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Abstract—We consider two capacity problems in P2P networks.
In the first one, the nodes have an infinite amount of data to send
and the goal is to optimally allocate their uplink bandwidths
such that the demands of every peer in terms of receiving data
rate are met. We solve this problem through a mapping from a
node-weighted graph featuring two labels per node to a max flow
problem on an edge-weighted bipartite graph. In the second prob-
lem under consideration, the resource allocation is driven by the
availability of the data resource that the peers are interested in
sharing. That is a node cannot allocate its uplink resources unless
it has data to transmit first. The problem of uplink bandwidth
allocation is then equivalent to constructing a set of directed
trees in the overlay such that the number of nodes receiving the
data is maximized while the uplink capacities of the peers are
not exceeded. We show that the problem is NP-complete, and
provide a linear programming decomposition decoupling it into
a master problem and multiple slave subproblems that can be
resolved in polynomial time. We also design a heuristic algorithm
in order to compute a suboptimal solution in a reasonable time.
This algorithm requires only a local knowledge from nodes, so
it should support distributed implementations.

We analyze both problems through a series of simulation
experiments featuring different network sizes and network densi-
ties. On large networks, we compare our heuristic and its variants
with a genetic algorithm and show that our heuristic computes
the better resource allocation. On smaller networks, we contrast
these performances to that of the exact algorithm and show that
resource allocation fulfilling a large part of the peer can be found,
even for hard configuration where no resources are in excess.

I. INTRODUCTION

Distributed architectures offer cost effective solutions to the
deployment of large scale data delivery services. Peer-to-peer
solutions have received a lot of interest from the research
community and recently also from the industry. Typically,
they permit to share resources among the different peers in
order to offer an adequate quality of service to all the actors
of the system. We can distinguish two types of resources
in distributed systems. Owing to economics terminology, we
denote as rival the resources that cannot be simultaneously
allocated to multiple users [1]. In computer communications,
the storage capacity or the uplink bandwidth are typically rival
resources. Other resources are called non-rival.

Peer-to-peer architectures are appealing since the total
amount of available rival resources increases with the number
of clients in absence of selfish behavior. This provides im-
proved scalability compared to centralized solutions. However,
the problem of resource management in peer-to-peer systems
is still very challenging. First, peers can only allocate resources
(i.e., reserve upload bandwidth) to the peers they know, so it
is possible that all neighbors of a given peer cannot satisfy its

demand, although resources are in excess in another location
in the overlay. Studying the capacity of overlay networks is
emerging as an important related subject [2–5]. Second, the
circulation of non-rival resources (i.e., data) has an impact
on the allocation of rival resources. For instance, in a live
streaming system, a peer may have no fresh data to send
to one of its neighbors, so the upload bandwidth allocated
to this neighbor will be unused. Efficient large-scale content
distribution is another major area of related research [6, 7].

In this paper, we address the problem of resource allocation
from an optimization standpoint. Each peer1 is characterized
by its capacity, the amount of rival resources it is able to allo-
cate to other peers. In many cases, the capacity of a peer is its
upload bandwidth, but it can also represent the storage capacity
in distributed back-up services, or the processing power in grid
computing. In parallel, each peer is also characterized by its
demand that represents the minimal amount of resources the
system should allocate to it, as otherwise the peer would quit
the system. The demand can be a parameter of the system (e.g.,
the video bitrate of the content in live streaming systems) or
the individual need of a node.

We consider that the network overlay is given. In such a
model, a peer can only allocate its resources to its direct
neighbors in the topology, this set of neighbors being fixed.
This is the case when the overlay is used for several purposes,
for example in P2P virtual worlds, the overlay for event
notification is also used for multimedia. This is also the case
when the overlay construction is driven by external guidelines,
for example network locality, peers that are close in the
network should be preferentially connected in the overlay.

Contrarily to most prior work, we do not consider that the
network links have limited capacities but rather that the nodes
have a limit in the resource they could contribute to their
neighbors. This corresponds to recent models where it has
been shown that the capacity bottlenecks are not located in the
backbone but rather at the edges of the network in the current
Internet [4, 6]. The challenge in the resource management
problem is therefore to be able to match the demands of the
peers with the constrained capacities of their neighbors.

We study in this paper two instances of the problem of
the resource allocation and propose a theoretical groundwork
on the topic of peer-to-peer capacity. We first compute the
capacity of the peer-to-peer system in the stationary regime
in a problem similar to the performance analysis of bit-torrent

1Client, node, vertex or peer are used interchangeably in the document.
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systems [8]. We neglect the non-rival resources and consider
that peers have enough data to fully use the rival resources
that have been allocated to their neighbours. We show that
maximal resource allocation can be computed in polynomial
time by reducing the problem to the computation of a maximal
flow in a bipartite graph.

We then relax the assumption on the availability of non-
rival resources, and we consider that the capacity of the
system is dependent on the availability of data in the nodes.
This second resource allocation problem is able to consider
the dynamics of the system as in the example of a source
broadcasting a non-rival resource. A node can allocate its
resources only if its demand is fulfilled first. It leads to a
multi-constrained optimization problem whose objective is to
maximize the overall quality of service among the fulfilled
nodes, or equivalently to determine the maximum number of
peers whose demand is fulfilled. We show that this problem
is however NP-complete. We present a promising Benders’
decomposition [9] of this optimization problem into one
master problem and up to n−1 sub-problems, with n being the
number of nodes. We then show that the subproblems can be
solved in polynomial-time, which is promising for the design
of fast solution techniques. We also propose heuristic-based
algorithms to the resource allocation problem, which offer
suboptimal yet practical solutions for large-scale distributed
systems. We finally analyze the performance of the proposed
algorithms for networks of small and medium scales.

