
IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 1

Thermal Balancing Policy for Multiprocessor

Stream Computing Platforms
Fabrizio Mulas, David Atienza, Member, IEEE, Andrea Acquaviva, Member, IEEE,

Salvatore Carta, Member, IEEE, Luca Benini, Fellow, IEEE, Giovanni De Micheli, Fellow, IEEE

Abstract—Die-temperature control to avoid hotspots is increas-
ingly critical in Multiprocessor System-on-Chip (MPSoCs) for
stream computing. In this context, thermal balancing policies
based on task migration are a promising approach to re-distribute
power dissipation and even out temperature gradients. Since
stream computing applications require strict quality of service
and timing constraints, the real-time performance impact of
thermal balancing policies must be carefully evaluated. In this
paper we present the design of a lightweight thermal balancing
policy, MiGra, which bounds on-chip temperature gradients via
task migration. The proposed policy exploits run-time tempera-
ture as well as workload information of streaming applications
to define suitable run-time thermal migration patterns, which
minimize the number of deadline misses. Furthermore, we have
experimentally assessed the effectiveness of our thermal balanc-
ing policy using a complete Field-Programmable Gate Array
(FPGA)-based emulation of an actual 3-core MPSoC streaming
platform coupled with a thermal simulator. Our results indicate
that MiGra achieves significantly better thermal balancing than
state-of-the-art thermal management solutions, while keeping the
number of migrations bounded.

Index Terms—multi-processor architectures, systems-on-chip,
thermal balancing, stream computing, task migration.

I. INTRODUCTION

Multiprocessor System-on-Chip (MPSoC) performance in

aggressively scaled technologies will be strongly affected

by thermal effects. Power densities are increasing due to

transistor scaling, which reduces chip surface available for heat

dissipation. Moreover, in a MPSoC, the presence of multiple

heat sources increases the likelihood of temperature variations

over time and chip area rather than just a uniform temperature

distribution across the entire die [1]. Overall, it is becoming of

critical importance to control temperature and bound the on-

chip gradients to preserve circuit performance and reliability

in MPSoCs.

This work was partially supported by the Swiss Confederation through
the Nano-Tera.ch NTF Project nr. 123618 - CMOSAIC and the Spanish
Government Research Grants TIN2005-5619 and TIN2008-00508.

F. Mulas and S. Carta are with DMI - University of Cagliari, 32
Via Ospedale, Cagliari, Italy. E-Mail: fabrizio.mulas@sc.unica.it and salva-
tore@unica.it

D. Atienza is with ESL - Ecole Polytechnique Fédérale de Lausanne
(EPFL), Station 11, EPFL-STI-IEL-ESL, Lausanne, Switzerland; and DACYA
- Complutense Univ. of Madrid (UCM), Avda. Complutense s/n, Madrid,
Spain. E-Mail: david.atienza@epfl.ch

A. Acquaviva is with DIA - Politecnico Di Torino, Corso Duca degli
Abruzzi 24, Torino, Italy. E-Mail: andrea.acquaviva@polito.it

L. Benini is with DEIS - University of Bologna, Viale Risorgimento 2,
Bologna, Italy. E-Mail:luca.benini@unibo.it

G. De Micheli is with LSI - EPFL, Station 14, EPFL-IC-ISIM-LSI,
Lausanne, Switzerland. E-Mail: giovanni.demicheli@epfl.ch

Thermal-aware policies have been developed to promptly

react to hotspots by migrating the activity to cooler cores [17].

However, only recently temperature control and balancing has

gained attention in the context of chip multiprocessors [13],

[4], [2]. A key finding from this line of research is that thermal

balancing does not come as a side effect of energy and load

balancing. Thus, thermal management and balancing policies

are not the same as traditional power management policies [2],

[5].

Task and thread migration have been proposed to prevent

thermal runaway and to achieve thermal balancing in general-

purpose architectures for high-performance servers [13], [5].

In the case of embedded MPSoC architectures for stream

computing (signal processing, multimedia, networking), which

are tightly timing constrained, the design restrictions are

drastically different. In this context, it is critical to develop

policies that are effective in reducing thermal gradients, while

at the same time preventing Quality-of-Service (QoS) degra-

dation due to task deadline misses caused by task migrations.

Moreover, these MPSoCs typically feature non-uniform, non-

coherent memory hierarchies, which impose a non-negligible

cost for task migration (explicit copies of working context are

required). Hence, it is very important to bound the number of

migrations for a given allowed temperature oscillation range.

We propose a novel thermal balancing policy, i.e., MiGra,

for typical embedded stream-computing MPSoCs. This policy

exploits task migration and temperature sensors to keep the

core temperatures within a predefined range, defined by an

upper and a lower threshold. Furthermore, the policy dynami-

cally adapts the absolute values of the temperature thresholds

depending on average system temperature conditions. This

feature, rather than defining an absolute temperature limit

as in hotspot-detection policies [13], [2], [17], allows the

policy to keep the temperature gradients controlled even at

lower temperatures. In practice, MiGra adapts to system load

conditions, which affect the average system temperature.

To evaluate the impact of MiGra on the QoS of streaming

applications, we developed a complete framework with the

necessary hardware and software extensions to allow design-

ers to test different thermal-aware Multiprocessor Operating

Systems (MPOS) implementations running onto emulated real-

life multicore stream computing platforms. The framework has

been developed on top of a cycle-accurate MPOS emulation

framework for MPSoC [14]. To the best of our knowledge,

this is the first multiprocessor platform that supports OS

and middleware emulation at the same time as it enables a

complete run-time validation of closed-loop thermal balancing

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 2

policies.

Using our emulation framework, we have compared MiGra

with other state-of-the-art thermal control approaches, as well

as with energy and load balancing policies, using a real-

life streaming multimedia benchmark, i.e., a Software-Defined

FM Radio application. Our experiments show that MiGra

achieves thermal balancing in stream computing platforms

with significantly less QoS degradation and task migration

overhead than other thermal control techniques. Indeed, these

results highlight the main distinguishing features of the pro-

posed policy, which can be summarized as follows: i) Being

explicitly designed to limit temperature oscillations within a

given range using sensors, MiGra performs task migrations

only when needed, avoiding unnecessary impact on QoS; ii)

for a given temperature-control capability, MiGra provides a

much better QoS preservation than state-of-the-art policies by

bounding the number of migrations; iii) MiGra is capable of

very fast adaptation to changing workload conditions thanks

to dynamic temperature-thresholds adaptation.

The rest of this paper is organized as follows. In Section II,

we overview related work on thermal modeling and man-

agement techniques for MPSoC architectures. In Section III

we summarize the software/hardware characteristics of MP-

SoC stream computing platforms. In Section IV we describe

the implemented task migration support for these platforms,

and the developed thermal emulation flow is presented in

Section V. Then, in Section VI we present the proposed

thermal balancing policy and, in Section VII, we detail our

experimental results and compare with state-of-the-art thermal

management strategies. Finally, in Section VIII, we summarize

the main conclusions of this work.

II. RELATED WORK

In this section we first review the latest thermal modeling

approaches in the literature. Then, we overview state-of-the-art

thermal management policies and highlight the main research

contributions of this work.

Background on Thermal Modeling and Emulation: Re-

garding thermal modeling, as analytical formulas are not

sufficient to prevent temperature induced problems, accurate

thermal-aware simulation and emulation frameworks have

been recently developed at different levels of abstraction. [1]

presents a thermal/power model for super-scalar architectures.

Also, [20] outlines a simulation model to analyze thermal

gradients across embedded cores. Then, [21] explores high-

level methods to model performance and power efficiency for

multicore processors under thermal constraints. Nevertheless,

none of the previous works can assess the effectiveness of

thermal balancing policies in real-life applications at multi-

megahertz speeds, which is required to observe the thermal

transients of the final MPSoC platforms. To the best of our

knowledge, this work is the first one that can effectively simu-

late closed-loop thermal management policies by integrating a

software framework for thermal balancing and task migration

at the MPOS level with an FPGA-based thermal emulation

platform.

Background on Thermal Management Policies: Several re-

cent approaches focus on the design of thermal manage-

ment policies. First, static methods for thermal and reliability

management exist, which are based on thermal characteriza-

tion at design time for task scheduling and predefined fetch

toggling [10], [1]. Also, [9] combines load balancing with

low power scheduling at the compiler level to reduce peak

temperature in Very Long Instruction Word (VLIW) processors.

