next-hop buffer information to tackle the
traffic congestion occurring in multi-hop scenarios.

To work in combination with routing solutions such as ExOR,
our approach could be extended . Truly, the fact that the forwarded
packets are not all sent to the same successor node implies that the
forwarding process may not be FIFO (First-In, First-Out) anymore
and thus the information derived by the BOE becomes more noisy.
Nevertheless, by using a larger averaging period to smoothen the
noise, this information could still be useful for congestion control.
Moreover, to perform congestion control, a node does not always
precisely need to know which successor (i.e., which next-hop re-
lay) gets its packets: it just needs to keep to a low value the total
number of packets that are waiting to be forwarded at all of its suc-
cessors. This could be done using a similar methodology to the one
presented in this paper for the unicast case. A similar extension
of a congestion-control from unicast to multicast is discussed by
Scheuermann et al. in [27].

3. EZ-FLOW MECHANISMS

3.1 EZ-Flow Description
EZ-flow is a mechanism that interacts with the MAC layer in or-

der to efficiently adapt the channel access parameter so as to match
the requirement described in Section 2.

First, we introduce the notion of flow, where a flow is a directed
communication between a source and a destination. In the multi-
hop case, the intermediate nodes act as relay to transport the pack-
ets to the final destination. A node Nk+1 is the successor node of
Nk along a given flow if it is the next-hop relay in the multi-hop
flow. We denote the buffer occupancy of Nk by bk and its minimal
contention window by cwk. In order, not to starve forwarded traf-
fic, each node that acts both as source and relay should maintain
2 independent queues: one for its own traffic and another for the
forwarded traffic. Furthermore, a node that has multiple succes-
sors should maintain 1 queue per successor (2 if it acts as source
and relay). Indeed, different successors may encounter different
congestion level and thus EZ-flow performs best if it can adapt the
channel access probability per successor. Note that, this require-
ment is scalable as EZ-flow does not need queuing per destination,
but per successors and the number of successors is typically limited
to a single digit in the case of a WMN backhaul.

Second, we describe the two modules forming EZ-flow: (i) a
Buffer Occupancy Estimator (BOE) that derives the buffer status
of the successor node along a flow and (ii) a Channel Access Adap-
tation (CAA) that uses the information from the BOE to adapt the
channel access probability through cwk.

3.2 Buffer Occupancy Estimation
One of the major novelties of EZ-flow lies in the BOE that pas-

sively derives the buffer occupancy at the successor node bk+1

without requiring any type of message passing.
To achieve this performance, the BOE keeps in memory a list

of the identifiers of the last 1000 packets it sends to a successor
node. In our deployment we use the 16-bit checksum of the TCP
or UDP packet as an identifier so as not to incur any computational
overhead due to processing the packet. We note that this identifier,
present in the packet header, could be used by any mesh network
based on TCP/UDP and IP, and this is clearly the standard in cur-
rently deployed networks. Nevertheless, we highlight that this de-
sign choice is used without any loss of generality. Even if, in the
future, the standard would be to run IPsec or to use non-TCP/UDP
packets, our mechanism would just need to use a lightweight hash
of the packet payload as an identifier instead.

Then the second information needed is the identifier of the packet
that is actually forwarded by the successor node. This piece of
information can be obtained by taking advantage of the broadcast
nature of the wireless medium.

Indeed, node Nk is on the range of Nk+1 and is thus able to hear
most of the packets that are sent by Nk+1 to Nk+2. In the usual
settings, the MAC layer at each node only transmits to the upper
layer the messages that are targeted to it and ignores the messages
targeted to other nodes. However, by setting a node in the moni-
toring mode, it is possible to sniff packets that are targeted to other
nodes through a raw socket (as tcpdump does [7]). Using such a
methodology, it is then possible for a node to track which packets
are being forwarded by its successor node without requiring any
message passing.

Finally, as the standard buffering policy is "First In, First Out"
(FIFO), Nk can estimate bk+1 each time it hears a packet from
Nk+1. Indeed, it then compares the packet it hears with the identi-
fiers of the sent packets it has in memory and the number of pack-
ets between the last packet node Nk sent and the last packet node
Nk+1 forwards correspond to bk+1 (as the intermediate packets are
in the FIFO buffer). It is important to note that the BOE module
does not need to overhear all the packets forwarded by Nk+1 in or-
der to work. Instead, it is enough for it to be able to overhear some
packets. Each time Nk overhears a forwarded packet from Nk+1

(which happens most of the time, experimentally), it can precisely
derive the buffer occupancy and transmit it to the CAA that will
react accordingly. Obviously, the more forwarded packets Nk can
overhear, the faster it can detect and react to congestion. Never-
theless, even in the hypothetical case where Nk is unable to hear
most of the forwarded packets, it will still adapt to the congestion
and eventually set its contention window to the right value. This
invulnerability of EZ-flow to forwarded packets that are not over-
head is a crucial property, as some packets may be missed due to
the variability of the wireless channel or hidden node situations.

3.3 Channel Access Adaptation
The second module of EZ-flow is the CAA that adapts the chan-

nel access probability according to bk+1, which is the 50 samples
average of the bk+1 derived by the BOE. The intuition behind EZ-
flow is that in the case a successor node has already many packets to
forward, it is useless to send it more packets. Even worse, sending
more packets degrades the performances. Indeed, every time node
Nk sends a new packet to be forwarded, Nk+1 looses a chance to
transmit.

