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Resumaziun

G
lieud ad animals emprenden tras modi�tgar la forza synaptica tranter neu-

rons, en fenomen conuschent sco plasticitad sinaptica. Quests midaments

pon essar inducis tras stimulis curts (tge duran per exempel me pocas secun-

das), ma, par essar nizzeval par la memorgia a la lunga, els ston esser stabils

sur mains ad ons.

Experimentalists studegan la plasticidad sinaptica tras applicaziun d'ena

granda quantitad da protocols. En questa tesa nus focussagn sin protocols tge

crudan sut duas categorias principalas: (i) Quellas tge inducessan modi�caciuns

synapticas tge duran me pocas uras (fasa tempriva da plasticitad) (ii) quellas

tge permetten synapticas en ena sequenza da zaps par transformar las midadas

rapidas tge succedan durant la "fasa tempriva" en en fastiz d'ena memorgia

stabila (la "fase tardiva" da plasticitad).

La mira da questa tesa e da meglier capir la plasticitad sinaptica tras quellas

fasas di�erentas, tempriva e tardiva, tras crear models mathematics compacts

par descriver igl mecanissem da la plasticitad. La nossa proposta permetta

ena vista syntetica d'igl champ e l'exploraziun da consequenzas funzionalas dal

emprender. En questa direcziun nus proponeschan en model par la inducziun

da plasticitad sinaptica tge dependa dal piz d'igl impuls presinaptic e nonlin-

ear da la tensiun plastizica. Quest model e capabel da reproducir en grand

sectur da protocols experimentals sco par exempel experiments digl clupper da

tensiun u experiments da temp d'impuls. Perquai che l'impuls es en element

da clav in quest model, nus descrivan la activitad neuronala tras utilisar en

model compact da neurons tge reproduzessa �daivel igl curs d'igl temp dagl

impuls da neurons pyramidals. En pli, quest model dagl inducziun da plastic-

itads sinapticas e cumbino cun en process scludider par la sintesa da protein

ed igl mecanissem per la stabilsaziun �nala par descriver la "fasa tardiva". En

questa forma cumbinada, igl model e capabel da declarar fenomens experimen-

tels conuschent sco experiments d'identi�tgar e da far predicziuns controllabels.

Studis da consequenzas funczionalas d'igl model d'inducziun scuvrischan selec-

tivitads d'igls inputs, analisa da computaziun da components independents ed

ena storta relaziun tranter connectividad e codaziun.

En parallel ena proposta da sura en bassa e utiliso par chattar components

independents par deducir ena regla dad emprender tge se funda sin ena qual-
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i�caziun tge mussa correlaziuns cun igl model d'inducziun. Quest model unid

tras di�erentas dimensiuns da temp tge permetta la stabilisaziun da sinapsas

e fetg important par capir igls process dad emprendar e da memoria en ani-

mals e glieud e funda ena ingredienza basegnaivla par mintga model da granda

dimensiun digl tscharvi.

Pleds da clav: Neuroscienza fundada sin calculaziun, Plasticitad Sinaptica,

Emprender e memoria/regurdanza, "Fasa tempriva" da potenzaziun a lunga

vista, "Fasa tardiva" da potenzaziun a lunga vista, Identi�caziun sinaptica,

Analisa da components independents, Codaziun.
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Abstract

H
umans and animals learn by modifying the synaptic strength between neu-

rons, a phenomenon known as synaptic plasticity. These changes can be

induced by rather short stimuli (lasting, for instance, only a few seconds), yet, in

order to be useful for long-term memory, they should remain stable for months

or years.

Experimentalists study synaptic plasticity by applying a vast variety of pro-

tocols. In the present thesis we focus on protocols that fall under two main

categories: (i) Those that induce synaptic modi�cations that last for only a few

hours ("early phase" of plasticity) (ii) Those that allow synapses to undergo a

sequence of steps that transforms the rapid changes occuring during the "early

phase" into a stable memory trace ("late phase" of plasticity).

The goal of this thesis is to better understand synaptic plasticity across

these di�erent phases, early and late, by creating compact mathematic models

to describe the plasticity mechanisms. Our approach allows for a synthetic view

of the �eld as well as the exploration of functional consequences of learning.

In this direction, we propose a model for the induction of synaptic plasticity

that depends on the presynaptic spike time and nonlinearly on the postsynaptic

voltage. The model is able to reproduce a broad range of experimental pro-

tocols such as voltage-clamp experiments and spike-timing experiments. Since

the voltage is a key element in the model, we describe the neuronal activity

by using a compact neuron model that faithfully reproduces the voltage time

course of pyramidal neurons. In addition, this model of the induction of synap-

tic plasticity is combined with a trigger process for protein synthesis, and the

�nal stabilization mechanism in order to describe the "late phase". In this com-

binatory form, it is able to explain experimental phenomena known as tagging

experiments and to make testable predictions. A study of functional conse-

quences of the induction model reveals selectivity in the inputs, independent

component analysis computation and a tight relation between connectivity and

coding.

In parallel a top-down approach �nding independent components is used to

derive a rate-based learning rule which shows structural correlations with the

induction model. This uni�ed model across di�erent time scales allowing the

stabilization of synapses is crucial to understand learning and memory processes
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in animals and humans, and a necessary ingredient for any large-scale model of

the brain.

Keywords: Computational Neuroscience, Synaptic Plasticity, Learning and

Memory, Early-Phase of Long-Term Potentiation, Late-Phase of Long-Term Po-

tentiation, Synaptic Tagging, Independent Component Analysis, Coding.
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Chapter 1

Introduction

1.1 Experimental Background

A
nimals have an incredible ability to learn and memorize experiences during

their life. Memory, or at least a part of memory, is believed to be stored

in the connections between the neurons, the synapses. They potentially o�er a

very large memory capacity since there are about 100 to 500 trillions, i.e. 1014

synapses in a human brain. Moreover, the synapses have been shown to be

plastic, i.e. their strength is variable. The basic idea of how synapses change

was already proposed by Hebb in 1949 in his postulate "When an axon of cell

j repeatedly or persistently takes part in �ring cell i, then j's e�ciency as one

of the cells �ring i is increased" (Hebb 1949). It is only about 25 years later

that synaptic potentiation was measured experimentally in anesthetized rabbits

(Bliss and Gardner-Medwin 1973). A few years later synaptic depression was

measured (Lynch, Dunwiddie, and Gribko� 1977).

Two neurons can be connected via chemical and/or electrical (gap junctions)

synapses. A chemical synapse is placed between the axon of a presynaptic neu-

ron and a dendrite of the postsynaptic neuron forming an unidirectional connec-

tion. This type of synapse is the main focus of the thesis; the electrical one is not

considered here. A simpli�ed view of the synaptic communication mechanism is

the following: When a presynaptic spike arrives at the presynaptic terminal,

neurotransmitters, typically glutamate for excitatory synapses, are released.

They can bind at the postsynaptic side to di�erent receptors like N-methyl

D-aspartate (NMDA) or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors. AMPA receptors then open and let sodium ions �ow into

the cell resulting in a depolarization of the postsynaptic membrane potential.

The NMDA receptor opens only if at the same time (a) the glutamate binds to

the receptors and (b) the postsynaptic cell is depolarized freeing the magnesium

block (see Fig 1.1). This depolarization of the postsynaptic cell can typically

come from the back-propagating action potential. The NMDA receptor there-

fore is seen as a coincidence detector between presynaptic and postsynaptic

activities. The opening of these receptors allows calcium to enter the synapse.

Despite the detailed description of the mechanisms that allow synaptic commu-
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Figure 1.1: Cartoon of a glutamatergic synapse. When a presynaptic spike arrives
at the synapse, neurotransmitters are released in the synaptic cleft. They can bind
to the NMDA receptor and if at the same time the postsynaptic cell is depolarized,
the channel opens. Calcium enters the cell which induces a molecular cascade that
phosphorylates the Ca2+/calmodulin-dependent protein kinases (CaMKII), which in
turn acts on the AMPA receptor activation. Neurotransmitters can also directly bind
to AMPA receptor, in which case the channel opens allowing sodium to enter, leading
to a depolarization which is called excitatory postsynaptic potential (EPSP).

nication (Rubin, Gerkin, Bi, and Chow 2005; Lisman and Zhabotinsky 2001),

the mechanism that leads to changes in the synaptic strength is not completely

clear. Calcium seems to play an important role for further cascade signalling

which acts on AMPA receptors activation through kinases and phosphatases

(Lisman, Schulman, and Cline 2002). Moreover retrograde messengers like en-

docannabinoids seem to be important, at least for depression of the synapses

(Sjöström, Turrigiano, and Nelson 2003; Piomelli 2003; Sjöström, Turrigiano,

and Nelson 2004; Nevian and Sakmann 2006).

Synaptic plasticity measurements

The typical measurement of synaptic strength is the amplitude or the slope

of the excitatory postsynaptic potential (EPSP), i.e. the potential response to

a single (or a group of coincident) presynaptic spike(s). Synaptic plasticity can

be separated in two distinct phenomena: short-term plasticity where changes
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persist during few hundreds of milliseconds and long-term plasticity that lasts

more than 30 minutes. Short-term plasticity is believed to be presynaptically

expressed (Markram, Wu, and Tosdyks 1998; Gupta, Wang, and Markram 2000)

and is partly caused by the limited number of neurotransmitters at the synapse.