In addition, [11] introduces the inclusion of temperature as a

constraint in the co-synthesis and task allocation process for

platform-based system design. However, all these techniques

are based on static or design-time analysis for thermal opti-

mization, which are not able to correctly adjust to the run-time

behavior of embedded streaming platforms. Hence, these static

techniques can incur many deadline misses and do not respect

the real-time constraints of these platforms.

Regarding run-time mechanisms, [5] and [17] propose

adaptive mechanisms for thermal management, but they use

techniques of a primarily power-aware nature, focusing on

micro-architectural hotspots rather than mitigating thermal

gradients. In this regard, [19] investigates both power- and

thermal-aware techniques for task allocation and scheduling.

This work shows that thermal-aware approaches outperform

power-aware schemes in terms of maximal and average tem-

perature reductions. Also, [18] studies the thermal behavior of

low-power MPSoCs, and concludes that for such low-power

architectures, no thermal issues presently exist and power

should be the main optimization focus. However, this analysis

is only applicable to very low-power embedded architectures,

which have a very limited processing power, not sufficient

to fulfill the requirements of the MPSoC stream processing

architectures that we cover in this work. Then, [12] proposes a

hybrid (design/run-time) method that coordinates clock gating

and software thermal management techniques, but it does not

consider task migration, as we effectively exploit in this work

to achieve thermal balancing for stream computing.

Task and thread migration techniques have been recently

suggested in multicore platforms. [13] and [16] describe

techniques for thread assignment and migration using per-

formance counter-based information or compile-time pre-

characterization. Also, thermal prediction methods using his-

tory tables [3] and recursive least squares [4] have been

proposed for MPSoCs with moderate workload dynamism.

However, all these run-time techniques target multi-threaded

architectures with a cache coherent memory hierarchy, which

implies that the assumed performance cost of thread migration

and misprediction effects are not adapted to MPSoC stream

platforms. Conversely, in this work we target specifically

embedded stream platforms with a non-uniform memory hi-

erarchy, and we propose accordingly a policy that minimizes

the number of deadline misses and expensive task migrations,

outperforming existing state-of-the-art thermal management

policies.

Main contribution of this work: The main contribution of

this work is the development of a thermal balancing policy

with minimum QoS impact. Thermal balancing aims at re-

ducing temperature gradients and average on-chip temperature

even before the panic temperature is reached, thus improving

reliability. Traditional run-time thermal management tech-

niques, such as Stop&go, act only when a panic temperature

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 3

is reached, thus they are not able to reduce temperature

gradients, because in presence of hotspots there could be only

one core very hot while others are cold. Moreover, Stop&go

imposes large temporal gradients as the main counter-measure

is to shut-off the processor when its temperature overcomes a

panic threshold. Conversely, our policy (MiGra) acts proac-

tively, as it is triggered also in normal conditions, when

the temperature is lower than the panic. Upon activation, it

migrates tasks to processors to flatten the temperature. While

this improves reliability, a potential performance problem can

arise, since balancing is achieved through task migrations.

Thus, we have quantified the overhead imposed by migrations

in a realistic emulation environment and a QoS-sensitive

application, thus proving the effectiveness of the proposed

policy to achieve better thermal balancing and less migration

overhead than the previously mentioned state-of-the-art run-

time thermal control and thermal balancing strategies. This

result is obtained by MiGra’s capability to exploit temperature

sensors to detect both large positive and negative deviations

from the current average chip temperature. Moreover, the

lightweight migration support implementation allows to bound

migration costs.

III. STREAM COMPUTING PLATFORMS

Stream computing platforms are distributed memory archi-

tectures where each core has its own local memory for storing

code and data. A shared memory is also present, typically off-

chip, for allocating large buffers. In fact, stream applications

are very representative of the type of execution requirements

of many multimedia MPSoCs nowadays, which possess quite

demanding computation needs at the same time as soft-

real time requirements [25], [27], [19]. In typical stream

computing platforms, the considered target MPSoC exploits

shared memory to implement the communication between

tasks. In homogeneous platforms, as the 3-core streaming

MPSoC we are targeting in this work (see Section VII-A),

all cores are identical and run user-level tasks. However, from

the software support viewpoint, we implemented a master-

slave configuration where one core runs the centralized thermal

balancing policy.

In stream computing architectures, each core runs from the

private memory its own instance of a customized version

of a light operating system, which is optimized for fast

inter-processor communication. Then, to support MPOSes in

stream computing, dedicated hardware must be designed to

support OS execution and communication among processes

running on different processing cores. This includes: i) inter-

processor interrupt controller; ii) semaphore memory through

hardware mutexes; iii) address translator as the memories of

each core have non-overlapping address ranges; iv) frequency

and voltage scaling support, which is included to effectively

reduce power consumption as the workload of the MPSoC

changes over time. Therefore, the MPOS can dynamically set

the frequency of the cores at run-time.

From the software viewpoint, streaming applications are

composed of multiple tasks communicating data and synchro-

nizing with each other using a message passing paradigm.

PROCESSOR N

COMMUNICATION & SYNCHRONIZ ATION

TASK 1 TASK MTASK 2

PROCESSOR 1

OP. SYST. NOP. SYST. 1

PRIVATE MEM 1 PRIVATEMEMN

SHARED

MEMHW

OS/

MWARE

APPL.

TASK MIGRATION

Fig. 1. Scheme of the software abstraction layer

Then, tasks are spread on the various cores, depending on

resource availability, to exploit the architecture parallelism.

As such, communication takes place using the inter-processor

buffers located in private memories or shared memory. In

our case we exploit the shared memory for storing message

queues. Indeed, streaming applications follow a data-flow

oriented paradigm, where tasks continuously process frames

arriving in the input queue and make available frames on the

output queue for the next processing stage (cf. Section VII-B).

The programming model adopted in stream computing

assumes that each task is represented using the process ab-

straction. This means that each task has its own private address

space. Hence, task communication is carried on using a dedi-

cated shared memory area controlled by a distributed MPOS.

The overall software abstraction layer is described in Figure 1.

It is based on three main components: (i) Stand alone OS

for each processor running in private memory; (ii) lightweight

middleware layer providing data sharing/synchronization and

communication services; (iii) task migration support layer for

distributed MPOS control.

Finally, a frequent communication scheme in stream com-

puting is message passing through mailboxes. Thus, this

is the paradigm we have adopted in our baseline MPSoC

stream computing architecture. We developed a lightweight

message passing scheme able to exploit scratch-pad memories

or physical shared memories to implement ingoing mailboxes

for each processor core. For our experiments, we defined a

library of system calls that each process can use to perform

blocking write and read of messages on data buffers.

IV. TASK MIGRATION SUPPORT

To enable task migration, we implemented two different

migration strategies, which differ in the way the memory

is managed by the middleware. Our MPOS framework is

based on a customized version of uClinux [22], which is a

light operating system that we have extended for very fast

inter-processor communication and run-time task migration.

uClinux includes a Linux 2.x kernel release intended for

cores without Memory Management Unit (MMU), as well as

a collection of user applications and libraries, which makes it

very suitable for fast multiprocessor synchronization with lim-

ited overhead. Furthermore, we have integrated into uClinux

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 4

TASK RE-CREATION

TASK REPLICATION

Fig. 2. Migration cost as a function of task size for task-replication and
task-recreation.

additional support for communication, synchronization and

task migration using shared memory on a distributed MPOS

middleware layer running on top of each MPSoC processor.

Moreover, to emulate the combined effect of frequency scaling

policies with task migration, hardware programmable dividers

have been placed in the output of the clock generators to

obtain a configurable speed setting support in our FPGA-

based MPSoC emulation platform (cf. Section V). Therefore,

the MPOS can set the frequency of all the cores at run-time

by accessing the memory locations where the dividers are

mapped.

