
New Results on Optimizing

Rooted Triplets Consistency

Jaroslaw Byrka1, Sylvain Guillemot2, and Jesper Jansson3

1 Centrum Wiskunde & Informatica (CWI), Kruislaan 413,
NL-1098 SJ Amsterdam, Netherlands and Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, Netherlands. E-mail: J.Byrka@cwi.nl
2 INRIA Lille - Nord Europe, 40 avenue Halley, Bât.A, Park Plaza,

59650 Villeneuve d’Ascq, France. E-mail: Sylvain.Guillemot@lifl.fr
3 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.

E-mail: Jesper.Jansson@ocha.ac.jp

Abstract. A set of phylogenetic trees with overlapping leaf sets is con-
sistent if it can be merged without conflicts into a supertree. In this
paper, we study the polynomial-time approximability of two related op-
timization problems called the maximum rooted triplets consistency prob-
lem (MaxRTC) and the minimum rooted triplets inconsistency prob-
lem (MinRTI) in which the input is a set R of rooted triplets, and where
the objectives are to find a largest cardinality subset of R which is con-
sistent and a smallest cardinality subset of R whose removal from R
results in a consistent set, respectively. We first show that a simple
modification to Wu’s Best-Pair-Merge-First heuristic [25] results in a
bottom-up-based 3-approximation for MaxRTC. We then demonstrate
how any approximation algorithm for MinRTI could be used to approx-
imate MaxRTC, and thus obtain the first polynomial-time approxima-
tion algorithm for MaxRTC with approximation ratio smaller than 3.
Next, we prove that for a set of rooted triplets generated under a uniform
random model, the maximum fraction of triplets which can be consistent
with any tree is approximately one third, and then provide a determin-
istic construction of a triplet set having a similar property which is sub-
sequently used to prove that both MaxRTC and MinRTI are NP-hard
even if restricted to minimally dense instances. Finally, we prove that
MinRTI cannot be approximated within a ratio of Ω(log n) in polyno-
mial time, unless P = NP.

1 Introduction

A supertree method is a method for merging an input collection of phylogenetic
trees on overlapping sets of taxa into a single phylogenetic tree called a supertree.
An input collection of trees might contain contradictory branching structure,
e.g., due to errors in experimental data or because the data originates from
different genes, so ideally, a supertree method should merge the input trees
while keeping as much of the branching information as possible. In this paper,
we investigate the computational complexity of some combinatorial problems at
the core of rooted supertree methods which involve rooted triplets.

1.1 Problem definitions and notation

A phylogenetic tree is a rooted, unordered, distinctly leaf-labeled tree in which
every internal node has at least two children, and a rooted triplet is a binary
phylogenetic tree with exactly three leaves. From here on, each leaf in a phy-
logenetic tree is identified with its label. The unique rooted triplet on leaf set
{x, y, z} where the lowest common ancestor (lca) of x and y is a proper descen-
dant of the lca of x and z (or equivalently, where the lca of x and y is a proper
descendant of the lca of y and z) is denoted by xy|z. If xy|z is an embedded
subtree of a tree T , i.e., if the lca of x and y is a proper descendant of the lca
of x and z in T , then xy|z and T are said to be consistent with each other;
otherwise, xy|z and T are inconsistent. A set R of rooted triplets is consistent if
there exists a phylogenetic tree T such that every xy|z ∈ R is consistent with T .
The set of all rooted triplets consistent with a tree T is denoted by rt(T).

Let L be a set of leaf labels. A set R of rooted triplets over L is called dense
if it contains at least one rooted triplet labeled by L′ for every subset L′ of L
of cardinality three, and simple if it contains at most one rooted triplet for each
such subset. R is minimally dense if it is both dense and simple.

Now, we define the three problems RTC, MaxRTC, and MinRTI. For any
phylogenetic tree T over a leaf set L and a set R of rooted triplets over L, define
C(R, T) = |R∩rt(T)| and I(R, T) = |R\rt(T)| (the number of rooted triplets in
R which are consistent and inconsistent with T , respectively). The rooted triplets
consistency problem (RTC) is: Given a set R of rooted triplets with leaf set L,
output a phylogenetic tree leaf-labeled by L which is consistent with every rooted
triplet in R, if one exists; otherwise, output null. The maximum rooted triplets
consistency problem (MaxRTC) is: Given a set R of rooted triplets with leaf
set L, output a phylogenetic tree T leaf-labeled by L which maximizes C(R, T).
The minimum rooted triplets inconsistency problem (MinRTI) is: Given a set R
of rooted triplets with leaf set L, output a phylogenetic tree T leaf-labeled by L
which minimizes I(R, T). The optima for MaxRTC and MinRTI on an instance
R are denoted by C(R) and I(R), respectively.

