Optimal Algorithms for Page Migration in
Dynamic Networks

Marcin Bienkowski®*, Jaroslaw ByrkaP®,
Miroslaw Korzeniowski ¢, Friedhelm Meyer auf der Heide ¢

a Institute of Computer Science, University of Wroclaw, ul. Joliot-Curie 15, 50-383
Wroclaw, Poland

YCWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, and Eindhoven
University of Technology, P.O. Box 513, 5600 MB FEindhoven, The Netherlands

¢Institute of Mathematics and Computer Science, Wroclaw University of
Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

dHeinz Nizdorf Institute and Computer Science Department, University of
Paderborn, Firstenallee 11, Paderborn, Germany

Abstract

We present an extension of a classical data management subproblem, the page mi-
gration. The problem is investigated in dynamic networks, where costs of communi-
cation between different nodes may change with time. We construct asymptotically
optimal online algorithms for this problem, both in deterministic and randomized
scenarios.

Key words: online algorithms, randomized algorithms, page migration, data
management, dynamic networks

1 Introduction

One of the most crucial services used in every distributed program is a trans-
parent access to variables, databases, memory pages, or files, which are shared
by the program instances running at nodes of the network. An implementa-
tion of the variable sharing is essential to the performance of such distributed
applications. However, the traditional approach of storing the shared data in

* Corresponding author,
email: mbi@ii.uni.wroc.pl, tel.: +48 71 375 7838, fax: +48 71 375 7801.

Preprint submitted to Elsevier 18 July 2008

one or a few central repositories does not scale up well with the increase of the
network size and is therefore inherently inefficient. One of the most straight-
forward, yet imprecise solution, is to abandon these central storage systems
and use local memories of the nodes to store the shared objects.

In this paper, we investigate data management strategies that try to exploit
topological locality, i.e., try to migrate the shared data in the network in such
a way that a node accessing a data item finds it “nearby” in the network.
Accesses to the shared data can be modeled as an online problem. In this
paper, we deal with the classical, basic subproblem called Page Migration.

In contrast to previous works on data management in networks, we focus
on the page migration in a dynamic setting. We assume that the network is
no longer static, but is subject to change, and the costs of communication
between nodes may change with time. Such a situation is typical in mobile
ad-hoc networks, but occurs also in large distributed systems, which are used
concurrently by many applications and users. Thus, we have to deal with two
sources of online events, namely the requests from nodes to data items and
the changes in the network.

1.1 Static Networks

In this subsection, we describe the original data management and page migra-
tion problems. They are defined in a static network, i.e., the network in which
costs of communication between nodes do not change in time.

In many applications, access patterns to a shared object change frequently.
This is common, for example, in parallel pipelined data processing, where the
set of processors accessing shared variables changes in the runtime. In these
cases, any static placement of the object copies is inefficient. Moreover, the
knowledge of the future accesses to the objects is in reality either partial or
completely non-existing, which renders any solution based on static placement
infeasible. Instead, a data management strategy should migrate the copies to
further exploit the locality of accesses. This poses an algorithmic problem,
central to this paper.

Without knowledge of the future accesses to the shared objects, decide,
whether it is worth to change the positions of their copies.

To keep the bookkeeping overhead small, it is often required that only one
copy of each object is stored in the system. Additionally, shared objects are
usually bigger than the part of their data that is being accessed at one time.
Usually, processors want to read or change only one single unit of data from
the object, or one record from a database. On the other hand, the data of one

object should be kept in one place to reduce the maintenance overhead. This
leads to a so-called non-uniform model, where migrating or copying the whole
object is much more expensive than accessing one unit of data from it.

This traditional paradigm, called Page Migration (PM) was introduced by
Black and Sleator [16]. It models an underlying network as a connected, undi-
rected graph, where each edge e has an associated cost c¢(e) of sending one
unit of data over the corresponding communication channel. In case of wired
networks, this cost might represent the load induced by sending data through
this communication link. The cost of sending one unit of data between two
nodes v, and v, is defined as the sum of costs of edges on the cheapest path
between v, and v,. There is only one copy of one single object of size D,
which is further called a (memory) page, stored initially at one fixed node in
the network.

A PM problem instance is a sequence of nodes (o;);, which want to access
(read or write) one unit of data from the page. In one step ¢, one node oy
issues a request to the node holding the page and appropriate data is sent
back. For such a request, an algorithm for PM is charged a cost of sending
one unit of data between o; and the node holding the page. At the end of
each time step, the algorithm may move the page to an arbitrary node. Such
a transaction incurs a cost which is D times greater than the cost of sending
one unit of data between these two nodes.

The goal is to compute a schedule of page movements which minimizes the
total cost. Computing an optimal schedule offfine, i.e., on the basis of the
whole input sequence Z = (oy);, is an easy task, which can be performed
in polynomial time. Thus, the main effort was placed on constructing online
algorithms, i.e., ones which have to make decision in time step ¢ solely on the
part of the input up to step t.

1.2 Dynamic Networks

In the past, an application executed on a parallel machine was running in
a virtually static and invariable environment and one could safely assume
that the interconnecting network is predictable and reliable. Such assumptions,
which substantially reduced the complexity of the basic services design, ceased
to hold when applications started to run in open and unknown networks.

First of all, networks are prone to link failures or bandwidth shortages. Sec-
ond, other applications running in the network might behave completely un-
predictably or even antagonistically, creating high loads on particular links,
e.g., by flooding them with messages. Third, if the network consists of mobile
stations, its topology may be changed due to nodes mobility.

In our considerations we do not take into account the dynamics induced by
nodes joining and leaving the network. In fact, a model where nodes may
become active and inactive was already investigated by Awerbuch, Bartal, and
Fiat [4] in the context of a data management subproblem, a file allocation.

Basic services for mobile wireless networks and dynamically changing wired
networks are a relatively new research subject. Some effort was placed on cre-
ating algorithms for topology control and routing in wireless networks (see
e.g. [27]) or routing algorithms in faulty wired networks (see e.g. [28]). In
comparison, basic services related to data management problems in dynami-
cally changing networks are still in their infancy. Till recently, no theoretical
analysis or even experimental evaluation was present in this area, which might
have been influenced by the fact that no reasonable model of network changes
was proposed. In particular, any model similar to the one described in [28],
where the adversary can destroy links between nodes, would be too strong
for any data management scheme. This follows from the observation that it is
relatively easy to construct a sequence of accesses to a shared object, which
eventually forces any competitive (even randomized) algorithm to move all the
copies of this object to one node. Afterwards, the link failures may disconnect
this node from the rest of the network, leaving the algorithm no chance to
access or migrate the data in the future.

Hence, for theoretical modeling of network dynamics, we assume that an ad-
versary may modify the costs of point-to-point communication arbitrarily, as
long as the pace of these changes is restricted by, say, an additive constant per
step. Intuitively, this gives the data management algorithm time to react to
the changes. The model of slow changes in the communication costs, formally
defined in the next section, tries also to capture slow changes in bandwidth
available in wired networks, which are inherently induced by other programs
running or users using (not abusing) the network.

1.3 Our Model

To model the Page Migration problem in dynamic networks we make the
following assumptions. The network consists of n mobile nodes (processors)
labeled vg, vy, ...,v,_1. For succinctness, we define [n] = {0,1,...,n — 1}.
These nodes are placed in a metric space (X, d), where the distance between
any pair of points from X is given by the metric d. The metric space is chosen
in any fashion by the adversary. In particular, we make no assumptions about
the finiteness of the space or about its diameter, i.e., the maximum distance
between a pair of points from X.

Time is discrete and slotted into time steps ¢t = 0,1, 2, To model dynamics,

we assume that the position of each node is a function of ¢, i.e., p;(v) denotes
the position of v in time step ¢. As a natural consequence, the distance between
a pair of nodes may also change with time. The distance between any pair of
nodes v, and v, in time step t is denoted by

di(va, vy) == d(pe(va), pr(vs)) - (1)

Note that such a distance can be equal to zero in two different cases. The first
one occurs if v, and v, are different nodes occupying the same position in X.
The second one occurs when a = b, in which case we are dealing with a single
node (and we write v, = vp).

A tuple describing the positions of all the nodes in time step ¢t is called con-
figuration in step t, and is denoted by C;. A configuration sequence (C;)L,
contains the configurations in the first 7"+ 1 time steps, beginning with the
initial configuration Cy. The actual representation of these positions in com-
plicated metric spaces is not relevant for us. The only requirement is that the
distances between any pair of nodes in time t are computable on the basis

of Ct.

The changes in nodes’ positions over time are arbitrary, as long as the nodes
move with a bounded speed, as mentioned in the previous section. Formally,
for any node v;, its positions in two consecutive time steps t and ¢ + 1 cannot
be too far apart, i.e.,

d(pe(vi), pera(vi)) <90, (2)
for some fixed . An adversarial entity creating sequence of configurations is
called d-restricted, if it obeys the inequality above.

Any two nodes are able to communicate directly with each other. Essentially,
the communication cost is proportional to the distance between these two
nodes, plus a constant overhead. This overhead represents the startup cost
for establishing connection. Precisely, the cost of sending a unit of data from
node v, to vy, at time step t is defined by a cost function c;(v,, vy), defined as

i (Va, vp) := dy(va, vp) + 1, (3)

if v, and v, are different nodes. The communication within one node is free,
i.e., ¢;(Vq,v,) = 0.

Naturally, the changes in the network (described by the (C;)L, sequence) do
not constitute a problem of its own. According to the described Page Migration
model, a copy of memory page of size D is stored at one of the network’s nodes,
initially at vy. In each time step ¢ > 1, exactly one node, denoted oy, tries to
access one unit of data from the page. Since the model assumes that there is
only one copy of the object stored in the system, there is no need of making

distinction between read and write accesses. We refer to them as requests
and we call o; the requesting node. The requests create the sequence (o;)L_,,
complementary to the configuration sequence (C;)Z_,. Note that nodes issue
requests from the first step; the initial configuration in time step 0 is introduced
to simplify the notation only.

In each step, an algorithm for the Page Migration in dynamic networks has to
serve the request, and then to decide, whether it wants to migrate the page
to some other node. Precisely, for any algorithm ALG the following stages
happen in time step ¢t > 1.

(1) The positions of the nodes in the current step are defined by C;.

(2) A node o, wants to access one single unit of data from the page. It sends
a write or a read request to Parg(t), the node holding ALG’s page in the
current step.

(3) ALG serves this request, i.e., it sends a confirmation in case of write, or
a requested unit of data in case of read. This transaction incurs a cost
ci(Para(t), o).

(4) ALG optionally moves the page to another node of its choice, called a jump
candidate. A movement to Pa;(t) incurs a cost D - ¢;(Parg(t), Para(t)).

Sometimes we abuse the notation, writing that ALG is at node v; when ALG
has its page at this node. Analogously, we write that ALG moves or jumps
to v;, when it moves its page there. In fact, the only part which ALG may
influence is choosing a new node Pj;(t) in the fourth stage. The problem,
to which we further refer as Dynamic Page Migration (DPM), is to construct
a schedule of page movements to minimize the total cost of communication
for a given pair of sequences (C;):, (01);. We will usually abbreviate this notion
to (Cy, 0¢)s-

Before we proceed with the considerations on the complexity of the DPM
problem, we point out that the DPM model is more general than Page Migra-
tion itself. If the network is static, i.e., C; = C;_ for all t > 1, and we neglect
the constant overhead in the cost function definition, then DPM is capable
of modeling any situation, in which the cost function satisfies the triangle in-
equality. Note that even if it is not the case, the page migration algorithm
chooses the shortest paths instead of direct connections, and thus the triangle
inequality is fulfilled.

It is also straightforward, that the constant overhead may be neglected if
the minimum cost of communication in the network is large. For the Page
Migration problem in a static network we may assume this property, since
without loss of generality, the costs defined by any instance of the problem
might be scaled up by any factor.

1.4 Offtine and Online Algorithms

Like in the Page Migration case, the problem of minimizing the total cost is
easy if both (C;); and (oy); are given in offline setting, i.e., if an algorithm
may read the whole input beforehand. Using a straightforward dynamic pro-
gramming approach, it is possible to construct an optimal schedule of page
movements for any instance of the DPM problem consisting of 1" steps, using
O(T - n?) operations and O(T - n) additional space.