II. OVERLAY RESOURCE ALLOCATION

A. Framework

We model the overlay as an undirected graph G = (V,E)
where an edge between two nodes u and v in the graph denotes
a potential allocation of resources between peers u and v.
The graph G is not necessarily complete although it is often
assumed so in prior work, but rather corresponds to a pre-
computed topology. The overlay model represents a snapshot
of the system at a given time. The model could apply to
dynamic overlays by encompassing all logical relationships
during a time interval and then by weighting these edges
accordingly. An edge {u, v} in E can support the process
of allocating resources in both directions, i.e., u can allocate
resources to v and v can allocate resources to u. Therefore,
every undirected edge {u, v} should be transformed into two
directed edges (u → v) and (v → u). The set of directed
edges derived from E is denoted E∗.

The amount of rival resources that a peer u ∈ V is able to
offer to other peers is termed c(u), which does not exclusively
mean c(u) different data. The amount of resources that are
given by a peer u to a neighbor v corresponds to the weight
w(e) associated with the edge e = (u → v) ∈ E∗. For
example the peer u reserves w(e) bits per second to deliver
video data to v. The resource allocation can be represented
by a weight function w : E∗ → N. Finally, each peer is
also associated with a demand, denoted d(u), representing the
amount of resources that u expects to receive from other nodes.
In particular, d(u) is the minimal amount of resources that

should be supplied to u in order to satisfy its quality of service
requirements. While it is trivial to add constraints on the links
by associating a maximal amount of resources that can be
allocated from one peer to another, we do not consider edge
capacities in this paper. The only constraint for the allocation
w(e) on the edge e = (u → v) is either c(u), the amount
of resources offered by u, or d(v), the amount of resources v
should receive.

B. Resource allocation problems

We study in this paper two instances of the problem
of resource allocation on the graph G. The first problem
corresponds to the stationary mode of the system, where
nodes always have data to contribute to their neighbours.
The nodes can always satisfy the resource allocation they
have committed to. The problem can be formulated as follows.

Problem SRA (Stationary Regime Resource Allocation)
Given an overlay G = (V,E∗) and capacity and demand
distribution functions c(u) and d(u), u ∈ V , determine the
weight function w : E∗ → N such that the demand d(u) of
all the nodes u can be satisfied.

We then relax the assumption on the availability of the
non-rival resources. We refer to the problem of resource allo-
cation as the K-Data-Capacitated Distribution Arborescence
(DCDA). We first introduce the 1-DCDA before generalizing
to the K-DCDA. In the 1-DCDA, we consider that the
resources that a node can contribute to the system is contingent
to data availability. The data can here be seen as a file, a
chunk or a stream. In particular, a node can participate to
the distribution in the overlay only if its demand has been
satisfied first. The 1-DCDA can be formally expressed as
follows. Given an overlay G = (V,E∗), a source s and a
capacity distribution function c(u), u ∈ V , find the weight
function w : E∗ → {0, 1} that maximizes the number of nodes
having a non-null incoming edge. The arborescence rooted
on s formed by non-null weighted edges respects that, for all
nodes u in the arborescence, the number of children of u is
not more than c(u).

We now generalize the problem to the case where the data
are organized into K independent data units, e.g., K chunks
or K different descriptions of a same video stream. The
quality of service q(u) at a node u is an increasing function of
the number of data units, therefore the demand d(u) is K and
corresponds to a perfect quality of service. The distribution
of the data is organized into separate trees Tk, 0 ≤ k ≤ K.
For a node u belonging to Tk, its number of children in Tk
is noted mk(u). The problem of the maximization of the
overall quality of service can be written as :

Problem K-DCDA Given an overlay G = (V,E∗), a
source s and a capacity distribution function c(u), u ∈ V ,
find the K weight functions wk : E∗ → {0, 1}, 0 < k ≤ K,
that maximize the sum of quality of service

∑
u∈V q(u).
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The arborescences Tk rooted on s and formed by non-
null weighted edges in wk respect that, for all node u,∑K
k=1mk(u) ≤ c(u).

This problem specifies the demand as a boolean utility
function on each tree, which generally simplifies the problem
of utility maximization [10]. We do not try to maximize
benefits while spanning all nodes in the network, which is
one of the most studied problem in the literature. Rather, we
aim to maximize the number of fulfilled nodes. Finally, we
note that the solution to the SRA problem is the stationary
regime solution of the K-DCDA problem if the demand of all
the nodes can be satisfied. In the next sections, we show how
to compute optimal and approximate solutions for these two
problems, and we analyze the performance of the resulting
algorithms.

III. OPTIMAL ALLOCATION IN STATIONARY REGIME

Our goal here is to compute the allocation that maximizes
the amount of resources allocated between the peers in the
overlay given their demands and serving capacities. We will
show that such an optimal resource allocation can be computed
in polynomial time. We will derive our solution through a
transformation mapping a problem related to node-weighted
graphs to a maximum flow problem on edge-weighted graphs.
Such a transformation is not unusual [6, 11, 12], however the
problem tackled here has never been formulated before with
a graph-based model featuring two weights for each vertex
in the graph. The maximum flow problem can then be solved
with classic algorithms in polynomial time. We emphasize that
works dealing with similar problems have used powerful but
costly techniques to provide approximate algorithms [4]. In
comparison, our elegant algorithm provides exact solutions in
polynomial time.

