
More on Castor: the Scalable Secure Routing Protocol
for Ad-hoc Networks

LSIR-REPORT-2009-002

Wojciech Galuba, Panos Papadimitratos, Marcin Poturalski, Karl Aberer
Ecole Polytechnique Fédérale de Lausanne (EPFL)

firstname.lastname@epfl.ch

Zoran Despotovic, Wolfgang Kellerer
DOCOMO Euro-Labs, Munich, Germany

lastname@docomolab-euro.ch

Abstract—Wireless ad hoc networks are inherently vulnerable,
as any node can disrupt the communication of potentially any
other node in the network. Many solutions to this problem have
been proposed. In this paper, we take a fresh and comprehen-
sive approach, simultaneously addressing three aspects: security,
scalability and adaptability to changing network conditions. Our
communication protocol, Castor, occupies a unique point in the
design space: it does not use any control messages except simple
packet acknowledgements, and each node makes routing decisions
locally and independently of other nodes without exchanging
routing state with them. This novel design makes Castor resilient
to a wide range of attacks and allows it to scale to large network
sizes and to remain efficient under high mobility. We compare
Castor against four representative protocols from the literature.
Our protocol achieves up to two times higher packet delivery
rates, particularly in large and highly volatile networks, incurs
no or only limited additional overhead and it is able to survive
more severe attacks and recovers from them faster.

I. INTRODUCTION

The peer-to-peer, distributed operation of ad hoc networks, as
well as the nature of wireless communication pose significant
security challenges. Without appropriate security mechanisms,
the adversary can affect or even control the self-organizing
operation of the network, and degrade or completely prevent
communication. Thus, a fundamental security objective in such
systems is thus to secure communication. Secure communi-
cation protocols should be able to maintain acceptable data
delivery rates under all feasible attacks. Secure route discovery
is essential for solving this problem. Without it, the data sent
across the routes the adversary manipulated would never be
received at their destinations. However, securing the route
discovery is not sufficient:adversaries can always become a part
of the routes by behaving correctly during the route discovery,
and then strategically disrupt communication (e.g., drop or
corrupt packets) once the routes are being used.

It is thus necessary, as some protocols surveyed in §II do,
to utilize a secure data transmission protocol on top of secure
route discovery. Secure data transmission protocols correlate
data delivery failures with specific routes or network areas, pos-
sibly controlled by the adversary. Then, they reroute the traffic,
to avoid the adversary and reestablish reliable communication.

This approach was shown to be effective, especially if suffi-
ciently rich connectivity information is available. Simultaneous
use of multiple paths, redundancy in transmissions, and end-
to-end secure feedback allow for quick route convergence [1].
However, because of system constrains, there may not be

enough bandwidth available for multi-path data transmission.
When resources are scarcer, the generally applicable solution is
a single-path secure communication protocol: sending data and
feedback across a single path, and switching to another path
once the current one is deemed unreliable.

Would such a solution remain efficient and effective in large
and highly volatile networks, even in the presence of powerful
adversaries? Consider networks that are open, mobile and can
grow in size, with the subset of nodes supporting a given
single-path flow constantly changing. Managing the variability,
avoiding the faulty and adversarial nodes, while sustaining
reliable communication is a challenge.

Our Continuously Adapting Secure Topology-Oblivious Rout-
ing (Castor) addresses exactly this problem. Each node keeps
track of the reliability of its neighbors only; none of the
local state is ever exchanged over the network; packet sizes
do not carry routes, thus their length does not grow with
the network size; each node operates fully autonomously,
making routing decisions independently of other nodes and
without knowing the network topology beyond its local one-hop
connectivity. These features make Castor scalable. Moreover,
in-network routing state allows Castor to rapidly adapt to
a wide range of faults, malicious and benign, even under
an overwhelming adversarial presence. Finally, the minimal
exchange of information between the nodes implies there is
little need for authenticating it or securing its transmission;
this enables Castor to operate under the simplest, among those
in the literature, trust assumptions.

Our extensive comparative evaluation shows that Castor
outperforms four other protocols (SRP/SSP, Sprout, SEAD, and
trivially the non-secure AODV), with significant advantages:

• Castor consistently achieves up to 40% higher packet
delivery rate without any additional overhead

• It recovers at least twice as fast as the other protocols
• It is the only one among the five evaluated here that

achieves full recovery from the wormhole attack without
the help of a secure neighbor discovery protocol.

Equally important, Castor maintains its advantage as the
network scales and mobility increases: for example, in a 400
node network with 80 black-holes and continuous mobility,
Castor achieves, with a mild overhead increase, a consistent
60% packet delivery rate, double that of other protocols.

In summary, our main contributions in this paper are:

2

• Castor, a scalable secure communication protocol that is
highly resilient to a wide range of attacks and benign faults

• an extensive comparative performance evaluation with
four other protocols, under various attacks, mobility and
network size settings.

What sets Castor apart is its fundamentally novel approach,
among secure communication protocols, and its versatility, in
spite its simplicity. Castor is the first protocol to demonstrate
robustness against such a large spectrum of attacks and for a
wide range of network scales. Our comprehensive comparative
evaluation of secure communication protocols is also the first
of its kind.

In the rest of the paper, we first discuss related work (§II)
and give an overview of Castor. Then, we define the system and
adversary models (§IV) and present in detail the functionality
of Castor (§V). We analyze its security (§VI) and evaluate the
performance (§VII) before we discuss open questions (§VIII)
and conclude.

This technical report is an extended version of [2]. The
additional material consist in: the pseudo-code of Castor; an
extended cryptographic scheme section, including an alterna-
tive, public key scheme; an extended performance evaluation
section, including the grayhole attack and a summary; and a
more detailed overview of interesting open questions in §VIII.

II. RELATED WORK

Secure ad hoc networking protocols address two main issues:
(a) secure route discovery, to prevent attacks on the dissemi-
nated routing information, and (b) secure data transmission, to
ensure data delivery. Most proposals in the literature considered
the first issue only or assumed the second one is addressed by
upper layer protocols; few ones considered both issues.

Secure route discovery. SRP [3] is an on-demand protocol:
it floods in a controlled manner a route request (RREQ),
with intermediate nodes each appending its identifier. The
destination returns route reply (RREP) packets strictly across
the reverse of the path accumulated in the RREQs. End-
nodes can authenticate each other and their RREQ and RREP
packets; intermediate nodes do not need to authenticate traffic
from end-nodes. Ariadne [4] follows the same principle, but
it authenticates intermediate nodes at the end-nodes. This
increases the trust management complexity and overhead, in
return for stricter identification of the intermediate nodes at
the source. endairA [5] takes essentially the same approach,
utilizing only public key cryptography, and offers increased
resilience to attacks.

SRP, Ariadne, and endairA provide the entire discovered
route (connectivity information) to the source node, and the
same is true for link state protocols such as SLSP [6]. In a dif-
ferent category, implicit route discovery protocols [7] provide
each node with the next hop towards the destination: ARAN
[8] discovers a single route, based on the first-returning RREP
at the source; S-AODV [9] provides security for AODV [10],
authenticating its RREQ, RREP and route error packets; and
SEAD [11] protects distance-vector calculations from distance
decrease, using symmetric key cryptography (while ARAN and
S-AODV use digital signatures).

Secure data transmission. SSP [12] is a secure single-path
protocol that relies on an end-to-end security association; it
transmits packets across a route calculated over the connectivity
the underlying route discovery provides (typically, protocols
such as SRP). The destination validates received data and
responds with acknowledgements; if not, the source detects
a packet loss. The route rating is increased each time an
acknowledgement is received, and it is reduced when a timeout
occurs (no ACK); once the rating drops below a threshold,
the route is discarded and the source switches to another one
(invoking a new route discovery if needed). SSP is robust to
any attack (e.g., wormholes, tunnels, other collusion attacks)
that causes a packet to be dropped; if so, the route is discarded.

Sprout [13] is a protocol that source-routes data across a
single path chosen among many alternative ones. Those paths
are calculated over the topology view a secure link state discov-
ery protocol offers, with nodes broadcasting link state updates
across the network. In order to be resilient against colluding
adversaries that advertise fictitious links, Sprout introduces
mechanisms that prevent the pollution of the network link
state view. Routes are generated and utilized probabilistically,
acknowledgements are returned by the destination, and routes
deemed operational are re-used while new alternative ones are
explored. The link-state operation requires that any node can
identify all other nodes at all times. SSP and Sprout are the
two protocols closer to our Castor.