Then, migration is allowed only at predefined checkpoints

provided to the user through a library of functions together

with message passing primitives, and a master daemon runs

in one of the cores and takes care of dispatching tasks on the

processors. A first version, based on a task-recreation strategy,

kills the process on the processor of origin and recreates it

from scratch on the target processor. This strategy only works

in OSes supporting dynamic loading, such as uClinux. Task

recreation is based on the execution of fork-exec system calls

that takes care of allocating the memory space required for the

incoming task, which is an option in stream computing, as the

input dynamically changes with each input stream. Thus, we

implemented an alternative migration strategy where a replica

of each task is present in each local OS, called task-replication.

Only one processor at a time can run one replica of the task.

While in one processor the task is executed normally, in the

other processors it is in a queue of suspended tasks, but a

memory area is reserved for each replica in the local memory

of each core. Hence, even if this latter strategy leads to a partial

waste of local memory for migratable tasks, it is much faster,

since it cuts down on memory allocation time with respect to

a task recreation strategy.

During execution, when a task reaches a user-defined check-

point, it checks for migration requests performed by the master

daemon. If the migration is taken, the task is either suspended

or killed (depending on the strategy); thus, it is left waiting

to be deallocated and restored on another processor by the

migration middleware. When the processor of origin decides

to migrate a task, a dedicated shared memory space is used

as a buffer for the task context transfer.

A quantification of the memory overhead due to task repli-

Fig. 3. Overview of the MPSoC thermal emulation framework for stream
computing platforms

cation and recreation is shown in Figure 2. In this figure, the

cost is shown in terms of processor cycles needed to perform a

migration as a function of the task size. In both cases, part of

the migration overhead is due to the amount of data transferred

through the shared memory. For the task recreation technique,

there is another source of overhead due to the additional time

required to re-load the program code from the file system; thus,

the offset that appears between the two curves. Moreover, the

task recreation curve has a larger slope due to a larger amount

of memory transfers, which leads to an increasing contention

on the bus. Finally, we have experimentally measured the

variation of the energy consumption cost due to migration,

which indicates a maximum value of 10.344 mJ for a 1024

KB task size and a minimum one of 9.495 mJ for a value of

64 KB task size (both values are for a single migration cost).

Thus, our migration approach produces a very limited energy

migration overhead for different task sizes for both types of

migration techniques. The analyzed overheads due to task

migration for both execution time and energy consumption are

included in the MPOS level to take the migration decisions,

as explained in Section VI-A.

V. THERMAL EMULATION FLOW OF STREAM COMPUTING

PLATFORMS

To explore the effects of thermal management strategies on

MPSoC thermal balancing, we need to evaluate the different

strategies for realistic MPSoC-MPOS architectures. For this,

we need to extract detailed statistics of hardware components,

operating system and middleware operations for simulated

time intervals long enough to be meaningful for thermal anal-

ysis. This cannot be easily achieved by software simulators. In

this work, we leverage a complete FPGA-based thermal em-

ulation infrastructure [23], extended in the directions detailed

below. An overview of the extended framework is presented

in Figure 3.

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 5

FPGA emulation is exploited to model the hardware com-

ponents of the MPSoC platform at multi-megahertz speeds.

The hardware architecture consists of a variable number of

soft-cores (currently three cores, as required by the modeled

MPSoC, shown in Figure 5) that are emulated on a Virtex-

II Pro v2vp30 FPGA [24]). Then, the first extension of our

framework with respect to [23] is that each core runs a cus-

tomized version of uClinux OS [22] including the additional

support described in Section III for global communication,

synchronization and task migration. Thus, the MPOS assigns

tasks to processing cores with a global system view, applies

locally an OS-based DVFS scheme per core [5], and imple-

ments different thermal-aware task migration policies.

The second extension with respect to the thermal emulation

framework presented in [23] is the addition of a specialized

thermal monitoring subsystem, such that the run-time tem-

perature of the emulated stream computing platform can be

observed at the MPOS level. This new monitoring subsystem

is based on hardware sniffers, a virtual clock management

peripheral and a dedicated non-intrusive subsystem, which

implements the extraction of statistics through a serial port.

These statistics are provided to a software thermal simulation

library for bulk silicon chip systems [23], which resides in a

host workstation, and calculates the temperature of each cell

according to the floorplan of the emulated MPSoC and the

frequency/voltage of each Microblaze (MB) soft-core proces-

sor. Then, the temperatures coming out from the simulator

provide a real-time temperature information visible by the

running uClinux in each processor through emulated memory-

mapped temperature sensors, which are updated by the thermal

monitoring subsystem as configurable regular updates. In our

experiments we have fixed this updating interval to 10 ms to

guarantee very accurate thermal monitoring (see Section VII).

Finally, thanks to a handshake mechanism between the ther-

mal model and the MPOS middleware to synchronize the

upload/download of temperatures, our extended framework

implements a closed-loop thermal monitoring system, which

enables exploring the impact of task migration and scheduling

on system temperature balancing at multi-megahertz speed,

and the observation of the real thermal transients of MPSoC

stream platforms.

TASK A

FSE LOAD

40%

TASK C

FSE LOAD

40%

LOAD

FREQUENCY

100 %

50 %

0 %

PROC 1 PROC 2

TASK A

FSE LOAD

40%

TASK C

FSE LOAD

40%

TASK B

FSE LOAD

50%

PROC 1 PROC 2

LOAD

FREQUENCY

100 %

50 %

0 %

TASK MIGRATION

TASK B

FSE LOAD

50%

a) b)

Fig. 4. Simple thermal balancing example between two cores

VI. THERMAL BALANCING FOR STREAM COMPUTING

In general, thermal balancing does not come as a side

effect of energy balancing. In Figure 4.a, a typical situation

where a two-core system running three tasks (A, B, C) is

energy-balanced (but thermally-unbalanced) is shown. Both

processors can independently set their frequency and voltage to

reduce energy/power dissipation to the minimum required by

the current load. Tasks are characterized by their Full-Speed-

Equivalent (FSE) load, which is the load imposed by a task

when the core runs at maximum frequency. Core 1 runs tasks

A and B, having FSE of 50% and 40% respectively; core 2

runs task C that has a FSE of 40%. In this case core 1 can

ideally scale its frequency to 90% of its maximum value, while

core 2 can scale it to 40%. No better tasks mapping exists that

further reduces energy/power dissipation. In this situation, due

to the different power consumed, the temperature of core 1

will be higher than the temperature of core 2. Therefore, a

thermally balanced condition can be achieved by periodically

migrating task B from the first core to the second core [19] (as

represented in Figure 4.b), obtaining, on average, an equalized

workload on the two cores (i.e., 40% +50%/2 = 65%). If

the temperature variations caused by migrations are slower

than the migration period, a temperature close to the average

workload (i.e, 65%) will be achieved on both cores. Although

this is a simplified case, it outlines that the main challenge of

a thermal balancing algorithm is the selection of the task sets

to migrate between cores, such that the overall temperature is

balanced, while keeping migration costs bounded.

A. MiGra: Thermal Balancing Algorithm

The thermal balancing strategy we propose in this paper,

MiGra, is inspired by [14]. To prevent impact on QoS caused

by migration, MiGra is based on run-time estimation of mi-

gration costs to filter migration requests driven by temperature

differences between cores. Thus, MiGra considers perfor-

mance and energy migration costs caused by the underlying

migration infrastructure (cf. Section IV). Moreover, in our

implementation, MiGra lies on top of a Dynamic Voltage

and Frequency scaling (DVFS) policy [5]. Thus, the power

consumption of a task can be roughly estimated at run-time

by assuming that it is proportional to its load (cf. Figure 2).

MiGra implements a strategy that tries to bound the tem-

perature of each processor around the current average temper-

ature, as well as minimizing the overhead in terms of number

of migrated tasks and amount of data transferred between the

cores due to migrations. Therefore, a maximum distance of

the temperature of each processor from the current average

temperature is defined by MiGra, identifying a range of

permissible temperatures for each single processor between an

upper and a lower threshold. These thresholds are dynamically

adapted at run-time according to the current workload. MiGra

also control thermal runaway by stopping the core that reaches

a temperature above a predefined panic threshold. Nonetheless,

this extreme situation should never occur in realistic streaming

applications, and MiGra’s regular operation always keeps its

upper threshold below this panic one, by trying to minimize

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 6

temperature gradients. Each time the temperature of a proces-

sor reaches the upper threshold around the average temperature

of the MPSoC platform, MiGra triggers a migration to move

away a set of tasks from the hot processor to another processor

having a temperature below the current average temperature.