A. Transformation into a Flow Network

We associate a network N (G, c, d) = (V ′, E′, w) to our
overlay G, featuring capacity and demand distribution func-
tions c(u) and d(u), u ∈ V . In particular, the set V ′ contains
a sink p, a source s and, for every peer u ∈ V , two vertices
u+ and u−. Let V + be the set {u+ : u ∈ V } and V − =
{u− : u ∈ V }. Formally, we have V ′ = V + ∪ V − ∪ {s, p}.

The set of directed edges E′ includes three distinct subsets.
The first one contains n edges from the source to each vertex
in V +, where n is the size of the vertex set V . The capacity
of an edge (s → u+) is the amount of resources c(u) the
peer u can supply. The second subset comprises n edges from
each vertex in V − to the sink. Here, the capacity of an edge
(u− → p) equals the demand d(u). Finally, in the third subset
of edges, we assign one edge from u+ to v− if there is an edge
(u→ v) ∈ E∗ in the original overlay graph. The capacity of
this edge is infinite2. Thus we can define E′ as E′ = {(s →
u+), (u− → p) : u ∈ V }∪{(u+ → v−) : (u→ v) ∈ E∗}. An
illustration of the transformation described here for the case
of a four peer overlay is shown in Figure 1.

2Adding a fixed link capacity here would be straightforward.

Finally, let f be a flow in N (G, c, d). A weight function w
can be defined as: for every arc (u → v) ∈ E∗, set w(u →
v) to f(u+ → v−). The total amount of allocated resources
over w is exactly the value of f with respect to both demand
and capacity. The SRA resource allocation problem becomes
equivalent to a maximum flow problem on a bipartite graph.

B. Optimal Resource Allocation

In a maximum flow problem, the goal is to find the
maximum value that a flow between a single source and a
single sink can achieve in a network where each edge e has a
nominal capacity c(e). Two famous algorithms for computing
the optimal solution in such instances are Ford-Fulkerson and
Edmonds-Karp. These algorithms have a time complexity in
O(|E| · f) and O(n · |E|2), respectively, where n is the
number of vertices of the flow network, and f the value of
the maximum flow.

If the capacities exceed the demands, the value of a max
flow is equal to the sum of the demands because the capacity
of the links from the nodes in V + to the nodes in V − is
infinite. Therefore, by definition of flow conservation, if the
value of f is equal to the sum of the demands, we obtain that w
reaches the maximum demand. More generally, any maximum
flow f on N (G, c, d) allows to determine an associated weight
function w for G such that the demand for every peer is
fulfilled if and only if the value of f is the sum of the demands.
In other words, an answer to the decision problem can be
immediately deduced from a computation of the maximum
flow.

The max-flow problem can also be solved in a distributed
way. This is very interesting in practice since the nodes
generally do not have a global knowledge about the topol-
ogy. Known distributed algorithms for the max-flow problem
in such a setting are based either on the Ford-Fulkerson
method [13] or on the preflow-push method [14]. A basic
implementation of such an algorithm would allow the compu-
tation of an optimum resource allocation in any peer-to-peer
system.

C. Discussion

Bounded degree max flow problems have been shown to
be NP-complete [15], therefore our algorithm for computing
the optimal resource allocation can not be applied if an
additional constraint to the problem is to bound the number
of neighbors to which any peer can allocate resources. Yet,
such a constraint is frequently encountered in peer-to-peer
systems, as discussed earlier. Hence, another open problem
in P2P capacity allocation consists of designing an algorithm
that would both maximize the resource allocation and limit the
degree of the resulting subgraph comprising only the non-zero
weighted edges.

Through the algorithm described thus far one can determine
if there is an optimal allocation that fulfills the demands of all
nodes in the overlay. However, if all nodes can not be fulfilled,
this algorithm cannot compute the allocation of resources that
maximizes the number of fulfilled nodes in the overlay. The
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Fig. 1. Network transformation of an overlay containing four peers. The maximal capacities of the edges are also indicated.

algorithm presented in the next section is able to find an
allocation that maximizes the number of fulfilled nodes.

IV. DATA-CAPACITATED DISTRIBUTION PROBLEM

We now include non-rival resources in the resource allo-
cation problem, and we compute the capacity of the system
under data availability constraints. A peer can not allocate any
of its uplink bandwidth if it does not have data to transmit first.
The non-rival resources are a set K comprising independent
data units. Data are roughly equivalent in size. The quality of
service associated with a peer is then a function of the number
of received data. We denote by q(u) the service quality for a
node u. The quality of service is a increasing function of the
number of data units received by the peer.

Each data k ∈ K is served to nodes on a separate
arborescence Tk = (Vk, Ek), a directed tree rooted at s
where Vk ⊆ V and Ek ⊆ E∗. The children of a client
u ∈ Vk are denoted by Nk(u), the number of children by
mk(u). The multiple tree construction takes into account the
aforementioned constraint on upload capacity of node u, i.e.,∑
k∈K mk(u) ≤ c(u),∀u ∈ V .
As stated in the problem DCDA, we are interested in

maximizing the overall quality of service in the overlay. Here,
we define this quantity to be the sum of the qualities of
service q(u) experienced by all clients. Our model can support
alternative definitions of the overall quality of service, as
ensuring fairness among the clients or maximizing the number
of clients up to a given quality threshold. We show below that
the K-DCDA is NP-complete, even for K = 1.