Following this result, we propose a simple policy for the CAA
that uses solely two thresholds: (i) bmin and (ii) bmax. Then it
adapts the channel access of each node by changing its value of the

Algorithm 1 EZ-flow mechanism at node Nk

BOE module:
if transmission of packet p to Nk+1 then

Store checksum of p in PktSent[] (overwrite oldest entry if
needed)
LastPktSent = checksum of p

else if sniffing of packet p from Nk+1 to Nk+2 then
if checksum of p ∈ PktSent[] then

bk+1 = number of packets in PktSent[] between p and
LastPktSent
return bk+1 to CAA module

end if
end if

CAA module:
Require: Reception of 50 bk+1 samples from BOE

bk+1 = Average of 50 bk+1 samples
if (bk+1 > bmax) then

countdown ← 0; countup ← countup + 1
if (countup >= log(cwk)) then

cwk ← cwk · 2; countup ← 0
end if

else if (bk+1 < bmin) then
countup ← 0; countdown ← countdown + 1
if (countdown >= 15− log(cwk)) then

cwk ← cwk/2; countdown ← 0
end if

else
countup ← 0; countdown ← 0

end if

contention window cwk. Indeed, every time the node Nk needs to
send a packet when the channel is not idle, it randomly chooses a
backoff value that is inside the interval [0, cwk − 1] and it waits
for this amount of time before retrying to transmit (see [8] for more
details on how the backoff exactly works in IEEE 802.11). There-
fore, we note that the higher the cwk, the lower the channel access
probability.

Our policy makes the decision based on a time average over 50
samples of the buffer occupancy at the successor node (bk+1) and
thus one of three cases may occur:

• bk+1 < bmin, where the average buffer occupancy at Nk+1

is below the lower threshold. This shows that the buffer is
underutilized. Thus Nk should increase its channel access
probability, which it does by dividing cwk by a factor two.

• bk+1 > bmax, where the average buffer occupancy at Nk+1

is above the upper threshold. This shows that the buffer is
overutilized (or even overflows). Thus Nk should decrease
its channel access probability, which it does by doubling its
cwk value.

• bmin < bk+1 < bmax, which is the desired situation as the
buffer is rightly utilized by neither being empty most of the
time or being saturated. In this case, Nk concludes that it has
a correct channel access probability and thus keeps its cwk

unchanged.

Other policies than our multiplicative-increase, multiplicative-
decrease could be used to update the cwk value in order to have a
higher range of possible values. Nevertheless, we chose this policy
to match the hardware constraint that requires setting the cwk at
powers of 2.

Furthermore, we provide a better inter-flow fairness in EZ-flow
by using two parameters:

• countup that counts the number of successive times the con-
dition (bk+1 > bmax) happens (overutilization signal).

• countdown that counts the number of successive times the
condition (bk+1 < bmin) happens (underutilization signal).

These two pieces of information are then used to update the con-
tention window parameter according to the current cwk value, where
nodes with a high cwk react both quicker to underutilization signals
and slower to overutilization signals than nodes with a low cwk re-
act.

Finally, the selection of the parameters bmin and bmax can affect
the reactivity and the speed of convergence of EZ-flow depending
on the topology. Indeed, the smaller the gap between these two val-
ues, the higher the reactivity of EZ-flow to slight variations whether
due to variation of the traffic load or not. These parameters can thus
be fine tuned depending on the desired behavior, but fortunately the
general values of bmin and bmax already significantly improve the
situation compared to standard IEEE 802.11. Indeed, the most im-
portant parameter to set is bmin, which has to be very small (i.e.,
∼ 10−1) in order to avoid that the nodes become too often too
aggressive and reach unsupportable rates. The parameter bmax can
then be set with more flexibility depending on the desired reactivity
level.

4. EXPERIMENTS
We implement EZ-flow on a testbed composed of 9 off-the-shelf

wireless nodes. First, we describe the environment and hardware
used in our experiment, and we discuss the practical details for the
implementation of EZ-flow. Then, we present the real measure-
ment results that confirm the efficiency of EZ-flow in improving
the performance in a real WMN testbed environment.

4.1 Hardware and Software Description
The testbed is composed of 4 laptops running Linux, which act

as source and sink of the traffic, and 9 wireless nodes equipped with
an omni-directional antenna that represent the multi-hop backhaul
of a mesh network. The wireless routers are Asus WL-500gP, in
which we change the mini-PCI WiFi card to an NMP-8602 Atheros
card. Each router runs the version Kamikaze 7.07 of the OpenWRT
firmware [6] with the MadWifi driver [4] modified to perform both
buffer monitoring and the modification of the contention window.
The wireless cards operate in IEEE 802.11b at a fixed transmission
rate of 1 Mb/s and with the RTS/CTS mechanism disabled. Finally,
we set the routing to be static.

We implement the two modules of EZ-flow, the BOE and CAA,
in C code as described Section 3. Two practical constraints need to
be taken into account in the testbed. Both of them are not required
in other implementations with different hardware.

1. Sniffer constraint: We initially intended to deploy both
the BOE and CAA module within the same wireless card
(i.e., the same router), but we had to reconsider our design.
Indeed, the BOE acts mostly as a sniffer that collects the
packets sent either by a node itself or its direct forwarder.
The problem is that a WiFi card cannot transmit and receive
at the same time and therefore is unable to really sniff its
own packet on the air. Instead the best a sniffer can do is
to capture the packet before it is sent to the MAC layer to
be actually transmitted in the air. However, the drawback
of this technique is that packets can be sniffed as sent by a

F1

0 19 38 57 76 95 m
l0

l5
l4

l3
l2l1

F2 l6

N0 N1 N2 N4

N3

N0 N6N5'

Figure 3: Illustration of the testbed topology. The hardware
used in our experimental testbed are Asus WL-500gP routers
with an Atheros-based wireless card.

node even though they are dropped by the MAC layer (for
example a buffer overflow), and thus are never really trans-
mitted physically. To overcome this limitation, we use two
WiFi interfaces per wireless node (i.e., two routers connected
through an Ethernet cable). One interface is responsible for
sending the traffic and running the CAA. The other inter-
face does not transmit any packet and acts only as a sniffer
that implements the BOE. We use this approach to simplify
the practical deployment. EZ-flow does not require the use
of two interfaces. Indeed, another approach could be to use
only one interface and to directly implement EZ-flow at the
kernel level of the wireless driver (and not the application
level) in order for the BOE to capture only the packets that
are truly sent at the physical layer.