An algorithm A for MaxRTC is an α-approximation algorithm (and the
approximation ratio of A is at most α) if, for every input R, the tree output

by A is consistent with at least C(R)
α of the rooted triplets in R. Analogously, an

algorithm B for MinRTI is a β-approximation algorithm (and the approximation
ratio of B is at most β) if, for every input R, the tree output by B is inconsistent
with at most I(R) · β of the rooted triplets in R. An exact algorithm for either
of MaxRTC or MinRTI automatically yields an exact algorithm for the other,
but approximation ratios are not preserved, as will be demonstrated in Section 6.

Denote n = |L| and k = |R| in the problem definitions above. (Thus, k =
O(n3).) Consider a set L and a total order > on L. For any non-negative integer q,
let [L]q be the set of tuples (x1, ..., xq) ∈ Lq with x1 > ... > xq, and let 〈L〉q be
the set of tuples (x1, ..., xq) ∈ Lq having pairwise distinct coordinates. We will
alternatively view a simple triplet set R on L as a partial function R : 〈L〉3 → Z3

such that for each distinct x0, x1, x2 ∈ L, it holds that R(x0, x1, x2) = i if and
only if xi+1xi+2|xi ∈ R. Note that R is fully specified by its restriction to [L]3.

1.2 New results and organization of the paper

We first give a survey of existing results in Section 2. Then, in Section 3, we prove
that a simple modification to Wu’s Best-Pair-Merge-First heuristic [25] turns
it into an approximation algorithm for MaxRTC with approximation ratio at
most 3. In Section 4, we show how any approximation algorithm for MinRTI

could be employed to approximate MaxRTC, and use this result to obtain the
first polynomial-time approximation algorithm for MaxRTC with approxima-
tion ratio smaller than 3. In Section 5, we show that for a set of rooted triplets
generated under a uniform random model, the maximum fraction of triplets
which can be consistent with any tree is approximately 1

3 , and provide a deter-
ministic construction of a triplet set having a similar property. Section 6 proves
that MaxRTC and MinRTI are NP-hard even if restricted to minimally dense
instances, which is a strengthening of the result in [14]. Section 6 also proves
that (unrestricted) MinRTI cannot be approximated within a ratio of Ω(log n)
in polynomial time, unless P = NP. Finally, Section 7 discusses open problems.

2 Previous results

This section lists known results concerning the computational complexity of
RTC and MaxRTC. To our knowledge, MinRTI has not been studied before.

RTC: Aho et al. [1] introduced RTC and gave a recursive top-down O(kn)-time
algorithm for the problem. It uses a so-called auxiliary graph, whose edges are
defined by R, to partition the current leaves into blocks in such a way that each
block consists of all leaves which are in one subtree of the current root, and then
recurses on each block1. Henzinger et al. [11] reduced the algorithm’s complexity
to min{O(n + kn1/2), O(k + n2 log n)} time and O(n + k log3 n) expected time
by employing dynamic data structures for keeping track of the connected com-
ponents in the auxiliary graph under batches of edge deletions. By replacing the
dynamic graph connectivity data structures with newer ones, such as the data
structure by Holm et al. [12], the running time of the algorithm of Aho et al. can
immediately be further improved to min{O(n + k log2 n), O(k + n2 log n)} [17].

Hardness of MaxRTC: MaxRTC was proved to be NP-hard independently
in [4], [15], and [25]. [5] recently observed that the reductions in [4] and [25] are in
fact L-reductions from an APX-hard problem, and hence that the general (non-
dense) case of MaxRTC is APX-hard. [14] modified the reductions of [4] and [25]
to prove that MaxRTC remains NP-hard even if restricted to dense inputs.

Exact algorithm for MaxRTC: Wu [25] gave an exact, dynamic-programming
algorithm for MaxRTC. It runs in O((k + n2)3n) time and O(2n) space.

1 For any L′ ⊆ L, the auxiliary graph G(R, L′) is the undirected graph G(R, L′) =
(L′, E), where E contains edge {x, y} if and only if there is some xy|z in R with
x, y, z ∈ L′. Then, each connected component of G(R, L′) induces a block of L′.
During execution, if any auxiliary graph having more than one vertex consists of
just one connected component then the algorithm returns null and terminates.