A. NP-Completeness of K-DCDA

A formal formulation of the decision problem related with
k−DCDA is:
INSTANCE : A graph G = (V,E∗) with V the set of vertices
and E the set of edges, a root s ∈ V , a positive integer K, a
capacity function c : V −→ N and a positive integer Γ.
QUESTION : Do there exist K arborescences
(Tk = (Vk, Ek))1≤k≤K rooted in s such that:
(1) for any k, we have Vk ⊆ V and if (u → v) is an edge

from Tk then (u→ v) is an edge of G,
(2) for any vertex u ∈ V , the sum of its outdegrees is lower

or equal to its capacity, i.e.,
∑K
k=1m

+
Tk

(u) ≤ c(u),
(3) the total number of vertices belonging to the arbores-

cences is greater or equal to Γ, i.e.,
∑K
k=1 |Vk| ≥ Γ.

We now provide a proof of the NP-completeness of K-
DCDA using a reduction to the famous 3-SAT problem.
3-SAT
INSTANCE : Set U of variables and a collection C of clauses
over U such that each clause c ∈ C has |c| = 3.
QUESTION : Is there a truthful assignment for C?

Theorem 1 K-DCDA is NP-complete even for K = 1.

Proof . Given an instance of K-DCDA Problem and a family
(Tk = (Vk, Ek))1≤k≤K of K arborescence rooted in s, veri-
fying that this family is a valid one is clearly polynomial in
the size of the problem: hence the K-DCDA problem belongs
to NP.

Now, given an instance of the 3 SAT problem comprising
U = {x1, · · · , xn} a set of variables and C = {C1, · · · , C|E|}
a set of clauses on U where Cj = x1

j ∨ x2
j ∨ x3

j , we define
an instance of the K-DCDA problem as follows. Recall that
for any 1 ≤ j ≤ |E| and any 1 ≤ l ≤ 3, we have that
there exists 1 ≤ i ≤ n such that xlj ∈ {xi, xi}. Let V =
{s} ∪ {i, xi, xi : 1 ≤ i ≤ n} ∪ {C1, · · · , C|E|} and let E′ =
{{s, i} : 1 ≤ i ≤ n} ∪ {{i, xi}, {i, xi} : 1 ≤ i ≤ n} ∪
{{xlj , Cj} : 1 ≤ j ≤ |E|, 1 ≤ l ≤ 3}. For 1 ≤ i ≤ n and for
1 ≤ j ≤ |E|, the capacity function is defined as c(s) = n,
c(i) = 1, c(xi) = c(xi) = |E| and c(Cj) = 0. Finally, we
define Γ as 1+2n+ |E|. Clearly the instance of the K-DCDA
problem can be constructed in polynomial time in the size of
the 3-SAT instance. We claim that there exists an arborescence
T = (V ′, F ) solving our instance of the problem K-DCDA if
and only if there exists a truthful assignment for C.

For the forward implication, assume that there exists an
arborescence T = (V ′, F ) fulfilling conditions (1) to (3) of
the problem K-DCDA. As K = 1 + 2n + m = |V ′| and as
for any 1 ≤ k ≤ n, we have c(k) = 1 and c(j) = 0 for
1 ≤ j ≤ |E|, it follows that |{xi, xi} ∩ V ′| = 1 for any
1 ≤ i ≤ n. We define the assignment function ϕ as follows
: ϕ(xi) is set to True if xi ∈ V ′ and False if xi ∈ V ′. But
now, as |V ′| = 1 + 2n + |E| and as for any 1 ≤ i ≤ n it
holds |{xi, xi}∩V ′| = 1, we obtain that for any 1 ≤ j ≤ |E|,
Cj ∈ V ′ and thus that there exists a vertex x′j in {xi, xi :
1 ≤ i ≤ n} such that (x′j , Cj) is an edge of T . But now, by
definition of ϕ, we obtain that the literal associated to x′j has
a True value and thus we obtain that the clause Cj has also a
true value, and thus that ϕ is a truth assignment for C.
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For the backward implication, assume that we have a truth
assignment ϕ for C. We define U ′ the set of true litterals for
ϕ, that is U ′ = {xi : xi ∈ U,ϕ(xi) = True} ∪ {xi : xi ∈
U,ϕ(xi) = False}. Now let V ′ = {s}∪{1, · · · , n}∪U ′∪C,
clearly we have |V ′| = 1+2n+ |E|. As C is True, this means
that for any 1 ≤ j ≤ |E|, there exists at least one literal
yj ∈ Cj such that ϕ(xj) = True. We denote by yj one literal
from Cj which is True by ϕ. We define F = {(s, i) : 1 ≤
i ≤ n} ∪ {(i, xi) : 1 ≤ i ≤ n, xi ∈ U ′} ∪ {(i, xi) : 1 ≤
i ≤ n, xi ∈ U ′} ∪ {(yj , Cj) : 1 ≤ j ≤ |E|}. As by definition
of yj , the literal yj is set to True and by the definition of
F , it is obvious that D = (V ′, F ) is an arborescence rooted
in s and that edges from D are also edges from G. Now we
remain with the capacity constraint. Clearly we have mD(s) =
n, for any 1 ≤ j ≤ |E|, mD(Cj) = 0. Now, as for any
1 ≤ i ≤ n, we have |{xi, xi} ∩ U ′| = 1, we obtain that
mD(k) = 1. Moreover, for any 1 ≤ i ≤ n, we have both
mD(xi) ≤ |E| and mD(xi) ≤ |E|, thus D is an arborescence
fullfilling conditions (1) to (3) and having Γ elements. �

Note that the backward implication above only considers
the case K = 1 since showing that 1-DCDA is NP-complete
also implies that k −DCDA is NP-complete.