On the other side, each time the temperature of a processor

reaches the lower threshold, a migration is triggered so that a

set of tasks are moved to that processor from a hotter processor

to reduce the overall MPSoC average temperature.

To reduce the amount of computations needed to select

the tasks to move, MiGra implements an algorithm that

moves tasks only between two processors at a time. Hence,

the processor that triggers the migration (a hot one) will

only select one target processor (a cold one) to balance the

workload between them. Moreover, MiGra must minimize

thermal gradients without increasing overall energy dissipation

when tasks are migrated, as well as minimizing performance

overhead in the final MPSoC. As a result, the thermal balanc-

ing algorithm implemented in MiGra consists of two phases.

In the first phase, the candidate processors (source and

target) are selected, while in the second phase the task sets

to be exchanged are defined. During the first phase, if all

the following three conditions are verified, the dst processing

core becomes a candidate to exchange workload with the src

processing core:

• If the temperature of the source core is beyond the

average temperature (tmean), the destination core has to

be below: (tsrc − tmean) ∗ (tdst − tmean) < 0
• The frequency of the source core must be higher than

the average if the one of the destination core is below:

(fsrc − fmean) ∗ (fdst − fmean) < 0
• The total overall power dissipated by the

two cores (source and destination) after the

migration has to be lower than the total

power dissipated by the two core before the

migration: (fsrc ∗ v2
src + fdst ∗ v2

dst)before migr ≥

(fsrcv
2
src + fdst ∗ v2

dst)after migr

The first condition is about temperature and assures that the

migration achieves reduction in average system temperature.

However, the temperature condition cannot ensure that the

candidate destination processor is currently highly-loaded, but

just that its temperature transient is still to be stabilized (and

most likely still growing). In fact, the temperature is not

a good workload monitor if it is evaluated independently.

Thus, in order to avoid an additional allocation of workload

to a potentially overloaded core, we also need to evaluate

its current frequency, which is proportional to the allocated

workload. Hence, the migration is allowed only if the fre-

quency of the candidate destination core, which represents

its current workload, is lower than the mean frequency of all

the cores in the system. As a result, we avoid that additional

workload is allocated to a core that is currently highly-loaded,

but its temperature is still low. Finally, the third condition of

MiGra compares the total power of the source and destination

cores before and after migration, making sure that the new

overall power consumption on the MPSoC does not increase.

In fact, while the previous conditions ensure that temperatures

are stabilized (constraint 1) and no oscillations are caused

by workload re-allocations (condition 2), this third condition

indicates that thermal balancing is performed only if the

new task allocation is not worse, from a power consumption

perspective.

The result of this phase can be either one or multiple

destination candidates for a certain source processor. Also, no

pairs of candidates may exist, which occurs in case of perfect

thermal balancing (i.e., all cores are at the same temperature).

Thus, MiGra does not perform any migration and the rest of

the algorithm is skipped.

Next, in the second phase of the thermal balancing algorithm

of MiGra, the selection of the number of tasks and the final

selection of the target processor is performed (in case several

potential destination cores have been found for a specific

source core in the first phase). This final selection of the des-

tination processor and tasks depends on the evaluation of the

migration costs (performance, energy and temperature increase

estimation). As a result, our cost function is the product of the

amount of data moved due to the migration by the frequency

of migrations. Then, to estimate the appropriate migration

frequency, given a certain temperature difference between

two processors, the benefit of triggering a new migration is

proportional to the difference between the current temperature

of the target processor in the migration and the average on-chip

temperature. Thus, the selected target processor of a migration

(tgtsel) is the processor with the minimum cost, according to

the following cost function:

tgtsel = arg min
tgt

{

∑I

i (C
src

i) +
∑J

j (Ctgt
j)

(ttgt − tmean)2

}

(1)

Where Csrc
i is the amount of data to move for the i − th

of I tasks running on the source processor, and Ctgt
j is the

amount of data to move for the j − th of J tasks running on

the tgt processor.

In the current implementation of MiGra, in order to reduce

the run-time overhead of the aforementioned selection, we

have included an additional optimization phase. It selects the

set of tasks to be migrated according to the observation that

the temperature-balancing benefit of migrating a task decreases

together with its workload. Therefore, the larger the workload

required by a task is, the more advantageous it is to migrate

that task to balance the temperature in a processor. This

approximation shows very good results and allows us to limit

drastically the number of tasks to be considered for migration

at run-time (only the 5-10 tasks requiring the highest loads

in each processor are used in our experiments). Moreover, an

exhaustive search comparing the migration cost of all possible

combinations of tasks and candidate processors found in the

first phase is not practical in real systems.

Finally, although in this work we specifically target the

use of MiGra for MPSoC stream computing platforms, our

thermal balancing algorithm does not make any specific as-

sumption about the application domain itself. Therefore, it

can be applied to any general-purpose application after a

suitable pre-characterization phase of the task migration costs

(as described in Section IV). Nonetheless, MiGra is not suited

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 7

for hard real-time platforms at present (e.g., [6]), since it

does not provide any guarantees about avoidance of deadline

misses.

Fig. 5. Emulated 3-core MPSoC streaming architecture

VII. THERMAL BALANCING POLICY VALIDATION

We have assessed the benefits of MiGra for thermal

balancing on the emulation framework using as case study

an industrial 3-core MPSoC running a multi-task streaming

application. Therefore, in the next sections we first describe the

concrete instance of used MPSoC architecture, as well as the

power figures and two different packaging models considered

(Section VII-A). Then, we present the other state-of-the-art

thermal management strategies evaluated in comparison with

MiGra (Section VII-C). Lastly, we present the analysis of

the thermal balancing capabilities of the different thermal

management approaches with respect to temperature standard

deviation, deadline misses and performance overhead. To

this end, we have performed two sets of experiments. First,

we have analyzed the behavior of MiGra and other basic

temperature-limit control (Stop&go, see Section VII-C) and

thermal balancing approaches when applied to stream MPSoC

platforms with different thermal packages. This first set of ex-

periments illustrates that thermal balancing cannot be achieved

as a side effect of energy balancing policies or a standard

thermal control policy, which is meant to react only when the

chip reaches a panic temperature (i.e., a temperature where

the system cannot operate without seriously compromising

system reliability). Second, we have conducted exhaustive

experiments to define the limits of MiGra and state-of-the-

art thermal control approaches to minimize spatial thermal

variations at run-time in highly variant (i.e., high-performance)

stream MPSoCs, from the thermal gradient viewpoint.

Finally, in all the experiments, DVFS is always active and

works separately in each processor (i.e., local DVFS [5]), and

independently from the applied thermal balancing policy. In

particular, in our 3-core MPSoC case study, the implemented

DVFS scheme chooses the final frequency and voltage of

each processor between ten different values in the range 100

MHz and 532 MHz, such that it tries to reduce the power

consumption of the core by minimizing its idle time.

A. Stream MPSoC Case Study and Packaging Options

We focus on a homogeneous architecture, as presented

in Figure 5. In particular, we consider a system based on

three 32-bit RISC processors without MMU support to access

TABLE I
POWER OF COMPONENTS IN 0.09 µm CMOS

Max. Power@500 MHz

RISC32-streaming (Conf1) 0.5W (Max)
RISC32-ARM11 (Conf2) 0.27W (Max)

DCache 8kB/2way 43mW
ICache 8kB/DM 11mW
Memory 32kB 15mW

cacheable private memories, and a single non-cacheable shared

memory. It follows the structure envisioned for non-cache-

coherent MPSoCs [25], [26]. In Table I, we summarize the

values used for the components of our emulated MPSoC. The

power values have been derived from industrial power models

for a 90nm CMOS technology. On the software side, each core

runs its own instance of the uClinux OS [22] in the private

memory (see Section III for more details about the MPOS

software infrastructure).

We considered two different packaging solutions. The first

package shows temperature variations of around 10 degrees in

few seconds [27], while the second packaging option shows

similar thermal variations in less than a second. In Table II we

enumerate the main thermal properties of these two different

packaging options. Regarding package-to-air resistance, since

the amount of heat that can be removed by natural convec-

tion in MPSoCs strongly depends on the environment (e.g.,

placement of the chip on the PCB), we have tuned these

figures according to the experimental figures measured in our

industrial 3-core case study [27], according to the final MPSoC

working conditions indicated by our industrial partners.