Other related schemes. ODSBR[14] discovers routes reac-
tively, it updates link weights based on their behavior observed
at the sources, and when communication reliability drops below
a threshold, it augments data packets with probes to identify the
wrong-doer. ODSBR requires that the source knows all nodes
in the network. It can maintain reliability across a route above
a threshold unless two or more colluding attackers are part
of the route [13]. Beyond security protocols, reputation, and
remuneration-based schemes have been considered [15]. All
these schemes are complex and costly (e.g., requiring a full
trust graph, long observation periods), or they can be effective
only against rational adversaries, or they can be susceptible to
attacks that incriminate correct nodes. Finally, a note on the
so called ant-based routing protocols [16], [17], [18] which
somewhat resemble Castor: they do not have an explicit route
discovery phase and use the ”acks” to positively reinforce
paths (by analogy to phermone traces). However, none of them
considered security.

Comparison to Castor. In brief, Castor extends over secure
route discovery, as it falls in the category of the comprehensive
solutions that secure data transmission too; e.g., ODSBR, SRP
plus SSP or SMT, and Sprout. Compared to those, it intro-
duces significant differences. Concisely: (i) Routes need not be
attached to packets, thus packets do not grow in length with
the network size (and thus route length), (ii) there are no route
discovery control packets, only data and acknowledgements,
(iii) the communication reliability information is kept locally
at each node in the network, not at the source, (iv) Castor does
not seek to identify and exclude attackers, and (v) it relies on
the simplest trust management assumptions (same as those of

3

the SRP-SSP combination).

III. PROTOCOL DESIGN OVERVIEW

Castor operates as follows: when the source sends a packet,
intermediate nodes forward it until it reaches its destination,
which then responds with an acknowledgement that follows
the reverse path back to the source. The basic design elements
and ideas behind Castor are discussed next in this section.

Learning from failures. Nodes locally keep per-flow-and-
next-hop reliability metrics (§V-D), which are updated con-
stantly, based on the arriving acknowledgements indicating
success and the acknowledgement timeouts indicating failure.
These metrics are used to select the most reliable next hop for
each incoming packet. If no reliable next hop exists, or if the
recorded history is insufficient for the node to make a choice,
the packet is locally broadcasted. Each node decides whether
to unicast or broadcast independently (§V-C).

Reliability as the primary performance metric. Protocols
that minimize the number of hops or the round-trip time, are
susceptible to an attacker advertising shorter routes or setting up
wormholes or tunnels to attract traffic and then drop passing
data packets. To be robust against such attacks, Castor uses
reliability as its primary metric. Since the routing is reliability-
driven, Castor is able to detect and react to all causes of packet
loss, independent of their nature, be it benign or adversarial.

Response time as the secondary performance metric.
For performance reasons, Castor keeps routes short by giving
preference to the first neighbor responding with an acknowl-
edgment during the route discovery. However, this neighbor can
be routed around if it turns out to be unreliable.

Routing and route discovery as a single process. There are
only two message types in Castor: the payload-carrying packets
and the acknowledgements. When a packet arrives, from the
application layer of the source node or a previous hop, the best
next hop is selected based on the kept performance history.
When the history is insufficient or indicates likely failure then
the protocol seamlessly switches to broadcasts, which serve the
function of route discovery.

Emergent reliable routes. With every node estimating and
acting on local reliability metrics, Castor is able to locally route
to avoid unreliable neighbors. This results in fast global con-
vergence to reliable routes and efficient continuous adaptation
under mobility.

Local repair. In contrast to some other protocols, adversarial
or benign failures do not always cause the costly network-
wide floods to search for better routes. Most of the time,
a Castor node has another reliable neighbor to switch to
when one neighbor fails. It resorts to broadcasting only when
facing severe failures. In most cases, a brief cascade of local
broadcasts reaches a part of the network with reliable next hops
and unicasting resumes.

Secure, isolated routing state. Nodes make routing deci-
sions independently, based only on locally accumulated neigh-
bor reliability metrics. In other words, nodes are oblivious to
any network connectivity information beyond the local neigh-
bors. No routing state is ever exchanged between nodes, which
removes the problem of securing the information exchange.

State locality and minimal control traffic are also key to
Castor’s scalability (§VII-D).

Routing state is stored on a per-flow, not per-destination,
basis. A cryptographic scheme ensures that only the packets
coming from the flow’s source and the acknowledgments
coming from the flow’s destination can influence the routing
state for that flow (§V-B). Despite relying on simple trust
assumptions, these mechanisms provide a strong protection
against routing state pollution by the adversary.

Immutable messages. All message fields in data and ac-
knowledgement packets are immutable, i.e. they do not change
as the message is forwarded across the network. This removes
the problem of preventing field manipulation by on-route ad-
versaries, e.g., ensuring that the hop count in route responses
cannot be decremented.

Resource exhaustion countermeasures. To prevent re-
source exhaustion attacks and unnecessary flooding when des-
tinations are unreachable, Castor uses a flood rate-limiting
mechanism at each node (§V-E). Neighbors that cause too
many packet floods without subsequent acknowledgements are
throttled.

IV. ASSUMPTIONS

A. System Model

We consider a wireless ad hoc network composed of static or
mobile nodes: computing platforms with wireless transceivers
that have a limited communication range. Nodes communicate
directly over the wireless channel with their neighbors. Nodes
assist the other nodes with communication across multiple
links (hops). Each node has a unique identity, which can be
cryptographically validated if needed. Nodes that conform to
system protocols are correct, and those that deviate from them
are adversarial.

Cryptography. Castor requires that for each pair of end
nodes, a source s and a destination d, that wish to communicate
securely across the network, either s and d share a pre-
established symmetric key Ks,d or s knows the public key Kd

of d. Furthermore, we assume d is able to verify the integrity
of the messages sent by s. We also assume that any two correct
neighboring nodes can establish a shared secret symmetric
key, to authenticate their communication. Neighbor-to-neighbor
keys can be established and authenticated in a number of
ways, depending on the system instantiation, e.g., through key
transport or agreement. Authentication can be performed with
the help of local channels, passwords, certificates etc. For
example, a certified public key can serve as the verifiable
unique identity of a node. Moreover, each correct node can
authenticate messages it broadcasts at the data link layer,
utilizing symmetric-key schemes such as [19].

Neighbor discovery. Neighbors are discovered by a simple
mechanism, such as beaconing. We do not require a secure
neighbor discovery protocol, which would prevent the adver-
sary from convincing two non-neighbor nodes that they are
neighbors [20].

4

B. Adversary Model

The adversary controls a number of adversarial nodes, which
can be internal or external. The internal nodes are equipped
with the same cryptographic material as the correct nodes.
For example, a compromised but previously correct node can
become an internal adversary. A single adversarial node can
appear as multiple network nodes, utilizing multiple compro-
mised identities and cryptographic keys.

An adversarial node can arbitrarily deviate from the protocol
definition. In particular, it can drop, modify, and replay any
message. The adversary is, however, computationally bounded
and cannot break cryptographic primitives. If beneficial to
the attacker, an adversarial node can correctly follow the
protocol for any period of time. Adversarial nodes can also
act in coordination and mount collusion attacks. Moreover,
adversarial nodes can communicate across large distances using
fast out-of-band communication links (typically used to mount
e.g., wormhole and tunnel attacks) and jam communication.

The objective of the adversary we consider here is denial of
service: to prevent communication or in other words to prevent
messages from being delivered. In the rest of the paper, unless
stated otherwise, we are concerned with the strongest variant
of adversaries, internal and colluding. We do not seek to thwart
any adversarial behavior that does not result in packet loss. In
particular, we do not address the problem of preventing traffic
interception, eavesdropping or analysis.

C. Metrics

We focus exclusively on flows between correct source-
destination pairs. The primary performance metric is the packet
delivery rate (PDR). More precisely, we are interested in the
network-layer PDR. We want to capture the raw network
performance in the presence of adversaries, without using any
packet retransmission schemes, either at network or upper
layers. Further, we are interested in the bandwidth utilization
per delivered packet.