B. 1-DCDA Problem Decomposition

As the K-DCDA problem is NP-complete even for K =
1, we focus now on the particular instance of the 1-DCDA
problem where the quality of service is a binary function. The
peers either fulfills their demand d(u) = 1, ∀u ∈ V , or not.
We propose a decomposition of the 1-DCDA problem into a
master problem and several subproblems, which can be solved
efficiently in polynomial time. We introduce first the concept
of level. The vertex s corresponds to the only vertex at level
0; the vertices adjacent to s are at level 1, the vertices adjacent
to those at level 1 are at level 2, and so forth. The level of a
vertex therefore represents its distance (in terms of hops) to
vertex s in the tree. We denote by J = {1, 2, 3, · · · , n−1} the
set of possible levels. We also denote by Vs the set of nodes
V \ {s}.

Let x ∈ {0, 1}(n−1)2 be a matrix defined as:

xjv =
{

1 if v is at level j,
0 otherwise,

for all v ∈ Vs and j ∈ J . Furthermore, let y ∈ {0, 1}|E|(n−1)

be the matrix defined as:

yje =
{

1 if e is selected from level j − 1 to level j,
0 otherwise,

for all e ∈ E and j ∈ J . Then, the 1-DCDA problem is
equivalent to the following mixed-integer linear program P1

P1 : max z(x) =
n−1∑
j=1

∑
v∈Vs

xjv , s.t.

n−1∑
j=1

xjv ≤ 1 , for v ∈ Vs, (1)∑
v∈Vs

x1
v ≤ c(s), (2)∑

v∈Vs

xjv −
∑
v∈Vs

c(v)xj−1
v ≤ 0 , for j ∈ J \ {1}, (3)

n−1∑
j=1

yje ≤ 1 , for e ∈ E, (4)∑
e∈δ(s)

y1
e − c(s) ≤ 0, (5)

∑
e∈δ(v)

yje − c(v)xj−1
v ≤ 0 , for v ∈ Vs, j ∈ J \ {1}, (6)

∑
e∈δ(v)

yje − xjv = 0 , for v ∈ Vs, j ∈ J, (7)

x ∈ {0, 1}(n−1)2 , (8)

y ∈ {0, 1}|E|(n−1). (9)

The assignment of vertex v ∈ Vs to at most one level is
expressed by inequalities (1). Inequalities (2) and (3) bound
from above the number of vertices at level j+1, based on the
number of vertices at level j and the node capacity function c.
Inequalities (4) guarantee that edge e ∈ E is selected at most
once in the induced tree. Inequalities (5) and (6) ensure that
vertex v ∈ V at level j is adjacent to at most c(v) vertices at
level j+ 1, whereas inequalities (7) ensure that vertex v ∈ Vs
at level j is adjacent to exactly one vertex at level j − 1.

This model can be reformulated without the y variables
using Benders’ decomposition [9]. The main principle of
this decomposition consists of separating the variables of the
problem. A master problem, still NP-complete, is in charge
of determining a solution for one variable, while the sub-
problems are responsible to complete the assignment on the
other variables. If this assignment is possible, the whole
problem is solved, otherwise a new constraint is added to the
master problem, which makes its computation quicker.

Now, let X =
{
x ∈ R(n−1)2 : x satisfies (1)− (3) and (8)

}
.

Moreover, let (6.j) and (7.j) denote inequalities (6) and (7)
for a specific value j in J \ {1} and J , respectively. Then, let

Y (1) = {y1 ∈ R|E| : y1 satisfies (5), (7.1) and y1 ∈ {0, 1}m},

while for j ∈ J \ {1} let

Y (j) = {yj ∈ R|E| : yj satisfies (6.j), (7.j) and yj ∈ {0, 1}m}.
Finally, the program P1 can be rewritten as

max
x∈X

z(x) + ζ(s, x1) +
n−1∑
j=2

ζ(xj−1, xj) , (10)

where the subproblems have no incidence on the value of the
final solution, therefore they can be abusively written as:

ζ(s, x1) = max
y1∈Y (1)

0 , (11)

ζ(xj−1, xj) = max
yj∈Y (j)

0 , for j ∈ J \ {1} . (12)
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The idea behind the decomposition in (10) is that a master
problem generates a solution where the nodes are assigned
to levels, and then the individual sub-problems verify if it is
indeed possible to find edges linking the nodes at a given level
with the nodes at the next level while respecting the node
capacity function c. Next, we show that these sub-problems
can be solved in polynomial-time.

Consider an undirected graph Gj = (V j , Ej), a partition
{Lj , Rj} of V j and a function b : Lj −→ N. A semi-perfect
b-matching of Gj is a subset M of edges of Gj such that every
vertex v in Lj is incident with at most bv edges of M and
every vertex in Rj is incident with exactly one edge of M . In
our case, the number of used links from nodes in Lj should
not be higher than the capacity of this node, while only one
link should be used to reach the nodes in Rj . Let M be a
semi-perfect b-matching of Gj . Its incidence vector χ is the
{0, 1}-vector in REj

satisfying

χMe =
{

1 if e ∈MJ ,
0 if e ∈ E \MJ .

The incidence vectors of semi-perfect b-matchings of GJ are
solutions to the following system of linear inequalities

x(δ(v)) ≤ bv for v ∈ Lj , (13)

x(δ(v)) = 1 for v ∈ Rj , (14)

xe ≥ 0 for e ∈ Ej . (15)

A polyhedron P is integral if P is the convex hull of the
integral vectors in P . A pointed polyhedron P (i.e., containing
at least one extreme point) is integral if and only if each
vertex is integral [16]. In the next lemma, we show that the
polyhedron defined by inequalities (13)-(15) is integral.

Lemma 1 The polyhedron

SPMP (Gj , b) = {x ∈ RE
J

: x satisfies (13)− (15)}

is integral, providing it is not empty and Gj is bipartite.