TABLE II
THERMAL PROPERTIES OF THE DIFFERENT PACKAGES

silicon thermal conductivity 150 ·

`

300

T

´

4/3
W/mK

silicon specific heat 1.945e − 12J/um3K
silicon thickness 300um
copper thermal conductivity 400W/mK
copper specific heat 3.55e − 12J/um3K
copper thickness 1000um
package-to-air conduct. (low-cost) 12K/W
package-to-air conduct. (high-cost) 1K/W

B. Benchmark Application Description

We ported to our emulation framework different multi-task

variations of the Software FM Defined Radio (SDR) bench-

mark, which is representative of a large class of streaming

multimedia applications. The application model follows the

Streamit application benchmarks [8], used as baseline for

the implementation of our parallel SDR versions. This class

of applications is characterized by tasks communicating by

means of FIFO queues, as depicted in Figure 6, where tasks

are graphically represented as blocks. As this figure shows,

the output data of the tasks of the SDR application is stored

in different buffers or queues (Qx,y) and consumed at the

required frame rate. Thus, a deadline miss occurs when the

consumer (periodically) attempts to read a frame from the final

buffer and it is empty.

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 8

Fig. 6. SDR case study (six tasks version)

We performed two sets of experiments. In the first set we

used a very dynamic workload made of multiple instances of

the SDR application, using versions divided in three or six

tasks (as in Figure 6). The input data to the SDR application

represents samples of the digitalized PCM radio signal to be

processed in order to produce an equalized base-band audio

signal. In the first step, the radio signal passes through a Low-

Pass-Filter (LPF) to cut frequencies over the radio bandwidth.

Then, it is demodulated by the demodulator (DEMOD) to shift

the signal at the baseband and produce the audio signal. The

audio signal is then equalized with a number of Band-Pass-

Filters (BPF) implemented with a parallel structure. Finally,

the consumer (Σ) collects the data provided by each BPF

and makes the sum with different weights (gains) in order

to produce the final output. Communication among tasks is

done using message queues.

C. Evaluated State-of-the-Art Thermal Control Policies

MiGra has been compared with the following state-of-the-

art thermal management policies:

Energy-Balancing: This policy maps the SDR tasks to

balance the energy consumption [17] among cores. Energy is

computed from the frequency and voltage imposed by the run-

ning tasks, which are dynamically adjusted using DVFS [5].

Stop&Go: This policy prevents thermal runaway by shut-

ting down a core when it reaches a panic temperature thresh-

old. In its original version [13], the core execution is resumed

after a predefined timeout. However, we modified this policy

to fairly compare it with our thermal balancing algorithm,

MiGra, by using the upper threshold of our algorithm as

the panic threshold, and our lower threshold defines when to

switch the core on instead of a fixed timing out value, which

would be unable to adapt to very dynamic working conditions.

Rotation: This policy tries to achieve thermal balancing by

performing migrations between cores in a rotatory fashion, at

regular intervals. Thus, at the beginning of a task migration in-

terval (i), a set of tasks in corej is migrated to core(j+1)modN .

Temperature-Based (TB): This policy considers the mi-

gration of tasks between cores according to the temperature

differences between each pair of processing cores in regular

intervals, namely, the set of tasks running on the hottest core

is swapped with the set on the coldest core, the set of tasks on

the second hottest core is swapped with the one on the second

coldest core, etc. Thus, at the beginning of each task migration

process, the cores are ordered by temperature. Then, the set

of tasks executed on corej is swapped with the set running

on coreN−j−1.

TABLE III
SDR APPLICATION MAPPING

Core / freq. Task Load [%]

Core 1 (533 MHz) BPF1 36,7
DEMOD 28,3

Core 2 (266 MHz) BPF2 60,9
Σ 6,2

Core 3 (266 MHz) BPF3 60,9
LPF 18,8

Temperature-Based Threshold-limited (TB-Th): This

policy is an enhancement of the previous TB policy, which

was originally aimed to reduce peak temperature rather than

thermal gradients. Therefore, we have introduced an additional

minimum temperature threshold, which tries to minimize the

number of unnecessary migrations of the original TB approach

between cores when the worst temperature of the MPSoC

has not reached a critical point. The minimum threshold has

been carefully selected off-line to find the best option for each

working condition of our sets of experiments.

In the following sections we assess the performance of

MiGra with respect to the previously described policies

in different workload conditions and for different types of

packaging solutions in stream computing platforms.

D. Experimental Results: Exploration with Different Packag-

ing Solutions

We compare MiGra, Stop&Go and the energy balancing

task-migration policy implemented in many MPOSes, using a

low- and high-cost thermal package. DVFS was also always

active in the MPOS to adjust the power dissipated by each

core to the required workload.

D.1) Thermal Balancing in Low-Cost Packaging MPSoCs:

In the case of low-cost packaging, we observed that after a first

execution phase (12.5 sec), the temperatures of the three cores

stabilizes. However, it is not balanced and approximately 100C

difference exists between the hottest (core 1) and the coolest

core (core 3). This thermal state is due to the application of

DVFS to each core. Moreover, although core 2 and 3 have

the same frequency, their temperatures differ because of the

different heat spreading capabilities due to their position in the

floorplan (see Figure 5). Thus, in our experiments, we trigger

our task-migration-based policy (MiGra) to achieve thermal

balancing after this initial phase.

When MiGra is applied, each time a core reaches the

upper threshold (set to three degrees more than the average

temperature), a migration is triggered, one task is moved

to a colder core, and the temperature becomes balanced for

all cores within 1 second of execution of the SDR appli-

cation. This demonstrates the effectiveness of our policy to

balance temperature.Our results indicate that the hottest core

temperature passes the upper threshold while balancing the

temperature only for a very limited time (less than 400 ms).

A quantitative evaluation and comparison between our

thermal-balancing policy (MiGra), Stop&Go and energy bal-

ancing algorithms is provided in the following experiments for

the same packaging configuration. Figure 7 shows the temper-

ature standard deviation for the three policies as a function

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 9

of the threshold values. The X-axis indicates the distance of

upper and lower threshold from the mean temperature. As

this figure shows, the temperature deviation increases with

the threshold. Thus, our policy is more effective in reducing

temperature deviation than other techniques because it acts

on both hot and cold cores. In particular, the manually-

tuned Stop&Go does not improve the temperature of the cold

cores. Furthermore, if the original Stop&Go is used [13], [5],

considering the highest-supported temperature for the low-

cost package as panic threshold, higher temperature swings

are observed, which leads to a worst standard deviation value

(3.70 ˚ K more) with respect to those shown in Figure 7.

� � � �

��
�

����

����

����

��
�

����

����

����

��
�

����

����

����

��
�

����

����

����������������

����������

������������������
�����

&���� �������������'
���

���!�����"#$%

!
�
�
�
�
��
��
�
�
��
�
�
�
�"
#
$
%

Fig. 7. Temp. standard deviation in low-cost embedded SoCs from the mean
on-chip temperature (337 ˚ K)

Then, Figure 8 shows the number of deadline misses as a

function of the threshold values. As shown, our policy leads to

few deadline misses while Stop&Go suffers a higher value of

missed frames. Deadline misses may be caused by frozen tasks

during migration; hence, inter-processor queues are depleted

during migration, and if the queue of the last stage gets empty

a deadline miss occurs. However, as Figure 8 illustrates, mi-

gration is lightweight and fast enough to limit this drawback.

In fact, missed frames appear only for the minimum threshold

considered in our experiments. Furthermore, we observed that

the average queue level does not change because of migration;

thus, a queue size handling thermal balancing can always be

found and the SDR application can sustain thermal balancing

without QoS impact, i.e., the minimum queue size to sustain

migration in our experiments was 11 frames.

D.2) Thermal Balancing in High-Cost Packaging MPSoCs:

To stress our policy when temperature variations are faster,

we repeated the previous set of experiments using the al-

ternative packaging value for high-performance systems (see

Section VII-A), where temperature variations are 6× faster

than the previous model. Hence, the 3-core case study experi-

ences gradients of more than ten degrees, i.e, the coolest core

typically operate at 56 ˚ C and the hottest one can reach 67 ˚ C.