V. THE PROTOCOL

A. Message specification

Castor uses two types of messages: PKTs and ACKs. The
data packet, PKT, is a tuple (s, d,H, bk, fk, ek,M): s and d
are the source/destination identifiers; H is the flow identifier
(id); bk is the PKT id; fk is the flow authenticator, used for
verifying that the PKT belongs to flow H; ek is an encrypted
ACK authenticator. Finally, M is the payload, which typically
includes an additional integrity protection mechanism.

The acknowledgment packet, ACK, has only one field ak,
an ACK authenticator, which is used for verifying that the
corresponding PKT was delivered to the destination.

B. Cryptographic mechanisms

To ensure the correct flow state updates, the PKT and ACK
fields need to satisfy two properties:
• First, an ACK ak should only be received by an inter-

mediate node if the destination has indeed received the
corresponding PKT bk. More precisely:

(A1) given ak and bk, any intermediate node can verify that
the ACK authenticator ak corresponds to PKT bk,

(A2) given H , PKT bk and ek, as well as any number of
other correct PKTs and ACKs from flow H (i.e., bj ,
ej , fj , and aj , st. j 6= k), only the destination can
recover ak.

To satisfy this requirement, one can choose ak to be a
random nonce freshly generated by the source, set bk =
h(ak) (where h is a cryptographic hash function), and let
ek be an encryption of ak either with the symmetric key
Ksd shared between sa and d or the public key Kd of the
destination. We assume the former for the remainder of
this subsection.

• Second, no node except the source of flow H should
be able to generate a PKT bk that would be verified as
belonging to H . We emphasize that we do not require an
intermediate node to verify that all PKTs originate from
some particular source – which is impossible as in our
setup the source does not pre-share keys with intermediate
nodes. Rather, an intermediate node verifies that all PKTs
originate from the same, but arbitrary source. A precise
statement of this property is:

(B1) given H , bk and fk, any intermediate node can verify
that PKT id bk corresponds to flow H ,

(B2) given H , and any number of correct PKTs and ACKs
from flow H (i.e., bj , ej , fj and aj for j 6= k), only
the source that originated H can generate a new bk,
fk pair that verifies as belonging to H .

There are many cryptographic schemes that can achieve
the properties (A1), (A2), (B1) and (B2); we present here an
efficient solution based on Merkle hash trees, as well as an
alternative public-key scheme. The latter removes the minor
inconvenience of flow restarting, as we explain below. The
pseudocode of the Castor protocol given in Fig. 2, uses the
former scheme.

1) Merkle tree scheme:
PKT generation. For each flow that the source s wants

to send to a destination d, the source pre-generates: (i) a
set of random nonces, a1, . . . , aw, the ACK authenticators,
(ii) a corresponding set of PKT ids bk = h(ak), where h
is a cryptographic hash function and (iii) a Merkle hash tree
with h(b1), . . . , h(bw) as leaves. The root of this tree becomes
the flow id H . The pre-generated values are then used when
sending the k-th PKT (s, d,H, bk, fk = [x1, . . . , xl], ek =
EKsd

(ak),M); ak is encrypted using the key Ksd shared
between s and d. The integers x1, . . . , xl form a sequence of
siblings of the vertices on the tree path from h(bk) up to H
(Fig. 1), necessary to verify that h(bk) is a leaf of the tree, i.e.,
belongs to flow H .

PKT verification. To verify that a PKT (s, d,H, bk, fk =
[x1, . . . , xl], ek,M) belongs to flow H , an intermediate node
checks whether h(. . . h(h(h(bk)||x1)||x2)|| . . . xl) = H , i.e.,
if h(bk) is a leaf of the Merkle tree with root H . The
h(. . . h(h(bk||x1)||x2)|| . . . xl) is a shorthand notation, in prac-
tice the order of concatenations depends on the position of bk
in the Merkle tree. If the above check is successful, the PKT

5

H

x

xl

H

h(h(h(b1)||x1)||x2)

h(h(b1)||x1) x2

xl-1
h(h(h(b1)||x1)||x2)

b1=h(a1) b2=h(a2) bw=h(aw)

h(b1) x1=h(b2) h(bw)

a1 a2 an

Fig. 1. The Castor’s Merkle tree scheme. The tree construction starts by
generating the sequence a1, . . . , aw of random numbers, which are later used
to authenticate the ACKs. These numbers are then hashed to generate another
sequence bk = h(ak). The bk sequence in turn is hashed to form the leaves
of the Merkle tree. The value at each node in the tree computed by hashing the
concatenation (||) of its children. Assume a PKT containing b1 and the vector
H, [x1, . . . , xl]. By checking that h(. . . h(h(bk||x1)||x2)|| . . . xl) = H the
receiving node can verify that the PKT belongs to a flow identified by H .

is forwarded and bk is stored. Otherwise, the PKT is dropped.
Note that unforgeabilty of bk/fk follows from the hardness of
inverting the hash function h.

PKT verification at destination. In addition to the Merkle
tree test, the destination performs additional verification of the
PKT. First, it checks whether bk = h(DKsd

((ek))). Then, it
checks the integrity of the payload M . If all tests are successful,
d accepts the PKT, and sends the corresponding ACK ak to
the neighbor that delivered the PKT. Otherwise, the PKT is
dropped. Note that only the destination is able to generate a
correct ACK without breaking the encryption of ek or finding
a pre-image of bk under h.

ACK verification. Upon receiving and ACK ak, a node
computes h(ak) and checks whether it corresponds to any
stored bk. If yes, the ACK is accepted and rebroadcasted, and
the routing state of the corresponding flow H is appropriately
updated. Otherwise, the ACK is ignored.

Flow restarts. When the source exhausts the a1, . . . , aw
and b1, . . . , bw sets for a given flow, it has to generate them
anew along with the corresponding Merkle tree. This effectively
starts a new flow. The in-network state for the old flow can
no longer be used for routing and new state needs to be
established. In practice, with a high enough value of w, the
amortized bandwidth cost of reestablishing the in-network state
is negligible, especially when compared to the bandwidth cost
of keeping the flow’s routes up-to-date under mobility.

The bandwidth overhead also depends on w in another way.
The vector [H,x1, . . . , xl] has length l+1, where l is the height
of the Merkle tree. The height of the Merkle tree is dlog2 ne,
thus the per-PKT overhead is logarithmically proportional to
n.

In the public-key scheme presented next, the source can
generate new ais and bis on the fly, hence flow restarts are
not an issue.

2) Public key scheme:
PKT generation. Assume a flow from the source s to

destination d. The source generates a public/private key pair
H , H−1 used for generating existentially unforgeable digital
signatures. The public key becomes the flow id, the private key

is kept secret. For the kth PKT the ACK authenticator ak is a
freshly generated random number (a nonce); the PKT id bk is
set to h(ak) where h is a cryptographic hash function; the flow
authenticator fk = SigH−1(bk) is a digital signature of bk; and
ek = EK(ak) is an encryption of ak either with the symmetric
key Ksd shared between s and d or the public key Kd of the
destination.

PKT verification. To verify that a PKT
(s, d,H, bk, fk, ek,M) belongs to flow H , an intermediate
node simply verifies that fk is a digital signature of bk with
key H . If successful, the PKT is forwarded and bk is stored.
Otherwise, the PKT is dropped. The adversary cannot forge
a bk/fk pair without knowing the secret private key H−1,
or breaking the digital signature scheme, both of which are
infeasible.

PKT verification at destination. The destination performs
additional verification of the PKT. First, it checks whether
bk = h(Ksd{ek}), using the key Ksd shared with the source
s. Then, it checks the integrity of the payload M . If all tests
are successful, d accepts the PKT, and sends the corresponding
ACK ak to the the neighbor who delivered the PKT. Otherwise,
the PKT is dropped. Note that only the destination is able to
generate a correct ACK without breaking the encryption of ek
or finding a pre-image of bk under h, both of infeasible for the
adversary.