It is well modeled by a reservoir that partially empties with some probability

at the time of a presynaptic spike and recovers with a certain time constant

(Markram and Tsodyks 1996; Abbott, Varela, Sen, and Nelson 1997). This

however is not the interest of this thesis. Here the focus is on long-term plas-

ticity, which can be induced by di�erent types of protocols.

(a) Simultaneous voltage clamp and presynaptic stimulations (Ngezahayo, Schachner,

and Artola 2000; Ling, Benardo, Serrano, Blace, Kelly, Crary, and Sacktor 2002)

(Fig. 1.2A). When the cell is slightly depolarized the synaptic weight is de-

pressed, whereas it is potentiated when the cell is highly depolarized.

(b) Extracellular presynaptic stimulations at di�erent frequencies (Kelso, Ganong,

and Brown 1986; Dudek and Bear 1993; O'Connor, Wittenberg, and Wang.

2005) (Fig. 1.2B). Low frequency stimulation leads to depression, whereas high

frequency leads to potentiation .

(c) Pairing of presynaptic and postsynaptic spikes at di�erent time lags (Fig.

1.2C). Typically in pyramidal cells pre-post pairing results in potentiation whereas

post-pre in depression (Markram, Lübke, Frotscher, and Sakmann 1997; Bi and

Poo 1998). However, it seems that in spiny-stellate neurons (Egger, Feldmeyer,

and Sakmann 1999) and in synapses from pyramidal cells onto fast spiking in-

terneurons (Lu, Li, Zhao, ming Poo, and Zhang 2007), pre-post and post-pre

pairing both leads to depression; in a cerebellum-like structure of the electrical

�sh, the temporal order seems to be reversed, i.e. pre-post pairing leads to de-

pression and post-pre to potentiation (Bell, Han, Sugawara, and Grant 1997);

and in synapses of parallel �bers onto cartwheel cells, only pre-post pairing leads

to depression (Tzounopoulos, Kim, Oertel, and Trussell 2004).

(d) Pairing at di�erent frequencies (Markram, Lübke, Frotscher, and Sakmann

1997; Sjöström, Turrigiano, and Nelson 2001) (Fig. 1.2D). Pre-post pairing at

low frequency does not change the synaptic weight, increasing the frequency

leads to potentiation. Synaptic plasticity can also be induced with di�erent

patterns like triplets of spikes (Froemke and Dan 2002), bursts (Nevian and

Sakmann 2006; Gustafsson, Wigstrom, Abraham, and Huang 1987), quadru-

plets (Wang, Gerkin, Nauen, and Bi 2005) or even natural spike trains (Froemke

and Dan 2002). There is also a di�erence if the presynaptic stimulation is done

extracellularly (many inputs at the same time, slices more active) or intracellu-

larly.

(e) Synaptic tagging experiments (Frey and Morris 1997). These experiments

provide evidence for another separation of time scales for long-term plasticity.

The early phase of long-term plasticity lasts 2 to 3 hours and is induced by

tetanic stimulation for potentiation (Fig. 1.2E). The late phase, or consolida-

tion phase, however lasts more than 10 hours (i.e. the time of those experiments)
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and is induced by a stronger extracellular tetanus that also stimulates dopamin-

ergic �bers (Fig. 1.2F). Neuromodulation is thus important in the process of

consolidation (Reymann and Frey 2007).

1.2 Theoretical Background

1.2.1 Rate Models

The �rst models of synaptic plasticity in line with Hebb's principle ("Who

�res together wires together") depend on the correlation of presynaptic and

postsynaptic activities, typically the �ring rates. The next improvements were

to subtract a baseline so that the weight can also be depressed (covariance rule

(Sejnowski and Tesauro 1989)), add weight dependency, like hard bounds, soft

bounds, add normalization to induce competition between weights (Miller and

MacKay 1994). Multiplicative normalization was introduced in Oja's rule (Oja

1982) which performs Principle Component Analysis (PCA). At the same time

the Bienenstock, Cooper, Munro (BCM) rule became in�uential (Bienenstock,

Cooper, and Munroe 1982). It has a nonlinearity in the postsynaptic �ring

rate and a sliding threshold as homeostasis. It exhibits properties of selectivity

in the inputs. Those rate based rules were used in arti�cial neuron networks

like Hop�eld networks (Hop�eld 1982) and Boltzmann machines (Hinton and

Sejnowski 1983), for map formation (von der Malsburg 1973; Kohonen 1990;

Bednar and Miikkulainen 2000), receptive �eld development (Linsker 1986; Bi-

enenstock, Cooper, and Munroe 1982), among others.

1.2.2 Spike Models

In 1996 a theoretical work looking at precise temporal coding (Gerstner,

Kempter, van Hemmen, and Wagner 1996) suggested that synaptic plasticity

should depend on the time between the presynaptic and the postsynaptic spikes.

In parallel Markram et al. were able to show the spike timing dependence ex-

perimentally in neocortical slices (Markram, Lübke, Frotscher, and Sakmann

1997). From then on, Spike-Timing-Dependent Plasticity (STDP) models be-

came in�uential (Gerstner, Kempter, van Hemmen, and Wagner 1996; Kempter,

Gerstner, and van Hemmen 1999; Senn, Tsodyks, and Markram 2001; Song,

Miller, and Abbott 2000; van Rossum, Bi, and Turrigiano 2000; Rubin, Lee,

and Sompolinsky 2001; Gütig, Aharonov, Rotter, and Sompolinsky 2003a; Kar-

markar and Buonomano 2002). These models typically use local variables, i.e.

the weight change depends on a presynaptic and postsynaptic trace. Every time

a presynaptic spike occurs, the weight decreases by an amount corresponding to
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Figure 1.2: Di�erent experimental protocols. A. Voltage clamp experiment. The
postsynaptic voltage is clamped at the soma during extracellular presynaptic stimula-
tion. If the voltage is hyperpolarized, no weight change is recorded; for slight depolar-
ization, depression is observed; for strong depolarization, potentiation occurs. Figure
redrawn from (Artola, Bröcher, and Singer 1990). B. Presynaptic frequency depen-
dence. Extracellular presynaptic spike trains at di�erent frequencies are induced. Low
frequency stimulation yields depression whereas high frequency stimulation results in
potentiation. Figure redrawn from (Dudek and Bear 1993) C. STDP experiment. Pairs
of presynaptic and postsynaptic spikes are elicited. The lag between the presynaptic
spike and the postsynaptic spike varies. Pre before post pairing induces Long Term
Potentiation (LTP) whereas post before pre leads to Long Term Depression (LTD).
Figure redrawn from (Bi and Poo 1998). D. Pairing frequency experiment. Here the lag
between the pre and postsynaptic spike is constant (pre-post (black), post-pre(grey))
but the frequency between the pairing varies. Pre-post at low frequency does not lead
to any weight change whereas increasing frequency allows more potentiation. Figure
redrawn from (Sjöström, Turrigiano, and Nelson 2001). E. Weak tetanus stimulation.
Few extracellular high frequency trains stimulated presynaptically yield LTP that lasts
2 to 3 hours. F. Strong tetanus stimulation. However, if more spikes are induced, the
potentiation is stable for longer than 10 hours. Figure redrawn from (Sajikumar and
Frey 2004a).

5



the postsynaptic trace (see section on "Standard Pair-Based Models" and Fig.

1.3B). If a postsynaptic spike occurs, the synapse is potentiated proportionally

to the presynaptic trace (see section on "Standard Pair-Based Models" and Fig.

1.3A). We can assume the traces are such that all the spikes are considered,

i.e. all-to-all interactions (Fig. 1.3E) or only the nearest neighbor spike (Fig.

1.3F). However the weights can not grow inde�nitely, i.e. some kind of bounds

should exist. In addition, a dependence of plasticity on the actual strength of

the synapses was measured experimentally (Bi and Poo 1998; Turrigiano and

Nelson 2004). Theoretically also, some STDP models explored di�erent possi-

bilities for weight dependencies (van Rossum, Bi, and Turrigiano 2000; Gütig,

Aharonov, Rotter, and Sompolinsky 2003b) and homeostasis (Turrigiano and

Nelson 2004). Great e�ort has also been put into the study of computational

consequences of STDP, for example studying the implications for plastic net-

works (Roberts and Bell 2000; Mehta, Quirk, and Wilson 2000; Song, Miller,

and Abbott 2000; Izhikevich 2004; Legenstein, Naeger, and Maass 2005; Guy-

onneau, VanRullen, and Thorpe 2005; Iglesiasa, Erikssonb, Grize, Tomassini,

and Villa 2005; Morrison, Aertsen, and Diesmann 2007; Izhikevich and Edelman

2008; Kozloski and Cecchi 2008). Another step leads to exploration beyond spike

pair interactions (Senn, Tsodyks, and Markram 2001; Froemke and Dan 2002;

P�ster and Gerstner 2006; Gütig and Sompolinsky 2006). Experimental evi-

dences show that intracellular stimulation of pre-post pairing at low frequency

does not induce any weight change. Moreover, if the frequency between the

pairings is increased, potentiation increases (Markram, Lübke, Frotscher, and

Sakmann 1997; Sjöström, Turrigiano, and Nelson 2001). This is not consistent

with the traditional view of STDP models where building blocks of plasticity are

composed of pairs of pre-post and post-pre spikes. Therefore non-linear models

were developed to describe those experiments where triplet interaction of spikes

are considered (Senn, Tsodyks, and Markram 2001; P�ster and Gerstner 2006)

(see section on "Triplet Model" and Fig. 1.3C,D) or discount factors on the

"e�cacy" of successive spikes ( similar to including a model of short-term plas-

ticity). This last model is based on extracellular inductions of triplets of spikes

(Froemke and Dan 2002).