However, as mentioned earlier, DPM has to be primarily solved in an online
setting, where an algorithm must make its decisions (where to move the page)
in step t, exclusively on the basis of the sequence Cy,Cy,01,Ca, 09, ...,Cs, 0y.
To measure the performance of online strategies for the DPM problem, we use
the competitive analysis (see, e.g., [29,17]). This kind of evaluation, primarily
introduced by Sleator and Tarjan [29], compares the cost of an online algorithm
to the cost of the optimal offline strategy. In the following, we assume that
an optimal algorithm is denoted by OPT, and for any algorithm ALG, Carc(Z)
denotes the cost of this algorithm on input sequence Z = (C;, o).

An online deterministic algorithm ALG is R-competitive if there exists a con-
stant «, such that for any input sequence Z, it holds that

CAL(;,(I) < R-COPT(I)—l-Oé . (4)

For a randomized algorithm ALG we replace its cost in the definition above
by its expectation E[Carc(Z)]. The expected value is taken over all possible
random choices made by ALG.

However, in the randomized case, the power given to the adversary has to be
further specified. Following Ben-David et al. [8], we distinguish between three
types of adversaries: oblivious, adaptive-online and adaptive-offline. An obliv-
tous adversary has to construct the whole input sequence in advance, not
taking into account the random bits used by an algorithm. The other two
types are adaptive ones; they may decide about the next requests upon see-
ing the algorithm’s current page position. Since they are dependent on the
algorithm’s random choices, we have to replace Copr(Z) by its expectation
(taken over these random choices). These two adaptive types differ, however,
in the way they construct an optimal solution, which is later compared with
the solution of ALG. An adaptive-online adversary must provide an answering
entity, which creates an “optimal” solution in parallel to ALG. This solution
may not be changed afterwards. An adaptive-offiine adversary may construct
an optimal solution at the end, knowing the whole input sequence.

The power of these adversaries can be related as shown in [8]. Let Ropr,
Rap_oNL, Rap—_orr be the best competitive ratios for randomized algorithms

against oblivious, adaptive-online, and adaptive-offline adversaries, respec-
tively. Let Rpgr be the best possible ratio for deterministic algorithm. Then

Rosr < Rap-ont. < Rap-orr = RpgT - (5)

This relation implies that the randomization does not help against adaptive-
offline adversaries. Hence in this paper, we focus on the other three types of
adversaries.

1.5 Our Contribution and Outline of the Paper

The main results of this paper are online algorithms which achieve asymptot-
ically optimal competitive ratios against constant-restricted adversaries. The
respective ratios are gathered in the following table.

Algorithm Competitive ratio

Deterministic C) (min {n . \/5, D})

Randomized against adaptive-online adversary | © (min {n -v/D, D})
Randomized against oblivious adversary) (min {\/D -logn, D})

To prove these results we take the following approach. In Section 2 we present
a pair of deterministic algorithms: O(n - v/D)-competitive algorithm MARK
and O(D)-competitive algorithm Jump, which combined give an O(min{n -
VD, D})-competitive deterministic algorithm. In Section 3.2, we show that
a lower bound of Q(min{n-+/D, D}) holds for randomized algorithms fighting
against adaptive-online adversaries. By relation (5) this proves the first two en-
tries from the table above. Later in Section 2, we show that a randomization
of the MARK algorithm yields an algorithm EBM, which is O(y/D -logn)-
competitive against an oblivious adversary. After combining it with the Jump
algorithm, we get an upper bound of O(min{/D - logn, D}) against an obliv-
ious adversary. A matching lower bound is presented in Section 3.3. In our
proofs we do not strive for minimizing the constants, but rather at the sim-
plicity of the presentation.

One of the natural extensions is to consider adversaries which are d-restricted,
where ¢ is no longer a constant, but a parameter. We give partial answers to
this problem in Section 4.

Finally, in Section 5, we show that it is not possible to extend our results
to the model where object replication is allowed. Specifically, we show that
the competitive ratio of any file allocation algorithm in dynamic network is
unbounded.

We note that for metric spaces where the maximum distance between two
points is at most A, if we take an O(1)-competitive algorithm for “normal”
page migration, then its competitive ratio is at most O(\). Indeed, the lower
bounds stated in this paper do not hold for such limited metric spaces and
we show them only for larger spaces. However, it is possible to incorporate
the A term into the competitive ratios presented in the table above; the re-
spective ratios become O(min{n - v/D, D, \}) and ©(min{y/D -logn, D, \}).
Since the proofs in this case are much longer and more technical, we refrain
to present them in the journal paper and we refer the reader to [10].

1.6 Related Work

To our best knowledge, the only work that exists in the area of data manage-
ment in dynamically changing networks is the paper by Awerbuch, Bartal, and
Fiat on distributed paging [4]. However, they consider a setting in which nodes
may appear and disappear, which differs much from our model. In particular,
their results are inapplicable in our scenario.

On the other hand, the area of data management in static networks has been
successfully explored in the past years by numerous researchers. Below, we
briefly state some of their results.

1.6.1 Page Migration

The Page Migration problem was thoroughly investigated for different types
of adversaries. For a gentle introduction to the algorithms mentioned here, we
refer the reader to the survey by Bartal [5].

First randomized solutions presented by Westbrook [30] were a memoryless
algorithm which was 3-competitive against an adaptive-online adversary and
a phase-based algorithm whose competitive ratio against an oblivious adver-
sary tends to 2.618 as D goes to infinity. The former result was proven to
be tight by Bartal, Fiat, and Rabani [7,5]. The lower bound construction was
a slight modification of the analogous lower bound for deterministic algorithms
by Black and Sleator [16]. On the other hand, the exact competitive ratio
against an oblivious adversary is not a completely settled issue. The currently
best known lower bound, 2 + %, is due to Chrobak, Larmore, Reingold, and
Westbrook [19]. It is matched only for certain topologies, like trees or uniform
networks (see [19] and [26], respectively).

The first deterministic, phase-based, 7-competitive algorithm MoOVE-T0-MIN
was given by Awerbuch, Bartal, and Fiat [2]. The result was subsequently
improved by the MOVE-TO-LOCAL-MIN algorithm [6] attaining competitive

ratio of 4.086. On the other hand, [19] showed a network with a lower bound
of approximately 3.148.

1.6.2 Data Management

There exist many extensions of Page Migration that allow more flexible data
management in networks. One of the possible generalizations of PM is allowing
more than one copy of an object to exist in the network. This poses new inter-
esting algorithmic questions which have to be resolved by a data management
scheme, i.e., how many copies of shared objects should be created and which
accesses to shared objects should be handled by which copies. A basic ver-
sion of this problem (where only one shared object is present in the system),
called file allocation, was first examined in the framework of competitive anal-
ysis by Bartal, Fiat, and Rabani [7]. They presented a randomized strategy
that achieves an asymptotically optimal competitive ratio of O(logn) against
an adaptive-online adversary. Additionally, they showed how to get rid of the
central control (which is useful for example for locating the nearest copy of
the object) and created O(log* n)-competitive algorithm, which works in a dis-
tributed fashion. Awerbuch, Bartal, and Fiat [2] showed that the randomiza-
tion is not crucial, and constructed deterministic algorithms (centralized and
distributed ones) for file allocation problem, attaining asymptotically the same
ratios.

For uniform topologies, Bartal, Fiat, and Rabani [7] showed an optimal deter-
ministic 3-competitive algorithm. Lund, Reingold, Westbrook, and Yan [26]
gave a 3-competitive algorithm for trees, which is based on work functions
technique.

If the shared data is read-only, then the file allocation becomes a page replica-
tion problem. It was also introduced by Black and Sleator [16]. In contrary to
the page migration, in general networks one cannot hope for a competitive ra-
tio better than Q(log n). Therefore, the research on page replication conducted
by Albers and Koga [1,25] and by Fleisher, Glazek, and Seiden [20-23] concen-
trated on particular topologies like trees, uniform networks, and rings. For all
these topologies O(1)-competitive deterministic and randomized algorithms
were given; the ratios for trees and uniform networks are optimal.

If multiple objects are present in the network and the local memory capacity
at nodes is limited, then running a file allocation scheme independently for
each single object in the network might encounter some problems. Above all,
it is not possible to copy an object into a node’s memory if it is already
full. Possibly, some other object copies have to be dropped, which induces
problems if they were the last copies present in the network. This leads to
a so called distributed paging problem [3,4,7], where file allocation solutions

10

have to be combined with schemes known from wuni-processor paging (see for
example [29]).

1.6.3 Relaxed Models for Page Migration in Dynamic Networks

The competitive ratios of the best possible algorithms for DPM problem are
relatively large, even against the weakest, oblivious adversaries. The poor per-
formance of algorithms is caused by the fact that the part of adversary which
changes the network and the part which gives the request patterns may com-
bine and synchronize their efforts. It was therefore proposed that the DPM
problem could be analyzed in a scenario where one of these parts is replaced
by a stochastic process. This leads to the cases [9,13], in which the competitive
ratios can be greatly decreased.

1.7 Bibliographical Notes

Part of the results presented in this paper have been published previously in
a preliminary form. The DPM problem was defined in [14]. The deterministic
algorithm MARK was first presented in [12,15] and its randomized counterpart
EBM in [11]. A lower bound for adaptive adversaries was presented in [14], and
a weaker, non-optimal version of the lower bound for oblivious adversaries was
given in [12].

2 Algorithms

In this section, we show upper bounds on the competitive ratios: O(min{n -
VD, D}) for deterministic algorithms and O(min{+/D - logn, D}) for random-
ized ones against an oblivious adversary.

To achieve this, first we present a trivial deterministic O(D)-competitive algo-
rithm Jump. Later we present a whole class of marking based algorithms and
demonstrate their properties. Two specific instances from this class are the
deterministic algorithm MARK and the randomized algorithm EBM, attaining
competitive ratios of O(n - v/D) and O(y/D -logn), respectively.

Therefore, if we consider deterministic algorithms, we may — since an algo-
rithm knows D and n — easily achieve the best of both worlds, choosing either
JuMP or MARK. The same holds for randomized algorithms where choosing
at the beginning between JUMP and EBM guarantees the competitive ratio of

O(min{+/D -Togn, D}).

11

2.1 Preliminaries

Since we want all the results to hold for any d-restricted adversary for con-
stant 9, we show first that all constant-restricted adversaries are up to a con-
stant factor equivalent.

Lemma 1 (Reduction Lemma) Assume that there exists a (randomized)
algorithm A which is k-competitive against an a-restricted adversary. Then A
1s k-competitive against a b-restricted adversary for b < a. Additionally, for
any b > a there exists a (randomized) algorithm B, which is g - k-competitive
against any b-restricted adversary.

PROOF. If b < a, then A is k-competitive against a b-restricted adversary,
since it was k-competitive against a stronger, a-restricted adversary.

If b > a, let (Cy, 04); be any input sequence. Let C; denote the configuration C;
with all the original distances divided by b/a. Clearly, if (C;) was created by
a b-restricted adversary, then sequence (C;); might be created by an a-restricted
adversary. Algorithm B simulates the behavior of A on the sequence (Cj, o¢)q,
and repeats A’s choices on (Cy, 0;);. We obtain

CB((Ctaat)t) < ’CA((CéaUt)t)
-k - Copr((Cy, 04):)

k- Copr((Ci,00)t)

<

<

Qoo

and thus B is g - k-competitive. For proving the lemma for randomized algo-

rithms, we just replace the algorithm’s cost by its expected value. O

Throughout the remaining part of the paper, for constructing algorithms we
consider %—restricted adversaries, since this assures that the distance between
any pair of nodes can change only by 1 per time step. For showing lower
bounds we consider 1-restricted adversaries.

2.2 Algorithm JUMP

Let JUMP be a deterministic memoryless algorithm which upon receiving a re-
quest from the node o; serves this request and jumps to o;. We prove the
following theorem.

12

Theorem 2 JuMP is O(D)-competitive for the DPM problem.

PROOF. We take any input sequence Z. Recall that for any algorithm A
and any step t, P4(t) denotes the node holding the page of A at the beginning
of step t. By C(t) we denote the cost of A in step t.