ACK verification. Upon receiving and ACK ak, a node
computes h(ak) and checks whether it corresponds to any
stored bk. If yes, the ACK is accepted and rebroadcasted, and
the routing state of the corresponding flow H is appropriately
updated. Otherwise, the ACK is ignored.

C. PKT forwarding
Basic forwarding. For every neighbor j = 1 . . . n and for

every encountered flow H , a node i stores a reliability estimator
sH,j ∈ [0, 1]. Consider what happens when i either 1) receives
a PKT, and verifies that it belongs to some flow H (§V-B) or
2) i is the source of the PKT. First, i attempts to forward the
PKT to the most reliable neighbor, according to the values of
all the reliability estimators for the flow H . If no neighbor is
deemed reliable, the PKT is broadcasted to all the neighbors
in search for more reliable routes. Immediately after the PKT
is sent, i starts a timer TH,bk

, which times out after TACK if
the corresponding ACK is not received.

The decision to unicast or broadcast is probabilistic. Let
pmax = maxj=1...n sH,j be the value of the highest reliability
estimator for the flow H among all the neighbors j = 1 . . . n of
node i. The probability that the PKT is broadcasted is e−γpmax ,
otherwise it is unicasted to the next hop with the highest
reliability estimator. Ties are broken by choosing uniformly
at random. The γ > 0 parameter allows for controlling the
bandwidth investment in route discovery depending on the
desired packet delivery rates (PDR).

Duplicate PKTs. If a node receives a PKT that it has
received before, this PKT is not forwarded again. However,
if an ACK corresponding to this PKT was received, the node
rebroadcasts the ACK. If an intermediate node receives a PKT
with bk identical to some previously seen PKT, but with a

6

Algorithm 1: Backward Feedback Protocol at node i

initial values1

authbk
← null, hopbk

← null, ackedbk
← ∅, α

a/f
H,j ← 0, β

a/f
H,j ← 12

3

on receive PKT (s, d,H, bk, ek, fk = [x1, . . . , xl],M) from j4

if h(h(h(bk||x1)||x2)|| . . . xl)! = H or TH,bk
.expired then return5

if i == d and authbk
== null and M not corrupted then6

a′k ← DKsd
(ek)7

if bk == h(a′k) then8

authbk
← a′k9

if i! = d and authbk
== null then10

jmax ← arg maxm=1...nsH,m11

pmax ← maxm=1...nsH,m12

trigger timeout TH,bk
in TACK13

if rand([0, 1]) < e−γpmax then14

hopbk
← all15

broadcast PKT (s, d,H, bk, ek, fk,M)16

else17

hopbk
← jmax18

send PKT (s, d,H, bk, ek, fk,M) to jmax19

if authbk
! = null then20

send ACK(authbk
) to j21

22

on receive ACK(ak) from j23

bk ← h(ak)24

if hopbk
== null or TH,bk

.expired or j ∈ ackedbk
or (hopbk

! = all25

and hopbk
! = j) then return

ackedbk
= ackedbk

∪ {j}26

if authbk
== null then27

authbk
← ak28

broadcast ACK(ak)29

sa
H,j ↑, sf

H,j ↑30

else31

sa
H,j ↑32

33

on TH,bk
timeout34

if hopbk
! = all then35

sa
H,hopbk

↓, sf
H,hopbk

↓36

37

3

Fig. 2. Protocol outline. Castor at node i with neighbors j = 1 . . . n. We
have excluded the PKT duplicate checking mechanism and flood rate-limiting
for brevity. The TH,bk

is the timeout timer fired when waiting for the ACK.
The duration of the timeout is TACK , after which TH,bk

.expired becomes
true; authbk

stores the ACK for PKT bk , if the ACK was received; hopbk
stores the neighbor to which PKT bk was sent; in particular null if PKT bk
was not received; ackedbk

stores the neighbors that sent an ACK for PKT bk .

different payload or encrypted ACK authenticator ek, this PKT
is forwarded further. This is because an intermediate node
cannot tell which of the PKTs with the same authenticator are
incorrect or forged. We explain this in more detail in §VI-B.
The TH,bk

timer is not restarted on PKT duplicates.

D. Updating the reliability estimators
Reliability estimators. The reliability estimator sH,j is an

arithmetic average of two reliability estimators saH,j and sfH,j .
The saH,j estimator is updated more frequently than sfH,j as we
explain next. The ”a” stands for ”all ACKs” and ”f” stands for
”first ACK”.

Both reliability estimators are exponential averages of packet
delivery rates. More precisely, let αaH,j be the running exponen-
tial average of successful deliveries and βaH,j the running ex-

ponential average of failed deliveries; then saH,j = αa
H,j

αa
H,j

+βa
H,j

.
Upon a failure, the updates are: αaH,j ← δαaH,j and βaH,j ←
δβaH,j + 1. We denote this negative update as saH,j ↓. Upon
success, the the reliability estimator is positively (saH,j ↑)
updated: αaH,j ← δαaH,j + 1 and βaH,j ← δβaH,j . Initially,
αaH,j = 0 and βaH,j = 1. Updating of sfH,j is analogous. The
0 < δ < 1 parameter controls how fast Castor adapts; the lower
the value the faster the adaptation.

ACK timeout. Consider the case when TH,bk
times out

before the corresponding ACK(ak) is received. The update
of the estimators then depends on whether the corresponding

PKT was broadcasted or unicasted to some neighbor j. In the
former case, no reliability estimators are changed. In the latter
case, both saH,j and sfH,j are decreased.

ACK reception. Consider the case when node i receives a
valid ACK(ak) from node j before the TH,bk

timeout. If the
corresponding PKT was unicasted and j was the next hop,
both estimators saH,j and sfH,j are increased, and the ACK is
rebroadcasted, otherwise the ACK is ignored (e.g. when coming
from a neighbor that is not j)

If the PKT was broadcasted, the behavior depends on
whether it is the first ACK that was received, or not. In the
former case, both estimators saH,j and sfH,j are increased, and
the ACK is rebroadcasted. Otherwise, only saH,j is increased
and the ACK is not rebroadcasted.

For both broadcasts and unicasts, only one ACK is accepted
per neighbor and per PKT id bk; the subsequent ACKs are
ignored.

Rationale behind the dual reliability estimators. Keeping
track of the first ACKs with sfH,j is a performance optimization.
The primary routing metric in Castor is the packet delivery
reliability, but sfH,j gives preference to lower round-trip routes,
which are typically shorter and consume less bandwidth. A
similar method has been used with success in ARAN [8]
and SRP [3]. On the other hand, using the second estimator,
saH,j , to keep track of all ACKs allows Castor to obtain more
routing information with one broadcasted PKT, leading to faster
convergence under attacks and when exploring routes.

E. Flood rate-limiting

To protect the system from Denial-of-Service attacks ex-
ploiting the PKT flooding (§VI) Castor uses a PKT broadcast
rate-limiting mechanism. The mechanism takes advantage of
the fact that messages are neighbor-to-neighbor authenticated.
For each neighbor j = 1 . . . k the current allowed broadcast
rate rj is kept. The rates are initially set to one per second.
When the broadcast is successful (i.e., when the ACK is
received) the allowed rate is multiplied α = 2, otherwise it
is multiplied by β = 0.5. The rate values are constrained to
the [rmin = 1/10s, rmax = 100/s] range.

The rj rate limit is enforced by maintaining a size 3
leaky bucket rate-limiter for each neighbor, which operates as
follows. A leaky-bucket is a FIFO queue with a fixed maximum
size (three, in our case). The packets can arrive at the queue
at any rate but the queue transmits the packets at a constant
rate r. When the queue size is already at its maximum the
packet is dropped, otherwise it is enqueued. The rate limit can
be adjusted by changing r.

The rate-limiting mechanism affects only the PKT broad-
casts, PKT unicasts and all other messages are unaffected.
We have found that this simple approach provides a strong
defense against the flooding-based DoS attacks. We confirm
that experimentally in §VII-E.