Approximation algorithms for MaxRTC: The first polynomial-time appr-
oximation algorithms for MaxRTC, henceforth referred to as One-Leaf-Split
and Min-Cut-Split, were proposed by Ga̧sieniec et al. in [9]. Both algorithms
are greedy, top-down algorithms. One-Leaf-Split achieves a constant ratio ap-
proximation of MaxRTC; more precisely, it runs in O((k + n) log n) time and
constructs a caterpillar tree which is guaranteed to be consistent with at least one
third of the input rooted triplets. On the other hand, Min-Cut-Split proceeds
exactly as the algorithm of Aho et al. [1] with two modifications: (1) the auxiliary
graphs are edge-weighed; and (2) if an auxiliary graph has more than one vertex
but only one connected component then instead of giving up, Min-Cut-Split
will find a minimum weight edge cut in the auxiliary graph, delete those edges,
and continue2. Since deleting an edge from an auxiliary graph corresponds to
deleting one or more rooted triplets from R and since there are at most n − 2
recursion levels containing non-trivial auxiliary graphs in the algorithm of Aho
et al., it follows that if W denotes the total weight of the input rooted triplets
and t the minimum total weight of triplets to remove to achieve consistency
then Min-Cut-Split constructs a tree which is consistent with a subset of R
whose total weight is ≥ W − (n − 2)t. This also implies that Min-Cut-Split

yields an (n− 2)-approximation algorithm for MinRTI. Min-Cut-Split can be
implemented to run in min{O(kn2 + n3 log n), O(n4)} time.

Snir and Rao [24] presented a greedy, top-down, polynomial-time heuristic
for MaxRTC called MXC which resembles Min-Cut-Split. The difference is that
MXC augments the auxiliary graphs with extra edges, and whenever the algorithm
of Aho et al. is stuck with a single connected component, instead of taking a min-
imum weight edge cut, MXC tries to find a cut that maximizes the ratio between
the extra edges and the ordinary edges. Although the worst-case approximation
ratio of MXC is unknown, it appears to perform very well on real data [24].

Wu [25] gave a greedy, bottom-up, polynomial-time heuristic for MaxRTC

named Best-Pair-Merge-First which is structurally similar to the well-known
UPGMA/WPGMA and Neighbor-Joining methods, described in detail in, e.g.,
[7]. It starts with singleton sets, each containing a single leaf label, and repeatedly
merges two sets until all leaf labels are in the same set; whenever two sets A
and B are merged, a new internal node is created that represents the merged set
and whose two children are the (already existing) nodes representing A and B.
A special scoring function determines which pair of sets to merge at each step.
Best-Pair-Merge-First does the above six times (using six different scoring
functions) and returns the best solution among those six. No theoretical analysis
of the worst-case performance of Best-Pair-Merge-First was provided in [25],
but Wu demonstrated by extensive simulations that this heuristic performs well
in practice (source code in C is available from the author’s webpage).

A PTAS for MaxRTC restricted to dense inputs, based on the work of [20]
for the analogous unrooted (and more difficult) problem, was outlined in [16].

2 Semple and Steel [23] later independently developed a heuristic for merging a set
of phylogenetic trees with overlapping leaf sets that uses a very similar idea, and
Page [22] further modified the heuristic of Semple and Steel.

Miscellaneous related results: Other problems related to RTC/MaxRTC

have been studied in the literature. Ng and Wormald [21] showed how to ef-
ficiently construct all solutions to RTC for any input set of rooted triplets.
Ga̧sieniec et al. [8] considered RTC and MaxRTC for ordered trees. He et
al. [10] gave algorithms for a variant of RTC/MaxRTC called the forbidden
rooted triplets consistency problem in which the input consists of a “good” set
and a “bad” set of rooted triplets, and the objective is to construct a tree which
is consistent with all of the rooted triplets in the good set and none of the
rooted triplets in the bad set. Recently, extensions of RTC/MaxRTC to phy-
logenetic networks (generalizations of phylogenetic trees in which certain nodes
are allowed to have more than one parent) have been studied in [5, 13, 14, 18, 19].

3 A bottom-up 3-approximation algorithm for MaxRTC

Here, we modify Wu’s Best-Pair-Merge-First heuristic [25] to achieve an appr-
oximation ratio of at most 3. Although MaxRTC already admits a polynomial-
time 3-approximation by One-Leaf-Split (see Section 2), our new result is sig-
nificant because Best-Pair-Merge-First outperforms One-Leaf-Split in prac-
tice [25] and Wu left it as an open problem to derive its approximation ratio. Also,
Best-Pair-Merge-First uses a bottom-up approach while One-Leaf-Split

works top-down, and future work may try to incorporate both approaches.
The new algorithm is called Modified-BPMF and is listed in Fig. 1. Intuitively,

in each iteration it looks for two currently existing trees Si, Sj whose leaves
participate in many rooted triplets of the form xy|z where x belongs to Si,
y belongs to Sj , and z belongs to neither Si nor Sj , and then merges Si and Sj .

Algorithm Modified-BPMF

Input: A set R of rooted triplets on a leaf set L = {ℓ1, ℓ2, . . . , ℓn}.
Output: A tree with leaf set L consistent with at least one third of the rooted
triplets in R.