Figure 9 shows the standard deviation of the temperature

for the three tested policies. The energy balancing policy

achieves very poor results and the modified Stop&Go policy

behaves better in terms of temperature deviation, but it causes

a large amount of deadline misses (Figure 10). Moreover,

using the original version of Stop&Go [5] with the highest-

� � � �

�

�

�

�

��

��

��

��

��

��

��

��

�����
�����

��	��
���
�
�����
�����

���	��������� !

�
	

�
�
�
	
��
�
�
	
�
��
"
!

Fig. 8. Deadline misses for the embedded mobile system

� � � �

����

����

����

����

����

����

����

����

����

����

����

�	���
�����

����
���
�
������
������

�������
�
���������
����

	�������� !"#

�
	

�
�

�

��
�
�
�

	�
�
�
�
!
"
#

Fig. 9. Standard deviation in high-performance SoCs from the mean on-chip
temperature (314 ˚ K)

supported temperature of the high-performance package as

panic threshold, a worst standard deviation value of 4.48 ˚ K

more is observed with respect to Figure 9.

On the contrary, although our algorithm makes temperature

oscillate more than the modified Stop&Go (but significantly

less than the original Stop&Go), it always causes very few

deadline misses (less than 4%). Moreover, our algorithm starts

behaving significantly better than Stop&Go when the threshold

increases, as less migrations are triggered. Also, we observed

that Stop&Go causes less deadline misses with the fast thermal

model than with the slow one, due to the faster speed the lower

threshold is reached after shutdown. From these experiments,

we can conclude that pure software techniques cannot handle

fast temperature variations, and a hardware-software co-design

approach is needed.

Finally, Figure 11 depicts the average number of migra-

tions per second performed by our thermal balancing policy

(MiGra) for both mobile embedded and high-performance

systems. As expected, the number of migrations is higher

for high-performance systems. However, as each migration

implies a transfer of 64 Kbytes of data (the minimum memory

space allocated by the OS), the required three migrations per

second are equivalent to 64 ∗ 3 = 192 Kbytes per second,

which means that our task migration policy implies only a

negligible overhead in system performance (1% overall).

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 10

� � � �

�

�

�

�

�

��

��

��

��

��

�����������

��
�������������
�����

���
������� !"

�

�
�
�
�

��

��
�

�
��
#
"

Fig. 10. Deadline misses for high-performance systems

E. Experimental Results: Limits of Thermal Balancing Tech-

niques for High-Performance MPSoCs

In this set of experiments we perform evaluation of the

limits of MiGra and state-of-the-art task migration policies,

i.e., Rotation, TB and TB-Th (see Section VII-B for more

details). In all the cases, local DVFS is also active and applied,

when possible, in addition to each particular task migration

scheme. To stress the reacting capabilities of all these schemes,

in this set of experiments we have used the high-performance

packaging option, which exhibits faster vertical on-chip heat

flow dissipation to the environment than spreading horizontally

to other parts of the chip. Thus, even more dynamic and faster

thermal imbalance situations occur, because the different parts

of the system heat and cool down faster, as shown in our

previous set of experiments.

Then, we have evaluated and compared the behavior of

the task migration algorithms under three different workloads,

made of multiple instances of the SDR case study, which was

divided in three internal subtasks for more accurate control of

the final workload conditions. In the first workload setup we

analyze the behavior of the different task migration policies in

the context of a steady-state thermal situation, where there is

essentially no thermal imbalance. Thus, the workload of each

task was adjusted to make deterministic the replication of load

ratio among cores for the tested thermal balancing policies,

using a 65% workload approximately for each processor.

To this end, we partitioned the SDR case study in three

tasks having very similar processor workload requirements.

Therefore, in this situation, the processors tend to run at

the same frequency. Next, in the second workload setup we

performed an uneven partitioned of the workload between the

three internal tasks that compose each SDR application. Thus,

the processors need to run at different frequencies and with

variable number of memory and I/O operations, which results

in a clear overall system thermal imbalance. In particular, we

used 55%-85%-30% workload at 35 frames/second for cores

1, 2 and 3, respectively. Finally, in the third workload setup,

we assess the capabilities of MiGra to adapt to very dynamic

workloads by varying the frame rate of the SDR case study,

and compare this behavior against an offline-tuned version

of the TB-Th migration policy. Thus, in this final setup, we

obtained a workload of 46%-74%-26%, 55%-85%-30% and

58%-95%-33% for the frame rate interval using 30, 35 and 40

frames/sec, respectively.

� � � �

����

����

����

����

����

����

����

����

����

����

����

����

����

����

	��
�����������

�
�������������

������������ !

�

�
�
�

�
�
�
"�

Fig. 11. Migrations/sec of MiGra for both types of packages

For each setup we performed various experiments while

exploring different values of internal configuration parameters

of each policy, namely, for MiGra we changed the threshold

ranges, for Rotation and TB we modified task migration time-

out values, and for TB-Th we varied its minimum temperature

unbalance threshold to force the migrations.

E.1) Setup I: Steady-State Thermal Context: Table IV sum-

marizes the experimental results obtained for the first workload

setup, where the temperatures of the three cores are already in

a steady-state situation. As this table shows, the Rotation and

TB policies are not effective, because they try to swap tasks

between the different cores without knowledge of the overall

temperature gradient across the chip. As a consequence, in

highly-demanding working conditions (with small timeouts to

apply task migration), both policies show a significant decrease

in QoS of the target 3-core platform (i.e, 27% of deadline

misses for Rotation and 13% for TB), as they generate a large

number of migrations. Conversely, MiGra and TB-Th avoid

migrations completely, since MiGra is able to observe that the

standard deviation of the temperature of the cores is within

the allowed temperature oscillation range, and also TB-Th

does not react because we have manually set up the minimum

migration detonation threshold to values that are never reached

by any processor.

TABLE IV
EXPERIMENTAL RESULTS FOR SETUP I: TEMPERATURES BALANCED

(STEADY-STATE THERMAL CONDITION)

MiGra Rotation TB TB-Th

Timeout (ms) 10 10 10 20 10 20 10 10

Threshold (˚ C) 2 1 316 ˚ K 318 ˚ K

Standard deviation 0 0 0.18 0 0.16 0 0 0

Deadline misses (%) 0 0 27.64 0 13.12 0 0 0

Migrations. / sec 0 0 30.47 15 20.48 10.00 0 0

E.2) Setup II: Unbalanced Thermal Gradients at Regular

Intervals: Table V depicts the experimental results obtained in

the context of the second workload setup, where the 3-core

MPSoC platform under study experiences thermal gradients,

but in regular intervals, due to the unbalanced partitioning of

the tasks (but regular overall streaming computation work-

load). As this figure shows, MiGra requires only a linear

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 11

increase in the number of migrations when we sweep the

required threshold of average temperature between the cores

from four and one degree around the average temperature of

the platform. Moreover, it can be observed that the standard

deviation gradually increases, as the policy starts getting closer

to the critical threshold or reachable thermal balance limit for

the studied 3-core MPSoC (i.e., less than one degree oscillation

beyond/below the average temperature), which is due to the

unavoidable cost of migrating a certain task between two

cores. Nonetheless, even in the smallest range of requested

thermal balancing, MiGra never experiences deadline misses,

as it computes the global benefits of each migration in the

overall thermal balance of the MPSoC.

Then, if we compare the results of MiGra with the other

task migration policies, Table V shows that Rotation has

always worst standard deviation and requires many more mi-

grations to compensate the thermal unbalance of the MPSoC.

Furthermore, if a very fine-grained timeout is requested to

Rotation, it degenerates and shows a very significant decrease

in QoS, namely, 26% of deadline misses on average. With

respect to the TB policy, the experimental results show that

it performs better than Rotation by having a lower standard

deviation in critical thermal balancing constraints, but the

values are only marginally better than MiGra (0.10 versus

0.17). Nonetheless, this values are achieved by TB at the

cost of a large percentage of deadline misses (i.e., 7.62%)

and QoS degradation, due to its large amount of required task

migrations to balance the overall temperature, while MiGra

does not generate any deadline miss. Finally, although TB-Th

shows a lower number of deadline misses (1.62%) than TB

or Rotation in the most fine-grained threshold temperature to

detonate a task migration (316 ˚ K), it still has deadline misses

and experiences a larger standard deviation than MiGra.