2. MadWifi constraint: The second practical constraint comes
from the iwconfig command of the Madwifi driver to increase
the contention window CWmin. Indeed, it has no effect
above 210 (even though the driver allows the command to
execute up to 215). We notice this flaw in the implemen-
tation of the MadWifi command by checking a single-link
capacity for different CWmin values and observing that it
significantly varies up to 210, but that it remains unchanged
for values between 210 and 215.

4.2 Topology Description
We deploy our testbed over 4 buildings of the university campus

where at most 2 flows are concurrently active. Figure 3 presents the
exact map of our mesh network deployment. On the one hand, the
flow F1 is a 7-hop flow for which the bottleneck link is l2 as shown
in Table 1. On the other hand, the flow F2 is a shorter flow of 4 hops

Mean throughput Standard deviation
l0 845 kb/s 23 kb/s
l1 672 kb/s 49 kb/s
l2 408 kb/s 67 kb/s
l3 748 kb/s 42 kb/s
l4 746 kb/s 28 kb/s
l5 805 kb/s 27 kb/s
l6 648 kb/s 43 kb/s

Table 1: Illustration of the capacity of each link of flow F1. The
means are obtained through measurements over 1200 s.

0 500 1000 1500 2000
0

10

20

30

40

50

Time [s]

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

Buffer occupancy of F
1
 without EZ−flow

N
2

N
1

N
3

0 500 1000 1500 2000
0

10

20

30

40

50

Time [s]

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

Buffer occupancy of F
1
 with EZ−flow

N
1

N
2

N
3

0 500 1000 1500 2000
0

10

20

30

40

50

Time [s]

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

Buffer occupancy of F
2
 without EZ−flow

N
4

N
5

N
6

0 500 1000 1500 2000
0

10

20

30

40

50

Time [s]

Q
ue

ue
 s

iz
e

[p
ac

ke
ts

]

Buffer occupancy of F
2
 with EZ−flow

N
4

N
5

N
6

Figure 4: Experimental results for the buffer evolution of the
relay nodes when flow F1 or F2 are active. The average number
of buffered packets are: (i) without EZ-flow 41.6 (N1), 43.1
(N2) and 43.7 (N4) and (ii) with EZ-flow 29.5 (N1), 5.2 (N2)
and 5.3 (N4). The remaining buffers are very small.

that shares the same path than F1 and produces a typical parking-
lot scenario. For the sake of comparability, we avoid the effect of
interference from other networks by running our experiments on
channel 12 during the night (1 am - 5 am).

4.3 Measurement Results
The first scenario we consider is when F1 is alone in the network.

Figure 4 shows the buffer evolution with standard IEEE 802.11 and
with EZ-flow turned on. We note that for IEEE 802.11 both nodes
N1 and N2 saturate and overflow, due to the bottleneck at the link
l2 (i.e., between N2 and N3), whereas all the other nodes have
their buffer occupancy negligibly small similarly to N3. This re-
sults in an end-to-end throughput of 119 kb/s as shown in Table 2.
Whereas, EZ-flows detects and reacts to the bottleneck at link l2
by increasing cw1 up to 28. This action stabilizes the buffer of N2

by reducing the channel access of link l1. Similarly, EZ-flow de-
tects the buffer of N1 builds up and makes N0 increase cw0 until it
reaches our hardware limit of 210 (see Section 4.1). This hardware
limitation prevents EZ-flow from reducing the buffer occupancy of
N1 to a value as low as N2. However, we highlight that despite
this hardware limitation, EZ-flow still significantly improves the
performance by reducing the turbulence of the flow and increas-
ing the end-to-end throughput to 148 kb/s. Furthermore, we show
through simulation in Section 5 that EZ-flow completely stabilizes
the network once this limitation is removed.

In the second scenario, we consider F2 alone. Similarly to [9],
we note that for IEEE 802.11 the buffer of the first relay node of
F2 (i.e., N4) builds up and overflows, resulting in a throughput of
157 kb/s. However, turning EZ-flow on completely stabilizes the
network for all the relay nodes (no queue builds up) by making the
source node N

′

0 increase its cw
′

0 up to 28. Thus EZ-flow works
even better in this scenario where it is not blocked by the hardware
limitation and achieves a throughput of 185 kb/s.

Finally the last scenario is a parking-lot scenario where both F1

and F2 are simultaneously active. Similarly to what is also re-
ported in [28] between a 1- and 2-hop flow, Table 2 shows that

F2

F1

N0

N12

N10

N8

N6

N11

N9

N7

N5 N4 N3 N2 N1

Figure 5: Scenario 1: 2-flows topology.

IEEE 802.11 performs very poorly: the long flow F1 is completely
starved in favor of the short flow F2, because N

′

0 is too aggres-
sive (even for its own flow) and thus prevents the packets from the
longer flow F1 from being relayed by the intermediate nodes N1,
N2, N3. However, by its nature, EZ-flow solves the problem by
making the two source nodes, N

′

0 and N0, become less aggressive
in order to stabilize their own flow. This approach thus solves the
starvation problem and significantly increases both the aggregate
throughput of F1 and F2 and the fairness index (defined in Eq.
(1)).

5. SIMULATION
We present in this section some simulation results on two dif-

ferent scenarios with varying traffic loads to confirm our statement
that the EZ-flow mechanism successfully achieves network stabil-
ity and adapts to changing traffic matrices.

5.1 System Description
We implemented the two modules of EZ-flow, the BOE and CAA,

in ns-2 simulator version 2.33 [23]. Our implementation closely
follows the description of Section 3, where each node does not use
any global information, but only uses the information it can hear by
sniffing the channel.

Beside the inclusion of EZ-flow, we kept the standard parameters
of IEEE 802.11. Therefore we use a transmission range of 250 m,
a sensing range of 550 m and the RTS/CTS mechanism turned off.

Mean throughput Standard dev. FI (Eq. (1))
F1 119 kb/s 25 kb/s
F2 157 kb/s 29 kb/s
F1 7 kb/s 15 kb/s 0.55
F2 143 kb/s 34 kb/s

F EZ
1 148 kb/s 28 kb/s

F EZ
2 185 kb/s 26 kb/s

F EZ
1 71 kb/s 31 kb/s 0.96

F EZ
2 110 kb/s 35 kb/s

Table 2: Mean throughput, standard deviation and Jain’s fair-
ness index (FI) for measurements over 1800 s with and without
EZ-flow. The sub-division in the table present the results for:
(i) one single flow, or (ii) two simultaneous flows in the network.