Outline of the Proof . Assume Gj is bipartite and
SPMP (Gj , b) 6= ∅. Let Hj be the incidence matrix of Gj

which is known for being totally unimodular [17]. Matrix Hj

can be partitioned into HLj

and HRj

, where HLj

and HRj

are composed of the rows of Hj indexed by the vertices of
Lj and Rj , respectively. If x∠ denotes the vector of slack
variables of (13), then system (13)-(15) can be rewritten as

A′x′ =

(
HLj

I|Lj |
HRj

0

)(
x
x∠

)
=
(

b
1|Rj |

)
= b′, x′ ≥ 0

From Hj being totally unimodular, we easily conclude that
so is matrix A′. Since b′ is an integral vector, the polyhedron
SPMP (Gj , b) is therefore integral [18]. �

It is straightforward to see that each of the subproblems
(11)-(12) corresponds to determining whether a semi-perfect
b-matching exists on a graph induced by the vertices between
two consecutive levels. In fact, consider any j ∈ J , and define

Lj = {v ∈ V : xj−1
v = 1} and Rj = {v ∈ V : xjv = 1}. (If

j = 1, then L1 is reduced to vertex s.) The subgraph Gj of
G clearly is bipartite because of inequalities (1).

Using Lemma 1 and Farkas’ Lemma [19] (or duality in
linear programming), each of the subproblems (11)-(12) has a
feasible solution if and only if

uJ(Cxj−1 + xj) ≥ 0 for every extreme ray u of C(j),
(16)

where C(j) = {(uj−1uj) ∈ Rnl+nr : (uj−1uj)THj ≥
0, uj−1 ≥ 0} and Hj is the incidence matrix of the subgraph
Gj . Therefore, the integer linear programming formulation

max
x,y

z(x) s.t. (1)− (9)

is equivalent to solving

max
x

z(x) s.t. (1)− (3), (8), (16),

with the separation problem of inequalities (16) being solvable
in polynomial time (it reduces to solving linear programs).

V. HEURISTIC RESOURCE ALLOCATION ALGORITHMS

The previously described decomposition aims to reduce
the computation time of the exact solution. Even if the
decomposition is promising, it still cannot solve the original
K-DCDA problem. In addition, the exponential nature of the
problem makes that it is not reasonable to expect results for
large instances of the problem. Yet, peer-to-peer architectures
make sense when the number of clients is large. Therefore
we are looking for heuristics running in polynomial-time and
determining solutions that are not far from the exact solution.

Several generic approaches have proved to be especially
efficient in searching solutions to NP-hard optimization prob-
lems. For example, genetic algorithms use techniques inspired
by evolutionary biology to compute an almost optimal so-
lution from a set of valid non-optimal instances [20]. The
computation is based on successive steps. At each step, a new
generation of solutions is produced from the previous gener-
ation. The main idea is that these successive generations are
expected to evolve toward better solutions. Various optimiza-
tion techniques have been studied to improve the performance
of genetic algorithms, but, as they are inherently generic,
genetic algorithms are commonly outperformed by dedicated
heuristics applying on a given problem. Nevertheless, we have
implemented a generic algorithm for the K-DCDA, which
allows to compare other heuristics, and to provide an overview
of the solution for a large instance of the problem.

We have also designed a heuristic algorithm described in
Algorithm 1. For each non-rival resource k, a node can be in
one state among four: deadk if it is served in Tk but it has
no more resource to allocate, fulfilledk if the node is served
in Tk and it can serve still one of its neighbors, accessiblek
if it is not served yet in Tk but one of its neighbors is, and
not accessiblek otherwise. At each step, an arborescence Tk
and a node u being in the accessiblek state are chosen. Then
a node in fulfilledk is selected to serve u in Tk. The algorithm
ends when no node is accessiblek in any arborescence Tk.
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Algorithm 1: Greedy Algorithm
Input : a graph (V,E), a source s ∈ V , a capacity

function c : V → N
Output: a set of K arborescence Tk = (Wk, Ek)
Wk ← {s} ; Ek ← ∅1

Deadk ← ∅2

Fulfilledk ← {s}3

Accessk ← N(s)4

Not Acck ← V \ (Accessk ∪Deadk ∪ Fulfilledk)5

while ∃k s.t. Accessk 6= ∅ do6

let Tk a random arborescence with Accessk 6= ∅7

foreach node ∈ Accessk do8

nb not acc← |Nk(node) ∩Not Acck|9

score(node)← min(nb not acc, c(node))10

let sel node the node with max. score11

Poss parent← N(sel node) ∩ Fulfilledk12

let par the node in Poss parent with max. capacity13

add sel node to Wk14

add edge par → sel node to Ek15

c(par)← c(par)− 116

if c(sel node) > 0 then17

move sel node to Fulfilledk18

else19

move sel node to Deadk20

if c(par) = 0 then21

move par from Fulfilledk′ to Deadk′ ,∀k′22

update Accessk′ ,∀k′23

update Not Acck′ ,∀k′24

The choice of the arborescence and the node to serve is
crucial. In Algorithm 1, we describe the “greedy” approach
that has given so far the best results during our simulations.
In line 7, we use a uniform random choice to pick an
arborescence having a non-null set of accessible nodes. This
uniform random choice guarantees no privileged non-rival
resource. Once an arborescence Tk is determined, a node in
accessiblek should be chosen. For every candidate node u,
we evaluate the number of neighbors u is able to serve in
Tk, that is, the score of u depends on its available capacity
and on the number of its neighbors in not accessiblek. This
part of the algorithm is described in lines 8 to 11. Finally, the
algorithm determines a parent for u. Our approach consists
of selecting the node that has the largest amount of available
resource (lines 12 and 13). The remaining of the algorithm
deals with state updating (lines 17 to 24).