TABLE V
EXPERIMENTAL RESULTS FOR SETUP II: TEMPERATURES UNBALANCED

WITH REGULAR WORKLOAD CYCLES

MiGra Rotation TB TB-Th

Timeout (ms) 10 10 10 20 10 20 10 10

Threshold (˚ C) 2 1 316 ˚ K 318 ˚ K

Standard deviation 0.17 0.22 1.57 0.99 0.10 0.37 1.76 0.49

Deadline misses (%) 0 0 26.23 0 7.62 0 1.62 0.00

Migrations/ sec 5.89 8.07 30.25 14.98 19.94 9.98 12.02 8.51

E.3) Setup III: Highly-Variant Thermal Gradients at Irregu-

lar Intervals: In this last setup we have evaluated the ultimate

reaction capabilities of MiGra to highly-dynamic workloads

(i.e., variable frame rates in stream computing), which generate

thermal gradients at very variable intervals. Furthermore, we

have compared its behavior with respect to the best TB-

Th configuration decided off-line as the best intermediate

value for the SDR benchmark with different frame rates, after

analyzing the thermal gradients derived from the execution

of the application on the target 3-core MPSoC. As a result,

we manually defined the minimum migration threshold value

in TB-Th as 318-degree K, see Table V, and compared it

with a fine-grained configuration threshold for MiGra (i.e., a

threshold of 2 degrees around the average temperature). Then,

we evaluated both policies using three frame rates: 30, 35 and

40 frames/sec.

Table VI summarizes the results. On one hand, this table

shows that the numbers of migrations required by MiGra

to guarantee the requested thermal balancing of less than 3

degrees at 30 frames/sec is very limited, although it is a

valid frame rate for many stream computing applications. This

limited number of migrations is due to the fact that at this

frame rate, the workload of each task is below 50% for the

3-core platform under study. Thus, MiGra can effectively

work and adapt the global thermal behavior of the system

very fast by mapping two tasks in the same processing core

at each moment in time, if this value can reduce the global

energy of the system and balance the temperature, as indicated

in the constraints of MiGra (cf. Section VI-A). Conversely,

for 35 or 40 frames per second, the processors are always

loaded more than 50%. Thus, several migrations are required

to dynamically balance and swap one of the tasks between

processors. Hence, MiGra performs about double number of

migrations with input rates higher than 30 frames/sec, as it

is shown in Table VI. Then, the differences in the number

of migrations between 35 or 40 frames per second are not

very significant for MiGra, no deadline misses exists, and the

standard deviation can be well-adjusted to each case.

TABLE VI
EXPERIMENTAL RESULTS FOR SETUP III: MiGra VS. TB-TH IN A

HIGHLY-VARIANT THERMAL GRADIENT CONTEXT

MiGra TB-Th

Frame Rate (per sec) 30 35 40 30 35 40

Standard Deviation 0.27 0.12 0.04 0.15 0.49 0.10

Deadline Misses (%) 0 0 0 0 0 0

Migrations/ sec 2.49 4.62 4.42 3.17 8.51 2.74

On the other hand, TB-Th always swaps the tasks between

the hottest and the coldest processors, without a complete

knowledge of the influence of workload in the overall number

of migrations, since it is not possible to define a minimum task

migration threshold that works correctly for all possible vari-

able working conditions. Therefore, this policy can create very

anomalous conditions for some variable workloads, as it is the

case of 35 frames/sec (see Table VI), where a large number of

migrations are suddenly necessary to compensate for peaks of

workloads accumulated in some processors. Indeed, in some

cases, TB-Th reacts inappropriately to the gradient trends of

parts of the MPSoC, as the minimum migration threshold

defined in this policy cannot be dynamically changed. As a

result, if a task migration timeout occurs for TB-Th before

the last migration of a task from a hot core to a cold one has

finished, as the system is beyond the minimum threshold to

detonate new migrations, TB-Th can trigger a new migration

phase that brings back more workload to the hot processing

core, raising its temperature again. As a consequence, TB-

Th performs an unnecessary number of migrations in certain

situations with highly-dynamic workloads, and the perfect

adjustment of its internal parameters is critical for a good

behavior of this policy. Nonetheless, these highly-dynamic

workloads are very difficult to predict at design time in order

to suitably tune the thresholds and timeouts of the TB-Th

algorithm for each target MPSoC.

Conversely, MiGra is only slightly affected by variable

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 12

workloads, due to its fast run-time self-adaptation of the upper

and lower thermal-based task migration thresholds. Thus, it

can adapt to the thermal dynamics of each target MPSoC,

and the standard deviation and number of deadline misses are

largely insensitive to initial internal parameters tuning. Hence,

it is easier to tune to any final MPSoC architecture.

VIII. CONCLUSIONS

As feature sizes decrease, power dissipation and heat gener-

ation density exponentially increase. Thus, temperature gradi-

ents in MPSoCs can seriously impact system performance and

reliability. Thermal balancing policies based on task migration

have been proposed to modulate power distribution between

processors to achieve temperature flattening. However, in the

context of MPSoC stream computing, the impact of migra-

tion on quality of service must be carefully studied. In this

paper we have presented a new thermal balancing policy, i.e.,

MiGra, specifically designed to exploit dynamically workload

information and run-time thermal behavior of stream comput-

ing architectures. MiGra keeps migration costs and deadline

misses bounded to reduce on-chip temperature gradients via

task migration, supporting further the application to local

DVFS schemes on top of it. We have thoroughly evaluated

the potential benefits of MiGra to balance the temperature

in stream processing architectures with respect to state-of-the-

art thermal management techniques using different versions of

a software-defined radio multitask benchmark. We have run

dynamic workloads of this benchmark on a complete cycle-

accurate FPGA-based emulation infrastructure of a real-life 3-

core stream platform, and the experimental results show that

MiGra is able to reach a global thermal balance where the

temperatures of the MPSoC components are within a range

of 3 degrees around the average temperature. Furthermore,

MiGra achieves this thermal balancing with a negligible

performance overhead of less than 2% in MPSoC stream

computing platforms, significantly less than state-of-the-art

thermal management techniques.

REFERENCES

[1] K. Skadron, et al., “Temperature-aware microarchitecture: Modeling and
implementation.” ACM TACO, vol. 1, no. 1, pp. 94–125, 2004.

[2] T. Sato, et al.,“On-chip thermal gradient analysis and temperature
flattening for SoC design,” Proc. ASP-DAC, pp. 1074–1077, 2005.

[3] C. Isci, et al.,“Live, run-time phase monitoring and prediction on real
systems with application to dynamic power management,” Proc. MICRO,
pp. 359–370, 2006.

[4] I. Yeo, et al., “Predictive dynamic thermal management for multicore
systems,” Proc. DAC, pp. 734–739, 2008.

[5] J. Donald, et al., “Techniques for multicore thermal management:
Classification and new exploration,” Proc. ISCA, pp. 78–88, 2006.

[6] J. Hu, et al., “Energy-aware communication and scheduling for NoC
SoCs under real-time constraints,” Proc. DATE, pp. 10234, 2004.

[7] P. Rong, et al., “Power-aware scheduling and DVS for tasks running
on a hard real-time system,” Proc. ASPDAC, pp. 1–6, 2006.

[8] StreamIt-MIT Research, “StreamIt Benchmarks,” 2009,
http://www.cag.lcs.mit.edu/streamit/shtml/benchmarks.shtml

[9] M. Mutyam, et al., “Compiler-directed thermal management for VLIW
functional units,” Proc. LCTES, pp. 163– 172, 2006.

[10] A. K. Coskun, et al., “Temperature aware task scheduling in MPSoCs,”
Proc. DATE, pp. 1659–1664, 2007.

[11] W-L. Hung, et al., “Thermal-aware task allocation and scheduling for
embedded systems,” Proc. DATE, pp. 898–899, 2005.

[12] A. Kumar, et al., “HybDTM: a coordinated hw-sw approach for
dynamic thermal management,” Proc. DAC, pp. 548–553, 2006.

[13] P. Chaparro, et al., “Understanding the thermal implications of
multi-core architectures,” IEEE TPDS, vol. 18, no. 8, pp. 1055–1065,
2007.