Recall that both JuMP and the optimal offline algorithm OPT start with their
pages at the same node, i.e., Pyjyyp(l) = Popr(1). First, we observe that in
the first step of Z, JUMP pays for serving the request at o; and for moving
to o1, whereas OPT pays at least for serving the request at o;. Therefore,

CJUMP(1> == (1 + D) . Ct(PopT(1)7 0'1) S (1 + D) . COPT(l) . (6)
Next, we show that the following relation holds for any step ¢ > 1.
Cyump(t) = O(D) - (Copr(t — 1) + Copr(t)) (7)

If 0,_1 = oy, then in step t, JUMP is already at node o; and its cost is 0. In
this case, (7) holds trivially. Otherwise, the costs are as follows:

Cyump(t) = (1+ D) - c(04-1,0v) ,
Copr(t —1) = cio1(Popr(t —1),04-1) + D - c—1(Popr(t — 1), Popr(t))
Copr(t) > c(Popr(t),or) -

It is easy to observe that the function ¢, satisfies the triangle inequality and for
any two (not necessarily different) nodes v, and vy, it holds that ¢, (v,, vp) <
2+ ¢;_1(vg,vp). Hence,

COPT(t — 1) + CQPT(t)

v

ci—1(Popr(t), 01-1) + ci(Popr(t), ov)
1

5 : Ct(o—tfla Ut))

v

and (7) follows.

By summing up relations (6) and (7) for all steps ¢, we get the lemma. O
We note that the analysis is up to a constant factor tight. For example, if the
requests are placed alternately at nodes vy and vy, the cost of Jump is Q(D)
times worse than the cost of the optimal algorithm.

2.2.1 Last Request Based Algorithms

One may think that by cleverly modifying the JUMP algorithm, i.e., by not

moving in each step but every, say, D steps, one may reduce the competitive
ratio to o(D). The following argument shows that it is not possible.

13

We consider a class of algorithms which in any step may decide whether to
move the page, but they may move only to the node which issued a request
in this step. This class we call last request based. All previous randomized al-
gorithms for Page Migration (presented for example in [19,26,30]) as well as
our JuMP algorithm fall into this category. Surprisingly, no such determinis-
tic algorithm can have a competitive ratio o(D). The same argument works
also for randomized, last request based algorithms against an adaptive-online
adversary.

Lemma 3 Consider any deterministic, last request based, R-competitive al-
gorithm ALG. Then R = Q(D).

PROOF. We consider a three-node network and a 1-restricted adversary. Ini-
tially, all nodes occupy the same place in the space. Without loss of generality,
we may assume that ALG starts in vy. The adversary chooses to keep OPT all
the time in v,.

We divide the time into phases. In the first phase, requests are given at vy,
and vy is moved apart with the maximum possible speed, i.e., in step t of
this phase, the distance between vy and v; (and between vy and wvy) is t. At
some point ALG decides to jump. Note that if ALG never jumps, then its
competitive ratio is unbounded. As a jump candidate it can only choose v;.
Let X denote the distance between vy and v; at the moment of jump. In the
next X steps, requests are still given at v;, and nodes are contracted, i.e., vy is
moved to v; and v, with the maximum possible speed, till it reaches the initial
configuration. After contracting, the phase ends, having lasted 2 - X steps. In
this phase OPT pays 2 - X and ALG pays D - X just for moving the page in
the middle of the phase.

We can continue this process for any number of phases. The even phases are
symmetric to the first one, i.e., the roles of vy and v; are reversed and the
odd phases follow the same rules as the first one. Thus, we conclude that the
competitive ratio of ALG is at least R > D/2 =Q(D). O

2.3 Marking

In this section, we present a marking scheme and a whole class of marking-
based algorithms. First, we prove some common properties of these algorithms.
Later, we pick two algorithms from this class: a deterministic algorithm MARK
and a randomized algorithm EBM and we compute their competitive ratios.

For the needs of this subsection, we introduce the following notation. By a sub-
sequence we understand any uninterrupted time interval of the input sequence.

14

To simplify the notation, we also treat subsequences as sets of the correspond-
ing time steps. For any subsequence S and any algorithm ALG, by Carg(S) we
denote the cost (of serving requests within S and moving the page) incurred
by & on ALG. In particular, by OPT we denote the optimal offline algorithm,
and by Copr(S) its cost in S.

2.3.1 Gravity Centers

Keeping in mind the results for the last request based algorithms, we want to
create a deterministic algorithm achieving a competitive ratio of o(D). The
class of our marking algorithms is partially inspired by the MoOVE-T0o-MIN
algorithm by Awerbuch, Bartal and Fiat [2]. A brief idea of this 7-competitive
algorithm is as follows. It divides the input sequence into chunks of length D,
in each chunk serves all the requests, and moves only at the end of chunks to
a so-called gravity center. A gravity center is a node, which would be the best
place for the page in the last chunk, i.e., it minimizes the sum of distances to
all the requests issued.

Since in our setting the distances can change with time, we have to be careful
with defining gravity centers. Consider any subsequence S of length ¢ steps. We
number these steps from 1 to £. Let o; be the node which issues a request in the
i-th step of S and d;(-), ¢;(+) be the distance and cost functions, respectively,
in the i-th step.

Definition 4 A gravity center for a subsequence S of length { is a vertex v,
which minimizes the sum Zle dy(v,0;). We denote it by Gs. If there is more
than one such vertex, then we break ties arbitrarily.

2.3.2 Marking Scheme

Marking-based algorithms take the chunk-based approach after MOVE-ToO-
MiN. The chosen chunk’s length must be large enough to allow amortization
of the page movements against the cost incurred by serving requests, and
short enough to make the network changes negligible. In this whole section,
K < 2-4/D denotes the length of the chunk. K is a parameter, which takes
different values for different algorithms.

It can be proven that considering only gravity centers as potential jump candi-
dates does not differ much from considering a class of last request based algo-
rithms. Therefore, the algorithm has to consider moving not only to a gravity
center, but also to the nodes from a surrounding of this center. We show
a completely different approach which — quite surprisingly — also leads to
this goal.

15

To specify this approach, we have to consider the question when it is worth
to change the position of the algorithm’s page. We already mentioned that we
do not move the page inside chunks, i.e., not more frequently than once per
K steps. Additionally, it usually makes no sense to move the page if we are
close to the gravity center, i.e., if during the last chunk we have paid little.
Instead we move the page if in last few chunks the cost of staying at the node
reaches some threshold. To formalize it, we introduce the following definition.

Definition 5 For any subsequence S, a counter A;(S) denotes the cost of
serving the requests within S using a page at node v;. Equivalently, A;(S) is
the cost of an algorithm, which remains at v; for the whole S and does not
move.

Using the counters A;, we may define a class of marking based algorithms. The
description may seem superfluous for the MARK algorithm, but it becomes
useful when we define a randomized algorithm EBM. As mentioned above,
a marking algorithm works in chunks of length K < 2-+/D. Chunks are
grouped in epochs, i.e., the partition into chunks is a refinement of the partition
into epochs. The first epoch starts with the beginning of the input sequence Z.

In each epoch we track counters A; for the part of the epoch seen so far. If
counter A; exceeds D, then we call v; saturated. If at the end of some chunk
all nodes are saturated, then the current epoch ends. Possibly, at the end of
the input sequence, there is one epoch which has not ended; such an epoch we
call unfinished.

We also introduce marks as something between the precise amount given by A;
and a binary saturation indicator: node v; has M; := | A;/(3 - K*)| marks. It
means that each epoch begins with all nodes unmarked. If within a chunk 7
counter M; increases, then we say that v; was marked in I, or that I is a mark-
ing chunk for v;. This means that if a node has at least F' := 4D/K? marks,
it becomes saturated. Note that if K = 2-+/D, then marking is equivalent to
saturating. At the end of the epoch, the scheme unmarks all nodes. The exact
pseudo-code for such an algorithm is presented in Figure 1.

We note that the division into epochs and chunks as well as the marking
scheme is independent of the algorithm and depends only on the input se-
quence and the value of K. For clarity of the presentation, we assume that K
is so chosen, that both K and F' are integers. This condition can be fulfilled by
increasing D by a constant factor. Finally, we assume that D > 4. Otherwise,
we may use the algorithm JUMP to achieve constant competitiveness.

We have a trivial lower bound on OPT in any finished epoch.

Lemma 6 For any finished epoch &, it holds that Copr(E) > D.

16

F:=4D/K?
(I, I, I3, . ..
E=10
for j =1tomdo
g = g H I]‘
for each v; € V
M; = Ai(&)/ (3 K?))
if M, > F for all v; then
Set M, := 0 for all v;
E=10

) =T

Node v; has M; marks, initially M; := 0 for all v;

/* division into chunks I; /
/* & is the current epoch */

/* compute current marks */

/* all nodes marked F' times? %/
/* unmark all the nodes */

/* a new epoch begins */

Fig. 1. Marking scheme for input Z with chunks of length K

PROOF. If OpT moves its page within &£, then it pays at least D. Otherwise,
it remains for the whole epoch € in one node v;, paying A;(€). Since v; is
marked at least F' times within £, 4;(§) > F- ;- K*=D. O

2.3.8 Marking-based Algorithms

As we have a lower bound for OPT guaranteed by Lemma 6, the role of our
algorithm is to force the adversary to end the epoch, i.e., to have all the nodes
marked at least F' times, as quick as possible. Note that the algorithm could
hardly trigger that marking event if it is at a saturated node. In that case the
adversary may issue requests at a node with a low number of marks, deferring
this way the end of the current epoch. Therefore, the idea of our algorithm
is to remain at a node with a small number of marks, until it gets marked in
some chunk 7, and then to move to another unsaturated node. On the other
hand, to mimic the behavior of the algorithm MOVE-TO-MIN, we want the
jump candidate to be as close to the gravity center as possible. As we prove
later, it appears that choosing a node with small number of marks guarantees
that condition. These considerations lead us to the following definition.

Definition 7 We call an algorithm MB marking-based +f MB mowves only at
the end of the chunk I, which

(1) was a marking chunk for Pyg, the node holding the page of MB, or
(2) was the last chunk in the epoch.

Additionally, if condition (2) is met, then MB moves to Gj.

For making our arguments concise, we assume that after condition (1) or (2)
of Definition 7 occurs, the algorithm always moves, although in rare cases it
may move to the same node it is currently in. We distinguish between choosing
a jump candidate during an epoch and choosing a jump candidate at the end

17

of the epoch. In the latter case, the jump candidate is always the gravity center
of the last epoch’s chunk. Choosing a jump candidate inside an epoch will be
specified later by a concrete marking-based algorithm that we will analyze.

We call a subsequence between two movements of such an algorithm a phase.
Alternatively speaking, a phase is a sequence of consecutive chunks, in which
the algorithm remains at one node. Recall that chunks, phases, and epochs
are all subsequences of input sequence. Moreover, the whole input sequence is
partitioned into epochs, each epoch into phases, and each phase into chunks.
We already know that the division into epochs and chunks is independent from
any algorithm. The division of each epoch into phases depends directly on the
choice of jump candidates inside epochs.

2.3.4 A Note about Unfinished Epochs

In many papers on online algorithms in which input is divided into some kind
of epochs, it is assumed that the input consists of finished epochs only, which
usually simplifies the analysis. However, a usual argument claiming that the
cost of the algorithm in each phase is bounded by a function, which does
not depend on the input sequence (and can be therefore placed in an addi-
tive constant of the competitive ratio), does not work in our setting. Indeed,
for unbounded metric spaces, the cost of our algorithms in an epoch can be
arbitrarily large. Hence, we have to use a more careful argument here.

Assume that 7 is an input sequence which has an unfinished epoch £ at the
end. We show how to prolong this sequence to a sequence Z' which consists
of whole epochs only, so that the optimal cost on such a sequence does not
increase much.

We fix any optimal solution OPT for this sequence. Let vy be the node which
holds OPT page at the end of Z. After Z, the adversary gives all the requests at
v, and moves arbitrary node v, to the point where vy, lies. Afterwards, the ad-
versary gives the requests alternately at v, and v,. This increases counters Ay,
and A, by 1 per every second step. There can only be O(D) such steps before £
ends. We denote the resulting input sequence by Z’. There exists an algorithm
OPT’, which behaves as OPT(Z) on Z, and then it remains at vj. Since Ay
increases by one every second step, OpT(Z’') < OpT'(Z') = OpPT(Z) + O(D).

In effect, if the competitive ratio of an algorithm ALG on any sequence of
finished epochs is R, then for any (possibly unfinished) sequence Z it holds
that

ALc(Z) < ALc(Z') < R-OpPT(Z)+a <R-OPT(Z)+ (a+O(R- D)) , (8)

where « is a constant. This proves that ALG is R-competitive on any sequence.

18

Iy
[)
s 2.k-K
[]

Fig. 2. Jump Set Ji(I)

Hence, in the remaining part of this section, we consider finished epochs only.