This algorithm ensures a greedy construction of every tree,
and supports efficient distributed implementations. In the next
part, we evaluate two variants: the “random” algorithm where
the node to serve is chosen at random instead of using a score,
and the “pre-fixed” algorithm where every node u assigns a
fixed capacity for every tree ck(u),

∑
k≤K ck(u) = c(u), then

the algorithm computes K greedy trees.

VI. PERFORMANCE ANALYSIS

The goal of this simulation is threefold: evaluating the
influence of non-rival resources on the capacity of peer-to-
peer networks, estimating the ratio of fulfilled nodes for
representative overlays, and examining heuristic performances.

A. Configuration

Many recent works, including in standards organization,
have dealt with matching overlay networks and Internet. These
network-friendly overlays are fairly representative of the next
generation of a priori-constructed overlays, yet the degradation
of performances resulting from this non-optimal construction
is still unknown. These overlays illustrate the interest of our
work, so we use in our simulations the proximity of peers into
an underlying Internet to build the overlays. The underlying
network is a matrix of latencies between 2, 500 nodes from the
Meridian project3. For each run, we choose randomly n nodes,
then, for each node, we determine its κ closest nodes among
the selected nodes, and we establish a connection between
them. Therefore, the minimal degree of a node is κ. Note that
a node can be among closest neighbors of more than κ nodes,
so its degree can be larger than κ. As a result, the overlay is
a bi-directional κ-nearest neighbor graph built from a realistic
set of nodes in the Internet. To eliminate random effects, more
than 20 different instances are tested for each measure.

We measure the ratio of allocated resources. In our context,
the demand of peers is the same for all peers, i.e., every peer
would like to receive the same amount of resources. We set
K to 3, and we use d(u) = 3,∀u ∈ V for peers’ demand in
the stationary regime. Hence, it is possible to compare both
resource allocation problems, in stationary regime and when K
non-rival resources should be delivered. The average capacity
is fixed to 3. Note that the average capacity being equal to the
average demand, the system is thus pushed to its limit: a ratio
of allocated resources equal to 1 means a perfect allocation of
resources with no capacity loss.

We show the results obtained by four heuristic algorithms.
The GA algorithm corresponds to an implementation of a
Genetic Algorithm, with an initial population of 150 basic
solutions, and 300 steps. The greedy algorithm is described
in Algorithm 1. Finally, both random and pre-fixed heuristic
algorithms have been previously introduced.

B. Large Instances

Our first focus is on the differences between SRA and K-
DCDA problem solutions, and an overview of the ratio of
fulfilled nodes in large representative overlays.

1) Population Size: The number of peers n varies from
100 to 1, 000, the range of capacities is from to 2 to 4, the
parameter κ is set to 6. Results are plotted in Figure 2.

In these configurations, there exists always a resource
allocation that fulfills all peers in the stationary regime. On
the contrary, all heuristic algorithms fail to find any perfect

3Measurements have been done in May 2004, more information on
http://www.cs.cornell.edu/People/egs/meridian/
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Fig. 2. Ratio of allocated resources vs. population size n for large instances
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Fig. 3. Ratio of allocated resources vs. minimum degree κ for large instances

resource allocation with non-rival resources. Although these
algorithms do not guarantee any optimal solution, we con-
jecture that non-rival resources add a constraint that not only
makes the best allocation harder to determine, but also prevents
some peers to fully use their capacities.

The performances of the GA algorithm degrade quicker than
other heuristic algorithms. Intuitively, the wider is the solution
space, the worse are the performances of genetic algorithms.
As can be expected, GA does not really perform better than
efficient dedicated heuristic algorithms.

A clear hierarchy is revealed among the three other algo-
rithms. The greedy algorithm outperforms both other variants.
We emphasize the bad performances of the pre-fixed algo-
rithm, which fulfills less than half of the peers when n is
1, 000, while almost four fifth of resources can be allocated by
the greedy algorithm. This huge difference demonstrates that a
not-so-clever resource allocation can significantly degrade the
performances of an overlay.

2) Network Density: We consider now various overlay
densities. The minimal degree κ varies from 3 to 15, while
the population size n is fixed to 200. Results are in Figure 3.

In stationary regime, the previous results are confirmed:
even for sparse overlays (κ = 4), a valid resource allocation
can fulfill all nodes. This result highlights the importance of
resource allocation strategies, and the benefits one can expect
from them on any a priori-constructed overlay.
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Fig. 4. Ratio of allocated resources vs. population size n for small instances

With non-rival resources, this optimality can unfortunately
not be reached by our heuristics, though the performances are
excellent for dense networks. When κ grows, the set of peers
that are candidate to be served enlarges, and the random choice
becomes naturally worse than a specific policy. Hence, the
random strategie tends to underperform.

C. Small Instances

We now build small instances with n from 6 to 15 nodes. In
this context, κ is fixed to 3 and the range of upload capacities
is from 0 to 6. On such small instances, exact solutions can
be computed in a reasonable time. Results in Figure 4 aim to
provide a slight indication of the overall performances of our
heuristics. We represent only GA and greedy algorithms.

Unsurprisingly, the GA algorithm succeeds in discovering an
optimal solutions for small n, because a large part of the valid
solution space can be explored, so optimization techniques
detect the best branches. The greedy is contrarily sub-optimal.
In these hard configurations, we observe however that this
algorithm provides allocations that fulfill a large majority of
peers and are at less than 15% to the optimal. Finally, the
results of the exact solutions, especially the impossibility to
obtain a perfect allocation, confirm that non-rival resources
impact the overlay capacity.