Standard Pair-Based Models

For the LTD part, standard pair-based models assume that presynaptic spike

arrival at synapse i induces depression of the synaptic weight wi by an amount

that is proportional to ȳ, an exponential low-pass �ltered version of the postsy-

naptic spike train Y (t) with a time constant τ− (see Fig 1.3B, trace post):

τ−
d

dt
y(t) = −y(t) + Y (t).

where Y (t) is expressed as the series of short pulses at time tn with n an index

that counts the spike, Y (t) =
∑

n δ(t−tn). The variable ȳ is an abstract variable

6
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Figure 1.3: Di�erent types of models. A. LTP with standard STDP model. The
synaptic weight is potentiated at the time of the postsynaptic spike by an amount
corresponding to the presynaptic trace. B. LTD with standard STDP model. The
synaptic weight is depressed at the time of the presynaptic spike by an amount cor-
responding to the postsynaptic trace. C. LTP with triplet rule from (P�ster and
Gerstner 2006) minimal model. The synaptic weight is potentiated at the time of the
postsynaptic spike by an amount corresponding to the product of a presynaptic and
a postsynaptic trace. D. LTD with triplet rule. Same than standard STDP model.
E. All-to-all interaction of spikes. The trace jumps from a �x amount when a spike
occurs and decays otherwise, leading to cumulative e�ect from all the previous spikes.
F. Nearest-neighbor interaction of spikes. The trace jumps to a �x value when a spike
occurs and decays otherwise. Only the previous spike a�ects the trace.
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which could, for instance, re�ect the level of calcium concentration (Lisman

1989) or the release of endocannabinoids (Sjöström, Turrigiano, and Nelson

2004), the back-propagating action potential, though such an interpretation is

not necessary for this type of phenomenological rules. Similarly, the presynaptic

spike train is described as a series of short pulses at time tni with i is the index

of the synapse, Xi(t) =
∑

n δ(t − tni ). The depression is then modeled as the

following update rule (see Fig 1.3B):

d

dt
w−i = −ALTD(w−i )Xi(t) y, (1.1)

where ALTD is the amplitude for depression.

For the LTP part, the temporal evolution of the presynaptic low pass �lter

x̄i(t) is described by (see Fig 1.3A, trace pre):

τ+
d

dt
x̄i(t) = −x̄i(t) +Xi(t),

where Xi is the spike train de�ned above. The quantity x̄i(t) could for exam-

ple represent the amount of glutamate bound to postsynaptic receptors (Kar-

markar and Buonomano 2002; P�ster and Gerstner 2006) or the number of

NMDA receptors in an activated state (Senn, Tsodyks, and Markram 2001).

The potentiation is then described by the following equation (see Fig 1.3A):

d

dt
w+

i = +ALTP(w+
i ) Y (t) x̄i(t). (1.2)

where ALTP is the amplitude for potentiation.

These types of model can reproduce the spike-timing-dependent learning

window (see 1.2C) but not the pairing frequency dependence (see 1.2D) nor the

voltage clamp experiment (see 1.2A).

Triplet Model

The minimal triplet model (P�ster and Gerstner 2006) describes the depres-

sion the same way as the standard pair-based models. However, the potentiation

takes into account triplet interactions of spike, 2 postsynaptic spikes and one

presynaptic spike (see Fig 1.3C). The model de�nes a second type of postsynap-

tic trace ȳ2 that decays with a time constant τ2 that is typically in the order

of 100ms. It can for example represent calcium concentration in the cell. The

synapse is potentiated at a time of a postsynaptic spike from an amount that is

proportional of the presynaptic spike trace x̄i(t) (see Fig 1.3C, trace pre) and

proportional also to this second postsynaptic spike trace ȳ2 (see Fig 1.3C, trace

post 2). The potentiation is written:

8



d

dt
w+

i = +ALTP(w+
i ) Y (t) x̄i(t) y2. (1.3)

where ALTP is the amplitude for potentiation.

This model is able to reproduce the frequency experiment (see 1.2D) but not

the voltage clamp experiment (see 1.2A) since it depends only on the time of

the spike and not on the postsynaptic membrane potential.

1.2.3 Biophysical Models

There have been a few attempts to describe the plasticity with its biophysical

quantities such as (i) the voltage (Abarbanel, Huerta, and Rabinovich 2002), (ii)

the Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) phosphoryla-

tion and bistability (Lisman 1985; Lisman 1989; Zhabotinsky 2000; Okamoto

and Ichikawa 2000; Miller, Zhabotinsky, Lisman, and Wang 2005; Graupner and

Brunel 2007), (iii) the calcium concentration (Karmarkar, Najarian, and Buono-

mano 2002; Karmarkar and Buonomano 2002; Shouval, Bear, and Cooper 2002;

Abarbanel, Gibb, Huerta, and Rabinovich 2003; Rubin, Gerkin, Bi, and Chow

2005; Cai, Gavornik, Cooper, Yeung, and Shouval 2007) (see section "Calcium

Model"), glutamate binding, AMPA receptors (Saudargiene, Porr, and Wörgöt-

ter 2003), NMDA receptors (Senn, Tsodyks, and Markram 2001) (see section

"STM model") etc. For a detailed description of the biophysical models, please

read Chapter 2.7.2-4 of (Graupner 2008).

STM Model

The STM model (Senn, Tsodyks, and Markram 2001) takes into account

the dynamics of the NMDA receptor. Those receptors can be in 3 di�erent

states: rest, up or down. In absence of spikes, NMDA receptors are in the

rest state, but they can be up-regulated when a presynaptic spike occurs or

down-regulated with a postsynaptic spike. A notion of two types of second

messengers is introduced in the model so that when a postsynaptic spike occurs,

second messengers type 1 can be up-regulated only if the NMDA receptors are

in the up states already. Inversely, the second messengers type 2 can be down-

regulated if there is a presynaptic spike and if the NMDA receptors are already

in the down state. Finally LTP appears when there is a postsynaptic spike and

the second messengers type 1 are in the up state, LTD occurs at the time of

a presynaptic spike if the second messengers type 2 are down regulated (see

Fig 1.4A). This model takes into account pair interaction of spikes and also

triplet interactions of spikes, i.e., 1 presynaptic spike and 2 postsynaptic ones

for potentiation and 2 pre- and 1 postsynaptic spike for depression. It reproduces

frequency dependence experiment (see experiment 1.2D, model 1.4C) as well as

STDP experiment (see experiment 1.2 C, model 1.4B) but not the voltage clamp

9
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Figure 1.4: A. STM model. Simulation of the model reproducing B. STDP exper-
iment, C. pairing frequency experiment. Figure redrawn from (Senn, Tsodyks, and
Markram 2001).

experiment (see experiment 1.2 A). It o�ers a parallel to the BCM rule although

the depression term in not linear in the presynaptic term.

Calcium Model

The calcium model by Shouval et al. (Shouval, Bear, and Cooper 2002)

describes concentration of calcium in the postsynaptic cell as a measure for

plasticity. Indeed, low calcium of concentration is not a�ecting the synapse but

intermediate concentration leads to LTD whereas high concentration leads to

LTP (see 1.5A). In order to compute the calcium concentration in the cell, the

calcium current �ows through the NMDA receptors only if the presynaptic spike

is paired with a back propagating action potential.

It reproduces the voltage clamp experiment (see experiment 1.2A, model

1.5B), as well as the presynaptic stimulation frequency (see experiment 1.2B,

model 1.5C) and the STDP experiment (see experiment 1.2C, model 1.5D).

However, it predicts a LTD part in the pre-post side of the STDP curve due to

the shape of the back propagating action potential.
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Figure redrawn from (Shouval, Bear, and Cooper 2002).
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1.2.4 Consolidation Models

As mentioned above, synaptic tagging experiments (Frey and Morris 1997)

revealed two phases of long-term synaptic plasticity: the early phase, which

induces a change that lasts 2 to 3 hours (Fig. 1.2E) and the late phase, which

lasts more than 10 hours (Fig. 1.2F). However, standard STDP models as well

as the more detailed biophysical models typically describe only the early phase

of long term plasticity and assume the changes to be long lasting. As an aside

note we will mention the cascade model (Fusi, Drew, and Abbott 2005) (see

section "Cascade Model"), which has di�erent degrees of plasticity associated

with di�erent states, one of which could be interpreted as the maintenance

phase described by the tagging experiments. Moreover, in the model of (Graup-

ner and Brunel 2007) describing the CaMKII bistability, it is not clear if this

bistablity re�ects the maintenance or the CaMKII is only part of the early phase

of plasticity.