2.4 Deterministic Algorithm MARK

In this subsection we present a deterministic marking-based algorithm MARK
and prove that it is O(n - v/D)-competitive. It is necessary to provide only
two pieces of information: the chunk length K and the way of choosing jump
candidates inside an epoch. Let K = 2 -+/D, which implies that F = 1,
i.e., an epoch ends when all the nodes are marked at least once. For a jump
candidate inside an epoch, MARK chooses any not yet marked node.

Since any epoch begins with all nodes unmarked and ends with all nodes
marked, and in each phase at least one node is marked, we immediately get
the following lemma.

Lemma 8 The number of MARK phases in any epoch is at most n.

2.4.1 Jump Sets

First, we prove that if MARK moves after some chunk, then — as a jump can-
didate — it chooses a node, which is close to the gravity center of this chunk.
We make the definition slightly more general than needed for the analysis of
the MARK algorithm; we use it later for a randomized version of MARK. Below
we concentrate on a single chunk 7, and we number its steps from 1 to K.

Definition 9 For any chunk I and any integer k > 1, a k-JumpSet, which we
denote by Ji(I), is the set of all nodes whose distance to Gy, measured in the
last step of I, is at most 7-k- K, i.e., Jy(I) ={v eV :dx(v,G;) <T7-k-K}.

Intuitively, if an algorithm remains at a node which was far away from the
gravity center or outside a jump set, it has to pay much. This is formalized in

19

the following lemma.

Lemma 10 For any chunk I of K steps, any node v; € V', and any k > 1, if
v; & Ji(I) at the end of I, then A;(I) > 5. K2.

PROOF. We look at the configuration of nodes in time step K. Let R :=
di(Gr,v;). Since v; ¢ Ji(I), R > 7-k- K. By I' we denote a set of time steps ¢
from chunk I, such that the K-th step distance between o; and v; is at most
2 - k- K. Formally,

D:i={tel :dg(oyv)<2-k-K} . 9)

The situation in time step K is depicted in Figure 2. I'y,, shown there, is
a multi set of nodes induced by T, i.e.,

Uy ={o:dg(op,v) <2-k-K} . (10)

Intuitively, I'y, is the set of nodes, which issued requests in I and are now close
to v;.

First, we prove that [I'| < 2. K. Assume the contrary, i.e., [[| > 2. K. Using
the triangle inequality, we obtain

; dg(vi,00) = Y dg(vi,00) + Y dg (v, 0¢)

tel’ t¢r
< |I|-2-k-K+ Z (di(vi, Gr) + dx(Gr, 0¢))
t¢T
1
<2 k-K*+--K-R+)> dg(Gr,0v)
4 t¢T

3
< S K- (R-2k-K)+> dg(Gr, o) .
4 tgl

Since % - K < |I'| and in the last step of I the distance between G; and any
node from I' is at least R — 2 - k- K, we get that

K K
> di(vi,00) <Y di(Groo0) + Y di(Groo0) =Y dg(Gr,0v)
t=1 t=1

tel t¢T

This contradicts that Gy is a gravity center.

Since |I| < 3. K, at least § - K of the requests in chunk I were issued “far
away” from wv;. Precisely speaking, since during K steps each distance can
be changed at most by an additive term of K, each of these requests was
issued at the distance of at least 2- k- K — K > k- K from v;. Therefore,
Ai(I) > (K =) - k- K =% K? and the lemma follows. O

20

By the definition of the marking scheme, we immediately conclude the follow-
ing.

Corollary 11 For any chunk I, if a node v; is outside Jy(I) at the end of I,
then v; recetved at least k marks in 1.

This corollary states that by choosing nodes which have small number of
marks, we choose nodes which are close to the gravity center. After any
chunk 7/, MARK chooses a jump candidate, which is either a gravity center
of I, or a node which is not yet marked. But in the latter case, by Corol-
lary 11, such a node has to belong to the 1-JumpSet of I.

Corollary 12 If MARK moves its page after chunk I, then it always chooses
a node belonging to Ji(I) for a jump candidate. J,(I) denotes the 1-JumpSet
of I.

2.4.2 Amortized Analysis

In this subsection, we show the competitiveness of MARK using the corollary
above. In the proof, we use potential function analysis. By an amortized cost of
an action (e.g., serving requests or moving the page), we understand the actual
cost of this action plus the change in the potential this action induced. We
show that for any phase, the amortized cost is bounded by a term proportional
to COPT'

Let L denote the distance between Pyiark and Popr. We define a potential as
d=2-D-L . (11)

Clearly, at the beginning of an input sequence ® = 0 and & is always non-
negative. For any subsequence S, by A®(S) we denote the difference between
the potential after S (after both OPT and MARK moved their pages), and
before S (at the very end of the step preceding S).

In fact, we can extend the definitions above to any marking-based algorithm.
Most of the lemmas below hold for any such algorithm. In particular & may
be the potential function for any marking-based algorithm MB, in which case
it is equal to 2 - D times the distance between the nodes holding the pages of
MB and OpT.

First, we bound the cost of MARK in a single phase P. Let P consist of
¢ chunks, numbered from 1 to ¢, i.e., P = (I, I5,...,I;). By the definition of
a phase, we get that MARK remains at one node during the whole P. In the
last step of the phase, it moves to a jump candidate v*.

21

Since we want to upper-bound the cost of MARK, we assume that instead of
moving directly to v*, MARK first moves to G, and then to v*. Thus, in order
to upper-bound the amortized cost of MARK in P, we divide its cost into two
parts which we bound separately:

(1) C{ark(P): the amortized cost of serving all requests in P and moving

to Gr,;
(2) CE gk (P): the amortized cost of moving from G;, to v*.

Note that the second part of the cost is non-existent for the last phase in the
epoch, as for such phases v* = G;,. We can bound these two parts as follows.

Lemma 13 (Phase Lemma) Let MB be any marking-based algorithm and
P = (I,...,1;) be one of its phases. Let K be the length of chunks I; and
® be the potential function of MB. Assume that at the end of P, MB moves
to ng. Then CMB<P) + ACI)(P) < O(D/K) . COPT(P) + O(D . K)

For clarity, the proof of the Phase Lemma was moved to Section 2.6. Obviously,
since MARK is defined as a marking-based algorithm, we may utilize the lemma
above for any phase P to get that Cijari(P) < O(D/K)-Copr(P)+0O(D-K).
The bound on Cpk can be derived easily.

Lemma 14 For any phase P of MARK, it holds that C5rx(P) < O(D - K).

PROOF. By Corollary 12, a jump candidate v* lies inside 1-JumpSet of I,.
Thus, the distance between G, and v* is at most 7 - K. The (non-amortized)
cost of moving the page between G, and v* is, therefore, at most D-(7-K+1) =
O(D - K). An increase in the potential induced by this movement is at most
2-D-(7-K) = O(D-K). Thus, the amortized cost, Chygi(P) = O(D-K). O

Theorem 15 The algorithm MARK is O(n - \/D)-competitive for the DPM
problem.

PROOF. Let Z be any input sequence. Assume that it consists of k epochs,
ie,Z=(&,8...,&). By Lemma 6, Copr(Z) > k- D. On the other hand, by
Lemma 8, 7 consists of at most k-n phases. Therefore, summing the guarantees
provided by the Phase Lemma and Lemma 14 for all the phases, we get that

OMARK(I) < O(D/K)COPT(I)+nk’O(DK)
= O(D/K)COPT(I)+O(HK)COPT(I)
O (n-VD) - Copr(T) ,

which finishes the proof. O

22

2.5 Randomization against an Oblivious Adversary

In this section, we show how to use randomization with the marking scheme to
improve the competitive ratio achieved by algorithm MARK to O(v/D - logn)
against an oblivious adversary. Although we do not prove it here, if we simply
take the MARK algorithm, but we choose the jump candidate randomly among
not yet marked nodes, then the expected number of phases becomes O(logn).
Since other bounds hold as well, in the proof of Theorem 15 we may simply
replace n by O(logn). This leads to an upper bound of O(D/K +logn- K) =
O(v/D-logn) on the competitiveness of such randomized algorithm (see [12]).
We observe that terms D/K and logn - K become equal if we choose K =

©(1/D/logn). However, for the analysis to hold, we should guarantee that the

cost in each phase can be bounded as before, and that each epoch consists (in
expectation) of at most O(logn) phases.

2.5.1 Balancing Algorithm EBM

We define an Exponential Balancing Marking algorithm (EBM) as follows.

EBM works in chunks of length K = 2-,/D/logn. It follows that each node
has to be marked F' = logn times in order for an epoch to end. For choosing
jump candidates, we introduce the following definition. If S is any subsequence
of an epoch, then by M;(S) and M/(S) we denote the number of marks v; has,
respectively, before and after S. We also define AM;(S) = M!(S) — M;(S).

Assume that [is a marking chunk for Pggy. Then the probability that v,
becomes a jump candidate is equal to 2770 / 37, 27 MDD e it is inversely
proportional to 2M() whereas the denominator is just a scaling factor. This
way, the algorithm prefers to remain at the nodes with low number of marks,
but nodes with high number of marks are also taken into consideration.

It appears that we can reasonably bound the number of EBM’s jumps within
one epoch.

Lemma 16 The expected number of EBM phases in one epoch is O(logn).
The expectation is taken over all random choices made by EBM.

PROOF. Fix any epoch & = (I}, I, ..., I,). We define a value of a node
after any chunk I as n - 2~M) and the total value after I as Wy := Diem M-
2-Mi() We make three key observations. First, W; is monotonically non-
increasing within £. Second, W; < n? for any chunk I in &, Third, at the
end of chunk 7, ; there is at least one node having less than logn marks,

otherwise the epoch would end earlier. Thus, W; _, > 2.

23

The first phase of an epoch is special, as within this phase the position of the
algorithm was not chosen randomly. Starting from the second phase, we may
think that a jump candidate is chosen at the very beginning of a phase and
it determines where this phase ends. We show that with probability at least
1/2, a phase reduces the total value VW by a constant factor or ends the whole
epoch. We call such a phase successful.

Assume that at the beginning of a phase we chose v* for the jump candidate,
i.e., Pegm = v* within this phase. Then this phase ends either at the end of
the first marking chunk for v*, or at the end of I,,, if v* is not marked in the
remaining part of £. We call this chunk stopping for v*. We sort the nodes
in the order induced by their stopping chunks, obtaining a sorted sequence
Uiy Vigs - - -5 Ui, - L€t piyy Diys - - ., i, De the probabilities of choosing these nodes
as jump candidates. Let j be the smallest index for which Zizl pi, > 1/2, and
I’ be the stopping chunk for v;;. Since j is the smallest index with this property,
it follows immediately that, with probability >7;_, p;, > 1/2, EBM chooses
one of vy, v, ..., v for a jump candidate. Any such choice guarantees that
the phase lasts at least until the end of I'. If I’ = I,,, then this phase ends
epoch &, and the proof follows. Otherwise, note that between the beginning
of the phase and the end of I’, nodes v;,, vy, ..., v;; are marked at least once.
Since probabilities p;, are directly proportional to the corresponding values of
nodes and 37_, pi, > 1/2, these values of nodes constitute at least one half
of W;. By marking them once, one half of their values (and thus at least 1/4 of
the total value) is removed. Thus, Wy < % - Wr.

Hence, after the first phase, we need at most log, /3(n2) successful phases to
end the epoch or reduce the total value from n? to 1. In expectation, at most
2. log4/3(n2) = O(logn) phases suffice to either finish the epoch, or to end
after the chunk 7,,_;. In the latter case, there is at most one additional phase
containing only chunk 7,,. O

2.5.2 Analysis of EBM Phase

Since EBM is a marking-based algorithm, the scheme of choosing jump can-
didates is coherent with the strategy of being close to the gravity center. In
particular, we may reformulate Corollary 11 using values AM,;.

Corollary 17 For any chunk I, a node v; belongs to the (AM;(I) + 1)-
JumpSet at the end of I.

We note that EBM may choose nodes that already have logn or more marks.
Thus, we cannot bound the cost of transporting the page in the worst case,
as we did for MARK algorithm. Instead, we use the observation that even
if sometimes EBM moves to the nodes which are far away from the gravity
centers, it moves there only occasionally.

24

——— transport of Cgy (P)
- - - - transport of OB\ (P)
rrrrrrrr transport of Cipy(P)

e a node

i/ Tk41

Fig. 3. Transports at the end of phase P = (Iy,..., Iy)

We define the same potential function ® as for algorithm MARK. Similarly to
the proof of MARK competitiveness, we divide the amortized cost of EBM in
any phase P, consisting of ¢ chunks (11, I, ..., I;), into three parts:

(1) Cégy(P), the amortized cost of serving all requests in P and moving
to Gr,;

(2) CBgp(P), the amortized cost of moving from G;, to the boundary of
1-JumpSet;

(3) CSgp(P), the amortized cost of moving from the boundary of 1-JumpSet
to a randomly chosen jump candidate v*.