[14] S. Carta, et al., “Multi-processor OS emulation framework with thermal
feedback for SoCs,” Proc. GLSVLSI, pp. 311–316, 2007.

[15] R. Mukherjee, et al., “Physical aware frequency selection for dynamic
thermal management in multi-core systems,” Proc. ICCAD, pp.
547–552, 2006.

[16] J. Donald, et al. “Power efficiency for variation-tolerant multicore
processors,” Proc. ISLPED, pp. 304–309, 2006.

[17] F. Bellosa, et al. “Event-driven energy accounting for dynamic thermal
management,” Proc. COLP, pp. 41–50, 2003.

[18] G. Paci, et al., “Exploring temperature-aware design in low-power
MPSoC,” Proc. DATE, pp. 838–843, 2006.

[19] Y. Xie, et al., “Temperature-aware task allocation and scheduling for
embedded MPSoC design,” J. VLSI-SPS, pp. 177–189, 2006.

[20] H. Su, et al., “Full chip leakage estimation considering power supply
and temperature variations,” Proc. ISLPED, pp. 78–83, 2003.

[21] J. Li, et al., “Power-performance implications of thread-level parallelism
in chip multiprocessors,” Proc. ISPASS, pp. 124–134, 2005.

[22] “UClinux: Embedded linux/microcontroller project,” 2006,
http://www.uclinux.org/.

[23] D. Atienza, et al., “Hw-sw emulation framework for temperature-aware
design in MPSoCs,” ACM TODAES, vol. 12, no. 3, pp. 1–26, 2007.

[24] “XUP Virtex-II Pro development system,” Xilinx, 2006, http:
//www.xilinx.com/univ/xupv2p.html.

[25] H.-J. Stolberg, et al., “Hibrid-soc: A multi-core SoC architecture for
multimedia signal processing,” J. VLSI-SPS, vol. 41, no. 1, pp. 9–20,
2005.

[26] P. Van der Wolf, et al., “Design and programming of embedded
multiprocessors: An interface-centric approach,” Proc. CODES+ISSS,
pp. 206–217, 2004.

[27] Freescale,“IMX31 - Multimedia Applications Processors,” 2006,
www.freescale.com/imx31.

Fabrizio Mulas is currently Ph.D. student in Com-
puter Science at Universita degli Studi di Cagliari,
Italy. He received the Electronic Engineer degree
from Universita degli Studi di Cagliari, Cagliari,
Italy. In 2007/2008 he spent six months as guest re-
searcher at EPFL (Ecole Polytechnique Fédérale de
Lausanne) at Integrated Systems Laboratory about
conception and development of software algorithms
and policies for dynamic resource management
in Multiprocessor Systems. His scientific activities
mostly concern soft real-time scheduling, power

management in wireless sensor networks, Linux kernel activities monitor-
ing, management techniques for addressing variability/reliability and aging
problems in next generation hardware components.

David Atienza received his M.Sc. and Ph.D. degrees
in Computer Science and Engineering from Com-
plutense University of Madrid (UCM), Spain, and
Inter-University Microelectronics Center (IMEC),
Belgium, in 2001 and 2005. Currently he is Pro-
fessor and Director of the Embedded Systems Lab-
oratory (ESL) at Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland, and adjunct pro-
fessor at the Computer Architecture Department
of UCM. He is also scientific counselor of long-
time research of IMEC Nederland (IMEC-NL). His

research interests focus on design methodologies for high-performance Multi-
Processor Systems-on-Chip (MPSoCs) and embedded systems, including new
2D/3D thermal-aware design, wireless sensor networks, dynamic memory
optimizations and Network-on-Chip (NoC) design. In these fields, he is co-
author of more than 100 publications in prestigious journals and conferences.
Dr. Atienza is also Associate Editor of IEEE Transactions on Computer-
Aided Design of Circuits and Systems, IEEE Embedded Systems Letters, and
Elsevier Integration. He is an elected member of the Executive Committee of
the IEEE Council of Electronic Design Automation (CEDA) since 2008.

IEEE TRANS ON CAD OF INTEGRATED CIRCUITS AND SYSTEMS 13

Andrea Acquaviva graduated (summa cum laude)
in Electrical Engineering at the University of Ferrara
in 1999. He received a Ph.D. degree in electri-
cal engineering from Bologna University in 2003.
Andrea Acquaviva has been an Assistant Professor
in Computer Science at the University of Urbino
(Italy) and in the Computer Science Department
at University of Verona (Italy). He is currently an
Assistant Professor in the Computer Science and
Automation Department at Politecnico di Torino,
Italy. He is also Visiting Professor at Laboratoire de

Systemes Integres of the Ecole Politechnique Fédérale de Lausanne (EPFL),
Switzerland. He has been research intern at Hewlett Packard Laboratories
(HPLabs), Palo Alto, CA (USA) in 2001 and 2002. Since 2004 he collaborates
with Freescale Semiconductor (UK). Andrea Acquavivas research interests
mainly concern software for multiprocessor and distributed systems, with
particular emphasis on operating systems and middleware for Multiprocessor
Systems on Chip and wireless body sensor networks for humancomputer
interfaces, with particular emphasis on energy conservation aspects.

Salvatore Carta received the B.S. degree (summa
cum laude) in electronic engineering and the Ph.D.
degree in electronics and computer science from the
University of Cagliari, Cagliari, Italy, in 1997 and
2003, respectively. In 2005, he became an Assis-
tant Professor with the Computer Science Depart-
ment, University of Cagliari. His research interests
mainly include architectures, software and tools for
embedded and portable computing, with particular
emphasis on operating systems, middleware and
applications modeling for multiprocessor-systems-

on-chips, networks-on-chip, and reconfigurable computing. He is the author
of several papers in these fields.

Luca Benini received the Ph.D. degree in electri-
cal engineering from Stanford University, Stanford,
CA, in 1997. He is currently a Professor with
the University of Bologna, Bologna, Italy. He also
holds a Visiting Faculty Position with the Ecole
Polytecnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland. His research interests include
the design of systems for ambient intelligence, from
multiprocessor systems-on-chip/networks-on-chip to
energy-efficient smart sensors and sensor networks.
From there, his research interests have spread into

the field of biochips for the recognition of biological molecules, into bioinfor-
matics for the elaboration of the resulting information, and further into more
advanced algorithms for in silicobiology. He has published more than 300
papers in peer-reviewed international journals and conferences, three books,
several book chapters, and two U.S. patents. Dr. Benini has been Program
Chair and Vice-Chair of Design Automation and Test in Europe Conference.
He has been a member of the 2003 MEDEA and EDA Roadmap Committee.
He is a member of the IST Embedded System Technology Platform Initiative
(ARTEMIS), aworking group on Design Methodologies, a member of the
Strategic Management Board of the ARTIST2 Network of Excellence on
Embedded System, and a member of the Advisory Group on Computing
Systems of the IST Embedded Systems Unit. He has been member of the
Technical Program Committee and organizing committee of several technical
conferences, including the Design Automation Conference, International Sym-
posium on Low Power Design, and the Symposium on Hardware-Software
Codesign. He is an Associate Editor of the IEEE Transactions on Computer-
Aided Design of Circuits and Systems, and of the ACM Journal on Emerging
Technologies in Computing Systems.

Giovanni De Micheli is Professor and Director of
the Institute of Electrical Engineering and of the
Integrated Systems Centre at EPFL, Switzerland.
He also chairs the Scientific Committee of CSEM,
Neuchatel, Switzerland. His research interests in-
clude design technologies for integrated circuits and
systems, such as synthesis, HW/SW co-design, low-
power design, as well as systems on heterogeneous
platforms. Prof. De Micheli is the recipient of the
2003 IEEE Emanuel Piore Award. He is a Fellow
of ACM and IEEE. He received the Golden Jubilee

Medal for outstanding contributions to the IEEE CAS Society in 2000 and
the 1987 D. Pederson Award for the best paper on the IEEE TCAD/ICAS.
He was Division 1 Director (2008-9), co-founder and President Elect of the
IEEE Council on EDA (2005-7), President of the IEEE CAS Society (2003),
Editor in Chief of the IEEE TCAD/ICAS (1987-2001).