F. Protocol state lifecycle

Castor keeps two types of state: per-bk and per-flow. The
per-bk state is allocated when a PKT with some bk is received
and there is no state for that bk yet. The bk state is deallocated

7

j’(a)

1 j nj+1 i−−−

PKT

1 j nj+1 i

j’

+ +

+

+

+

(b)

j j
PKT

+

j’ +(c)

1 j nj+1 i
PKT

+

+

(c)

Fig. 3. Dropping attack defence. Reliability estimator increase indicated by
”+”, decrease by ”-”.

after TACK , the ACK timeout. The per-bk state is used to keep
track of which next hop was chosen for the bk packets, whether
an ACK arrived and what was its ak authenticator and to track
what packets with the same bk have been sent (for duplicate
PKT handling). The per-flow state is allocated the first time a
packet from the given flow H is received and deallocated after
Tcollect period of flow inactivity. The per-flow state contains
one reliability estimator for each neighbor.

The biggest component of the memory overhead is the per-bk
state. If we assume a 11Mbps medium entirely saturated with
512-byte packets, a 3 second ACK timeout and a (generous)
128 bytes of state per packet then the upper bound on memory
usage is 1056 kilobytes. Note that the same upper bound holds
irrespective of the number of flows. The memory consumption
is only dependent of the number of packets per second the
medium can transmit.

VI. SECURITY ANALYSIS

We first show that Castor is resilient to general attacks
relevant to any routing protocol, and then do the same for
Castor-specific attacks. For presentation clarity, the discussion
in this section assumes a static network. In the evaluation
section (§VII) we demonstrate that Castor’s security properties
also hold under mobility.

A. General Attacks

Packet dropping. An adversarial node drops all (blackhole
attack) or some (grayhole attack) of the packets it is expected
to forward. The fraction of packets a grayhole drops can vary
over time and dropping can be selective, affecting only specific
types of packets.

Consider a packet flow with id H from some correct source
1 to some correct destination n. Assume that the packets are
forwarded by nodes 1, 2, . . . , n−1, n, and that one of the nodes,
say i, is adversarial (Fig. 3).

If i drops a PKT, n does not receive it and does not respond
with an ACK. Our acknowledgment mechanism guarantees that
n is the only node able to generate an ACK for the PKT. On
PKT loss (Fig. 3(a)), every node j = 1, . . . , i− 1 preceding i
on the route times out waiting for the ACK and it decreases the
reliability estimator sH,j+1 for its successor on the route. The
more aggressively i drops, the lower the estimators become.

One of the following eventually happens: j broadcasts the
packet to all of its neighbors (Fig. 3(b)) or the reliability
estimator sH,j′ of some neighbor j′ 6= j + 1 of j exceeds
sH,j+1, and j forwards subsequent packets to j′ (Fig. 3(c)). In
the case (b), some neighbors of j succeed in delivering the PKT,
and respond with a correct ACK, j increases their reliability
estimators and new routes are established. Eventually, after
another packed drop (a) j re-routes to j′, away from the source
of unreliability. This is the fundamental mechanism through
which Castor removes lossy nodes from the routes.

The protocol behavior is similar if the adversarial node i
forwards PKTs, but drops ACKs: Nodes j = 1, . . . , i − 1
timeout waiting for the ACK and the same mechanism ensures
that i is removed from the routes. The only difference to the
PKT dropping is that the successors of i on the route receive
the ACK and increase their respective reliability estimators. In
fact, this is not undesirable, since the resultant routing state
updates are correct.

Jamming. In the jamming attack, adversarial nodes prevent
communication in their respective ranges. Means can vary: the
attack can be mounted on the physical layer or the MAC layer,
continuously or intermittently and selectively. Flows ending in
the jammed regions are effectively denied communication. For
other flows, a jammed region appears as a cluster of black- or
gray-hole nodes and Castor is able to route around them.

Wormholes and tunnels. In a tunnel attack, remote adversar-
ial nodes use their fast links to transfer messages out-of-band,
appearing to be neighbors. In the more powerful wormhole
attack, the out-of-band links are used to almost instantly relay,
without any modification, messages received in one location to
another remote location in the network. Thus, every node at one
end of the wormhole believes to be a neighbor of every node at
the other end. Route discovery mechanisms optimizing for hop-
count or response time (as Castor does) are attracted by such
“shortcuts”, and wormholes and tunnels are likely to become a
part of many routes. The adversary can take advantage of that
and take control over a large fraction of the traffic, which can
then be maliciously dropped or corrupted.

Castor uses the tunnels and wormholes opportunistically as
long as they allow the traffic to pass through. As soon as
the attacker starts dropping the packets, the PKT-ACK loop is
broken and Castor turns to alternative, more reliable neighbors
for routing, avoiding the lossy tunnels and wormholes. We
demonstrate this property experimentally in §VII-B.

Rushing attack. Even without fast out-of-band links, the
adversarial nodes can attempt to place themselves on the routes.
In [21], nodes forward broadcasted PKTs as soon as possible by
exploiting the MAC layer vulnerabilities. From our perspective,
this attack is a weaker variant of a wormhole/tunnel attack:
When the rushing nodes start dropping, they will be routed
around.

Sybil attack. In a Sybil attack, a single adversarial node ap-
pears as multiple nodes to its neighbors, using the cryptographic
material of other compromised nodes. As reliability estimators
are kept on a per-neighbor basis, routing around a Sybil node is
harder: its neighbors have to decrease their reliability estimator

8

for each of the identities of the Sybil node. The Sybil attack is
not very different from the wormhole attack. In a sense, the final
outcome is identical, a node gains a number of false neighbors.
These can potentially become droppers and when they do they
are detected and routed around. In our performance evaluation
(§VII), we focus on the most severe attack in this class of
neighborhood attacks, the wormhole attack.

B. Castor-specific Attacks

Importance of flow isolation. Castor maintains reliability
estimators per-flow, not per-destination, uses flow authentica-
tors to identify the flows and cryptographically binds the PKTs
and ACKs. This ensures that 1) in-network state for each of the
flows is logically isolated and 2) only the messages originating
from the source or the destination can influence the flow’s state.
Without this, an attacker could generate false PKT-ACK pairs
for any chosen flow and maliciously modify the routing state on
all the nodes that the false PKTs and ACKs traverse. This could
be used, for example, to prevent PKT delivery to a legitimate
destination by re-routing the traffic to an adversary-controlled
node.

Message corruption and forgery. The adversary can at-
tempt to corrupt any field of ACKs or PKTs. If the payload M
of a PKT is modified, the data integrity verification fails at the
destination and an ACK is not sent back to the source for that
packet. Thus, any node corrupting the payload appears to its
neighbors as a packet dropper, and it is routed around.

Replay attacks. As explained in §V-B, the adversary cannot
successfully forge flow authenticators in PKTs or ACK authen-
ticators. However it can be replay them. Several variants of
replay attacks are possible. The objective is to influance state
corresponding to legitimate active flows and attempt to reroute
the PKTs in order to discard or corrupt them.

First, an adversarial node on a route can replay a forwarded
PKT multiple times. Forwarding the PKT to the same neighbor
has no effect, as correct nodes forward a given PKT only once.
If the PKT is forwarded to different neighbors, all of them try
to route it towards the destination. The resulting routing state
updates are correct and do not negatively influence the network
performance.

Second, the adversary could replay a PKT in another location
of the network. As is the case with the local replay attack, such
PKTs are routed to the destination, creating correct routing
state, again, without any impact on the performance.

The adversary could, however, modify the PKT parts that
intermediate nodes cannot recognize as invalid: EKsd

(ak) and
M . The Castor nodes forward every distinct copy of the PKT
even if the flow authenticators are identical. This ensures the
correct copy of the PKT will get through despite the nodes also
receiving the malformed clones.

Considering ACK replays, observe that a given ACK can be
used to increase an estimator at node j for some neighbor k at
most once. Hence, it is not possible to artificially increase an
estimator by repeatedly replaying an ACK from one neighbor to
another. Each correct node also ignores ACKs that correspond
to PKTs it never forwarded. In addition, if a PKT was unicasted

to some neighbor j, the corresponding ACK from any node
other than j is ignored.