Obviously, Cgem(P) + A®(P) < Chgy(P) + CBay(P) + CSpy(P). Note that
for the last phase in an epoch, parts CEgy;(P) and Cggy(P) do not exist, as
in that case EBM moves only to the gravity center. This conceptually divides
the movement of the page to the jump candidate v* into three parts, called
transports. These transports are schematically depicted in Figure 3.

For each epoch &, we separately bound the expected values of these three
parts. The following bound on C&gy, is implied by the Phase Lemma.

Corollary 18 For any phase P, it holds that Cipy(P) < O(D/K) - Copr(P)
+O(D - K).

On the other hand, since CEg,; describes a transport within the first jump
set, it can be bounded in the same way as C5 gk (see Lemma 14).

Corollary 19 For any phase P, it holds that CEg\(P) < O(D - K).

We note that in the two corollaries above we bound the random variables
Chan(P), CE5(P) in the worst case, not only their expected values. On the
other hand, we cannot hope for a reasonable worst case bound on Cggy(P),
as EBM may jump very far away from the gravity center. Moreover, even if
we bound the expected value of Cgy(P) for any single phase P, we may not
combine it with the logarithmic bound on the expected number of phases in
one epoch, as both bounds hold only on expectation and may depend on each
other.

25

Therefore, we aim at constructing a bound for E[Cgy(P)] that depends on
the number of marks at the beginning and at the end of phase P. We show
how, for any epoch &, this yields a bound on E[C§gy(£)] independently of the
number of phases epoch £ consists of. We use the following technical claim,
proven in the appendix.

Claim 20 For any two sequences {a;},, {bi}Iy, such that 1 < a; < b;, it
holds that
270 (b, — a, 270
> 27 > 27h

Lemma 21 For any epoch &, it holds that E[Cigy(E)] = O(D - K -logn).

PROOF. First, we bound CSg, in a single phase P = (I, I, ..., I;), where
I; are chunks of P. By Corollary 17, at the end of I;, each node v; lies inside
(AM;(I;)+1)-JumpSet, and thus inside (AM;(P)+1)-JumpSet. The marking
system is coherent with the approach of choosing nodes close to the gravity
centers — if a node is far away from the gravity center, it has many marks
and the probability that EBM moves to such node is exponentially small.

Formally, if we transport the page to vy, the Cigy (P) part of the cost reflects
only the cost of moving the page from the boundary of 1-JumpSet to a node
within (AM;(P)+1)-JumpSet, i.e., the cost at most D-(7-K-AM;(P)). We do
not consider the constant overhead for the communication, since it was already
taken into account in the CBgy(P) part of the cost. As the corresponding
change in the potential is at most twice this cost, the amortized cost of such
a movement is at most 21 - K - D - AM;(P). Thus, the expected amortized cost
of moving the page to v* (taken over all possible random choices of v*) is

[CC (P)] < 2
E P)] <
EBM _

ic[n] 2keln] 2

s AM(P) 21D K
Zze[n] 27Mi(P))

Zze[n} 2~ Mi(P)

where the latter inequality follows from Claim 20, by taking b; = M/(P) and

Now we fix an epoch & = (P}, P,...P,). Note that C§p\(P,) = 0. Thus, it
is sufficient to prove that Z?;i E[Cspum(P))] = O(K - D -logn). Consider the
following bound

Z?;i E[CHpm(P))] < log pl:[l > ieln] —M;(Pj) ~log (S icln] 9—M;(P1) >
21. K -D - =1 icln] 9—M;(P;) Sicp 9—M/(Pp—1)

26

Since M;(Py) = 0 for all i, the numerator in the last term above is equal
to n. There exists a node v;, which has less than logn marks at the end of
P,_1, otherwise epoch £ would be finished earlier. Thus, the corresponding
denominator is at least 1/n, and we get

E[CSBM(E)] = %E[CSBM(PM < 21-D-K-log

J=1

n

1/n—O(D-K-10gn) :

a

Finally, we may bound the total amortized cost in any epoch.

Theorem 22 The algorithm EBM is O(/D -logn)-competitive against an
oblivious adversary for the DPM problem.

PROOQOF. The proof follows the pattern of the analogous proof for algo-
rithm MARK. Again, Z is an input sequence, consisting of k epochs, i.e.,
T=(&,8...,&).

Fix any epoch &;. By the definition, we get
E[Crpu(&) + AQ(E;)] = E[CSBM(gi)] + E[C]]?;D’BM(gi)] + E[CSBM(gi)] :

We combine the worst-case bounds on the first two terms with the logarithmic
bound on the expected number of phases in &;, and we apply the bound on
E[CEpn(&:)] provided by Lemma 21, obtaining

Summing the bounds on amortized costs in particular epochs, and using
Copr(Z) > k- D, we get

=0 (\/D . logn> . COPT(I) .

Thus, EBM is O(+/D - logn)-competitive. O
2.6 Proofs of the Phase Lemma

In this section we prove the Phase Lemma (Lemma 13). Throughout this sec-
tion we use the following notation. Let MB be any marking-based algorithm
working in chunks of length K. Let P be any phase of MB. We assume that

27

P consists of ¢ chunks Iy, I, ..., ;. Let vp denote the node in which algo-
rithm MB has its page in whole phase P; then Ap is the cost of serving
requests by MB in P. We assume that at the end of P, MB moves to G;,. We
note that vp is marked only in 7.

We divide the cost of MB in P into two parts: the cost incurred by chunks
(I1,I5,...,1,—1) and the cost incurred by I,. The latter includes the cost of
movement to Gr,. We bound the amortized cost in each part separately.

2.6.1 Bound for All Chunks but the Last One

Lemma 23 Let P be any phase consisting of { chunks (I1, I, ..., 1;) and let
P’ be the first { — 1 chunks of P. Then

Cup(P) + AB(P) < O(D/K) - Copr(P)) + O(D - K) .

PROOF. First, we note that the cost of serving requests within P’, Cyig(P’),
is equal to Ap(P') < 1-K? = O(D- K), because otherwise vp would be marked
within P’, and the phase would last shorter. Thus, it remains to bound the
change in the potential, A®(P’).

We denote the distance between Py and Popr by L. Let t5 be the last step
of P’ at the end of which it holds that L < K. Further, we divide P’ into two
disjoint parts, Py ending at step t4 and Pj starting at step ¢t +1. One of these
parts may be an empty sequence. The change of the potential within P} is at
most the potential at the end of step t5, and thus A®(Py) < 2-D- K. In the
remaining part of the proof, we concentrate on bounding the value of A®(Fy).

Let s = | P|; we number the time steps within P} from 1 to s. Since the cost
of serving requests in Pj is small, the total sum of distances between vp and
requests is even smaller, i.e., >7 | di(vp, 01) < i-Kz. We call a request close if
it was issued at the distance at most K /2 from vp; otherwise we call a request
far. Clearly, at most K /2 requests from P} are far and at least s— K /2 requests
are close.

At the end of any step of P, L > K. Therefore, OPT pays at least K/2 for
serving any close request. Let J be the sum of lengths of OPT jumps. Then
Copr(Pp) = D-J+(s—5)- 5.
As MB remains at the same node, L is influenced by two factors: the adver-
sarial change to the network and the movement of the optimal algorithm. The
total amount of these changes can be bounded by 1 - s and J, respectively.
Thus, A®(P;) < D-s+D-J.

28

When we combine the two bounds above, we get A®(P}) < 2- (D/K) -
OPT(Pg) + 5 - D - K, which finishes the proof. O

2.6.2 Bound for the Last Chunk

This subsection, devoted to bounding the cost in the last chunk, I,, is inspired
by the proof of the competitiveness of the MOVE-T0-MIN algorithm [2]. How-
ever, in our proof the chunk lengths are shorter than D, and additionally we
have to take into account the movement of the nodes, which makes the proof
more complex.

We number all time steps within [, from 1 to K. As D >4, K <2- VD < D.

Before we bound the amortized cost of MB in I,, we construct a lower bound
on Copr(ly). By a1 and a; we denote the node holding the page of OPT,
respectively at the beginning and at the end of the ¢-th step. In particular,
we get ag = Popr(1l) and ax = Phpr(K). In step t, OPT pays ¢;(a¢—1,0) for
serving a request and D - ¢;(a;_1, a;) for moving the page. Thus,

K
Copr(Ie) =Y (ci(ar-1,00) + D - cy(a—1, ar)) (12)
t=1

The following lemma states that the cost of OPT in one chunk is (up to
constant terms) lower-bounded by a cost of an algorithm which remains at one
node throughout this whole chunk. For succinctness of proofs, we additionally
introduce two distance functions:

d(vg,vp) = ogignK dy(vg,) and d(vg,vp) = Orgntfg;(di(Va,vp) - (13)

As the adversary is %—restricted, the distances given by d and d differ at most
by K.

Lemma 24 For any T, it holds that X, d(ar,0,) < Copr(Iy) + O(K?).

29

PROOF. It follows from the triangle inequality that

d(aj-1,ar) + O(K?)

M=
M=

K
Z ar, O-t S d(at—la Ut) +

W
Il
—_
-+
Il
—_
.
Il
—_

IN
M=
M=

d(a—1,01) +

(i (as_1,a))| + O(K?)

i
I
<.
I
I
T
I

IA
M=

K
cilag_1,0¢) + K - th a1, 0y) +O(K2)
t=1

H
Il
—_

IN

ort(I;) + O(K?) ,

Using the lower bound on OPT presented above, we can bound the amortized
cost of the algorithm in the last chunk I,. We denote the potential at the
beginning of I, by ®g and the potential at the end of I, by ®g. We split the
amortized cost of MB in this chunk, Cyg(I;) + g — Pp, into two parts, which
we bound separately in the two following lemmas.

Lemma 25 It holds that Ap(]g) — CI)B/Q S OOPT(]Z) -+ O(D : K)

PROOF. By the definition, &g = 2 D - dy(vp,ag) > 2+ D - (d(vp, ag) — K).
Utilizing the triangle inequality, Lemma 24, and K < D, we get

ci(vp,04) — D - d(vp,ag) + O(D - K)

Mw

Ap(ly) — Pp/2 =

)
I

IN

Z (1 + dt(UP, ao) + dt(ao, O't)) —D- E(’Up, CL()) + O(D . K)

t=1

IA
=

d (ao,O't) + O(D K)

COPT(]g) + O(D K)

IN

Lemma 26 It holds that D'CK<UPygIg> +(I>E—(I)B/2 S O(D/K) 'COPT(]K) +
oD - K).

PROOF. First, we show how to bound the value of dx(ar,Gy,) for any T €

30

{0, ..., K'}. By the triangle inequality,
K
K -dg(ar,G1,) <Y (dx(ar,o:) + dk (0, G1,))
=1

Since G, is a gravity center of I, YK, dx(Gr,,00) < S, dx(ar,0:). By
combining these inequalities with Lemma 24, we obtain

K
K- dK(aT, QIZ) <2 Zd}((dT, O’t) <2 OPT([@) -+ O(K) .
t=1
Finally, using &g = 2- D - dy(vp,ag) > 2- D - (dg(vp,ag) — K), the triangle
inequality, and the bound above, we get

D - ck(vp,G1,) — Pp/2 + O
< D -di(vp,Gr,) — D - dg(vp,ag) +2- D - di(ax, Gr,) + O(D - K)
S D- dK<CL0, gjg) +2- D- dK(CLK, QIZ) + O(D : K)
< OD/K) - Copr(I) + O(D - K) |

which finishes the proof. O

The proof of the Phase Lemma is a straightforward consequence of the bounds
above.

PROOF of Lemma 13 (Phase Lemma). We want to bound amortized
cost of MB cost in a phase P = ([y,...,I;). By Lemmas 25 and 26, we get
that CMB(Iz) + A(I)(Ig) = AP(Ig) + D - CK(Up,g[é) + dp — P < O(D/K) .
Copr(Iy) + O(D- K). By Lemma 23, we get a similar bound on the amortized
cost in the previous chunks. These bounds, combined, yield the lemma. O

3 Lower Bounds

In this section, we prove asymptotically matching lower bounds on the com-
petitive ratios. In particular, we prove the following two theorems.