1. Construct the set S = {S1, S2, . . . , Sn}, where each Si is a tree consisting of
a leaf labeled by ℓi.

2. Repeat n − 1 times:
(a) For every Si, Sj ∈ S, reset score(Si, Sj) := 0.
(b) For every xy|z ∈ R such that x ∈ Si, y ∈ Sj , and z ∈ Sk for three different

trees Si, Sj , Sk, update score as follows:
score(Si, Sj) := score(Si, Sj) + 2;
score(Si, Sk) := score(Si, Sk) − 1;
score(Sj , Sk) := score(Sj , Sk) − 1.

(c) Select Si, Sj ∈ S such that score(Si, Sj) is maximum.
(d) Create a tree Sk by connecting a new root node to the roots of Si and Sj .
(e) S := S ∪ {Sk} \ {Si, Sj}.

3. Return the tree in S.

Fig. 1. Algorithm Modified-BPMF.

We now analyze the approximation ratio of Modified-BPMF. Let T be the
final tree returned in Step 3. For any node u of T , let L[u] be the set of leaf
labels in the subtree of T rooted at u. For each internal node u in T , denote
the two children of u by u1 and u2, and let R(u) be the subset of R defined
by R(u) = {xy|z ∈ R : ∃a, b, c ∈ {x, y, z} such that a ∈ L[u1], b ∈ L[u2], and
c 6∈ L[u1] ∪ L[u2]}. Observe that for any two internal nodes u and v, R(u) and
R(v) are disjoint. Also, each xy|z ∈ R belongs to R(u) for some internal node u.
Thus, the internal nodes of T partition R into disjoint subsets. For each internal
node u of T , further partition the set R(u) into two disjoint subsets R(u)′

and R(u)′′ where R(u)′ are the rooted triplets in R(u) which are consistent
with T and R(u)′′ = R(u) \ R(u)′.

Lemma 1. |R(u)′| ≥ 1
3 · |R(u)| for each internal node u of T .

Proof. Consider the iteration of Modified-BPMF(R) in which the node u is cre-
ated as a new root node for two trees Si and Sj selected in Step 2c. Clearly,
score(Si, Sj) ≥ 0. Moreover, by the definition of score in Steps 2a and 2b
and the construction of T , we have score(Si, Sj) = 2 · |R(u)′| − |R(u)′′|. Since
|R(u)′′| = |R(u)| − |R(u)′|, we obtain |R(u)′| ≥ 1

3 · |R(u)|. ⊓⊔

Theorem 1. For any set R of rooted triplets, Modified-BPMF(R) returns a tree
consistent with at least one third of the rooted triplets in R.

Proof. Follows directly from Lemma 1 and the fact that R is partitioned into
disjoint subsets by the internal nodes of T . ⊓⊔

Modified-BPMF can be implemented to run in O(k+n3) time by using O(k+
n2) time for preprocessing and then spending O(n2) time in each iteration to find
the best pair of trees to merge and O(n2+|R(u)|) time in each iteration to update
all relevant scores. This is faster than One-Leaf-Split for k = ω(n3/ log n).

4 Approximating MaxRTC by using MinRTI

In this section, we investigate how approximation algorithms for MinRTI can
be used to approximate MaxRTC.

Theorem 2. Suppose B is a β-approximation algorithm for MinRTI for some
β > 1. Let A′ be the approximation algorithm for MaxRTC which returns the
best of the two approximate solutions obtained by: (1) applying Modified-BPMF

to the input R; and (2) applying B to R and taking the complement relative
to R. Then the approximation ratio of algorithm A′ is at most (3 − 2

β).

Proof. Let a′(R) be the number of rooted triplets in R consistent with the tree
returned by A′. Since A′ returns the best of the two approximate solutions
obtained by (1) and (2) above, a′(R) ≥ 1

3 · k (according to Theorem 1) and
a′(R) ≥ k − β · (k − C(R)) always hold. There are two possibilities:

• k > 3β
3β−2 · C(R) : Then, a′(R) ≥ 1

3 · k > 1
3 · 3β

3β−2 · C(R) = 1
3− 2

β

· C(R).

• k ≤ 3β
3β−2 ·C(R) : In this case, a′(R) ≥ k−β ·(k−C(R)) = β ·C(R)−(β−

1)·k ≥ β ·C(R)−(β−1)· 3β
3β−2 ·C(R) = (β− (β−1)·3β

3β−2)·C(R) = 1
3− 2

β

·C(R).

In both cases, we have a′(R) ≥ 1
3− 2

β

· C(R). ⊓⊔

By plugging in Min-Cut-Split (see Section 2) into Theorem 2, one obtains:

Corollary 1. MaxRTC admits a polynomial-time (3 − 2
n−2)-approximation.