Cascade Model

The cascade model (Fusi, Drew, and Abbott 2005) is design to optimize the

memory capacity in a network. It proposes a bistable synapse that can take a

weak value or a strong value. However the synapse can be in di�erent plastic

states for each value, called metastates. For example, if the synapse is already

weak and undergoes a LTD protocol, it will keep the same weak e�cacy but

will go to a lower metastate where the synaptic weight is harder to change, i.e

less plastic (see Fig 1.6).

1.2.5 Optimal Models

A completely di�erent approach in developing learning models is the so-

called top-down or optimality approach. In this framework, models are designed

to perform a given task (e.g. Independent Component Analysis), maximize

some quantities such as reward (Florian 2007), precision of spike timing (P�s-

ter, Toyoizumi, Barber, and Gerstner 2006), transmission of information (Bell

and Sejnowski 1995; Toyoizumi, P�ster, Aihara, and Gerstner 2005), sparseness

(Olshausen and Field 1996), slowness (Wiskott and Sejnowski 2002; Sprekeler,

Michaelis, and Wiskott 2007) etc. They can have the constraints of being online

and local in order to be biologically plausible. They thus ideally take the form of

a typical Hebbian learning rule or an STDP model. The obvious goal is that the

top down and the bottom up models (inspired directly from the experiments)

are consistent with each other.
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Figure 1.6: A cascade model. Bistable synapse (weak or strong) in di�erent metas-
tates that re�ect di�erent levels of plasticity (increasing numbers means less plastic).
Dashed box corresponds to a cascade model with two levels. Figure redrawn from
(Fusi, Drew, and Abbott 2005). B. For a comparison we show the TagTriC model.
The total weight is the addition of the early weight which is a 3-states value and the
late weight, a bistable value. For details of the model see Chapter 4 and (Clopath,
Ziegler, Vasilaki, Buesing, and Gerstner 2008).
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1.2.6 Reinforcement Learning Models

A di�erent type of models has the feature of selecting which "synaptic ex-

periences" should be remembered and which not. It is the reward modulated

learning or reinforcement learning (Sutton and Barto 1998). These models have

been derived from a top-down reward maximization approach. Learning typ-

ically occurs if a coincidence of pre- and postsynaptic activity is paired with

a reward signal. Later on Schultz et al. (Schultz, Dayan, and Montague 1997;

Schultz and Dickinson 2000) suggested a candidate for encoding the reward pre-

diction error, the neuromodulator dopamine. Moreover, dopamine was shown

in some synapses to be necessary for STDP (Pawlak and Kerr 2008). Rate-

based models were shown to be functionally useful for learning (Williams 1992;

Foster, Morris, and Dayan 2000; Sheynikhovich, Chavarriaga, Strosslin, Arleo,

and Gerstner 2009). Recently, spiking versions, i.e. reward modulated STDP

became fashionable, derived from an optimal framework (Seung 2003; Xie and

Seung 2004; P�ster, Toyoizumi, Barber, and Gerstner 2006; Florian 2007) or

from a phenomenological approach (Izhikevich 2007).

1.3 Aim of this thesis

The goal of the thesis is to better understand learning and memory. We used

a theoretical approach. Aiming at a synthetic view of synaptic plasticity, we

constructed mathematical models validated by experimental data. The models

developed are so-called minimal ones, i.e. they are complex enough to describe

the phenomena studied but not more complex. The biophysical details are not

taken into account for the following reason: (i) to keep �exibility across systems,

(ii) to avoid over�tting and (iii) to have intuitive, understandable and if possible

analytically tractable models. However, we do associate abstract variables to

possible biophysical candidates, without being bound to it. This thesis presents

a compact model of synaptic plasticity across di�erent time scales, faithfully re-

producing the di�erent types of experimental data described above. The early

and the late phase of long term plasticity is taken into account. Short term

plasticity e�ects are neglected.

The model for the early phase of plasticity (Clopath, Vasilaki, Buesing,

and Gerstner xxxx) depends on the voltage of the postsynaptic neuron to re-

produce voltage clamp experiments (Artola, Bröcher, and Singer 1990; Ngeza-

hayo, Schachner, and Artola 2000). Indeed no postsynaptic spike is required for

synaptic potentiation whereas the time course of the voltage seems to be rele-

vant. Thus a proper description of the voltage is essential and thus we propose

an adequate neuron model that �ts the biological data properly (Clopath, Jo-

livet, Rauch, Luescher, and Gerstner 2007). Note that by construction standard
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STDP models (Gerstner, Kempter, van Hemmen, and Wagner 1996; Kempter,

Gerstner, and van Hemmen 1999; Senn, Tsodyks, and Markram 2001; Song,

Miller, and Abbott 2000; van Rossum, Bi, and Turrigiano 2000; Gütig, Aharonov,

Rotter, and Sompolinsky 2003a; Karmarkar and Buonomano 2002) cannot re-

produce the voltage dependence os plasticity experiment because they consider

only spike times. In addition our model incorporates triplet interactions of

spikes (Senn, Tsodyks, and Markram 2001; P�ster and Gerstner 2006) in or-

der to reproduce the frequency dependence (Markram, Lübke, Frotscher, and

Sakmann 1997; Sjöström, Turrigiano, and Nelson 2001) (as described above).

Finally, functional implications of this model are studied such as network con-

nectivity under di�erent coding schemes and Independent Component Analysis.

Synaptic plasticity is such a fascinating topic to study because it is consid-

ered as the basis of learning and memory. Long lasting changes are thus relevant

to study. However standard STDP models (Gerstner, Kempter, van Hemmen,

and Wagner 1996; Kempter, Gerstner, and van Hemmen 1999; Senn, Tsodyks,

and Markram 2001; Song, Miller, and Abbott 2000; van Rossum, Bi, and Tur-

rigiano 2000; Gütig, Aharonov, Rotter, and Sompolinsky 2003a; Karmarkar

and Buonomano 2002) and even biophysical models looking at bistability of

CAMKII (Lisman 1989; Miller, Zhabotinsky, Lisman, and Wang 2005; Graup-

ner and Brunel 2007) do not tackle the problem of late phase plasticity and

maintenance. This thesis presents a minimal rule describing the long lasting

changes measured by synaptic tagging experiments. Another type of model

considering maintenance is the cascade model (Fusi, Drew, and Abbott 2005).

We therefore expect to �nd some structural similarities between ours and the

cascade model. In addition, reinforcement learning models, or reward modu-

lated learning have also the property of selecting what should be learned. We

thus expect our model of synaptic tagging to depend on neuromodulation. The

model presented in this thesis (Clopath, Ziegler, Vasilaki, Buesing, and Ger-

stner 2008) contains a triggering of plasticity related proteins and a bistable

maintenance variable. It describes faithfully the synaptic tagging experiments

and captures cross tagging as well.

As introduced in the "theoretical background" section, there are two main

approaches for modeling: (i) Either the model is derived from the biology, i.e. the

phenomenological model or the biophysical model, which might be exhibiting

some functions. (ii) Or the model is derived from a given function, i.e. the

optimal or top-down model and then structural similarities to biology can be

drawn. Ideally, the two methods should give rise to similar models. In the last

part of the thesis, we derive a top-down model performing one of the functions

solved by the induction model, that is Independent Component Analysis. This

last model is a rate-based learning rule (Clopath, Longtin, and Gerstner 2008)

and the link to the model for the early phase of plasticity is discussed in the
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"future work" section.

1.4 Road-map of this Dissertation

In this dissertation, the following four chapters contain the di�erent papers

published during the thesis. Each chapter starts with an introduction and a

link to the general aim of the thesis. The last chapter summarizes the results

and o�ers some opening for future work.

Chapter 2: Single cell modeling - the Adaptive Exponen-

tial Integrate and Fire Model

This chapter presents a neuron model, the Adaptive Exponential

Integrate and Fire model, and compares it to voltage traces of

layer V pyramidal cells under random current injections.

Paper published in Neurocomputing 2007

Chapter 3: Model of the induction of long-term synaptic

plasticity and its functional implications

This chapter proposes a model for the early phase of plasticity

that depends nonlinearly on the postsynaptic voltage. It repro-

duces various plasticity experiments and is used to explore dif-

ferent computational roles.

Paper under review in Nature Neuroscience 2009

Chapter 4: A model for the late phase of long term synap-

tic plasticity

This chapter presents a model for synaptic tagging experiments

that includes the model for the early phase of plasticity presented

above (Chapter 3) and describes the maintenance phase. It faith-

fully reproduces synaptic tagging and cross tagging experiments.

Paper published in PLoS Computational Biology 2008

Chapter 5: A top down approach to a rule performing

Independent Component Analysis

This chapter shows the derivation of a top down model perform-

ing Independent Component Analysis (ICA). It is a Hebbian rate-

based rule and it is tested against standard ICA benchmarks.