Theorem 27 There exists a metric space X such that for any randomized,
R-competitive algorithm for the DPM problem playing against an adaptive-
online adversary, R = Q(min{n - /D, D}).

Theorem 28 There exists a metric space X such that for any randomized,
R-competitive algorithm for the DPM problem playing against an oblivious

adversary, R = Q(min{v/D - logn, D}).

31

The main ingredient of our solution is pulling the node holding the algorithm’s
page away from the group of other nodes, while giving the requests at one
of the nodes from this group. This intuition is formalized in the following
subsections.

As mentioned earlier in the introduction, we do not provide lower bounds for
arbitrary metric spaces. For simplicity, throughout this section, we assume
that our metric space X is equal to the real line R with Euclidean metric. In
fact, it is sufficient for our construction when X contains just an interval of
length ©(R) of this real line, where R is the lower bound on the competitive
ratio.

We illustrate the construction using positions on a line. Any point of X has
a coordinate which is a real number and for any nodes v,, v, and time step ¢,
Pe(va), e(vp) € R and di(va, vp) = |pt(va) — pt(vp)]. We omit subscript ¢ if it is
clear from the context. The point with coordinate 0 is called point zero. When
we write above point s, we mean points with coordinates greater than s. The
opposite notion is below point s. We say that a node is moving with speed f
up or down if it increases or decreases its coordinate by f per time step.

For simplicity of the proofs in this section, we assume that v/D is an integer.
Otherwise, we could use [v/D| instead and lose only a constant factor in
the analysis. For the same reason, we may assume that if D > logn, then
D is divisible by logn. We also assume that n is a power of 2. If it is not
the case, then the adversary may give requests only at the first 2U°6™) nodes
and put the other nodes exactly at the same point of space X as vy. Then,
for any algorithm ALG that uses these additional nodes, an algorithm ALc’
which uses vy instead has a cost not greater than ALG. Thus, we lose at most
a constant factor due to such rounding.

3.1 Lower Bound for Deterministic Algorithms

In this section, we present a construction of a lower bound of Q(min{n -
VD, D}) on the competitive ratio of any deterministic algorithm. This proof is
redundant, as in the next section we show that the same lower bound holds for
randomized algorithms against adaptive-online adversaries. However, it serves
as a warm-up and illustrates key concepts, which are reused later.

Fix any deterministic algorithm DET. We show how to adaptively construct
a subsequence, called an epoch &, on which the ratio between the costs of DET
and OPT is large. Moreover, this construction can be repeated many times, so
that the cost incurred on DET is arbitrarily high.

An epoch consists of several phases. Let Ppgr denote the node holding the

32

page of DET. At the beginning of a phase, the adversary chooses a node with
the smallest index different from Ppgr, i.e., either vy or v1. All the requests in
this phase are given at that node.

Each phase consists of two parts of equal length: an ezpanding part and a con-
tracting part. In each step of the expanding part, the adversary increases the
distance between Ppgr and the rest of the nodes, i.e., it moves Ppgr with
speed 1 up, so that in the ¢-th step of the expanding part p(Ppgr) =t — 1.
The node which is moved away is called active in this phase. Other nodes
remain at their positions throughout the whole phase. The expanding part
continues till the algorithm decides to move its page to a new node. Note that
if the algorithm never jumped, the expanding part would last forever and in-
cur infinite cost on DET. Then comes a contracting part of the same length,
in which the active node is moved down with speed 1.

If the number of steps in the expanding part is at least v/D, we call a phase
long, otherwise we call it short. Epoch £ ends at the end of the (n/2)-th long
phase or at the end of the (n - v/D)-th short phase, whichever occurs first.
This guarantees that € contains at least Q(n - v/D) steps. Note that at the
beginning and at the end of £, all nodes are at point zero.

In our construction, we use the counters A; as described in Definition 5, i.e.,
A; is the cost of an algorithm which remains at node v;. The following technical
lemma compares the costs of DET to the values of counters A;. Later, on the
basis of these counters, we show that an offline algorithm which remains at
one node throughout the whole epoch performs much better than DET.

Lemma 29 Fiz any deterministic algorithm DET and create an epoch £ in
the way described above. Let P be any phase of £, X denote the length of the
expanding part of P, and a be the index of the node active in P. Then the
following properties hold:

(1) Cpgr(P)> D - X,
(2) if P is a short phase, then 3¢y Ai(P) = O(n + VD)X,
(3) if P is a long phase, then Y ici (o Ai(P) = O(n) - X.

PROOF. First, we observe that DET pays at least for moving the page at the
end of the expanding part of P, which amounts to D - X. Hence, property 1
holds.

Second, we bound the counters A;. If i # a, then A;(P) corresponds to a cost
of serving the requests from a node which remains at point zero, where all
the requests are issued. In this case A;(P) = 2 - X, which implies property 3.
On the other hand, A,(P) corresponds to the cost of serving the requests
from the active node, which amounts to 2 - ;" ¢ = O(X?). As for a short

33

phase, X2 = O(v/D) - X, we obtain Yiem Ai(P) = O(n + VD) - X, and thus
property 2 holds. O

Now we consider a set of n simple algorithms for an epoch &. For any i € [n],
strategy B; is to move the page to v; at the beginning of £ and remain there
till the end of £. As at the beginning of any epoch, all nodes are at point zero,
B, pays D for the initial movement, and thus Cg,(£) = D + A;(&).

We denote the set of all nodes which are not active in any long phase of £
by Ve. Clearly, |Ve| > n/2. By the technical lemma above, we may infer that
a good algorithm should not be in an active node in a long phase, which can be
achieved by remaining in a node from V¢ for the whole epoch. This intuition
is formalized below.

Lemma 30 For any deterministic algorithm DET, if we create an epoch & in

the way described above, then Cppr(€) = Q(min{\/ﬁ, D/n}) - Y,ev. Cn, ().

PROOF. Fix any algorithm DET and an epoch £. Let P, P, ... be the
phases of £ and let X denote the length of the expanding part of P;.

First, property 1 of Lemma 29 implies that Cprr(€) > DX p ¢ Xj, and thus

Second, by the definition of Vg, Lemma 29 implies that for any phase P; € £,
Su,eve Ai(Py) = O(n+ VD) - X,. Therefore,

Y C(&) = > (D+ A(8))

vi€V5 ’UZ'EVg
= O(n-D)+0(n+vVD)- 3 X; .

Pj eg

By comparing Cprr(€) with 32, cp. Cp,(€), the lemma follows. O

Finally, we show how the lemma above implies the lower bound on the com-
petitive ratio.

Theorem 31 There exists a metric space, such that for any deterministic,
R-competitive algorithm for the DPM problem, R = Q(min{n - v D, D}).

PROOF. Fix any deterministic algorithm DET. As the construction of epoch
can be repeated many times, the cost of DET can be made arbitrarily high.

Therefore, it suffices to show that in a single epoch &, the ratio between costs
of DET and an offline algorithm is Q(min{n - v'D, D}).

34

Let OFF be the offline algorithm which in epoch £ follows the minimum cost
strategy from the set {B; : i € V¢}. By the average argument, OFF (&) < ﬁ
Yieve OB, () = O(1/n) - Yicy, Cp,(€), and hence by Lemma 30, Cpgr(€) =
Q(min{n - vD, D}) - Copr(£). O

3.2 Lower Bound for Adaptive-online Adversary

In this section, we adapt the proof of the lower bound for deterministic algo-
rithms to the setting of randomized algorithms fighting against an adaptive-
online adversary.

First, we take a look at what happens if we just copy the construction of
a single epoch from the previous subsection. Previously, we compared a de-
terministic algorithm to an offline solution OFF, which chose its strategy at
the end, knowing the final shape of £. Now the solution of the adversary has
to be created also in online manner. As the construction of an epoch depends
now on the random choices of the algorithm, it is no longer possible for the
adversary to fully predict the shape of £ and to choose a strategy optimally
at the beginning of £.

In the previous subsection, we showed that there existed a “good” solu-
tion OFF in the set of predefined strategies {B; : i € Ve}. This time, the
adversary does not know Vg in advance, but it may try a similar approach:
we show that one of the strategies from the set {B; : i € [n|} works for the
adversary.

We take a closer look at what happens if the solution chosen by the adversary
follows a strategy B; for i ¢ Ve. In that case, the algorithm may try to induce
only very long phases, e.g. it may jump after D steps of each expanding part.
After n/2 such phases, the epoch ends and while the algorithm pays ©(n- D?),
the adversary remains at a node which is active in one of these phases, and
thus has cost of Q(D?). This would lead to a weaker lower bound of Q(n). To
alleviate this problem, the adversary has to adapt the generation of an epoch
appropriately.

Below, we formalize these intuitions. For creating a single epoch, we consider
n strategies of the adversary, ADv; where i € [n]. To answer requests, ADV;
follows the strategy B;. The only difference to the previous subsection is the
following. For the adversary ADv;, if v; is active in a phase and its expand-
ing part lasted already for v/D steps, then ADv; starts the contracting part
immediately, without waiting for the algorithm to jump. After such a phase,
called shortened, the epoch ends. We denote the epoch created by Abpv; by &;.
The last step of the expanding part of the shortened phase is called critical

35

for ADv;.

Lemma 32 Fiz any randomized algorithm ALG. For any i € [n], let &; be the
epoch created by the adversary ADV; in the way described above. Then it holds
that

> E[Cara(&)] = Q (min{n - VD, D}) - > E[Capv,(£)]

i€[n] i€[n]
where the expectation is taken over all random choices made by ALG.

PROOF. We show a stronger result, i.e., we show that the relation above
holds not only in expectation, but for any fixed choice of random bits used by
ALG. Thus, it suffices to show that for any deterministic algorithm DET, if the
adversaries ADV; create their epochs &; for DET, then the following relation
holds:

]

i€[n] i€n

Let £ be an epoch that would be created if the adversary followed the strategy
from the previous subsection. Each ADv; follows this strategy up to the critical
step. On the other hand, the critical step is the first place where DET may
learn anything about the adversary it is fighting against. DET may use this
knowledge only in the contracting part of the last, shortened phase; we neglect
its behavior there.

In other words, for i € V¢, & = &, as the corresponding adversary ADV; has
no reason to end the epoch earlier. On the other hand, for ¢ ¢ Vg, & ends with
a shortened phase in which v; is active. If we neglect this last phase, then the
previous phases of &; are a prefix of £. An example of this relation is shown
in Figure 4.

Let Py, P, ... be the phases of £, and X denote the length of the expanding
part of phase P;. Note that P; may not exist in & or & may contain only
a shortened version of P; as its last phase. Otherwise, we write P; € &;.

We observe that for any phase P; € &, it holds that

> AiP)=0(n+VD)-X; . (15)

:Pe&;

This relation follows trivially by property 2 of Lemma 29 if P, is a short phase.
If P; is a long phase, and if we take any epoch &; containing P;, then by our
construction v; is not active in P;. In this case, the relation above follows by
property 3 of Lemma 29.

For bounding 3¢, Cper(&i), we forgive DET the cost incurred on epochs &;
shorter than £. Thus, we obtain Y ;¢ Cper(&i) = Yicy, Corr(&) = [Vel -

36

d Epoch &, &1, and &3:
VD -----mmmm - N N
oL
0 1 2 0 2 2 .
d Epoch &
VD === s m R m oo
iy
0 1 2 0 .
d Epoch &
VD ---mmmmmmm oo e SR
o0
0 1 2 0 2 2 .

Fig. 4. Example relation (for n = 4) between epochs &, &, &1, &2 and &. The
distance between a currently active node and remaining nodes is denoted by d.
Numbers denote indexes of active nodes.

Cper(E). As |Ve| > n/2, by Lemma 29, we get

i€[n] P;eE

On the other hand, we consider the performance of B; on &; for any fixed
i € [n]. B; pays D for the initial movement of the page to v;. Epoch &;
contains some phases P; € £ and optionally a shortened phase at the end. As
the length of the shortened phase is v/ D, the cost incurred by serving requests
in this phase is O(D). Thus, Cg, (&) = O(D) + ¥ p,ce, Ai(F). Summing up
over all i € [n] and applying (15), we obtain

Y Ci(&) = On-D)+ > > AP
i€[n] i€[n] P;€&;

= O(n-D)+ Y. Y A(p) (17)

P;e& i:Pje&;

= O(n-D)+0(n+vD)- 3 X, .

