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Abstract: This study aims to explore the possibility of using machine learning techniques to 
build predictive models of performance in collaborative induction tasks. More specifically, we 
explored how signal-level data, like eye-gaze data and raw speech may be used to build such 
models. The results show that such low level features have effectively some potential to 
predict performance in such tasks. Implications for future applications design are shortly 
discussed. 

Introduction 

Theoretical background 
We present an exploratory study about gaze patterns exhibited during collaborative interaction. We conducted 
an experiment to examine dyads solving induction tasks. Two tasks were chosen based upon two main criterions 
which were to require inductive and abstract thinking, which are known to be related to high-level cognitive 
processes like learning, and to be visual, in order to allow for the detection of potentially meaningful patterns in 
the eye-movements. Several authors (Genter 1989, Hofstadter 1995) argued that learning may proceed by 
analogy between multiple examples. Indeed, analogy consists of finding structural similarities between things 
that may appear as completely different. Thus, it corresponds to extracting abstract structural features of the 
concerned objects. The same sort of process may occur during conceptual knowledge learning if we consider 
that learners have to find similarities between examples of a particular concept to finally induce a general and 
abstract representation of a that concept.  

Raven progressive matrices are a typical task which requires induction and the construction of abstract 
representations.  These problems have been shown to be central to all cognitive abilities in the sense that most 
specific ability tests are generally well correlated with Raven matrices tests (Carpenter, Just and Shell, 1990). 
Carpenter and his colleagues found that gaze patterns partially reflected the solving phases of these tasks by 
comparing verbal reports during resolution and gaze data. They have also shown that abstraction abilities are 
one of the main factors which explain successful solving of the problems. 

Schwartz (1995) has shown how collaborating students may outperform individuals in building abstract 
representations about scientific concepts. He ran two experiments in which students had to build abstract 
representations of a problem in order to answer a set of questions. He showed that the performance of the dyads 
were greater than what could be expected from a theoretical model called which he called truth-wins model. 
This model assumes that the best performance that a pair may achieve is the performance of the best of the two 
collaborators. This study suggests that this theoretical model may not be valid and that a dyad may be more than 
the sum of two individuals. 

Eye-movements have been related to social interaction processes by several authors. Richardson and 
Dale (2005) have shown how the language and the gazes are related to each other. They have demonstrated that 
the coupling between two interlocutors’ gazes is correlated with their level of understanding. They found a 
similarity in the gaze sequence of the conversants with a certain time lag. This effect is explained by the fact that 
speakers look at the object they are talking about before naming it and listeners do the same after hearing the 
word (Griffin and Bock, 2000). . 

Task selection 
We have chosen to explore how dyads solve two different logical games, both requiring induction and 
abstraction abilities. The first was also studied by Carpenter, Just and Shell (1990), namely the Raven 
progressive matrices (see Fig. 1 top-left). It consists in finding out the last element of a 3-by-3 matrix which 
exhibits certain logical patterns over its rows and columns. Performance on Raven matrices is a good predictor 
for performance on most specific ability tests which are generally well correlated with Raven matrices tests 
(Carpenter, Just and Shell, 1990).  

The second kind of problem is called Bongard problems (see Fig. 1 top-right). These problems were 
originally designed by M. Bongard in a book entitled “Pattern Recognition” (1970). The goal was to provide 
examples of what pattern recognition machines should be able to solve. The goal of these problems is to find a 
common pattern or rule among the six images on the left (examples) and which doesn’t work for the six images 



on the right (counter-examples). What makes these problems quite hard is that the rule may involve completely 
different features. It may be the relative position of the objects, their relative size, the orientation or it may also 
be a kind of higher level shape formed by many lower level shapes.  

Research questions 
This work explores the possibility of building predictive models in order to develop in the future gaze-sensitive 
groupware. Indeed, we think that eye-tracking techniques will become more and more accessible as it is possible 
already to build cheap eye-trackers with simple webcams. Our idea is to use real-time gaze data to support the 
analysis and diagnosis of collaborative learning processes. The main prerequisite to this goal is to find some 
gaze patterns, possibly combined with other easy-to-acquire data like raw speech, which are related to 
successful collaboration. Our approach to this problematic is to apply machine learning algorithms. Although 
these techniques generally do not yield theoretically interpretable models, they enable to build predictive models 
which can be very efficient and sufficiently fast to be computed in real time.  

Method 

Task 
The two kind of problems described above have been slightly modified for the purpose of this study. In order to 
make them more interactive, the images have been split between the two participants. For the Raven matrices, 
six (out of nine) cells were shown to each participant. One saw only the upper-right part of the matrix while the 
other saw only the lower-left part of the matrix. Thus, they each had three personal cells which were not seen by 
the other participant and three shared cells (on the diagonal). One of the shared cells was the missing cell which 
had to be discovered by the collaborators. For the Bongard problem, the split was a bit different. Each 
participant could see the six counter-examples (right images) but each participant only saw three out of the six 
examples (left images). Thus, in both cases, three cells were not shared by the collaborators. 