Finally, the adversary can, using its fast communication
links, “reenact” a correct flow in some other part of the
network. This would require at least two adversarial nodes:
one node i replaying PKTs and another node i′ replaying the
corresponding ACKs. This creates incorrect routing state all
along the reenacted flow. But it has no effect on PDR, as long
as the original flow is disjoint from the reenacted flow. If, for
some reason, the original flow reaches one of the nodes that are
reenacting the flow, then the incorrect routing state delays PKT
delivery by forwarding towards i′. This state is then quickly
corrected if those misrouted PKTs are not delivered. Overall,
this attack cannot be sustained without delivering the PKTs to
the correct destination in order to obtain the fresh valid ACKs
that would be needed to reenact the flow. However, the delivery
to the correct destination defeats the purpose of the attack.

Flooding attack. In Castor, the nodes broadcast the PKTs
whenever no reliable route is known. An adversary could use
the PKT rebroadcasts as an attack amplification device. A high-
rate stream of PKTs could be injected, each PKT belonging
to a distinct new dummy flow. This would trigger a network-
wide flood for each PKT potentially causing global bandwidth
starvation. All the routing protocols relying on flooding for
route discovery have this vulnerability: an attacker can trigger
floods at a high rate and cause Denial-of-Service. Very few
of the existing protocols address that issue. Castor uses flood
rate-limiting (§V-E) that limits how often a given neighbor can
cause a PKT broadcast. We show experimentally (§VII-E) that
this simple measure gives a high level of protection from the
flooding attacks.

In Castpr, a neighbor is allowed a higher rate when the
broadcasts it causes are followed by ACKs. An attacker could
exploit that and set up a colluding node in the network that
would be ACKing the bogus PKT stream and thus allowing a
higher attack rate. However, this also means that there would
be enough bandwidth left for some of the benign messages,
which weakens the attack. In our experiments we found this
attack variant is much more difficult to perpetrate and that it
has lower impact on performance than the simple non-ACKed
PKT flooding. The rate limiters could be precisely tuned to
provide a very strong defence against the ACKed flooding, but
we leave this for future work.

VII. PERFORMANCE EVALUATION

Our evaluation is carried out using the ProtoPeer
(http://protopeer.net) message passing framework,
with JiST/SWANS (http://jist.ece.cornell.edu/)
employed for MANET modeling. Apart from Castor, we have
implemented three other routing protocols: Sprout, SRP and
SEAD. We use the default-setting implementation of AODV
from the JiST/SWANS library. The choice of protocols cov-
ers all combinations of on-demand/proactive and distance-
vector/link-state categories (Fig. 4). Our Sprout implementation
uses the parameters recommended in [13], with one exception:
To handle mobility, the maximum number of routes stored at
a given time is set to 50. When exceeded, the lowest-ranked

9

BFP proactive on-demand
distance-vector

link-state Sprout SRP

SEAD AODV

Fig. 4. Legend. The suite of evaluated protocols covers the whole matrix of
protocol types. Castor could be classified as an on-demand protocol, but does
not fall into either the distance-vector or link-state categories, since in Castor
no network topology information is ever exchanged.

route is removed. The SSP [1] protocol is layered on top of
SRP [3].

We use the random waypoint mobility model. Nodes send
neighbor discovery beacons every 250ms. A node is removed
from the neighbor set if not heard from for 1s. Unless otherwise
stated, the measurements are averaged over 50 independent
runs, 1 hour of simulated time each. Every data point in the
time-involving measurements is a 10 second average. Each of
the 50 runs has distinct node trajectories. The same trajectories
are repeated for all the protocols. We show 90% confidence
intervals. The experimental setup parameters are summarized
in Table I.

TABLE I
EXPERIMENTAL SETUP

General
plane size 3km by 3km

nodes 100, placed uniformly at random,
10 radio neighbors on average

MAC 802.11b at 1Mbps
number of flows 5, source-destination disjoint

flow rate constant bit rate, 4 packets/s
packet payload size 256 bytes

Random waypoint mobility Castor
min. speed 1 m/s γ 8
max. speed 20 m/s δ 0.8
pause time 0s TACK 500ms

SEAD
periodic route update
interval

5s

SRP Sprout
α, β, δ 0.5 γ 1.25
rthr
s 0 αpdr 0.9
rmax
s 1 αrtt 0.9

A. Dropping attack
We implement selective blackholes, dropping all data pack-

ets, but allowing control packets (route discovery) through.
For Castor, the attacker drops unicasted PKTs, and forwards
broadcasted PKT to attract more routes. Fig. 5 shows the
achieved packet delivery rate (PDR), varying the fraction of
adversarial nodes. Recall that we look at the network-layer
PDR, i.e., there are no retransmissions to mask the packet loss.

The AODV and SEAD protocols do not make any end-to-end
checks for packet loss and they are unaware of the blackholes.
The performance of the two protocols is thus significantly
affected. Sprout and SRP monitor route reliability, and thus
significantly improve over SEAD and AODV. However, Sprout
and SRP do per-route performance accounting; when the frac-
tion of attackers is high, most of the routes contain at least
one adversarial node and both protocols take longer time to

0 100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

Castor
Sprout
SRP
SEAD
AODV

Fig. 6. Failure recovery time under blackhole attack. There are 100
immobile nodes. The flows start at the 1 minute mark. At the 5 minute mark 20
nodes become blackholes. The results are averaged over 50 independent runs, 5
simultaneous flows in each run. By keeping track of reliability per-link, Castor
quickly locates the blackholes and recovers within 30s. This is in contrast to
SRP and Sprout, which keep reliability records per-route and converge slower
or might entirely fail to find blackhole-free routes.

converge on a blackhole-free route. In contrast, Castor keeps
reliability records with higher granularity, per-link instead of
per-route, and can detect and route around the attackers much
faster.

Failure recovery time. The benefits of storing reliability
information per-link rather than per-route are clearly demon-
strated by the experiment on Fig. 6. Castor recovers in under
30s, much faster than SRP or Sprout. This even more clearly
shows that storing reliability information per-link is superior
to storing it per-route. This enables Castor to more rapidly
pinpoint the location of the blackholes and reach full recovery
in under 30s. In contrast, the other protocols converge slower
since only the sources are engaged in evaluating the route
reliability and not the whole network as in Castor. The number
of possible routes to test for loss in Sprout and SRP is
combinatorially larger than the number of links to test in Castor.

Even after 30 minutes, Sprout and SRP fail to find reliable
routes for some of the flows, which is reflected in the 50-run
averages. AODV and SEAD, not surprisingly, do not recover
from the attack.

Mobility. While mobility degrades the performance of all
protocols, Castor is the least affected (Fig. 5(b)): Nodes observe
the topology changes locally and most of the time they are able
to select an alternative next hop on the spot or perform a local
flood to repair the route. In contrast, the other protocols must
either: (i) wait for the new topology information to propagate
through the network (Sprout and SEAD) or (ii) wait for the on-
demand route (re)discovery to finish (AODV, SRP). In addition,
the newly discovered routes must be “evaluated” (Sprout, SRP)
for the presence of the black holes.

Bandwidth utilization. Bandwidth utilization for the per-
formed experiments is shown in Fig. 7. Castor is unique among
the five protocols merging the routing and route discovery
phases into one. This comes at the cost of including the full

10

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

(a) No mobility

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

(b) With mobility

Fig. 5. Blackhole attack resilience. We vary the fraction of blackholes in the system with and without mobility. The error bars indicate 90% confidence
intervals. Both SEAD and AODV do not have any defenses against the blackhole attacks and suffer the biggest performance drop. Sprout and SRP track the
reliability on the per-route basis and when there are more blackholes, most of the routes are likely to contain at least one adversarial node and the two protocols
struggle to find an adversary-free path. Castor tracks the reliability per-link and is able to locate and route around the adversarial nodes more accurately.

256 byte data payload in the flooded PKTs. However, often
Castor responds to changing network conditions by simple re-
routing or limited flooding (§V-C), which results in amortized
bandwidth cost comparable to the other protocols.

The two proactive protocols, Sprout and SEAD, require
additional bandwidth for propagating the network topology
information. Under mobility, even in the benign case, Sprout
uses a substantial amount of bandwidth for link-state updates.

Grayhole attacks. We have so far evaluated the protocols
under the black hole attack, where the attacker drops all the
data packets. To make the attack more challenging to detect,
the attacker could mount a grayhole attack in which only a
fraction of the data packets are affected. In the next experiment
the settings is identical to the blackhole setup, except that now
the attacker drops 50% of the packets uniformly at random.
The results are presented on Fig. 8.