VII. RELATED WORKS

The problem of capacity of peer-to-peer networks is a recent
and fairly unexplored topic where related work have focused in
main part on live streaming systems. For instance, [3] models
the overlay network as a rooted tree that exhibits capacity
constraints on its links. Determining the maximal overall
bandwidth that can be allocated to peers in such a setting
is proved to be NP-hard. This work could be included in the
large existing literature on network design problems [21] and
resource sharing in networks of processor-sharing queues [22].
In comparison to these works, as previously described, the
present paper disregards the link constraints but rather consid-
ers that peers have constrained resources. A similar network
model has been considered in [4], where the authors present
several variants of the problem of computing the maximum
bandwidth allocation to all peers in the network. A linear
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programming approximation is presented that applies to all
instances studied in [4], save for the case when the overlay
nodes have bounded outgoing degrees. A similar approach
based on primal-dual algorithms for an edge-weighted network
model is studied in [2]. We have proposed in this paper a
polynomial-time solution for the optimal allocation, based on
a transformation that maps the problem to a max flow problem
on a edge-weighted graph.

Several studies have explored the performance of peer-
to-peer systems for file transfer from one sender to many
destinations. A seminal work in this regard is [5]. Most
of the other related studies have focused on analyzing the
performance of various data scheduling strategies, i.e., how
long does it take to deliver a file to n clients in the network.
For instance, [8] introduces a simple fluid model for analyzing
the performance of Bit-Torrent-like networks. However, the
above models neglect the fact that every peer in the overlay
has only a partial view of its topology. In addition, the peers
simultaneously employ data scheduling, resource allocation,
and neighbour management strategies that is also not taken
into account by these models. In contrast, we consider a
snapshot of the peer-to-peer system where every peer allocates
its rival resources to its direct neighbors. Our aim is to
measure the capacity of the network as determined by the
peer neighborhood relationships, i.e., to compute the resource
allocation that actually satisfies the peers’ demands.

The problem of resource-driven capacity computation is
tighly linked to the problem of efficient tree construction. It
has been shown that determining a Bounded Degree Spanning
Tree (BDST) where no vertex should have more than m
children is however an NP-complete problem for any degree
m ≥ 2 [23]. The BDST is a special case of 1-DCDA problem
when c(u) = m,∀u ∈ V . Many related studies consider
determining a spanning tree having the minimum cost on a
weighted graph [24]. Interesting variations of this problem
feature non-uniform degree bounds [25] or aim at minimizing
the depth of the spanning tree [26]. Our formulation of the
1-DCDA problem differs in two ways. First, we consider an
unweighted graph as in our model the upload capacities of
the peers act as bottlenecks in the system. In contrast, the
above min-cost optimization problems have been motivated
by dimensioning and reducing the cost of the core network
managed by network operators. Second, these earlier works
on spanning trees aim at spanning all nodes in the network
while optimizing an objective function. Differently, the K-
DCDA problem aims at maximizing the number of spanned
nodes under a node degree constraint. The only related work
in this aspect is [27] that studies minimum trees spanning at
least k vertices again in a weighted graph.

When a network is given as a graph with edges associated
with weights and nodes associated with profits, one can
formulate a resource optimization problem such that the profits
of the connected nodes minus the costs of the edges involved
is maximized. This is typically an instance of the Price-
Collecting Steiner Tree Problem (PCSTP) [28, 29], which
generalizes the Steiner Tree Problem. Our problem with one

data asset is similar to PCSTP in the following sense: 1-DCDA
aims to maximize the number of nodes included in the tree
which is equivalent to the case that maximizes the profit of the
nodes when they are associated with a common profit function
and the weights on the edges are zero. However, the problems
are different in that we put constraints on the out degree of
the nodes as otherwise the problem becomes unconstrained.

Finally, numerous works have addressed the design of algo-
rithms aiming to build peer-to-peer application-layer multicast
protocols (see [30] for a survey). The goal is again to span all
nodes in the overlay, however the optimization objectives here
are application related (e.g., to have a distributed implementa-
tion, to reduce the control message overhead or to ensure a fast
recovery in case of failures). Several related algorithms have
been proposed and extensively analyzed through simulations
(see e.g., [31] for a comprehensive study). The most well-
known works include ZigZag and Nice [32] that organize the
peer into clusters in order to reduce the control overhead of
the multicast tree. Similarly, TAG [33] takes into account the
topology of the underlying network when constructing the
multicast tree in order to reduce its delay.

VIII. CONCLUSIONS

This work is a theoretical groundwork for the study of
overlay capacity. We describe an original model and a series
of fundamental results, including a polynomial-time exact
algorithm for stationary regime and a NP-completeness proof
with non-rival resources. As the complexity of this latter
problem requires further investigations, we also describe in
this paper two additional contributions: a quite attractive Ben-
der’s decomposition for quick exact solutions and an efficient
heuristic whose experimental performances have proved to be
good. Besides, we raise in this paper various open problems,
e.g., bounded-degree resource allocation in stationary regime,
or the management of dynamic overlays. From a theoretical
point of view, much efforts should be employed to study
the K-DCDA: designing approximate algorithms, determining
families of overlays on top of which optimal solutions can be
found, analyzing thoroughly models, etc. From an applicative
perspective, we would like to study more deeply efficient
bandwidth allocation for improving the delivery of multiple
description video in peer-to-peer streaming systems. The next
steps include the design of distributed implementations and
the study of video-related quality of services.
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