0 500 1000 1500 2000 2500
0

50

100

150

200

Time [s]

T
hr

ou
gh

pu
t [

K
bi

ts
/s

]

Throughput of F
1
 without EZ−flow

0 500 1000 1500 2000 2500
0

50

100

150

200

Time [s]

T
hr

ou
gh

pu
t [

K
bi

ts
/s

]

Throughput of F
1
 with EZ−flow

0 500 1000 1500 2000 2500
0

50

100

150

200

Time [s]

T
hr

ou
gh

pu
t [

K
bi

ts
/s

]

Throughput of F
2
 without EZ−flow

0 500 1000 1500 2000 2500
0

50

100

150

200

Time [s]

T
hr

ou
gh

pu
t [

K
bi

ts
/s

]

Throughput of F
2
 with EZ−flow

(i) (ii)

Figure 6: Throughput statistics for the flows F1 and F2 in sce-
nario 1: (i) with standard IEEE 802.11 and (ii) with EZ-flow
turned on.

The reasons we do not use RTS/CTS are twofold: (i) the current im-
plementations of the protocol disable the mechanism by default and
(ii) enabling the RTS/CTS is useless in the standard case we con-
sider where the area covered by the sensing range (550 m) is larger
than the maximal area covered by RTS and CTS (2 · 250 m). We
also kept the default data rate of 1 Mb/s and the propagation model
to be two-ray ground. To ensure that the systems run in saturated
mode, we generate at the source a Constant Bit Rate (CBR) traffic
at a rate of 2 Mb/s. Finally we use the NOAH routing agent [20],
which is a static routing agent, in order to focus on the influence
of the MAC layer and to remove from our study the effect of route
link failure and the overhead of routing messages. The parameters
of EZ-flow are bmin = 0.05, bmax = 20 and maxcw = 215.

5.2 Scenario 1: 2-Flows Topology
The topology we study in our first scenario is depicted in Fig-

ure 5 and corresponds to two 8-hop flows that merge together to
access a gateway. This situation corresponds to the uplink scenario
happening in the backhaul of WMNs, where different flows merge
together to reach the gateway that delivers the access to the Internet.

The flow F1 is active for the entire duration of the simulation,
i.e., from 5 s to 2504 s. Flow F2 is active between 605 s and
1804 s. The throughput and delay results are shown respectively
in Figures 6 and 7.

During the first period, the flow F1 is alone in the network (5−
604 s). We note that in the case of standard IEEE 802.11 without
EZ-flow, the network already suffers from congestion. Indeed, the
end-to-end delay reaches a value of 4.1 s, which is unacceptable for
delay-sensitive traffic, and the throughput only reaches 153.2 kb/s.
But when EZ-flow is turned on, the network is stabilized. Indeed,
the end-to-end delays drop at a value as low as 0.2 s. Interestingly,
this reduction in delay does not happen at the cost of a reduced
throughput as it increases up to an average of 183.9 kb/s, which cor-
responds to a throughput gain of 20% over standard IEEE 802.11.
To understand why EZ-flow achieves this performance, Figure 8
shows how the contention windows are automatically adapted at
the different nodes. The stable regime is reached once the relay

0 500 1000 1500 2000 2500
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]
Delay of F

1
 without EZ−flow

0 500 1000 1500 2000 2500
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay of F
1
 with EZ−flow

0 500 1000 1500 2000 2500
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay of F
2
 without EZ−flow

0 500 1000 1500 2000 2500
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay of F
2
 with EZ−flow

(i) (ii)

Figure 7: Delay statistics for the flows F1 and F2 in scenario 1:
(i) with standard IEEE 802.11 and (ii) with EZ-flow turned on.

nodes set their contention window to the minimal value of 24 and
the source node, N12, sets it to cw12 = 27. Therefore, we highlight
that for the single-flow topology, EZ-flow reaches distributively the
static solution that was proven to be stable (proposed in [9]).

During the second period, both flows F1 and F2 are concurrently
active (605 − 1804 s). Obviously, for IEEE 802.11 the conges-
tion problem becomes worse with average delays as high as 5.8 s,
an average throughput reduced to 76.5 kb/s and a high throughput
variation. Enabling EZ-flow improves once again these three met-
rics, and most importantly solves the problem of congestion. In-
deed, the end-to-end delay rapidly drops to negligible values, which
shows no buffer builds up in the network. Furthermore, the average
throughput is also increased to 82.1 kb/s.

The explanation for the two peaks in delay at around 600 s and
1000 s is found in Figure 8. The first peak corresponds to the tran-
sient incurred by the arrival of flow F2. Up to 605 s only flow F1

exists in the network, and EZ-flow adapted the contention windows
to stabilize the network for a single-flow topology. At 605 s the
second flow F2 appears in the network and therefore the previous
contention windows are too small for this new traffic load. Thus,
the buffer starts to build up at some nodes and this is reflected by the
sudden increase in end-to-end delay. Fortunately, EZ-flow rapidly
adapts the contention windows to solve the problem and converges
once again to a stable state. However, we note that after this first

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Time [s]

lo
g(

cw
)

Evolution of cw at F
1

cw
10

cw
12

cw
8

cw
6
, cw

4
−cw

2

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

Time [s]

lo
g(

cw
)

Evolution of cw at F
2

cw
4
,cw

3
,cw

2

cw
9

cw
11

cw
7
,cw

5

Figure 8: Illustration of how EZ-flow modifies the CWmin val-
ues at the different nodes of the network.