PJES

Finally, by combining (16) with (17) and using the fact that Yp e X; =
Q(n - VD), we obtain (14). O

Now we show how the lemma above implies the lower bound on the competitive
ratio.

37

PROOF of Theorem 27. Fix any randomized algorithm ALG. Again, it is
sufficient to show that there exists a strategy of the adversary, which guar-
antees that the ratio between expected costs of ALG and the adversary is

Q(min{n - v/D, D}) in a single epoch.

Let ¢ be a constant hidden in the 2 notation in Lemma 32 and let L; =
E [C’AL(;(S) —c¢-min{n-vD,D}) - ADv;(&)} Then Lemma 32 states that
e Li > 0. The adversary chooses a strategy index i* € [n], which maxi-
mizes L;. By the average argument, L;» > 0, which means that in the epoch
generated by the adversary ADv,«, the ratio between expected costs of the
algorithm and the adversary is at least ¢ - min{n - vD,D}. O

3.3 Lower Bound for Oblivious Adversary

In this section, we prove Theorem 28, i.e., we show an asymptotically optimal
lower bound for any algorithm playing against an oblivious adversary. We
construct a probability distribution 7 over inputs (arbitrarily long ones) and
prove that each deterministic algorithm (even knowing this distribution) has
a high competitive ratio. Then by applying the Yao min-max principle [31],
we get that the same lower bound holds for any randomized algorithm against
an oblivious adversary. We will use the simple formulation of this principle
proved in [18].

Lemma 33 (Yao min-max principle [18]) Consider any cost minimiza-
tion problem. Suppose that for arbitrarily large o there exists a probability
distribution ™ over request sequences I, such that for any deterministic algo-
rithm DET, it holds that

(1) Ex[Cper(Z)] > o and
(2) Ex[Cper(Z)] > R - Ex[Copr(Z)].

Then no randomized online algorithm is R'-competitive for R’ < R.

Let K = min {logn, D} and v = y/D/K = max{,/D/logn,1}. We show how
to randomly create an input of arbitrary length. This will implicitly define
a probability distribution 7. We divide an input sequence into phases, each of
length 2- K -v+ D steps. Each phase consists of K ezpanding parts of length -,
a main part of length D and a contracting part of length K - ~.

First, we inductively define the behavior of nodes in expanding parts. Let Ay
be the set of all nodes. They remain at point zero at the beginning of any
phase. In expanding part i, set A;_; is divided arbitrarily into two parts of
equal size. Nodes from one of these parts, as well as all the nodes above A;_1,
are moved up with speed 1, all the other nodes remain at their positions. The

38

distance

== parts of sets A;

Z = requests

V=

expanding main " contracting

Fig. 5. One phase of a lower bound sequence for n = 2.

moving part of A;_; we call an upper half, and non-moving one we call a lower
half. At the end of the expanding part, one of these halves is chosen (each with
probability 1/2) and denoted A;. In the i-th expanding part, all the requests
are issued at one of the nodes from the lower half of A;_;. Note that at the
end of any expanding part, the coordinate of any node is equal to k-, where
k is an integer.

In the main part, nodes do not move. In the contracting part, all the nodes
which are above point zero move down with speed 1. In both these parts,
requests are given at any node from the set Ax. An example of a phase is
presented in Figure 5.

We prove two following lemmas which directly lead to the proof of the lower
bound.

Lemma 34 For any phase P, it holds that Copr(P) = O(D).

PROOF. Fix any phase P and consider an offline algorithm OFF, which
moves to an arbitrary node from the set Ag at the beginning of P. OFF pays
D for such movement. Note that if K = logn, then Ay is a singleton set.
The distance between Poprp and the requests is 0 in the main part and the

contracting part, and at most v in expanding parts. Therefore, Copr(P) <
Corr(P) < D+ (D+ K-9)+ (y+1)-7- K = O(D+ K -7%) = O(D). ©

Lemma 35 For any phase P and any deterministic algorithm DET, it holds
that E;[Cper(P)] = Q(D - min{y/D - logn, D}).

PROOF. We denote expanding parts of P by Fy, Es, ... Fx. First, we prove
that at the end of any expanding part 7, it holds that

Jj-v-D
2

E.[Coer(Er, Es, ..., E;)] 4+ D - EL[d(A;, Pogr)] > ; (18)

39

where d(A;, Popr) is defined as the minimum distance between Pppr (the
node holding page of DET) and a node from A;.

The inequality holds trivially for j = 0, i.e., at the beginning of the phase.
Assume that (18) holds after the j-th expanding part. We separately analyze
the change incurred by executing the (j+1)-th expanding part and by choosing
set A; at the end of such part.

We forgive DET the cost of serving requests during the expanding parts.
Note that if during the (j + 1)-th expanding part DET does not move, then
d(Aj;, Popr) does not change. On the other hand, if it does move along a dis-
tance of X, then the cost incurred is D - (X + 1) and d(A;, Pprr) decreases at
most by X. In particular, if DET jumps between upper and lower parts of A;,
d(A;j, Pogr) is not changed at all. Thus, the left hand side of (18) can only
increase as a consequence of such a movement.

Finally, at the very end of the (j + 1)-th expanding part, set A;;; is chosen.
For any position of DET’s page, E;[d(A;+1, Porr)] = d(A;, Porr) + % -7y, and
therefore (18) holds.

Now we show how (18) implies a lower bound on DET’s cost in the main part
of P. Note that within this part, set Ax occupies one position in the space.
Let L be the distance d(Ag, Pper) at the beginning of the main part. If the
distance traveled by DET in the main part is at least L /2, then the cost of the
corresponding jumps is obviously at least D - L/2. Otherwise, DET’s distance
to Ay in the whole main part is at least L/2, and thus it pays at least D - L/2
for serving the requests.

Therefore, E, [Cper(P)] > E[Cprr(E1, B,
ing (18), we get that E;[Cppr(P)] > - K -v- D
which finishes the proof. O

Ex)]+5-D-Eq[L]. By apply-
Q(D-min{y/D -logn, D}),

PROOF of Theorem 28. Fix any deterministic algorithm DET and any
integer £. We choose an input sequence consisting of ¢ phases. By Lemmas 34
and 35, the ratio between expected costs of OPT and DET in one phase is
Q(min{y/D -Togn, D}). By the linearity of expectation, the same relation
holds for the costs in the whole input sequence. On the other hand, the ex-
pected cost of DET can be made arbitrarily large by choosing sufficiently
large ¢.

Hence, if we apply the Yao min-max principle, the lower bound on the com-

petitive ratio, Q(min{y/D -logn, D}), applies for any randomized algorithm
playing against an oblivious adversary. O

40

4 Faster movement

In this section, we consider the scenario in which the bound on the maximum
nodes’ speed ¢ is not a constant, but an additional parameter greater than 1.

Let Rprr, Rap_onL, and Rogr, be the competitive ratios of the best deter-
ministic algorithm, the best randomized algorithm against an adaptive-online
adversary, and the best randomized algorithm against an oblivious adversary,
respectively.

By Lemma 1 (the Reduction Lemma), we immediately get that our algorithms
lose at most factor § in the competitive ratio if the input sequence is generated
by a d-restricted adversary, i.e., we get that Rap_ont < Rper = O(J-min{n-

VD, D}) and Ropr, = O(6 - min{\/D -logn, D}).

Obviously, the lower bounds presented in the previous section still work if
0 > 1, but we may improve them by modifying parameters from the proofs of
Section 3. In particular, we show that for 1 < § < D, it holds that Rpgr >

Rap—ont = Q(min{/d-n-v/D,§-D}) and Ropr, = Q(min{\/é-/D -Togn, D}).

An intuition behind the increase of competitive ratio by the factor of /&
is the following. Our lower bounds charge online algorithms for their jumps
and show that the optimal algorithm pays mainly for serving the requests. In
our constructions, we increase the distance from 0 to some distance k, which
required moving the nodes for k steps. The cost of serving the requests incurred
on the adversary was roughly the sum of distances in consecutive steps, i.e.,

¥ oi = O(k?). Currently, in k/v/0 steps, the adversary may increase the
distance from 0 to k - v/0. Thus the distances increase by the factor of v/9,

whereas the cost of serving the requests remains asymptotically the same, i.e.,
k/V/6é :
Zii() (0-1) = O(k?).

For simplicity, in our proofs, we assume that D is divisible by d; otherwise,
we may round D up and lose at most a constant factor in the analysis.

Theorem 36 Fixz o, such that1 <6 < D. For any randomized R-competitive
algorithm for the DPM problem playing against a d-restricted adaptive-online
adversary, R = Q(min{v/d -n-v/D,5 - D}).

PROOF. We focus on showing the lower bound of Q(min{v/§-n-v'D,§-D})
on the competitive ratio of any deterministic algorithm DET. We show this
by tuning the parameters in the original proof from Section 3.1.

First, the adversary moves the nodes with speed d. Second, a phase is called
long if the length of its expanding part is at least /D/J; otherwise we call

41

it short. Thus, in a short phase the distance between an active node and
remaining nodes is at most §-4/D/d = V¢ - D. By the changes above, we may
restate the properties enumerated in Lemma 29. For any phase P, assuming
X is the length of its expanding part, and «a is the node active in P, it holds
that

(1) CDET ZD&X,
(2) if P is a short phase, then 3, 4i(P) = O(n+ V¢ - D) - X,
(3) if P is a long phase, then >=;cp,\ (o3 4i(P) = O(n) - X.

If we plug these new values into the proof of Lemma 30, we get that for
any epoch £ consisting of phases P;, P, ..., it holds that Cpgr(€) > D -4 -

Ypee X =1 (\/5 -n-D - \/5) On the other hand, we get that

Z\:; Cp,(€) = 2;} (D + Ai(E))
= O(n-D)+O0(n+Vé-D)- > X, .

Pj e€

In effect, by comparing Cpgr(€) with Y.<y, O, (€), we obtain Cpgr(€) =
Q(min{v/0-v/D,5-D/n}) - >vieve OB, (€). Finally, by the same average argu-
ment as in the original proof, we get the desired bound on DET.

In Section 3.2, we showed how to modify such a lower bound for a deterministic
algorithm, so that it works also for randomized algorithms against an adaptive-
online adversary. The same modification applies here, yielding the lemma. O

Theorem 37 Fiz d, such that 1 < 9§ < D. For any randomized R-competitive
algorithm for the DPM problem playing against a d-restricted oblivious adver-

sary, R = Q(min{v/¢ - /D -logn, D}).

PROOF. Consider the construction of the lower bound from Section 3.3. This
time in the construction of a single phase, we set K = min{logn, D/d} and
v =+/D/(K -6§) = max{y/D/(d -logn),1}. Again, in each step in which the
adversary originally moved a node with speed 1, now it moves it with speed 9.
Recall that v was the number of steps in the expanding part of a phase; the
corresponding increase of the distance between group of nodes is therefore §-+.

Fix any phase P and consider the cost of an offline strategy OFF presented
in the original proof of Lemma 34. This time, OFF pays D for the initial
movement and D + K -+ for serving the requests in the main and contracting
parts. Its distance to requests in expanding parts (K -7 steps in total) is at
most 4 - 7. Therefore, Copp(P) = O(D +§ - K - v*) = O(D).

42

When we bounded the cost of the algorithm (see the proof of Lemma 35), we
considered only the cost of moving the page and we lower-bounded it by D
times the distance along which the page was moved. The terms v occurring
there are now replaced by ¢ - 7. Thus, we get that E;[Cprr(P)] = Q(K - (9 -

) -D)=QD-V6-vVD-K)=Q(D-min{0-+/D-logn, D}).

By comparing E[Cprr(P)] to Corp(P), we get the lemma. O

5 File Allocation in Dynamic Networks

In this section, we prove that the competitive ratio of the file allocation (FA)
problem [7] in our model of dynamic networks is infinite. In short, file allo-
cation is an extension of page migration, where we are no longer limited to
having just one copy of the page in the system. New copies may be created
and some copies may be discarded, but at least one copy has to be present in
the network. We distinguish between write and read requests. In the case of
a read, the requesting processor contacts the nearest node holding the copy,
and in case of a write, all the copies have to be updated.