5 Random and pseudorandom triplet sets

This section examines properties of minimally dense sets of triplets constructed
in a random or pseudorandom fashion. We first show that for a triplet set, gener-
ated under a uniform random model, the maximum fraction of triplets that can
be consistent is approximately one third. We then adapt a construction from [2]
to obtain a deterministic construction of a triplet set having a similar property.

Let L be a set of n elements. Consider a minimally dense set R of rooted
triplets on L generated by the following random model: for each t ∈ [L]3, R(t)
is a uniformly chosen random element of Z3. The following theorem shows that
the maximum fraction of triplets which can be consistent is approximately 1/3.

Theorem 3. Let µ = 1
3

(

n
3

)

. Let δ(n) be any function such that δ(n) = Ω(log n
n).

With high probability: C(R) < (1 + δ(n))µ.

Proof. Fix δ. Given a binary tree T on L, we compute the probability that
C(R, T) deviates from its expectation by a factor 1+δ. Given a triplet t ∈ rt(T),
denote by χ(R, t) the indicator variable which equals 1 if t ∈ R and 0 oth-
erwise. Observe that C(R, T) is a sum of i.i.d. random variables: C(R, T) =
∑

t∈rt(T) χ(R, t). Since E[C(R, T)] = µ, a straightforward application of Cher-

noff bounds yields: P[C(R, T) > (1 + δ)µ] ≤ exp(−cµδ2) for some constant c.
Now, apply union bounds to obtain: P[C(R) > (1 + δ)µ] ≤

∑

T P[C(R, T) >

(1 + δ)µ] ≤ 2n log nexp(−cµδ2). Observe that if δ = Ω(log n
n) then cµδ2 =

Ω(n log2 n), hence the above expression tends to 0 as n tends to infinity. ⊓⊔

In the rest of this section, we describe a deterministic construction of a min-
imally dense random-like triplet set. It uses the following algebraic construction
which generalizes the construction of [2] by introducing an additive parame-
ter q. The construction provides an s-coloring of the hyperedges of the complete
r-uniform hypergraph, with the pseudorandom properties stated in Lemma 2
below.

Definition 1. Consider integers r, s > 1, a prime p with s | p−1, and an element
q ∈ Zp. Let g be a generator of Z

∗
p, let H be the subgroup of Z

∗
p generated by gs,

and for each i ∈ [s] let Hi be the coset Hgi.
For an element j ∈ Z

∗
p, define [j]sp = i if j ∈ Hi, and define [0]sp = 0. Define

φr,s
p,q : Z

r
p → [s] so that for each j = (j1, ..., jr) ∈ Z

r
p, φr,s

p,q(j) = [j1 + ... + jr + q]sp.

Furthermore, for any set A ⊂ Z
r
p, and j ∈ [s], write: nj(A) = |{i ∈ A :

φr,s
p,q(i) = j}|. The following lemma from [2] states that if A arises from a cartesian

product and if |A| is large enough, then the fraction of hyperedges of A which
have color j ∈ [s] is approximately 1/s.

Lemma 2 ([2]). Let A1, ..., Ar be subsets of Zp, and let A = {i ∈ [Zp]
r : ij ∈

Aj , j = 1...r}. Then for all j ∈ [s], |nj(A)−|A|/s| ≤ cr|A|1/2(log |A|)r−1p(r−1)/2

for some global cr > 0 that depends only on r.

We apply the construction of Definition 1 with r = s = 3 to obtain a mini-
mally dense triplet set Rp on Zp with random-like properties. More precisely, we

define Rp so that for each distinct x, y, z ∈ Zp, Rp(x, y, z) = φ3,3
p,0(x, y, z). The

next theorem shows that Rp is random-like: every binary tree is consistent with
approximately one third of the triplets in Rp. The proof relies on Lemma 2.

Theorem 4. For any binary tree T on Zp, it holds that |C(Rp, T) − 1
3

(

p
3

)

| ≤

cp5/2 log p for some constant c.

Proof. Fix z ∈ Zp. Let Lz,1, ..., Lz,m be the clusters hanging along the path in
T from z to the root; these sets form a partition of Zp\{z}. For each i ∈ [m], let
nz,i be the number of triplets of Rp ∩ rt(T) of the form xy|z with x, y ∈ Lz,i.
We then have: C(Rp, T) =

∑

z∈Zp

∑

i nz,i.