F2

F3

N9N0 N7N5

N10

N8N6N4N3N2N1

F1

N11 N12 N13
N14

N15

N16

N17 N20

N21

N22

N23
N24 N25 N26

N19N18

N27

Figure 9: Scenario 2: 3-flows topology.

peak, the contention windows of the nodes in F1 and F2 are dif-
ferent as cw8 = 24, whereas cw7 = 25. This difference is the
cause of the second peak. Indeed, due to the small cw8, N10 and
then N12 sense their successor node underutilized and thus become
more aggressive. Unfortunately, this increase leads to a rate that
is not supportable at the junction node N4, and the buffers of N5

and N6 start to build up. Both N7 and N8 detect this increase, but
following the algorithm of the CAA, N8 is more likely to react as
cw8 < cw7. Therefore N8 increases its cw8, N10 and N12 react
to it and reach a steady state. Interestingly, once the stable regime
is reached, the source nodes set cw11 and cw12 at the value of 211,
which is once again similar to the optimal static solution proposed
in [9] (q = 24/211 = 1/128).

During the last period, the flow F1 is again alone in the network
(1805−2504 s). As expected, IEEE 802.11 achieves performances
similar to the first period. More importantly, the results show a par-
ticularly interesting property of EZ-flow: its adaptability to changes
in the traffic load. Indeed, as soon as the flow F1 leaves the network
the buffer of some nodes becomes under-utilized. EZ-flow detects
this and becomes more aggressive by decreasing the cw12, cw10

and cw8 until it reaches the same stable state as in the first period.
Therefore improvements in throughput and delay similar to the first
period are found for this last period.

5.3 Scenario 2: 3-Flows Topology
The second scenario we consider is a 3-flow topology as de-

picted in Figure 9. This situation corresponds to the multi-hop sce-

Mean throughput Standard dev. FI (Eq. (1))
F1 145.6 kb/s 27.4 kb/s 0.75
F2 39.9 kb/s 36.7 kb/s
F1 129.9 kb/s 45.3 kb/s 0.64
F2 31.0 kb/s 32.5 kb/s
F3 27.3 kb/s 39.9 kb/s
F1 150.0 kb/s 13.0 kb/s

F EZ
1 89.9 kb/s 41.3 kb/s 1.00

F EZ
2 100.3 kb/s 42.6 kb/s

F EZ
1 29.5 kb/s 22.9 kb/s 0.80

F EZ
2 139.7 kb/s 23.0 kb/s

F EZ
3 135.4 kb/s 26.9 kb/s

F EZ
1 179.9 kb/s 13.5 kb/s

Table 3: Mean throughput, standard deviation and Jain’s fair-
ness index (FI) with and without EZ-flow for the three periods:
(i) F1 alone, (ii) F1 and F2 active and (iii) all three flows active.

0 1000 2000 3000 4000
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]
Delay F

1
 without EZ−flow

0 1000 2000 3000 4000
0

5

10

15

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay F
1
 with EZ−flow

0 1000 2000 3000 4000
0

5

10

15

20

25

30

Delay F
2
 without EZ−flow

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

0 1000 2000 3000 4000
0

5

10

15

20

25

30

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay F
2
 with EZ−flow

0 1000 2000 3000 4000
0

5

10

15

20

25

30

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay F
3
 without EZ−flow

0 1000 2000 3000 4000
0

5

10

15

20

25

30

Time [s]

E
nd

−t
o−

en
d

de
la

y
[s

]

Delay F
3
 with EZ−flow

(i) (ii)

Figure 10: Delay statistics for the flows F1, F2 and F3 in sce-
nario 2: (i) with standard IEEE 802.11 and (ii) with EZ-flow
turned on.

nario where multiple sources have to reach different destinations,
but share the wireless resource with other flows on some parts of
their paths. Furthermore, this topology illustrates what happens
when the source of one flow (i.e., N0) is a hidden node from an-
other source (i.e., N10). The simulation starts with flows F1 and F2

present in the network from 5 s to 1805 s. Then flow F3 is added
and the three flows share the resources from 1805 s to 3605 s. Fi-
nally, we remove flows F2 and F3 and let F1 alone in the network
from 3605 s to 4500 s, in order to check that the system stabilizes
once again to a performance similar to what we find in the single-
flow topology of scenario 1. The throughput and delay statistics
are shown respectively in Figure 10 and Table 3. Furthermore, Fig-
ure 11 illustrates how EZ-flow adapts the contention windows over
time.

During the first period, [5, 1805), we see that IEEE 802.11 dras-

0 1000 2000 3000 4000
0

2

4

6

8

10

12

Evolution of cw

Time [s]

lo
g(

cw
) cw

0

cw
1

cw
10

cw
11

0 1000 2000 3000 4000
0

2

4

6

8

10

12

Evolution of cw

Time [s]

lo
g(

cw
)

cw
20

cw
0

cw
1

cw
19

Figure 11: Illustration of how EZ-flow modifies the CWmin

values at the two first node of each flow.

tically suffers from the hidden node situation, with F2 experiencing
a particularly high delay (∼ 15 s) and low throughput. The fairness
index is of 0.75. On the contrary, when EZ-flow is turned on, the
contention window of the source of F2 cw10 is increased up to a
value of 210 to provide a smooth flow. We note that this increase
delivers negligible delays to both flows and does not penalize F2 as
it has a throughput that is even slightly higher than F1. The reason
F2 achieves a higher throughput while having a larger contention
window (cw10 = 210 and cw0 = 25) is that N10 only directly
competes with two nodes (N11 and N12), whereas N0 competes
with seven other nodes.

During the second period, [1805, 3605), we see that IEEE 802.11
starves flow F2 and F3 in favor of F1 and that all flows suffer from
high delays. The reason that F1 shows better performances than F3

is that N0 has many neighbors and it naturally reduces the source
access rate and thus the buffer building-up problem. IEEE 802.11
achieves a cumulative throughput of 188.2 kb/s and a fairness in-
dex of 0.64. In contrast, EZ-flow increases the cumulative through-
put to 304.6 kb/s (a 62% throughput gain over the standard IEEE
802.11), increases the fairness index to 0.8, and drastically reduces
the end-to-end delay by an order of magnitude at least. We note
that F1 has its throughput reduced even though the source of F1,
N0, has cw0 that is lower than cw10 and cw19 (cw0 = 27 and
cw10 = cw19 = 29). This reduction is due to the higher com-
petition that F1 experiences and it allows both F2 and F3 to have
higher throughputs and all the flows to have negligible delays and
thus, a stable network.