Noteworthy this model shares common functional properties with

the induction model presented in Chapter 3.

Paper published in NIPS 2008

Chapter 6: Conclusions and Future Work
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Chapter 2

Single cell modeling - the
Adaptive Exponential

Integrate and Fire Model

T
o study synaptic plasticity between neurons, we need an accurate model

describing their activity. Indeed the synaptic plasticity models presented

in this thesis not only depend on the exact spike timing but also on the whole

voltage time course. Therefore, we present in the following paper (Clopath,

Jolivet, Rauch, Luescher, and Gerstner 2007) how well the Adaptive Exponential

Integrate and Fire (AdEx) model reproduces voltage traces of layer V pyramidal

cells under random current injection.

The AdEx model (Brette and Gerstner 2005) is a simple Integrate and Fire

type model augmented by an exponential term (Fourcaud-Trocme, Hansel, van

Vreeswijk, and Brunel 2003) which describes the activation of a rapid sodium

current. It allows an accurate prediction of the spike times. Actually, the exact

shape of the neuron nonlinearity was measured from experimental data where an

exponential was found to be the best �t (Badel, Lefort, Brette, Petersen, Ger-

stner, and Richardson 2008). Moreover, the model has an additional variable

which describes the spike-triggered adaptation and the subthreshold adapta-

tion. It was shown to �t accurately a more detailed Hodgkin-and-Huxley model

(Hodgkin and Huxley 1952; McCormick, Wang, and Huguenard 1993), i.e. pre-

diction of 96% of spike times (Brette and Gerstner 2005). We were wondering

how well this model is in reproducing voltage traces of real neurons. It turns out

that the model reproduces up to 96% (average 60%) of the spikes and matches

accurately the subthreshold voltage. Later on, we showed that this model can

account for di�erent spiking regimes (Naud, Marcille, Clopath, and Gerstner

2008), like irregular spiking, bursting etc.

This model has 2 variables and 7 parameters, it therefore is a good trade-o�

between complexity and accuracy. Over�tting is avoided and the computational

time is reasonable when used to test functional implications in long plasticity

experiments.
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Abstract

An adaptive Exponential Integrate-and-Fire (aEIF) model was used to predict the activity of layer-V-pyramidal neurons of rat

neocortex under random current injection. A new protocol has been developed to extract the parameters of the aEIF model using an

optimal filtering technique combined with a black-box numerical optimization. We found that the aEIF model is able to accurately

predict both subthreshold fluctuations and the exact timing of spikes, reasonably close to the limits imposed by the intrinsic reliability of

pyramidal neurons.
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1. Introduction

Electrophysiological data can be described by detailed
conductance-based models (Hodgkin–Huxley-type models
[6]). However, those models are rather complex, which
implies that they are difficult to analyze and costly to
implement numerically. Moreover, it is unclear how many
details of conductance-based models are really necessary
for the reproduction of experimental spike patterns [4,13].
For those reasons, simple phenomenological spiking
neurons such as Integrate-and-Fire models are highly
popular.

The adaptive Exponential Integrate-and-Fire (aEIF)
model used in this paper generalizes the standard leaky
Integrate-and-Fire model in several directions: the strict
threshold is replaced by a more realistic smooth threshold
zone as in the Exponential Integrate-and-Fire neuron [2].
Furthermore, addition of a second variable captures
subthreshold resonance or adaptation [7,15]. The aEIF

model showed convincing performances when compared to
more detailed models [1], but so far, has never been tested
on recordings of real neuron.
In this report, we will test the performances of the aEIF

model on layer-V neocortical pyramidal neurons under
random current injection.

2. Model

The aEIF is defined by [1]

C
duðtÞ

dt
¼ � gLðuðtÞ � ELÞ

þ gLDT exp
uðtÞ � VT

DT

� �
� wþ I , ð1Þ

tw

dwðtÞ

dt
¼ aðuðtÞ � ELÞ � wðtÞ, (2)

where C is the membrane capacitance, gL the leak
conductance, EL the resting potential, DT the slope factor
and VT the threshold potential (Fig. 1). Note that formally,
EL is not exactly the resting potential because of the
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exponential term. The variable w describes the level of
adaptation of the neuron and a represents the relevance of
subthreshold adaptation. The exponential term describes
the early activation of voltage-gated sodium channels.

Formally the model is said to generate a spike if the
potential u grows rapidly to infinity. In practice, a spike
event is recorded when the voltage reaches a threshold
V peak ¼ 20mV. The exact value is not critical because V peak

only shifts spike times by a fraction of millisecond. After
the spike has been triggered, u is reset to the resting
potential EL and the variable w is increased by an amount
b, which accounts for spike-triggered adaptation.

The original aEIF model is a point neuron model i.e.
without spatial structure. However, in this study, we
decided to take into account the coupling of the soma
with the dendrites. Therefore, we used a two-compartment
model (one somatic compartment coupled to a passive
dendritic compartment) defined by

C
dus

dt
¼ � gLðus � ELÞ �

gc

p
ðus � udÞ

þ gLDT exp
us � VT

DT

� �
� wþ I , ð3Þ

C
dud

dt
¼ �gLðud � ELÞ �

gc

1� p
ðud � usÞ, (4)

tw
dw

dt
¼ aðus � ELÞ � w, (5)

where us is the membrane voltage in the somatic compart-
ment, ud the membrane voltage in the dendritic compart-
ment, gc the coupling conductance and p ¼ somatic area/

total area. The two-compartment model is motivated by
experimental results. Indeed, the linear response kernel is
best fitted by a double exponential (see below point 3(i)),
suggesting a coupling between soma and a passive dendrite
acting as current sink [8].

3. Parameter fitting

Recordings of layer-V pyramidal neurons of rat neocor-
tex were used to determine parameters of the model. The
neurons were recorded intracellularly in vitro while
stimulated at the soma by a randomly fluctuating current
generated by an Ornstein–Uhlenbeck (OU) process (auto-
correlation time 1ms). Both mean and variance of the OU
process were varied in order to sample the response of the
neurons to various levels of tonic and time-dependent
inputs. Details of the experimental procedure can be found
in [14].
Our method to extract the parameters of the aEIF model

is based on the following steps:

(i) Passive membrane properties (C, gL, gc, p, EL): In
subthreshold regime (where the exponential term can be
neglected), Eqs. (3) and (4) can be integrated [3],

uðtÞ ¼

Z þ1
0

k1ðsÞ Iðt� sÞds. (6)

In the non-adapted state w ¼ 0, we find

k1ðsÞ ¼
1

C
½pe�s=ts þ ð1� pÞe�s=tc �, (7)

where ts ¼ C=gL is the somatic membrane time
constant and tc ¼ ½pðp� 1ÞC�=½pðp� 1ÞgL � gc� is
the coupling time constant.The kernel k1 is extracted
by the Wiener–Hopf optimal filtering technique [8].
This step involves a comparison of the subthreshold
fluctuations with the corresponding input current. This
yields a ‘‘raw’’ filter kexp (Fig. 2). The filter kexp is well
fitted by the double exponential k1 derived from
our two-compartment model. C, gL, gc, p were
extracted from the double exponential fit k1 (Eq. (7))
of kexp, EL from the resting value at the beginning of the
recording.

(ii) Slope factor: The slope factor determines the sharp-
ness of the threshold. In the limit DT! 0, the model
becomes a standard leaky Integrate-and-Fire model.
As the threshold has a region of fuzziness, we decided
to fix the slope factor at DT ¼ 2mV so as to restrict the
number of parameters to be optimized. This value
seems reasonable and is close to the value found for
the Wang–Buszaki model [2].

(iii) Subthreshold adaptation: According to systems theo-
ry, it is not possible to extract the subthreshold
adaptation a from our data set. Therefore, we set a

to zero. Indeed, the Laplace transformed system
has one pole and one zero that masque each other
(i.e. the determinant of the identificability matrix is
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close to zero), preventing the system to be fully
characterizable [10].

(iv) Voltage reset: After a spike has been triggered, the
voltage is simply reset to the resting potential EL.

(v) Optimization: Finally, the remaining parameters, VT,
tw, b were optimized using the simulated annealing
technique optimizing the firing rate and maximizing
the coincidence factor Gn!m. We minimized the
following expression:

2
ndata � nsim

ndata

����
����� Gn!m,

where ndata is the firing rate of the neuron data and nsim is
the firing rate of the simulated data. Gn!m is defined by [9]

Gn!m ¼
Ncoinc � hNcoinci
1
2
ðNdata þNaEIFÞ

1

N
, (8)

where Ndata is the number of spikes in the reference spike
train (recordings of pyramidal cells), NaEIF is the number
of spikes in the predicted spike train (generated with the
aEIF model with the same driving current). Ncoinc is the
number of coincident spikes with precision D ¼ 2ms and
hNcoinci is the number of coincidences generated by a
homogeneous Poisson process with the same rate nsim as
the spike train generated with the aEIF model. Finally, the
normalization N ¼ 1�2nsimD allows Gn!m to reach 1 only
if the spike train of the aEIF model reproduces exactly the
spike train of the cell. Gn!m will be 0 if the similarity
between the two spike trains is not better than between that
two random spike trains generated by homogeneous
Poisson processes at the same rate. In order to test the
robustness of the method, we picked one cell and repeated
the parameter optimization by simulated annealing 10

times. We found that the VT is very robust within errors
less than 3%. The parameters b and tw are strongly
correlated. While individual variance is high their product
btw is stable.