Fix i ∈ [m], and let Az,i = [Lz,i]
2. We will show that |nz,i − |Az,i|/3| ≤

cp3/2 log p. Define the sets L
(1)
z,i = {x ∈ Lz,i : x < z} and L

(2)
z,i = {x ∈ Lz,i :

x > z}, and partition Az,i into three sets A
(1)
z,i = [L

(1)
z,i]

2, A
(2)
z,i = L

(2)
z,i × L

(1)
z,i ,

A
(3)
z,i = [L

(2)
z,i]

2. Next, define f : [Zp\{z}]
2 → Z3 by setting f(x, y) = φ2,3

p,z(x, y).

Given A ⊂ [Zp]
2, j ∈ Z3, we set n′

j(A) = |{i ∈ A : f(i) = j}|. We then have:

nz,i = n′
1(A

(1)
z,i) + n′

2(A
(2)
z,i) + n′

3(A
(3)
z,i)

Since f = φ2,3
p,z, Lemma 2 applies and yields the following inequality: for each j ∈

{1, 2, 3}, |n′
j(A

(j)
z,i) − |A

(j)
z,i |/3| ≤ c′|A

(j)
z,i |

1/2(log |A
(j)
z,i |)p

1/2 for some constant c′.
By using the triangle inequality and by summing over index j, we obtain: |nz,i−
|Az,i|/3| ≤ c|Az,i|

1/2(log |Az,i|)p
1/2 for some constant c. Let S =

∑

z∈Zp

∑

i |Az,i|

and S′ =
∑

z∈Zp

∑

i |Az,i|
1/2. By summing over indices z, i in the previous

inequality, we obtain |C(Rp, T)−S/3| ≤ cS′p1/2 log p. We conclude by observing
that S =

(

p
3

)

and that S′ ≤ p2 (this last inequality following from the fact that

for fixed z,
∑

i |Az,i|
1/2 ≤

∑

i |Lz,i| = p − 1). ⊓⊔

Corollary 2. |C(Rp) −
1
3

(

p
3

)

| ≤ cp5/2 log p.

6 Hardness results

6.1 Minimally dense inputs

Our first hardness result concerns the computational complexity of MaxRTC

and MinRTI for minimally dense inputs. It is based on the deterministic con-
struction of a minimally dense random-like triplet set given in Section 5 and is
a non-trivial strengthening of the NP-hardness proof for dense inputs in [14].

Theorem 5. MaxRTC restricted to minimally dense instances is NP-hard.

Proof. We reduce the general (non-dense) case of MaxRTC (which is already
known to be NP-hard [4, 15, 25]) to the minimally dense case, following an ap-
proach inspired by [2, 3]. Starting with an arbitrary instance, the approach con-
sists in replicating each label p times (which is called inflating the instance),
and making the resulting instance dense by adding a pseudorandom triplet set.
Formally, the reduction proceeds as follows. Consider a triplet set R on L given
as an instance of MaxRTC. Let n = |L|, let p be a prime number, and let
L′ = {xi : x ∈ L, i ∈ Zp}. Define the minimally dense triplet set R′ on L′ by:

1. if R(x, y, z) is defined then R′(xi, yj , zk) = R(x, y, z);
2. if R(x, y, z) is undefined and i, j, k distinct then R′(xi, yj , zk) = Rp(i, j, k),

where Rp is the minimally dense triplet set defined in Section 5;
3. otherwise, R′(xi, yj , zk) is an arbitrary element of Z3.

For i ∈ {1, 2, 3}, let R′
i be the triplet set defined by condition i., so that R′ =

R′
1 ∪ R′

2 ∪ R′
3. Observe that R′ is obtained by inflating R, resulting in R′

1,
and completing the instance by a pseudorandom triplet set R′

2 and an arbitrary
triplet set R′

3. The correctness of the reduction follows from the fact that inflating
the instance multiplies the measure by a factor p3, while completing the triplet
set introduces noise which can be made small by proper choice of p, in such a
way that an optimum for R can be recovered from an optimum for R′. More
precisely, let us introduce the following notation. Let N1 = n, let N2 = n(n−1),
let N3 be the number of triples {x, y, z} such that R(x, y, z) is undefined, and
let N = N1 + 8N2 + 27N3. It can be shown that:

1. C(R′
1) = p3C(R);

2. for each binary tree T on L′, |C(R′
2, T) − N

(

p
3

)

/3| ≤ cNp5/2 log p;
3. for each binary tree T on L′, C(R′

3, T) ≤ Np2.

where 2. follows from the pseudorandomness of Rp stated in Theorem 4.
It follows that C(R′) is an approximation of C(R1) + Np3/18 = p3C(R) +

Np3/18 within an additive error of cNp5/2 log p, for some constant c. Dividing by

p3/18, we obtain | 18C(R′)
p3 −(18C(R)+N)| ≤ c′Np−1/2 log p for some constant c′.