Finally, during the last period we see that once again EZ-flow
successfully detects the variation in traffic load and adapts the con-
tention windows to achieve results similar to those in the single-
flow case of scenario 1.

6. MATHEMATICAL ANALYSIS
We now formally prove the stabilization property of EZ-flow for

a single flow, 4-hop network topology, which is the smallest and
simplest topology that has been shown to be unstable with standard
IEEE 802.11 protocols [9]. We use the same discrete-time model
as in [9], which captured this instability when EZ-flow was not
deployed. The result can also be extended for a general K-hop
network, with K ≥ 4.

6.1 Model Notations
We analyze a K-hop flow where the node 0 sends packets to the

final destination node K with the intermediate node i forwarding
the packet to node (i + 1). Each node i is characterized by a given
contention window value cwi and a buffer occupancy bi. As we
are interested in the stability of the queues of the relay nodes (the
source being saturated), we propose a slotted-time model where a
slot n corresponds to the occurrence of one transmission pattern.
Furthermore, we use as state variable of the system at time n the
vectors

~b(n) = [b0(n) b1(n) . . . bK−1(n)]T ,

~cw(n) = [cw0(n) cw1(n) . . . cwK−1(n)]T ,

where T denotes transposition and b0(n) =∞ due to the saturated
source. We also introduce the link activation vector

~z(n) = [z0(n) z1(n) . . . zK−1(n)]T ,

representing the successful link activities at time slot n: zi(n) = 1
if a packet is transmitted from node i to node i + 1 during the
nth time slot, and zi(n) = 0 otherwise. We note that to have
zi(n) = 1, we must have

P

k∈Λi
zk(n) = 0, where Λi is the

b2

b1

b3

C

A

D

B

G

F

E
H

Figure 12: A 4-hop network seen as a random walk on the pos-
itive orthant of Z3. The eight regions A to H correspond to all
the different combination of zero and nonzero entries of~b.

set of nodes that are in the interference range with node i. The
standard interference model that is used is the 2-hop interference
model that requires that all the nodes that are in the 2-hop vicinity
remain silent in order for a node to transmit successfully.

6.2 EZ-Flow Dynamics
The dynamics of a network using EZ-flow is captured by the

recursive equations

cwi(n + 1) = f(cwi(n), bi+1(n)) (2)

bi(n + 1) = bi(n) + zi−1(n)− zi(n), (3)

where f(·, ·) is defined by

f(cwi(n), bi+1(n)) =
8

<

:

min(cwi(n) · 2, maxcw) if (bi+1(n) > bmax)
max(cwi(n)/2, mincw) if (bi+1(n) < bmin)
cwi(n) otherwise,

with bmax and bmin being, respectively, the maximal and minimal
threshold values for the buffer and mincw = 24 and maxcw =
215 being the bounds between which the contention windows can
evolve. The activation vector is computed as the result of a random
function g(·, ·) as

~z(n) = g(~b(n), ~cw(n)). (4)

Function g(·, ·) is obtained by a set of rules, detailed in [9], and
which outputs is a transmission pattern as a function of the current
buffer state (only nodes with non empty buffers can transmit) and
of the random sequence of backoff timers and possible collisions
generated by hidden terminal effects (this makes function g(·, ·)
random). This discrete-time model maps the buffer evolution of a
K-hop network to a random walk on the positive orthant of ZK−1,
which is divided in 2K−1 regions differing by the entries of~b which
are zero and non zero (i.e., the queues that are empty or not). Fig-
ure 12 illustrates the 24−1 = 8 regions of the K = 4 hop network.
In each region, one can compute first the possible outcomes of the
back-off timers, which depend on the contention values ~cw(n), and
next the resulting transmission patterns which depend also on the
possible collisions due to hidden terminals. The enumeration of all
the possible outcomes is not included here for lack of space, but
follows the same reasoning as in [9]. It is summarized in Table 4
for the 4 hop network.

Region ~z P(~z)
A [1, 0, 0, 0] 1
B [1, 0, 0, 0] cw1

cw0+cw1

[0, 1, 0, 0] cw0
cw0+cw1

C [0, 0, 1, 0] 1
D [1, 0, 0, 1] 1
E [0, 1, 0, 0] cw0cw2

P

i=0,1,2
Q

j 6=i cwj

[0, 0, 1, 0] 1− cw0cw2
P

i=0,1,2
Q

j 6=i cwj

F [0, 0, 0, 1] cw0cw3
P

i=0,1,3
Q

j 6=i cwj

+ cw0cw1
P

i=0,1,3
Q

j 6=i cwj

cw0
cw0+cw1

[1, 0, 0, 1] cw1cw3
P

i=0,1,3
Q

j 6=i cwj

+ cw0cw1
P

i=0,1,3
Q

j 6=i cwj

cw1
cw0+cw1

G [0, 0, 1, 0] cw0cw3
P

i=0,2,3
Q

j 6=i cwj

+ cw2cw3
P

i=0,2,3
Q

j 6=i cwj

cw3
cw2+cw3

[1, 0, 0, 1] cw0cw2
P

i=0,2,3
Q

j 6=i cwj

+ cw2cw3
P

i=0,2,3
Q

j 6=i cwj

cw2
cw2+cw3

H [0, 0, 1, 0] cw0cw1cw3
P

i=0,1,2,3
Q

j 6=i cwj

+ cw1cw2cw3
P

i=0,1,2,3
Q

j 6=i cwj

cw3
cw2+cw3

[0, 0, 0, 1] cw0cw2cw3
P

i=0,1,2,3
Q

j 6=i cwj

+ cw0cw1cw2
P

i=0,1,2,3
Q

j 6=i cwj

cw0
cw0+cw1

[1, 0, 0, 1] cw1cw2cw3
P

i=0,1,2,3
Q

j 6=i cwj

cw2
cw2+cw3

+ cw0cw1cw2
P

i=0,1,2,3
Q

j 6=i cwj

cw1
cw0+cw1

Table 4: Probability of occurrence of the transmission pattern
~z for the different region of the space Z3.