4. Results

The data set consists of four different neurons. For each
cell, a set of 10 different input currents with different means
and variances are injected. Each input trace is repeated
four times. Fig. 3 shows a direct comparison between
predicted and recorded spike trains for a typical neuron.
Both spike trains are almost indistinguishable (Fig. 3A; for
clarity reasons, the predicted spike train has been shifted
upward). Even when zooming in the subthreshold regime,
differences are in the range of a few millivolts only
(Fig. 3B). The spike dynamics is correctly predicted apart
from a short period of time just after the spike is emitted
(Fig. 3C). This is due to the reset value of the voltage which
is set to the resting potential.
The model performances were evaluated using the

coincidence factor Gn!m (Eq. (8)). Our model is facing
natural limits of prediction because cortical pyramidal
neurons respond with very different reliability depending
on the type of stimulation they receive [11]. As we cannot
expect our model to yield better predictions than the
intrinsic reliability of the neuron, we consider the intrinsic
reliability of the neuron as an upper bound. The intrinsic
reliability can be easily measured since the same input
has been injected four times in the same cell. The reliability
of neurons does not vary significantly with the mean of
the injected current. However, it strongly depends on the
variance of the current [8,11]. In the case of low variance,
the spike timing is not controlled by the stimulus
anymore. Therefore, we abandon the data with low
variance (so150 pA). Intrinsic reliability is characterized
by the factor Gn!n in analogy to Eq. (8). The subscript
n! n means that the neuron is compared to itself
across two different trials with the same realization of the
input. We remark that data with high variance input are
more likely to resemble an in vivo situation than low
variance input data. For data used below, the intrinsic
reliability varies from Gn!n ¼ 75% to as low as
Gn!n ¼ 20%.
We found that the aEIF model predicts up to Geff ¼

96% of the spikes that can be predicted (Geff ¼

Gn!m=Gn!n, m! n means model compared to neuron)
and on average Geff ¼ 60% (Fig. 4).
Fig. 5 shows the experimental spike trains during four

repetitions with the same driving current (bottom traces) as
well as the simulated spike train (top trace) for different
reliability and performance cases.

5. Discussion and conclusion

We tested the aEIF model on experimental electrophy-
siology recordings and found a prediction of the spike
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times Geff up to 96% (average of 60%). With the same data
set, a Spike Response Model with dynamic threshold has
been evaluated and the performances were Geff up to 75%
(average 65%) [8].
We remark that the protocol used for the recordings

is not the most suitable for characterizing our model: in
our extraction method, we had to set the subthreshold
adaptation a to 0. In addition, data generated purely
by simulation of the aEIF model were characterized
very badly with our method (average of G ¼ 85%).
A completely different protocol to extract the parameters
of the aEIF model has been proposed recently by
Brette and Gestner [1]. This protocol contains a series of
standard electrophysiological paradigms (injection of
current pulses, slow current ramps and random conduc-
tance injections). It has been tested with data generated by
a detailed model and yielded excellent performances
ðG ¼ 96%Þ. In addition, this protocol allows to reduce
noise (averaging over several recordings), so that the
subthreshold adaption a could, in principal, be extracted
from pyramidal cell recordings. The latter protocol is under
study at the moment using a new data set recorded
following the methodology proposed by Brette and
Gerstner [1].
In the aEIF model, adaptation is a useful component

since it allows the model to account for different driving
regimes. We found as well that it is relatively easy to
correctly predict the subthreshold dynamics even with a
simple leaky integrator but it is difficult to find an efficient
threshold criterion for spike initiation. This problem is
solved by the aEIF model which includes an additional
exponential term to describe early activation of voltage-
gated sodium channels. This last addition allows to model
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specific behaviors like delayed spike initiation and offers
flexibility at the level of the threshold mechanism. It was
recently suggested by Naundorf and colleagues that the

rapid dynamics of action potential initiation in cortical
neurons are outside the range of behaviors described by the
classical Hodgkin–Huxley theory [12]. In the aEIF model,
the exponential term allows a fast activation of the action
potential. Thus, on a phenomenological level, the aEIF
model could possibly account for rapid spike initiation in
real neurons.
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Chapter 3

Model of the induction of
long-term synaptic

plasticity and its
functional implications

S
tandard models for Spike-Timing-Dependent Plasticity (STDP) take into

account pair interactions of presynaptic and postsynaptic spike times (Ger-

stner, Kempter, van Hemmen, and Wagner 1996; Kempter, Gerstner, and van

Hemmen 1999; Senn, Tsodyks, and Markram 2001; Song, Miller, and Abbott

2000; van Rossum, Bi, and Turrigiano 2000; Gütig, Aharonov, Rotter, and

Sompolinsky 2003a; Karmarkar and Buonomano 2002). However, a number

of pairing experiments (Wang, Gerkin, Nauen, and Bi 2005; Sjöström, Turri-

giano, and Nelson 2001) show that pair interactions are not su�cient to fully

describe Long-Term Potentation and Depression (LTP/LTD) (P�ster and Gerst-

ner 2006). Moreover, by construction, simple spike-based models fail in voltage

clamp experiments, where LTP or LTD can be induced by coincidence of presy-

naptic spike arrival and depolarization of the postsynaptic membrane (Artola,

Bröcher, and Singer 1990; Ngezahayo, Schachner, and Artola 2000). The fol-

lowing paper presents a triplet model which takes into account the presynaptic

spike times and the postsynaptic membrane potential, �ltered with three di�er-

ent time constants. For spike induced experiments, this model can formally be

reduced to the triplet rule proposed by P�ster et al. (P�ster and Gerstner 2006),

and yields similar results to, for example, frequency dependent pairing experi-

ments by Sjöström et al. (Sjöström, Turrigiano, and Nelson 2001). Moreover,

it also reproduces the behavior of the ABS rule (Artola, Bröcher, and Singer

1990), i.e. no synaptic changes are observed under presynaptic stimulation when

the postsynaptic potential is hyperpolarized; while small depolarization leads to

LTD and strong depolarization to LTP (Fig 1.2A). Additionally, this model can

describe the hybrid experiment by Sjöström et al. where low-frequency potenti-

ation is rescued by depolarization (Sjöström, Turrigiano, and Nelson 2001). It

o�ers testable predictions as to how other protocols may change the weights.

This model therefore closes the debate whether STDP is more fundamental

than voltage dependence (Lisman and Spruston 2005) since it shows that most

if not all existing experimental data on STDP can be derived from a model with

voltage dependence.

This paper also explores the functional consequences of this model. Due to

its similarity to the well-known rate-based Bienenstock-Cooper-Munro model

(Bienenstock, Cooper, and Munro 1982), the model exhibits selectivity in the
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inputs, which can be seen in receptive �eld development scenarios. In addition,

the model performs ICA-like computation. For example when presented with

natural scenes the weights develop Gabor-like oriented �lters. Finally, due to the

frequency dependence of the model (Sjöström, Turrigiano, and Nelson 2001), a

plastic network under this model exhibits a tight relation between connectivity

and coding. Under rate coding the network supports a few strong bidirectional

connections in a sea of weak connections as measured in visual cortex (Song,

Sjöström, Reigl, Nelson, and Chklovskii 2005). On the contrary standard STDP

models (Gerstner, Kempter, van Hemmen, and Wagner 1996; Kempter, Gerst-

ner, and van Hemmen 1999; Senn, Tsodyks, and Markram 2001; Song, Miller,

and Abbott 2000; van Rossum, Bi, and Turrigiano 2000; Gütig, Aharonov, Rot-

ter, and Sompolinsky 2003a) do not support stable bidirectional connections.

Interestingly a network under temporal code leads, with our model, to stable

unidirectional connections as seen in the barrel cortex (Lefort, Tomm, Sarria,

and Petersen 2009).
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Abstract

Electrophysiological connectivity patterns in cortex often show a few strong connections in a sea of weak

connections. In some brain areas a large fraction of strong connections are bidirectional, in others they are

mainly unidirectional. In order to explain these connectivity patterns, we use a model of Spike-Timing-

Dependent Plasticity where synaptic changes depend on presynaptic spike arrival and the postsynaptic

membrane potential, filtered with two different time constants. The model describes several nonlinear effects

in STDP experiments, as well as the voltage dependence of plasticity under voltage clamp and classical

paradigms of LTP/LTD induction. We show that in a simulated recurrent network of spiking neurons our

plasticity rule leads not only to receptive field development, but also to connectivity patterns that reflect the

neural code: for temporal coding paradigms strong connections are predominantly unidirectional, whereas

they are bidirectional under rate coding. Thus variable connectivity patterns in the brain could reflect

different coding principles across brain areas; moreover our simulations suggest that rewiring the network

can be surprisingly fast.