Since N = O(n3), we can choose p polynomially bounded in terms of n such that

the right member is less than 1
2 , implying that ⌊ 18C(R′)

p3 ⌋ = 18C(R) + N . ⊓⊔

Corollary 3. MaxRTC restricted to minimally dense instances is NP-hard.

Proof. Follows from Theorem 5 and the fact that MinRTI is the supplementary
problem of MaxRTC. ⊓⊔

6.2 Polynomial-time inapproximability of general MinRTI

We now establish a hardness of approximation result for MinRTI in the general
case, namely a logarithmic inapproximability by reduction from Hitting Set.

Theorem 6. MinRTI is not approximable within Ω(log n) unless P = NP.

The proof of this theorem is carried out in two steps. We first consider a
weighted version of MinRTI, called MinRTI-W, defined as follows. Given a
label set L, let T (L) be the set of all possible rooted triplets over L. A weighted
triplet set on L is a function R : T (L) → N, and given a binary tree T on L, we
define I(R, T) =

∑

t∈T (L)\rt(T) R(t). The MinRTI-W problem takes a weighted

triplet set R on L and seeks a binary tree T on L such that I(R, T) is minimum.
We give a measure-preserving reduction from Hitting Set to MinRTI-W

(Lemma 3) and a measure-preserving reduction from MinRTI-W to MinRTI

(Lemma 4). The hardness of approximation of MinRTI then follows from [6].

Due to space limitations, the proof of Lemma 3 has been omitted from
this conference version of the paper. Please refer to the full version for a com-
plete proof.

Lemma 3. There exists a measure-preserving reduction from Hitting Set to
MinRTI-W.

Lemma 4. There exists a measure-preserving reduction from MinRTI-W to
MinRTI.

Proof. Given a weighted triplet set R on L, construct an unweighted triplet set
R′ on L′ where the label set L′ is obtained from L by adjoining labels ti for each
t ∈ T (L), 1 ≤ i ≤ R(t), and the triplet set R′ consists of the triplets xti|z, yti|z
for all t = xy|z ∈ T (L), 1 ≤ i ≤ R(t). The next two claims imply that the
reduction is measure-preserving.

Claim 1. Given a binary tree T on L, we can construct in polynomial time a
binary tree T ′ on L′ such that I(R′, T ′) = I(R, T).

Proof of Claim 1. Let < be an arbitrary total order on L. Starting with T ,
we define T ′ as follows: for each triplet t = xy|z ∈ T (L) with x < y, for each
1 ≤ i ≤ R(t), insert ti as a sibling of x. We claim that I(R′, T ′) = I(R, T).
Indeed, consider t = xy|z ∈ T (L) with x < y, then: (i) if xy|z ∈ rt(T), then for
each 1 ≤ i ≤ R(t), xti|z, yti|z ∈ rt(T ′), hence the contribution of these triplets
to I(R′, T ′) is 0; (ii) if xz|y ∈ rt(T), then for each 1 ≤ i ≤ R(t), xti|z ∈ rt(T ′)
but yti|z /∈ rt(T ′), hence the contribution of these triplets to I(R′, T ′) is equal
to R(t); (iii) if yz|x ∈ rt(T), the reasoning is similar.

Claim 2. Given a binary tree T ′ on L′, we can construct in polynomial time
a binary tree T on L such that I(R, T) ≤ I(R′, T ′).

Proof of Claim 2. Consider a triplet t = xy|z ∈ T (L)\rt(T). If there existed
an i such that xti|z ∈ rt(T ′) and yti|z ∈ rt(T ′), we would obtain xy|z ∈ rt(T ′),
which is impossible. It follows that for each 1 ≤ i ≤ R(t), one of xti|z, yti|z is
not in R(t′), and thus the contribution of these triplets to I(R′, T ′) is ≥ R(t);
in other words, setting T = T ′|L gives a tree such that I(R, T) ≤ I(R′, T ′). ⊓⊔

7 Concluding remarks

The following table summarizes what is currently known about the polynomial-
time approximability of MaxRTC and MinRTI:

Negative results Positive results

MaxRTC:
general case APX-hard ([5]) (3 − 2

n−2
)-approx. (Section 4)

dense NP-hard (↓) PTAS ([16])
minimally dense NP-hard (Section 6.1) PTAS (↑)

MinRTI:
general case Inappr. Ω(log n) (Section 6.2) (n − 2)-approx. ([9] + Section 2)
dense NP-hard (↓) (n − 2)-approx. (↑)
minimally dense NP-hard (Section 6.1) (n − 2)-approx. (↑)

Significantly, MaxRTC can be approximated within a constant ratio of 3
in polynomial time whereas MinRTI cannot be approximated within a ratio of
Ω(log n) in polynomial time, unless P = NP.