 
Figure 1. Examples of a Raven progressive matrix (left) and of a Bongard problem (right). The answer 
for the matrix would be “clock indicating nine o’clock inside a square” as there is a shape progression 
along the row and a clock rotation along the column. The rule of the depicted Bongard problem would be 
“the lines are parallels” while there is no rule for the right side. Bottom images show modifications 
applied to the problems to make them collaborative. 

Participants 
Nine dyads (ten men and eight women) were recruited among campus collaborators and students. 

Subjects’ ages vary between 17 and 53 with a median of 27 years. None subject was aware of what a Raven 
matrix or a Bongard problem is before the beginning of the experiment. 

Procedure 
Two computers were installed in the same room separated by a shelf in order that the subjects could not see each 
other while still being able to speak to each other. Two eye-tracking screens (Tobii T1750) were used to record 
subject’s eye movements. Subjects were first asked to fill in a short questionnaire about general information like 
age and sex and how much they know each other. The experiment was composed of 12 static images which 
could be passed by simply pressing the spacebar at least one time on each computer. The first and the seventh 
slides were instructions for the Raven matrices problems and the Bongard problems respectively. Slides 2 to 6 



presented the Raven matrices and slides 8 to 12 were the Bongard problems. The problems were in order of 
increasing difficulty in order to allow subjects to familiarize themselves with the problems.  

The subjects had to solve the problems together, agree on a solution and then, say it out loud and press 
the spacebar to go to the next problem. The correctness of the solution was checked and recorded by the 
experimenter. There was a maximum time limit of 5 minutes for each problem. Speech was also recorded 
separately for each individual. 

Data analysis 

Variables 
We computed several features based on the gaze data. The first feature, called number of comparisons, aims at 
detecting when subjects compare two cells. We identified every sequence of at least 3 fixations with at least one 
back and forth movement between one cell and another. The comparisons variable is the ratio of all fixations 
which belong to such sequences (see fig. 2, top-left). A related feature is the comparison intensity. For each of 
these comparison sequences, we computed the number of transitions between the two cells concerned and then, 
we averaged this number over all comparison sequences (see fig. 2, top-left). 

 
Figure 2. Illustration of gaze features. Top-left picture depicts one subject (square) doing an intense 
comparison between the upper-left cell and middle cell and the other subject (circle) doing a weak 
comparison between the upper-right cell and middle-right cell. On the top-right picture, we can see a 
dispersed subject (square) and one not dispersed (circle) Bottom images illustrate high gaze divergence 
(left) and low gaze divergence (right) 
Another feature measures how much subjects look at all cells in an equivalent manner or in other words, how 
much their gaze is dispersed. For this, we aggregated the fixation durations in a matrix, called cell density 
matrix, representing the nine cells present on the screen and then for each cell, we took the ratio of the total 
aggregated durations. Finally, we computed the standard deviation of the values in this matrix as the gaze 
dispersion value (see fig. 2, bottom-right). We also used the cell density matrix to compute a dual gaze feature 
called gaze divergence (see fig. 2, bottom-left). This feature is simply the cosine between the density matrices of 
both subjects, which is a way to assess the similarity between two matrices. 

Each second of the recorded speech data was automatically labeled as speech or no-speech. First, the 
audio file was split in order to have one fragment per problem and each fragment was normalized using the 
minimum and maximum found over the sample. Then, the root-mean square was computed for every second 
and if this value exceeded a threshold of 0.4, the second was considered as speech. The resulting feature, called 
speech time, is the ratio of seconds labeled as speech for each subject. Then, we also computed the difference of 
the speech time between the subjects of a pair in order to have an estimation of the speech time asymmetry. We 
decided to focus only on these simple raw measures of speech because it is fully automatic and thus it could be 
easily used in potential future application. 

Finally, we analyzed two dependent variables: the success at a particular problem and the solving time 
for correctly solved problems. 



Analysis methods 
We tried to apply machine learning algorithms on our dataset in order to see if it is possible to predict the 
performance of individuals by using the gaze and speech features described above. Indeed, one of our final goals 
is to build gaze-sensitive applications that would detect in real-time meaningful gaze patterns, possibly 
combined with raw speech features, in order to give feedback to the users. Thus, machine learning techniques 
provide with a way to build models able to do such detection. 

In this study, we compare the use of two different machine learning algorithms, one called J48, which 
builds binary decision trees and another called Naïve-Bayesian, which estimates probability distributions for 
each features. 

Results 
We present here results which stem from the use of two machine learning algorithms (Binary decision tree or 
Naïve Bayesian classifier) for each problem class separately but also for both problems classes without 
distinction. We also analyzed the effect of using speech only as predictors, gaze only or gaze and speech 
combined. Two values are always reported, the number of correctly classified cases and in parenthesis the kappa 
statistics, which represents how much the model is better than chance. These values have been obtained using 
10-fold cross-validation procedure. Algorithms were fed with features computed on one minute duration and the 
minute was also used as a predictor. However, we discarded for each problem the last minute before the solution 
was announced in order to avoid the effect of speech which may due to the explanation of the solution. The 
predicted variable was the outcome of the problem: solved or unsolved. The predictors were the number of 
comparisons, the comparison intensities, the gaze repartition and the gaze divergence for the gaze features and 
speech quantity and speech asymmetry for the speech features. It is important to note that these two algorithms, 
like most machine learning, do not necessarily produce better results when more predictors are given. 
 