1 Introduction

Experience-dependent changes in receptive fields [1, 2, 3] or in learned behavior [4] may occur through changes

in synaptic strength. Thus, electrophysiological measurements of functional connectivity patterns in slices of
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neural tissue [5, 6] or anatomical connectivity measures [7] can only present a snapshot of the momentary

connectivity – which may change with the next set of stimuli. Indeed, modern imaging methods show that

spine motility can lead to a rapid rewiring of the connectivity pattern [8, 9] by formation of new synapses or by

strengthening or weakening of existing synapses. The question then arises whether the connectivity patterns

and changes that are found in experiments can be connected to basic rules of synaptic plasticity, in particular

to modern or traditional forms of Hebbian plasticity [10] such as Long-Term Potentiation and Depression [11].

Long-term potentiation LTP and depression LTD of synapses depends on the exact timing of pre- and

postsynaptic action potentials [12, 13], but also on postsynaptic voltage [14, 15], and presynaptic stimulation

frequency [16]. Spike-Timing-Dependent Plasticity (STDP) has attracted particular interest in recent years,

since temporal coding schemes where information is contained in the exact timing of spikes rather than mean

frequency could be learned by a neural system using STDP [17, 18, 19, 20, 21]. The question, however, whether

STDP is more fundamental than frequency dependent plasticity or voltage dependent plasticity rules has not

been resolved, despite an intense debate [22]. Moreover it is unclear how the interplay of coding and plastic-

ity yield the functional connectivity patterns seen in experiments. In particular, the presence or absence of

bidirectional connectivity between cortical pyramidal neurons seems to be contradictory across experimental

preparations in visual [5] or somatosensory cortex [6].

Recent experiments have shown that STDP is strongly influenced by postsynaptic voltage before action

potential firing [23], but could not answer the question whether spike timing dependence is a direct consequence

of voltage dependence, or the manifestation of an independent process. In addition, STDP depends on stim-

ulation frequency [23] suggesting an interaction between timing and frequency dependent processes — or this

interaction could be the manifestation of a single process in different experimental paradigms. We show that a

simple Hebbian plasticity rule that pairs presynaptic spike arrival with the postsynaptic membrane potential is

sufficient to explain STDP and the dependence of plasticity upon presynaptic stimulation frequency. Moreover,

the intricate interplay of voltage and spike-timing dependence seen in experiments [23] as well as the frequency

dependence of STDP can be explained in our model from one single principle. In contrast of earlier attempts

towards a unified description of synaptic plasticity rule that focused on detailed biophysical descriptions [24, 25],

our model is a mechanistic one (phenomenological model). It does not give an explicit interpretation in terms

of biophysical quantities such a Calcium concentration [24], CaMKII [25], glutamate binding, NMDA receptors

etc. Rather it aims at a minimal description of the major phenomena observed in electrophysiology experiments.

The advantage of such a minimal model is that it allows us to discuss functional consequences in small [26, 27],

and possibly even large [28, 29], networks. We show that in small networks of up to 10 neurons the learning rule

leads to input specificity, necessary for receptive field development - similar to earlier models of STDP [17, 26] or

rate-based plasticity rules [30, 31]. Going significantly beyond earlier studies we explicitly address the question

of whether functional connectivity patterns of cortical pyramidal neurons measured in recent electrophysiological

studies [5, 6] could be the result of plasticity during continued stimulation of neuronal model networks. We

found that connectivity patterns strongly depend on the underlying coding hypothesis: With a temporal coding

hypothesis, where input spikes arrive in a fixed temporal order, the recurrent network develops a connectivity
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pattern with a few strong unidirecitional connections. However, under a rate coding paradigm, where stimuli

are stationary during a few hundred milliseconds the same network exhibits sustained and strong bidirectional

connections. This is in striking contrast to standard STDP rules where bidirectional connections are impossible

[26].

The mathematical simplicity of the model enables us to identify conditions under which it becomes equivalent

to the well-known Bienenstock-Cooper-Munro model [30] used in classical rate-based descriptions of develop-

mental learning; and equivalent to some earlier models of STDP [32] — and why our model is fundamentally

different from classical STDP models [17, 26, 21], widely used for temporal coding.

2 Results

In order to study how connectivity patterns in cortex can emerge from an interplay of plasticity rules and

coding, we need a plasticity rule that is consistent with a large body of experiments, not just a single paradigm

such as STDP. Since synaptic depression and potentiation take place through different pathways [33] our model

uses separate additive contributions to the plasticity rule, one for LTD and another one for LTP (see Fig. 1

and methods).

2.1 Fitting the Plasticity Model to Experimental Data

Consistent with voltage clamp [15] and stationary depolarization experiments [14] LTD is triggered in our

model if presynaptic spike arrival occurs while the membrane potential of the postsynaptic neuron is slightly

depolarized (above a threshold θ−) whereas LTP occurs if depolarization is big (above a second threshold θ+

(see Fig. 1). The mathematical formulation of the plasticity rule makes a distinction between the momentary

voltage u and the low-pass filtered voltage variables ū− or ū+ which denote temporal averages of the voltage

over the recent past (the symbols ū− and ū+ indicate filtering of u with two different time constants). Similarly,

the event x of presynaptic spike arrival needs to be distinguished from the trace x̄(t) that is left at the synapse

after stimulation by neurotransmitter. Potentiation occurs only if the momentary voltage is above θ+ (this

condition is fulfilled during action potential firing) AND the average voltage ū+ above θ− (this is fulfilled if

there has a been a depolarization in the recent past) AND the trace x̄ left by a previous presynaptic spike event

is nonzero (this condition holds if a presynaptic spike arrived a few milliseconds earlier at the synapse); these

conditions for plasticity are illustrated in Fig. 1B. LTD occurs if the average voltage ū− is above rest at the

moment of a presynaptic spike arrival (see Fig. 1A). The amount of LTD in our model depends on homeostatic

process on a slower time scale [34]. Low-pass filtering of the voltage by the variable (ū− or ū+) refers to some

unidentified intracellular processes triggered by depolarization, e.g., increase in calcium concentration or second

messengers messenger chains. Similarly, the biophysical nature of the trace x̄ is irrelevant for the functionality

of the model, but a good candidate process is the fraction of glutamate bound to postsynaptic receptors.

We checked the performance of the model on a simulated STDP protocol, where presynaptic spikes arrive

3

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
36

2.
1 

: P
os

te
d 

22
 J

un
 2

00
9



a few milliseconds before or after a postsynaptic spike that is triggered by a strong depolarizing current pulse.

If a post-pre pairing with a timing difference of 10 millisecond is repeated 60 times at frequencies below 35Hz,

LTD occurs in our model (Fig. 2 A, B), consistent with experiments [23]. Repeated pre-post pairings (with

10 millisecond timing difference) at frequencies above 10Hz yield LTP, but pairings at 0.1Hz do not show any

significant change in the model or in experiments [23]. In the model these results can be explained by the fact

that at 0.1Hz repetition frequency, the low-pass filtered voltage ū+ which increases abruptly during postsynaptic

spiking decays back to zero before the next impulse arrives, so that LTP can not be triggered. However, since

LTD in the model requires only a weak depolarization of ū− at the moment of presynaptic spike arrival, post-

pre pairings give rise to depression, even at very low frequency. At repetition frequencies of 50Hz, the post-pre

paradigm is nearly indistinguishable from a pre-post timing, and LTP dominates.

Since spike-timing dependence in our model is induced only indirectly via voltage dependence of the model,

we wondered whether our model would also be able to account for the intricate interactions of voltage and

spike timing found by Sjöström et al. [23]. If a pre-post protocol at 0.1Hz, that normally does not induce LTP,

is combined with a depolarizing current pulse (lasting from 50ms before to 50ms after the postsynaptic firing

event), then potentiation is observed in the experiments [23], as well as in our model (Fig. 2 C, F, I). Due to

the injected current, the low-pass filtered voltage variable ū+ is depolarized before the pairing. Thus at the the

moment of the postsynaptic spike, the average voltage ū+ is above the threshold θ− leading to potentiation.

Similarly, a pre-post protocol that normally leads to LTP can be blocked if the postsynaptic spikes are triggered

on the background of a hyperpolarizing current (Fig. 2 E, H, I).

In order to study some nonlinear aspects of STDP, we simulate a protocol of burst-timing-dependent plastic-

ity where presynaptic spikes are paired with 1, 2 or 3 postsynaptic spikes [35] (see Methods). We observe that

60 pre-post pairs at 0.1Hz do not change the synaptic weight, as discussed above. However, repeated triplets

pre-post-post generate potentiation in our model because the first postsynaptic spike induces a depolarizing

spike after potential so that ū+ is depolarized. Adding a third postsynaptic spike to the protocol (i.e., quadru-

plets pre-post-post-post) does not lead to stronger LTP (Fig. 3A). Our model also describes the dependence of

LTP upon the intra-burst frequency (Fig. 3B). At an intra-burst frequency of 20Hz, no LTP occurs, because

the second spike in the burst comes so late that the presynaptic trace x̄ has decayed back to zero. At higher

intra-burst frequencies, the three conditions for LTP (u(t) > θ+ and ū+ > θ− and x̄ > 0) are fulfilled. The

burst timing dependence (Fig. 3C) is qualitatively similar to that found in experiments [35], but only four of

the six experimental data points are quantitatively reproduced by the model.