We define the exact costs for a two-node case, as even in such scenario we are
able to prove that no online algorithm is able to achieve a finite competitive
ratio. Whereas the request sequence in case of the page migration problem
was just the sequence of node numbers, now it consists of four possible re-
quests: READ(0), READ(1), WRITE(0), WRITE(1), denoting respectively that
nodes vy and v; want to read from the shared object or write to it. At one
step t, exactly one such request appears. Again, local updates are free, and
therefore a read request at step ¢ incurs a cost ¢;(vg, v1) if it is issued at a node
not holding the copy and 0 otherwise. A write request incurs a cost ¢;(vg, v1)
if there is a copy at the other node and 0 otherwise. After serving the request,
the algorithm may replicate the page to the second node; such transaction
incurs a cost D - ¢;(vg, v1). Algorithm may also remove the copy from a node
without paying anything.

We show the lower bound in the strongest sense, i.e., for randomized algo-
rithms against an oblivious adversary. For the following theorem to hold, we
assume that our metric space is a real line R with Euclidean metric. We also
use the notation from the previous section.

Theorem 38 There exists a metric space, such that no randomized algorithm

can be competitive for the FA problem in dynamic networks (even against
an oblivious adversary).

43

PROOF. As mentioned above, we prove the theorem for network consisting
of just two nodes on an infinite line. Assume that there exists a k-competitive
randomized algorithm ALG for the file allocation problem. We show how to
create a nemesis input sequence for ALG. Since the adversary is oblivious, it
does not know the exact configuration of ALG, but it may compute the prob-
ability that ALG has its copy in a certain node. We denote these probabilities
by o and pq, respectively.

The adversary creates an input sequence, divided into phases. We show that
there exists an offline solution OFF to this problem, such that for each phase P,
it holds that E[CAL(;,(P)] > k- COFF(P) Additionally, E[CAL(}(P)] = Q(D)
for each phase P. Thus, for any such created input sequence Z, we get that
E[Cac(Z)] > k- Corr(Z) and the expected cost of ALG can be made arbi-
trarily large. This would imply that the competitive ratio is greater than k,
which contradicts our assumption.

One phase P is constructed in the following way. Let &' = 4-k. At the beginning
of P, nodes occupy the same point of the space. The phase consists of a forcing
part, an expanding part, a main part, and a contracting part. These parts last
for D, k', D, and k’ steps, respectively. In the forcing and main part, nodes do
not move. In the expanding part, v; moves up with speed 1; in the contracting
part it moves down with the same speed. Thus, the distance between vy and
vy is k' in the main part and 0 in the forcing part.

All the requests in the forcing part are WRITE(0) and all the requests in the
expanding part are READ(0). The remaining requests are decided as follows.
If throughout the forcing part p; > i or at the end of the expanding part
p1 > 3, then the requests in the main and contracting parts are WRITE(0).

Otherwise they are all equal to READ(1).

The intuition behind this construction is as follows. The forcing part forces
any reasonable algorithm to move the page to vy and discard a copy from v;.
Afterwards, in the expanding part, the algorithm has no information whether
it is better to have a copy only at vy or to have a copy at each node. This is
exploited in the main part.

The algorithm OFF starts and ends each phase with a copy only at node wvy.
In the following, we show that the relation Carg(P) > k - Copr(P) holds for
any phase P. We consider three cases.

(1) If throughout the forcing part y; > %, then within P all the requests

(both READ and WRITE) are given at vg. Thus, if OFF does not move,
it pays 0. On the other hand, in expectation, ALG pays at least i - D for
serving the requests in the forcing part.

(2) If there exists a step in the forcing part with p; < % and at the end of
the expanding part py > %, then again all the requests are given at vy,

44

and Copp(P) = 0. This time the algorithm has to pay in expectation at

least i - D for increasing the probability p; from % to %
(3) If at the end of the expanding part u; < %, all the remaining requests
are READ(1). In this case, OFF replicates the page to v; at the very end
of the forcing part and removes this copy at the end of the contracting
part. Such a move costs D and ensures that the cost of serving requests
is zero. On the other hand, the cost of ALG in the main part can be
lower-bounded as follows. With probability 1 — p; > %, ALG has no
copy at vy. If at some time step of the main part this probability drops
below %, it means that the algorithm had to pay in expectation at least
(3—3)-(K'+1)-D for replicating the page to v. Otherwise, the algorithm
has to pay in expectation at least § - (' + 1) for each of the READ(1)
requests in the main part. Thus, in either case the expected cost of ALG

in the main part is at least § - (' +1) - D > k- D.

Therefore, we get that for any phase P, Carg(P) > k-Corpp(P) > k-Copr(P).
This finishes the proof. O

We note that if the metric space X is bounded, but contains a copy of an
interval of length A, then the construction above implies that the lower bound
for file allocation problem is at least €2(A). On the other hand, if the maximum
distance between the nodes is bounded by a constant)\, then we may apply the
O(log n)-competitive file allocation strategies for static networks [2,7], losing
at most an additional factor of \.

6 Conclusions

This paper aims to bring the dynamic behavior to the world of data manage-
ment problems in networks. We considered the most basic of these problems,
called the Page Migration. By dynamics we mean that the network is sub-
ject to small continuous changes, like changes in bandwidth capacity, or the
changes in the topology induced by node mobility. These network alterations
induce the changes in the costs of communication between pairs of nodes. This
paper is a summary of the first papers concerning the analytic treatment of
this problem. While our model is rather simple, it covers quite a lot of common
cases.

Our algorithms exploit topological localities of requests, i.e., they try to adapt
to the changing patterns of accesses to the shared object by moving the object
“near” the requesting nodes. Our main concern was to construct algorithms
which are robust to the network changes. We considered several scenarios,
which differed in the way of how the input sequence was created. Using the

45

competitive analysis, we rigorously analyzed algorithms for each of them, prov-
ing their optimality.

A remaining open problem is to investigate further the case where the max-
imum bound on the nodes’ speed is not a constant but a parameter. In par-
ticular, it would be interesting to make a smooth transition between static
networks (where the speed is zero) and dynamic networks where nodes move
with infitesimally small speed.

7 Acknowledgements

This work was partially supported by MNiSW grant number N206 001 31,/0436,
2006-2008, MNiSW grant number PBZ/MNiSW/07/2006/46, the EU Marie
Curie Research Training Network ADONET, contract no. MRTN-CT-2003-
504438, and by the EU within the 6th Framework Programme under Contract
001907 “Dynamically Evolving large Scale Information Systems (DELIS)”.

Part of this work was done when Marcin Bienkowski and Miroslaw Korzeniow-
ski were members of the International Graduate School “Dynamic Intelligent
systems” at the University of Paderborn, Germany.

A Proofs of Technical Claims

PROOF of Claim 20. Let f(z) := x-log 1. It is easy to check that f is con-
tinuous and concave for all x > 0. Therefore, we can apply Jensen’s Inequality
(see [24]) to get f (> pi - i) = X pi- f(x;) for any x; > 0 and for 0 < p; < 1,
such that >, p; = 1.

Let p; = 27%/ 3, 27% and @; = 27%*%. Then, ¥;p; - oy = 3,277/ 3,27,
and therefore

09—b; 9—a; —a;
22 log 22 > Z 2 .9bita; log #
227w 227 TR 27 2-bitai

_oh
X2

By multiplying both sides by 3;27% /3, 27% we get the claim. O

46

References

1]

S. Albers, H. Koga, New on-line algorithms for the page replication problem,
Journal of Algorithms 27 (1) (1998) 75-96, also appeared in Proc. of the 4th
SWAT, pages 25-36, 1994.

B. Awerbuch, Y. Bartal, A. Fiat, Competitive distributed file allocation, in:
Proc. of the 25th ACM Symp. on Theory of Computing (STOC), 1993.

B. Awerbuch, Y. Bartal, A. Fiat, Heat & dump: Competitive distributed paging,
in: Proc. of the 34th IEEE Symp. on Foundations of Computer Science (FOCS),
1993.

B. Awerbuch, Y. Bartal, A. Fiat, Distributed paging for general networks,
Journal of Algorithms 28 (1) (1998) 67-104, also appeared in Proc. of the 7th
SODA, pages 574-583, 1996.

Y. Bartal, Distributed paging, in: Dagstul Workshop on On-line Algorithms,
1996.

Y. Bartal, M. Charikar, P. Indyk, On page migration and other relaxed task
systems, Theoretical Computer Science 268 (1) (2001) 43-66, also appeared in
Proc. of the 8th SODA, pages 43-52, 1997.

Y. Bartal, A. Fiat, Y. Rabani, Competitive algorithms for distributed data
management, Journal of Computer and System Sciences 51 (3) (1995) 341-358,
also appeared in Proc. of the 24nd STOC, pages 39-50, 1992.

S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, A. Wigderson, On the power
of randomization in online algorithms, in: Proc. of the 22nd ACM Symp. on
Theory of Computing (STOC), 1990.

M. Bienkowski, Dynamic page migration with stochastic requests, in: Proc. of
the 17th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA),
2005.

[10] M. Bienkowski, Page migration in dynamic networks, Ph.D. thesis, Universitét

Paderborn (2005).

[11] M. Bienkowski, J. Byrka, Bucket game with applications to set multicover and

dynamic page migration, in: Proc. of the 13th European Symp. on Algorithms
(ESA), 2005.

[12] M. Bienkowski, M. Dynia, M. Korzeniowski, Improved algorithms for dynamic

page migration, in: Proc. of the 22nd Symp. on Theoretical Aspects of Computer
Science (STACS), 2005.

[13] M. Bienkowski, M. Korzeniowski, Dynamic page migration under brownian

motion, in: Proc. of the European Conf. in Parallel Processing (Euro-Par),
2005.

47

[14] M. Bienkowski, M. Korzeniowski, F. Meyer auf der Heide, Fighting against two
adversaries: Page migration in dynamic networks, in: Proc. of the 16th ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA), 2004.

[15] M. Bienkowski, F. Meyer auf der Heide, Page migration in dynamic networks,
in: Proc. of the 30th Int. Symp. on Mathematical Foundations of Computer
Science (MFCS), 2005, invited paper.

[16] D. L. Black, D. D. Sleator, Competitive algorithms for replication and migration
problems, Tech. Rep. CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University (1989).

[17] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis,
Cambridge University Press, 1998.

[18] M. Chrobak, L. L. Larmore, C. Lund, N. Reingold, A better lower bound on the
competitive ratio of the randomized 2-server problem, Information Processing
Letters 63 (2) (1997) 79-83.

[19] M. Chrobak, L. L. Larmore, N. Reingold, J. Westbrook, Page migration
algorithms using work functions, Journal of Algorithms 24 (1) (1997) 124-157,
also appeared in Proc. of the 4th ISAAC, pages 406415, 1993.

[20] R. Fleischer, W. Glazek, S. S. Seiden, New results for online page replication,
Theoretical Computer Science 324 (2-3) (2004) 219-251.

[21] R. Fleischer, S. S. Seiden, New results for online page replication, in: Proc.
of the 3rd Int. Workshop on Approximation Algorithms for Combinatorial
Optimization (APPROX), 2000.

[22] W. Gtlazek, Lower and upper bounds for the problem of page replication in
ring networks, in: Proc. of the 24th Int. Symp. on Mathematical Foundations
of Computer Science (MFCS), 1999.

[23] W. Glazek, Online algorithms for page replication in rings, Theoretical
Computer Science 268 (1) (2001) 107-117.

[24] G. H. Hardy, J. E. Littlewood, G. Pdlya, Inequalities, 2nd ed., Cambridge
University Press, 1988.

[25] H. Koga, Randomized on-line algorithms for the page replication problem, in:
Proc. of the 4th Int. Symp. on Algorithms and Computation (ISAAC), 1993.

[26] C. Lund, N. Reingold, J. Westbrook, D. C. K. Yan, Competitive on-line
algorithms for distributed data management, SIAM Journal on Computing
28 (3) (1999) 1086-1111, also appeared as On-Line Distributed Data
Management in Proc. of the 2nd ESA, pages 202-214, 1994.

[27] R. Rajaraman, Topology control and routing in ad hoc networks: a survey,
SIGACT News 33 (2) (2002) 60-73.

[28] C. Scheideler, Models and techniques for communication in dynamic networks,
in: Proc. of the 19th Symp. on Theoretical Aspects of Computer Science
(STACS), 2002.

48

[29] D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Communications of the ACM 28 (2) (1985) 202-208.

[30] J. Westbrook, Randomized algorithms for the multiprocessor page migration,
SIAM Journal on Computing 23 (1994) 951-965, also appeared in Proc. of the
DIMACS Workshop on On-Line Algorithms, pages 135-149, 1992.

[31] A. C.-C. Yao, Probabilistic computation: towards a uniform measure of
complexity, in: Proc. of the 18th IEEE Symp. on Foundations of Computer
Science (FOCS), 1977.

49