Table 1: Results of the machine learning algorithms for both problem classes combined, kappa’s are in 
parenthesis 
 
 Naïve Bayesian classifier J48 Binary decision tree 
Gaze + speech 78% (50%) 79% (51%) 
Speech only 77% (45 %) 86% (65%) 
Gaze only 74% (35%) 68% (10%) 
 
First, it is very interesting to note that we can obtain quite good results (50% above chance level) while we are 
trying to predict success in two different tasks. This is very encouraging as it suggests that there may exist some 
patterns in gaze and speech which are task independent. Of course, the two tasks are not completely different as 
they both imply some similar processes (induction and rules abstraction). We can also see that at this level, 
speech plays clearly a larger role than gaze. Indeed, we see that models using only gaze features are the worst 
for both algorithm types. However, for the Naïve Bayesian classifier, gaze seems to slightly improve the 
performance compared to speech only, indicating that it can still play a role. 
 
Table 2: Results of the machine learning algorithms for Raven problems, kappa’s are in parenthesis 
 
 Naïve Bayesian classifier J48 Binary decision tree 
Gaze + speech 78% (56%) 91% (81%) 
Speech only 78% (56%) 91% (81%) 
Gaze only 68% (32%) 68% (34%) 
 
The results concerning Raven problems (see table 2) only are surprisingly high, producing up to 80% above the 
chance level with 91% of correctly classified instances. Moreover, we can see that these results are explained 
only by speech features. Although it is a bit disappointing because we expected to find some patterns in gaze 
data, it is also very surprising to see that such raw speech features may predict so well the success on these 
problems. Of course, we must be very cautious in interpreting these results because like for a correlation, it does 
not imply that there is causality between speech quantity and asymmetry and the success. 

For Bongard problems (see table 3), the situation is the opposite than for Raven problems, although the 
results are much lower than for Raven and even lower than for both classes combined. This suggests that the 
good result for all problems taken together is mainly explained by the Raven problems. However, there are still 
some results for Bongard problems and interestingly, we can see that these performances are explained mainly 
by gaze features, as the best models are achieved by taken only gaze features without speech features.  
 
 



Table 3: Results of the machine learning algorithms for Bongard problems kappa’s are in parenthesis 
 
 Naïve Bayesian classifier J48 Binary decision tree 
Gaze + speech 76% (34%)   75%(25%) 
Speech only 76% (29%) 75% (21%) 
Gaze only 77% (37%) 77% (37%) 
 
We also tried to apply these algorithms with slightly different data to have situations closer to a real-time 
situation. When using only the first two minutes of solving, the results are either similar to those presented or a 
little bit (3 or 4%) lower. These results are maybe even more interesting because they suggest that it could be 
possible to detect after one or two minute if the pair will succeed or fail. Moreover, we also tried to predict the 
success in the next minute. Here, the results are clearly lower than the previous ones but they are still 
sufficiently high to be considered. We obtain kappa-scores of 40% (instead of 50%) for both problems 
combined. Again, such results are still more interesting for a potential future gaze-sensitive application because 
we could be able to predict the moment at which a pair will succeed. Also, it suggests that there exist some 
phases in the solving processes which are distinguishable by using the gaze patterns and this is consistent with 
the results found using  usual statistical methods. 

Discussion 
It is very encouraging to see how well machine learning algorithms performed on these data. As we have seen, 
we can predict up to a certain point problem solving outcomes by using only raw measure of speech and gaze 
features. Moreover, we see that we may be able to predict the moment of resolution one minute before it 
happens. These results have great implications as they tend to prove that it is possible to build gaze-sensitive 
applications, possibly combined with simple automatic speech analysis, in order to provide meaningful feedback 
to users. Obviously, predicting only the solving moment or the solving outcome is not sufficient for such 
application but it shows that patterns may exist in gaze and raw speech and thus, we can imagine that similar 
patterns could be also present in other situation that may be of interest for feedback. However, one must note 
that gaze plays a significant role only in the Bongard case, while for Raven matrices, only speech was useful for 
predictions. 

Of course, all these results must be taken with care. Indeed, the number of subject is very low and so, it 
is difficult to generalize. At this point, we cannot be sure that these models built by machine learning algorithms 
are really universal or if they are specific to this set of subjects.  

Conclusion 
We have shown that it may possible to design fully automated systems able to predict some outcomes of 
interaction by using signal-level features like raw speech and gaze data. This is a step towards building 
applications which may enhance the collaboration processes by providing real-time meaningful feedbacks. This 
is especially interesting because these problems require high-level thinking and thus, it suggests that similar 
results may be found in other high-level tasks, like collaborative learning. Of course, these results are only 
preliminary and we need further before being able to draw strong conclusions. 
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