6.3 Proof of Stability
Equipped with the model described above, we now formally prove

the efficiency of EZ-flow in stabilizing the network. In order to
maintain the number of regions small, we detail the proof for 4
hops. A similar methodology can be used to show the stability of
a K-hop network, for any given value of K by using the gener-
alized version of the Lyapunov function used in the proof h(~b) =
PK−1

i=1 bi.
The queue dynamics of a 4-hop network is thus a random walk

on Z3, where each dimension represents the queue size of the node
i, with i ∈ {1, 2, 3} (cfr Figure 12). We do not include the buffer
occupancy of either the source b0 that we assume to be always sat-
urated, nor of the final destination b4 that we assume to be always
empty as the received packets are immediately removed from the
buffer.

THEOREM 1. EZ-flow stabilizes a 4-hop network by maintain-
ing the queue size of all the relaying nodes almost surely finite.

PROOF. As depicted in Figure 12, we divide the positive orthant
of Z3 into 8 regions (denoted A-H), which depend on the buffer
occupancy status (empty or not) of each node. The probability of
each of the transmission patterns for each these 8 regions is listed
in Table 4. We can then apply Foster Theorem 2 (see Appendix)
with the Lyapunov function

h(b1, b2, b3) = b1 + b2 + b3,

and the finite set S = {0 ≤ b1, b2, b3 < B}, where B > bmax +
log2(maxcw). We need to verify that both conditions (5) and (6)
of this theorem are verified.

We note first that (5) is satisfied by the definition of h and the
nonzero transition probabilities of the random walk.

It takes some more work to verify (6). One need to compute
E

h

h(~b(n + 1))|~b(n)
i

−h(~b(n)) with~b(n) in each of the 7 regions
B-H outside S, similarly to the proof of Theorem 2 in [9]. After
some computations, we find that (6) is verified with k(~b(n)) = 1
when~b(n) ∈ F ∪H , k(~b(n)) = 2 when~b(n) ∈ D∪E, k(~b(n)) =
3 when ~b(n) ∈ G, k(~b(n)) = 4 when ~b(n) ∈ C and finally
k(~b(n)) = 25 when ~b(n) ∈ B (the latter region being handled by
a computer-assisted computation). Therefore, as Region A ⊆ S,
the conditions of Theorem 2 are satisfied in all the positive orthant
of Z3, which proves that EZ-flow stabilizes the network.

7. CONCLUSION
In this paper, we have proposed and designed EZ-flow, a new

flow control mechanism for IEEE 802.11 WMNs. EZ-flow is fully
backward compatible with the IEEE 802.11 standard and works
without any form of message passing. EZ-flow is implemented in a
distributed fashion as a simple program running at each relay node.
It takes advantage of the broadcast nature of the wireless medium to
passively estimate the buffer occupancy at a successor node. The
minimum congestion window parameter is adapted at each relay
node based on this estimation to ensure a smooth flow, specifically,
each relay node adapts its contention window to avoid buffer build-
up at its successor node.

We have demonstrated by experiments the attendant benefits of
EZ-flow on a testbed composed of 9 standard wireless mesh routers
deployed over 4 different buildings. Our measurement results show
that EZ-flow simultaneously improves throughput and fairness per-
formance. To our knowledge, it is the first implementation of an
algorithm addressing instability in a real multi-hop network.

We have also thoroughly evaluated the dynamic behavior of EZ-
flow by using ns-2 simulation. The results show that EZ-flow quickly
adapts to changing traffic loads and ensures end-to-end delays much
lower than standard IEEE 802.11 WMNs.

Finally, we have derived a Lyapunov function with which we
analytically prove the stability of an IEEE 802.11-based linear K-
hop topology implementing EZ-flow.

We conclude by noting that the methodology followed by EZ-
flow is not limited to line topologies. One possible approach to
dealing with more general topologies is to take advantage of the
current IEEE 802.11e protocol, which uses four different MAC-
layer queues. This protocol was originally designed to support
Quality of Service (QoS) by categorizing the traffic into four types
of service: (i) Background (BK), (ii) Best Effort (BE), (iii) Voice
(VO) and (iv) Video (VI). Yet to date, this service differentiation
is not commonly used and almost all traffic is classified as BE and
queued accordingly. Thus, the three other queues are mostly left
idle. A node forwarding traffic to up to four successors could take
advantage of the availability of these MAC-layer queues in order
to use one different queue (thus one different CWmin value) per
successor. This approach suits well the backhaul scenario this pa-
per focuses on, as it usually follows a tree-based topology with
a limited number of neighbors. In cases where EZ-flow needs to
be deployed in networks with a higher neighbor density, a similar
mechanism could be used with a slight modification. Here, mul-
tiple queues could be implemented at the routing layer (e.g. by
using Click [22]). The BOE would remain unchanged; and the
CAA would control the scheduling rate at which packets belonging
to different routing queues are delivered to the MAC layer, instead
of directly modifying the MAC contention window. The extension
of the Lyapunov stability analysis to more general topologies and
traffic matrices remains an important area left for future work.

Acknowledgment
This work is supported in part by Deutsche Telekom Laboratories,
in the framework of the Magnets project, and by the US National
Science Foundation under grants CCF-0729158 and CCF-0916892.

We are very grateful to Julien Herzen for his great help in im-
plementing the first version of EZ-flow on the Asus routers, which
showed the practical feasibility of our mechanism.