The main open problem for MaxRTC is to determine whether it admits a
constant-ratio polynomial-time approximation algorithm whose approximation
ratio is asymptotically better than 3. Since MaxRTC is APX-hard [5], a PTAS
is unlikely. Note that both of the 3-approximation algorithms One-Leaf-Split

from [9] and Modified-BPMF in Section 3 always output a solution consistent
with at least one third of the input rooted triplets and that in this sense, they
are worst-case optimal [9].

We would also like to know: Is it possible to achieve a polynomial-time,
polylogarithmic approximation algorithm for MinRTI? Furthermore, is there a
polynomial-time, constant-ratio approximation for dense inputs? In particular,
how well do the existing approximation algorithms for MaxRTC perform on
MinRTI restricted to dense inputs?

Acknowledgments

We thank Leo van Iersel, Judith Keijsper, Steven Kelk, Kazuya Maemura, Hi-
rotaka Ono, Kunihiko Sadakane, and Leen Stougie for helpful comments.

References

1. A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a tree from
lowest common ancestors with an application to the optimization of relational
expressions. SIAM Journal on Computing, 10(3):405–421, 1981.

2. N. Ailon and N. Alon. Hardness of fully dense problems. Information and Com-
putation, 205(8):1117–1129, 2007.

3. N. Alon. Ranking Tournaments. SIAM Journal of Discrete Mathematics,
20(1):137–142, 2006.

4. D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees: Theory
and Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury,
Christchurch, New Zealand, 1997.

5. J. Byrka, P. Gawrychowski, K. T. Huber, and S. Kelk. Worst-case optimal approxi-
mation algorithms for maximizing triplet consistency within phylogenetic networks.
Submitted, 2008.

6. U. Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM,
45(4):634–652, 1998.

7. J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2004.
8. L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. Inferring ordered trees from

local constraints. In Proc. of CATS’98, volume 20(3) of Australian Computer
Science Communications, pages 67–76. Springer-Verlag Singapore, 1998.

9. L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the complexity of construct-
ing evolutionary trees. Journal of Combinatorial Optimization, 3(2–3):183–197,
1999.

10. Y. J. He, T. N. D. Huynh, J. Jansson, and W.-K. Sung. Inferring phylogenetic
relationships avoiding forbidden rooted triplets. Journal of Bioinformatics and
Computational Biology, 4(1):59–74, 2006.

11. M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomor-
phic subtrees, with applications to computational evolutionary biology. Algorith-
mica, 24(1):1–13, 1999.

12. J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. Journal of the ACM, 48(4):723–760, 2001.

13. L. van Iersel, J. Keijsper, S. Kelk, L. Stougie, F. Hagen, and T. Boekhout. Con-
structing level-2 phylogenetic networks from triplets. In Proc. of RECOMB 2008,
volume 4955 of LNCS, pages 450–462. Springer-Verlag, 2008.

14. L. van Iersel, S. Kelk, and M. Mnich. Uniqueness, intractability and exact algo-
rithms: reflections on level-k phylogenetic networks. Submitted, 2008.

15. J. Jansson. On the complexity of inferring rooted evolutionary trees. In Proc.
of GRACO 2001, volume 7 of Electronic Notes in Discrete Mathematics, pages
121–125. Elsevier, 2001.

16. J. Jansson, A. Lingas, and E.-M. Lundell. A triplet approach to approximations
of evolutionary trees. Poster H15 presented at RECOMB 2004, 2004.

17. J. Jansson, J. H.-K. Ng, K. Sadakane, and W.-K. Sung. Rooted maximum agree-
ment supertrees. Algorithmica, 43(4):293–307, 2005.

18. J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted
triplets into a galled phylogenetic network. SIAM Journal on Computing,
35(5):1098–1121, 2006.

19. J. Jansson and W.-K. Sung. Inferring a level-1 phylogenetic network from a dense
set of rooted triplets. Theoretical Computer Science, 363(1):60–68, 2006.

20. T. Jiang, P. Kearney, and M. Li. A polynomial time approximation scheme for
inferring evolutionary trees from quartet topologies and its application. SIAM
Journal on Computing, 30(6):1942–1961, 2001.

21. M. P. Ng and N. C. Wormald. Reconstruction of rooted trees from subtrees.
Discrete Applied Mathematics, 69(1–2):19–31, 1996.

22. R. D. M. Page. Modified mincut supertrees. In Proc. of WABI 2002, volume 2452
of LNCS, pages 537–552. Springer-Verlag, 2002.

23. C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied
Mathematics, 105(1–3):147–158, 2000.

24. S. Snir and S. Rao. Using Max Cut to enhance rooted trees consistency.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4):323–
333, 2006.

25. B. Y. Wu. Constructing the maximum consensus tree from rooted triples. Journal
of Combinatorial Optimization, 8(1):29–39, 2004.