The packet delivery rate of Castor, Sprout and SRP are
almost the same as in the blackhole case (Fig. 5). However,
the protocols take more time to identify the attacker nodes and
route around them, when compared to Fig. 6. Unsurprisingly,
AODV and SEAD suffer a much smaller performance drop,
since the attacker affects twice fewer packets.

B. Wormhole attack

We set up a wormhole with three exit points. The points form
an equilateral triangle, each pair of points separated by 1000m.
The wormhole is implemented at the radio layer. Initially, the
wormhole forwards all the packets. At the 5 minute mark, the
wormhole stops retransmitting any data traffic, but still keeps
retransmitting the control traffic and broadcasted PKTs. Out
of all the wormhole behaviors the we tried, this one had the
most severe impact on the performance of all the protocols.
We measure how the PDR changes in response to the attack
(Fig. 9).

Initially, all protocols are attracted to the shorter routes

0 100 200 300 400 500 600

0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

Castor
Sprout
SRP
SEAD
AODV

Fig. 9. Wormhole attack resilience. There are a 100 immobile nodes, a triple
exit point wormhole is present. The wormhole is initially passive, but at the 5
minute mark starts dropping all the data traffic. The results are averaged over
50 independent runs, 5 simultaneous flows each. Castor is the only protocol of
the five that fully recovers from the wormhole attack.

the wormhole offers. After the wormhole stops transmitting
data traffic, AODV and SEAD continue to route through the
wormhole, because the control traffic goes through. As a result,
they suffer from significant packet loss, which is not zero only
because some source/destination are located close enough not to
be attracted to the wormhole routes. SRP and Sprout gradually
switch to routes without any wormhole links. However, because
only the source evaluates the routes, convergence is much
slower than with Castor. In fact, for some flows SRP and
Sprout cannot find an adversary-free route within the simulation
time, and thus do not fully recover. Note, that Sprout has not
been designed to defend against the wormhole attacks [13] and
instead the authors recommend to rely on solutions such as
TrueLink [22]. We did not simulate TrueLink. Castor recovers
from wormholes completely without any additional wormhole

11

0% 20% 50%
0

2000

4000

6000

8000

10000

fraction of adversaries

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]

Castor Sprout SRP SEAD AODV

(a)

0% 20% 50%
0

2000

4000

6000

8000

10000

fraction of adversaries

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]

Castor Sprout SRP SEAD AODV

(b)

Fig. 7. Bandwidth utilization under the blackhole attack. Left: no mobility. Right: mobility. The experimental setup identical to Fig. 5. Even though Castor
floods the network with PKTs that include the full data payload, the amortized bandwidth cost is comparable to the other protocols. The proactive protocols
consume additional bandwidth while exchanging the network topology updates.

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

(a) No mobility

0% 20% 50%
0

0.2

0.4

0.6

0.8

1

fraction of adversaries

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

(b) With mobility

0 100 200 300 400 500 600
0.4

0.5

0.6

0.7

0.8

0.9

1

time [s]
pa

ck
et

 d
el

iv
er

y
ra

te

Castor
Sprout
SRP
SEAD
AODV

(c) No mobility, failure recovery time

Fig. 8. Grayhole attack resilience. We vary the fraction of grayholes in the system with and without mobility. All protocols except AODV and SEAD defend
against the grayholes just as well as the blackholes (Fig. 5). However, the time required to detect the attacker is longer.

defense mechanisms and their overhead.
Other attacks. We did not evaluate tunnel, rushing or

Sybil attacks, as from our perspective they are very similar
in nature, but weaker than the wormhole attack. We also omit
the evaluation of the replay attacks; as show in §VI-B, they do
not pose a significant threat.

C. Performance under mobility

To test how node mobility influences the protocols’ ability to
detect the adversary, we set the number of blackholes to 20%,
and vary the node pause time in the random waypoint model
measuring the PDR (Fig. 10).

Castor’s local failure detection and repair is able to rapidly
reroute the PKTs, when nodes go beyond the radio range or
the new neighbor turns out to be a black hole. Sprout and SRP
need to route more PKTs to determine which routes are reliable
and often this process is slower than the rate of change in
the topology. AODV and SEAD display constant performance,
confirming that its not the mobilty that affects them, but rather
the attack.

3600s 600s 0s
0

0.2

0.4

0.6

0.8

1

pause time

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

Fig. 10. Performance under mobility. There are a 100 nodes, out of which
20 are blackholes. We vary the pause time. Castor is fast both at detecting the
blackholes and reacting to topology changes, while the other protocols either
do not have countermeasures against the blackholes or their detection processes
are slower than the rate of change of the network topology.

12

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

time [s]

pa
ck

et
 d

el
iv

er
y

ra
te

100 nodes, FRL on
100 nodes, FRL off
400 nodes, FRL on
400 nodes, FRL off

Fig. 12. Flooding attack resilience.The attack begins at the 120s mark. The
five 4pkt/s flows begin at 60s. The curves are averages over 50 independent
randomly seeded runs.

D. Scalability
We next measure the performance of the protocols for

different network sizes, keeping node density constant; 20%
of the nodes are blackholes under zero pause time mobility.
The results are shown in Fig. 11.

The routing paths get longer with the increasing network size
and finding an adversary-free path becomes more challenging.
The longer paths are also more likely to break due to mobility.
Under these conditions Castor still outperforms the other pro-
tocols and maintains a 60% packet delivery rate on a 6km by
6km plane with 400 mobile nodes and 80 blackholes.

As the network size increases, the paths get longer and
more damage is caused by mobility, making Castor resort to
PKT flooding more often, which the bandwidth measurements
confirm. The bandwidth utilization of the proactive protocols
(SEAD and Sprout) significantly increases. With 400 nodes,
Sprout experiences a congestion collapse as the network is
overflooded with link-state updates.

E. Flooding attack resilience
Without the flood rate-limiting (FRL) mechanism (§V-E)

Castor is vulnerable to the flooding attack (§VI-B). In what
follows, we experimentally demonstrate the ability of FRL to
thwart such an attack.

An attacker controls a single node, which starts 200 new
dummy flows per second by broadcasting PKTs, each con-
taining a new unique flow authenticator. With FRL inactive,
the attack prevents a large fraction of the traffic from passing
through (Fig. 12). With FRL active, however, the nodes quickly
detect and contain the attacker and reduce the effect of the
attack. Complete recovery may not be possible; in some cases
the source or destination reside in the neighborhood of the
the rapidly broadcasting attacker, which effectively prevents
local communication. In a larger network, the routing paths are
longer on average and it is easier for the malicious PKT flood
to disrupt them. However, when FRL is active in the larger
network, the attack is contained to a smaller area relative to
the whole plane size, thus the performance decrease is smaller.

F. Evaluation summary

Resilience to a wide spectrum of attacks. Unlike the
other evaluated protocols, Castor does not explicitly separate
the route discovery and routing phases and uses the same
fault-tolerance mechanism to protect both of them. The cryp-
tographic scheme used in Castor allows each intermediate
node receiving an acknowledgment to securely verify that
the acknowledgment originated at the destination. Each node
locally attempts to improve its routing decisions with a single
goal in mind: maximize the number of received correct acks.
In this way, Castor’s fault tolerance mechanism abstracts away
from the causes of the failures, which makes the protocol
resilient to a broad spectrum of attacks.

Our evaluation confirmed that Castor is resilient to blackhole
and grayhole attacks even when half of the nodes are compro-
mised. Castor is also the only protocol out of the evaluated
ones that can fully and consistently recover from the wormhole
attacks. As we have argued in §VI, any attacks that have a
local effect and cause loss (e.g. jamming) are eventually routed
around by Castor. In addition, because of the autonomy of
the nodes and the isolation of the flow state (§V-B), Castor
is immune to collusion, rushing and replay attacks.