Appendix
THEOREM 2 (THEOREM 2.2.4 [14], P. 30). Let the transition

probability matrix P on the state space Z2 be irreducible and sup-
pose that there exists a positive function h : Z2 → R such that
for some finite set S, some ε > 0 and some positive integer-valued
function k : Z2 → R where sup~b∈Z2 k(~b(n)) < ∞ the following
conditions hold

E
h

h(~b(n + 1)) | ~b(n) =~i
i

=
X

~k∈Z2

p~i~kh(~k) <∞ (5)

for all~i ∈ S and

E
h

h(~b(n + k(~b(n)))|~b(n) =~i
i

≤ h(~i)− εk(~b(n)) (6)

for all~i /∈ S. Then the corresponding HMC is ergodic.

8. REFERENCES
[1] The Cloud. http://www.thecloud.net/.
[2] EarthLink. http://www.earthlink.net/.
[3] LUNAR- Lightweight Underlay Network Ad hoc Routing

project. available at http://cn.cs.unibas.ch/projects/lunar/.
[4] Madwifi/AtherosWireless Linux Driver Users Guide.
[5] MIT Roofnet. http://pdos.csail.mit.edu/roofnet/.
[6] OpenWRT firmware. http://openwrt.org/.
[7] The Tcpdump Manual Page. http://www.tcpdump.org/.
[8] IEEE 802.11, Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications, Aug. 1999.
[9] A. Aziz, D. Starobinski, and P. Thiran. Elucidating the

instability of random access wireless mesh networks. In
Proc. of SECON, Rome, Italy, June 2009.

[10] S. Biswas and R. Morris. Exor: opportunistic multi-hop
routing for wireless networks. In Proc. of SIGCOMM,
Philadelphia, PA, Aug. 2005.

[11] P. Chapokar, H. Kar, X. Luo, and S. Sarkar. Throughput and
fairness guarantees through maximal scheduling in wireless
networks. IEEE Transactions on Information Theory,
54(2):572–594, Feb. 2008.

[12] O. Dousse. Revising buffering in CSMA/CA wireless
multihop networks. In Proc. of SECON, San Diego, CA,
June 2007.

[13] A. Eryilmaz and R. Srikant. Fair resource allocation in
wireless networks using queue-length-based scheduling and
congestion control. In Proc. of INFOCOM, Miami, FL, Mar.
2005.

[14] G. Fayolle, V. A. Malyshev, and M. V. Menshikov. Topics in
constructive theory of countable Markov chains. Cambridge
University Press, 1995.

[15] V. Gambiroza, B. Sadeghi, and E. Knightly. End-to-end
performance and fairness in multihop wireless backhaul
networks. In Proc. of ACM MobiCom, Philadelphia, PA,
Sept. 2004.

[16] M. Garetto, T. Salonidis, and E. W. Knightly. Modeling
per-flow throughput and capturing starvation in csma
multi-hop wireless networks. IEEE/ACM Transactions on
Networking, 16(4):864–877, 2008.

[17] A. Gupta, X. Lin, and R. Srikant. Low-complexity
distributed scheduling algorithms for wireless networks. In
Proc. of INFOCOM, Anchorage, 2007.

[18] M. Heusse, F. Rousseau, R. Guillier, and A. Duda. Idle
sense: An optimal access method for high throughput and
fairness in rate diverse wireless lans. In Proc. of SIGCOMM,
Philadelphia, PA, Aug. 2005.

[19] A. Jindal and K. Psounis. Achievable rate region of wireless
multi-hop networks with 802.11 scheduling. to appear in
Transactions on Networking.

[20] J.Widmer. NO Ad-Hoc Routing Agent (NOAH).
http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/.

[21] S. Katti, H. Rahul, H. Wenjun, D.Katabi, M. Medard, and
J. Crowcroft. Xors in the air: Practical wireless network
coding. IEEE/ACM Transactions on Networking,
16(3):497–510, 2008.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, Aug 2000.

[23] S. McCanne and S. Floyd. ns Network Simulator.
http://www.isi.edu/nsnam/ns/l.

[24] N. Nandiraju, D. Nandiraju, D. Cavalcanti, and D. Agrawal.
A novel queue management mechanism for improving
performance of multihop flows in ieee 802.11s based mesh
networks. IPCCC, 2006.

[25] A. Proutiere, Y. Yi, and M. Chiang. Throughput of random
access without message passing. In Proc. of CISS, Princeton,
NJ, Mar. 2008.

[26] S. Rangwala, A. Jindal, K.-Y. Jang, and K. Psounis.
Understanding congestion control in multi-hop wireless
mesh networks. In Proc. of MobiCom, San Francisco, CA,
May 2008.

[27] B. Scheuermann, M. Transier, C. Lochert, M. Mauve, and
W. Effelsberg. Backpressure multicast congestion control in
mobile ad-hoc networks. In Proc. of CoNEXT, New York,
NY, USA, Dec. 2007.

[28] J. Shi, O. Gurewitz, V. Mancuso, J. Camp, and E. Knightly.
Measurement and modeling of the origins of starvation in
congestion controlled mesh networks. In Proc. of
INFOCOM, Phoenix, AZ, Apr. 2008.

[29] J. Shin, D. Shah, and S. Rajagopalan. Network adiabatic
theorem: An efficient randomized protocol for contention
resolution. In Proc. of SIGMETRICS, Seattle, WA, June
2009.

[30] L. Tassiulas and A. Ephremides. Stability properties of
constrained queueing systems and scheduling policies for
maximum throughput in multihop radio networks. IEEE
Transactions on Automatic Control, 37(12):1936–1948, Dec.
1992.

[31] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee. DiffQ:
Practical Differential Backlog Congestion Control for
Wireless Networks. In Proc. of INFOCOM, Rio de Janeiro,
Brazil, Apr 2009.

[32] Y. Yi, A. Proutiere, and M. Chiang. Complexity in wireless
scheduling: Impact and tradeoffs. In Proc. of MobiHoc,
Hong Kong, China, May 2008.

[33] Y. Yi and S. Shakkottai. Hop-by-hop congestion control over
a wireless multi-hop network. IEEE Transactions on
Networking, 15(1):133–144, 2007.

[34] L. Ying, R. Srikant, and D. Towsley. Cluster-based
back-pressure routing algorithm. In Proc. of INFOCOM,
Phoenix, AZ, Apr. 2008.