Fast recovery. Sprout and SRP are both source routing
protocols and build a reliability model of the network at the
sources. The model is constantly updated based on the arriving
or timing out acks and the sources adapt to changing loss and
delay conditions. In contrast, in Castor the reliability model is
distributed; each node locally keeps a performance record of
its neighbors. The reliability information is kept exactly where
it is needed to make the next hop decisions and can be rapidly
updated in reaction to local events. In the other protocols, the
information about the changes in the network take longer to
reach the route planner (the source), thus substantially slowing
down the recovery time compared to Castor. Moreover, Castor
keeps the performance records per-link and not per-route,
which allows it to pinpoint the failures and the attackers more
accurately.

Scalable under mobility. As measured in our evaluation, the
proactive protocols (SEAD and Sprout) do not scale. As the
network grows, more link-state and routing table information
must be exchanged; soon this leaves very little room in the
medium for the data traffic, especially under moderately high
mobility. In contrast, Castor is an on-demand protocol, which
already lowers the bandwidth consumption, but what is more,
Castor floods only conditionally and the floods tend to be
limited to the part of the network that has been damaged by
mobility. As we have shown, this allows the protocol to scale
even under a zero pause time mobility and significant (20%)
presence of the adversary.

VIII. DISCUSSION

Potential for cross-layer design. In our evaluation we
measured the raw packet delivery rate of Castor, without
considering packet retransmissions to mask the failures. It is an
open question how retransmissions would interact with Castor’s
fault-tolerance mechanisms and if this would not make the

13

100 200 400
0

0.2

0.4

0.6

0.8

1

network size

pa
ck

et
 d

el
iv

er
y

ra
te

Castor Sprout SRP SEAD AODV

(a)

100 200 400
0

0.5

1

1.5

2
x 10

4

network size

ba
nd

w
id

th
 p

er
 d

el
iv

er
ed

 P
K

T
 [B

]

Castor Sprout SRP SEAD AODV

(b)

Fig. 11. Scalability. We increase the number of nodes and the plane size, while maintaining the same node density. There are 20% of blackholes under constant
mobility (pause time is zero). The packet delivery rate of all the protocols drops as the network scales up and the longer routing paths break more frequently
under mobility. Castor outperforms the other protocols The proactive protocols (SEAD, Sprout) do not scale. With 400 nodes, Sprout suffers from congestion
collapse caused by the link-state updates saturating the available bandwidth.

protocol more vulnerable to attacks. Moreover, the protocol
uses only two types of messages: PKTs and ACKs, this opens
up the possibility of cross-layer integration with the flow
control protocols such as TCP or ATP [23], which use exactly
the same messaging pattern as Castor.

Optimizing the dynamics. The dynamics of route discovery
and failure detection are driven in Castor by two constants:
γ and δ. The γ parameter controls the process of deciding
whether the current best next hop has an acceptable packet
delivery rate or whether the PKT should be broadcast in search
for better routes. The δ parameter controls the rate of change
of the reliability estimators and the protocol’s sensitivity to
failures. The two parameters have a significant impact on
Castor’s performance and attack resilience. We tuned these
values experimentally but a more formal understanding of
Castor’s dynamics is needed to determine the optimal operating
point.

Improving the adaptivity. The ACK timeout, TACK , was
fixed to 500 ms for all the scenarios in the evaluation. However,
an adaptive timeout, based on the current round trip time mea-
surements for the given destination, could potentially improve
the performance by allowing the protocol to react to loss as
soon as it happens.

IX. CONCLUSIONS

We proposed Castor, a novel secure communication pro-
tocol for ad hoc networks. Despite the very simple PKT-
ACK messaging, the protocol is more resilient to attacks than
any previously proposed secure communication protocols, as
demonstrated by the extensive comparative evaluation. More-
over, Castor abstracts away from the causes of the failure; any
network event leading to packet loss, benign or adversarial, is
detected and the routes continuously adapt to maintain high
packet delivery rate.

Each Castor node locally keeps a performance record of its

neighbors. The reliability information is kept exactly where it
is needed to make the next hop decisions and can be rapidly
updated in response to local events, which as we confirmed
in the measurements, allows for fast failure recovery and fast
adaptation under mobility. All that is achieved while relying on
weak, and thus more practical, trust assumptions.

Several interesting open issues remain. Among them: How
would Castor interact with a reliable transfer protocol? Can
the PKTs and ACKs be taken advantage of for cross-layer
design? How to tune the parameters of Castor, notably the
ones controlling the broadcast vs. unicast behavior, to achieve
the right balance between route exploration vs. exploitation?
Could one extend the reliability estimators to measure both
loss and delay? Finally, how do the potential solutions to the
above problems affect the protocol security?

REFERENCES

[1] P. Papadimitratos and Z. J. Haas, “Secure Data Communication in Mobile
Ad Hoc Networks,” IEEE JSAC, vol. 24, no. 2, 2006.

[2] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic,
and W. Kellerer, “Castor: Scalable secure routing for ad-hoc networks,”
2009.

[3] P. Papadimitratos and Z. Haas, “Secure routing for mobile ad hoc
networks,” in SCS CNDS’02.

[4] Y. Hu, A. Perrig, and D. Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” Wireless Networks, vol. 11, no. 1, 2005.

[5] G. Acs, L. Buttyan, and I. Vajda, “Provably secure on-demand source
routing in mobile ad hoc networks,” IEEE TMC, vol. 5, no. 11, pp. 1533–
1546, 2006.

[6] P. Papadimitratos and Z. Haas, “Secure Link State Routing for Mobile
Ad Hoc Networks,” in Proceedings of the IEEE Workshop on Security
and Assurance in Ad Hoc Networks, 2003.

[7] P. Papadimitratos, Z. Haas, and J. Hubaux, “How to Specify and How
to Prove Correctness of Secure Routing Protocols for MANET,” in IEEE
BROADNETS’06.

[8] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer, “A
Secure Routing Protocol for Ad-hoc Networks,” in IEEE ICNP’02.

[9] M. Zapata, “Secure ad hoc on-demand distance vector routing,” ACM
Mobile Computing and Communications Review, vol. 6, no. 3, 2002.

[10] C. Perkins, E. Belding-Royer, S. Das et al., “Ad hoc on-demand distance
vector (AODV) routing,” RFC 3561, 2003.

14

[11] Y. Hu, D. Johnson, and A. Perrig, “SEAD: Secure efficient distance vector
routing for mobile wireless ad hoc networks,” Ad Hoc Networks, vol. 1,
no. 1, pp. 175–192, 2003.

[12] P. Papadimitratos and Z. Haas, “Secure message transmission in mobile
ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, pp. 193–209, 2003.

[13] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Routing amid colluding
attackers,” in IEEE ICNP’07, 2007.

[14] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“Odsbr: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,” ACM TISSEC, vol. 10, no. 4, 2008.

[15] L. Buttayan and J.-P. Hubaux, Security and Cooperation in Wireless
Networks. Cambridge University Press, 2007.

[16] G. Di Caro and M. Dorigo, “AntNet: Distributed stigmergetic control for
communications networks,” Journal of AI Research, vol. 9, no. 2, pp.
317–365, 1998.

[17] S. Marwaha, C. Tham, and D. Srinivasan, “A novel routing protocol using
mobile agents and reactive route discovery for ad hoc wireless networks,”
in ICON’02.

[18] O. Hussein and T. Saadawi, “Ant routing algorithm for mobile ad-hoc
networks (ARAMA),” in IEEE IPCCC’03, pp. 281–290.

[19] A. Perrig, R. Canetti, J. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” RSA CryptoBytes, vol. 5, no. 2, pp. 2–13, 2002.

[20] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin,
S. Čapkun, and J.-P. Hubaux, “Secure neighborhood discovery: A funda-
mental element for mobile ad hoc networking,” IEEE Communications
Magazine, vol. Vol.46, No.2, February 2008.

[21] Y. Hu, A. Perrig, and D. Johnson, “Rushing attacks and defense in
wireless ad hoc network routing protocols,” in ACM WiSe’03.

[22] J. Eriksson, S. Krishnamurthy, and M. Faloutsos, “Truelink: A practical
countermeasure to the wormhole attack in wireless networks,” in IEEE
ICNP’06.

[23] K. Sundaresan, V. Anantharaman, H. Hsieh, and A. Sivakumar, “ATP:
A reliable transport protocol for ad hoc networks,” IEEE TMC, vol. 4,
no. 6, pp. 588–603, 2005.