2.2 Functional implications

Connectivity patterns in a local cortical circuit have been shown to be non-random, i.e. the majority of connec-

tions are weak and the rare strong ones have a high probability of being bidirectional [5]. However, standard

models of STDP do not exhibit stable bidirectional connections [36]. Intuitively, if the cell A fires before the cell

B, a pre-post pairing for the ’AB’ connection is formed so that the connection is strengthened. The post-pre
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pairing occurring at the same time in the ’BA’ connection leads to depression. Therefore it is impossible to

strengthen both connections at the same time. Moreover, in order to assure long-term stability of firing rates

parameters in standard STDP rules are typically chosen such that inhibition slightly dominates excitation [17]

which implies that under purely random spike firing connections decrease, rather than increase. However, the

non-linearity aspects of plasticity in our model change such a simple picture. If we simulate two neurons with

bidirectional connections at low firing rates, the plasticity model behaves like standard STDP and only unidi-

rectional connections emerge. However, from Fig. 3B we expect that at higher neuronal firing rates, our model

could develop a stable bidirectional connection, in striking contrast to standard STDP rules [21].

Since bidirectional connections require neurons to fire at a high rate, we wondered how coding and con-

nectivity relate to each other. We hypothesized that bidirectional connections are supported by rate-coding

as opposed to temporal-coding. To test this idea we first simulated a small network of 10 all-to-all connected

neurons in a simplified rate-coding scheme where each neuron fires at a fixed frequency, but the frequency varies

across neurons. We find that bidirectional connections are formed only between those neurons that both fire at

a high rate, but not if one or both of the neurons fire at low frequencies (Fig. 4A). In a second paradigm, the

neurons in the same network are stimulated such that they are firing in a distinct order (1, 2 , 3,..) mimicking

an extreme form of temporal coding [37]. In that case, the weights form a loop where strong connections from

1 to 2, 2 to 3, ... develop, but no bidirectional connections (Fig. 4B). These results are in striking contrast to

simulation experiment with a standard STDP rule, where connections are always unidirectional, independently

of coding (Fig. 4C, D).

We wondered whether the same results would emerge in a more realistic network of excitatory and inhibitory

neurons driven by feedforward input. We simulated a network of 10 excitatory neurons and 3 inhibitory neurons.

Each inhibitory neuron receives input from 8 randomly selected excitatory neurons and randomly projects

back to 6 excitatory neurons. In addition to the recurrent input, each excitatory neuron receives feedforward

spike input from 500 presynaptic neurons j that generate stochastic Poisson input at a rate νj . The rates

of neighboring input neurons are correlated, mimicking the presence or absence of spatially extended objects.

In a rate-coding scheme, the location of the stimulus is switched every 100ms to a new random position. In

case of retinal input, this would correspond to a situation where the subject fixates every 100ms on a new

stationary stimulus. In a temporal-coding paradigm, the model input is shifted every 20ms to a neighboring

location, mimicking movement of an object across an array of sensory receptors. For both scenarios the network

is identical. Feedforward connections and lateral connections between model pyramidal neurons are plastic

whereas connections to and from inhibitory neurons are fixed.

After 1000s of stimulation with the rate-coding paradigm, the excitatory neurons developed localized re-

ceptive fields and a structured pattern of synaptic connections (Fig. 5B). While the labeling of the excitatory

neurons at the beginning of the experiment was randomly assigned, we can relabel the neurons after the for-

mation of lateral connectivity patterns so that neurons with strong reciprocal connections have similar indices,

reflecting the neighborhood relation of the network topology. After reordering we can clearly distinguish that

three groups of neurons have been formed, characterized by similar receptive fields and strong bidirectional
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connectivity within the group, and different receptive fields and no lateral connectivity between groups (Fig.

5C). If the overall amplitude of plastic changes is small (compared to that found in the experiments) the pattern

of lateral connectivity is stable and shows a few strong bidirectional connections in a sea of weak lateral con-

nectivity. Unidirectional strong connections are nearly absent. If the amplitude and rate of plasticity is more

realistic and in agreement with the data of Fig. 2, then the pattern of lateral connectivity changes between one

snapshot and another one 5 seconds later, but the overall pattern is stable when averaged over 100s. In each

snapshot, about half of the strong connections are bidirectional (Fig. 5H).

This is in striking contrast with the temporal coding paradigm. Neurons develop receptive fields similar to

those seen with the rate-coding paradigm. As expected for temporal Hebbian learning rate [21] the receptive

field slowly shifts over time. More importantly, amongst the lateral connections, strong reciprocal links are

completely absent (Fig. 6). This suggests that temporal coding paradigms are reflected in the functional

connectivity pattern by strong uni-directional connections whereas rate coding leads to strong bidirectional

connections.

3 Discussion

Plasticity models over the last decades have primarily focused on questions of development of receptive fields

and cortical maps [30], or memory formation [38]. Because traditional plasticity rules are rate models, the

relation between coding and connectivity could not be studied. Our plasticity rule is formulated on the level of

postsynaptic voltage. Since action potentials present large and narrow voltage peaks, they act as singular events

in a voltage rule so that in the presence of spike our rule turns automatically into spike-timing dependent rule.

Indeed, for spike coding (and in the absence of significant subthreshold voltage manipulations) our plasticity rule

behaves like a STDP rule where triplets of spikes with pre-post-post or post-pre-post timing evoke LTP, whereas

pairs with post-pre timing evoke LTD. Moreover, for rate coding where pre- and postsynaptic neurons fire with

Poisson firing statistics, our plasticity rule presents structural similarities to the model of Bienenstock, Cooper,

and Munro (BCM-model, [30]). Both our spiking rule and the rate-based BCM model require presynaptic

activity in order to induce a change. Furthermore for our rule as well as for the simplest BCM rule (see [30]),

the depression terms are linear and the potentiation terms are quadratic in the postsynaptic variables (i.e., the

postsynaptic potential or the postsynaptic firing rate). Beyond these qualitative similarities, an approximate

quantitative relation between the BCM model and our model can be constructed under appropriate assumptions.

In this case the total weight change Δw in our model is proportional to νpreνpost(νpost − ϑ) where νpre and

νpost denotes the firing rate of a pre- and postsynaptic neurons, respectively and ϑ is a sliding threshold related

to the ratio between the LTP and LTD inducing processes (see methods).

Due to its similarities to BCM, it is not surprising that our spike-based learning rule with sliding threshold

is able to support independent component analysis (ICA) that has been hypothesized to underly receptive field

development [30, 39]. In our experiments, the input consists of small patches of natural images using standard

preprocessing [40]. Image patches are selected randomly and presented to the neuron for T = 200ms, which
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is on the order of a fixation time between saccades [41]. Pixel intensities above an average grey value are

converted to spike trains of ON-cells and and those below reference intensity to spikes in OFF-cells, using the

relative intensity as the rate of a Poisson process. The spike trains from ON- and OFF-cells are the input to

a cortical neuron. The synaptic weights undergo plasticity following our learning rule (Eq. 3). After learning,

the weights exhibit a spatial structure that can be interpreted as a receptive field (Fig. 7). In contrast to the

principal component analysis of the image patches (as for example implemented by Hebbian learning in linear

neurons [42]), the receptive fields are localized (i.e. the region with significant weights does not stretch across

the whole image patch). Development of localized receptive fields can be interpreted as a signature of ICA [40].

In contrast to most other ICA algorithms [43] our rule is biologically more plausible since it is consistent with

a large body of plasticity experiments.

For a comparison of our model with experiments we have mainly focused on experiments in slices of visual

cortex, but some of the results can also be related to work in hippocampus. First, as the model explicitly

takes into account the postsynaptic membrane potential it can successfully reproduce the voltage dependence of

LTP/LTD seen in experiments under depolarization of the postsynaptic membrane [14, 15]. Second, for classical

STDP experiments such as [13, 23, 44], which have a stimulation protocol unambiguously defined in terms of pre-

and postsynaptic spike times, the model gives a timing dependence reminiscent of the typical STDP function

[13]. Moreover in contrast to standard STDP rules [21], more complicated effects such as the pairing frequency

dependence [23] and burst-timing dependence plasticity [35] are qualitatively described. In addition the rule

is expected to reproduce the triplet and quadruplet experiments in hippocampal slices [44] (data not shown),

because for all STDP protocols the plasticity rule in this paper is similar to an earlier nonlinear STDP rule

[32]. Deriving STDP rules from voltage dependence has been attempted before [45, 46]. However, since these

earlier models use the momentary voltage [46] or its derivative [45], rather than a combination of momentary

and averaged voltage as in our model, these earlier models cannot account for the broad range of nonlinear

effects in STDP experiments or interaction of voltage and spike-timing. Our model shows similarities with LTP

induction in the TagTriC model [47], but the TagTriC model focuses on the long-term stability of synapses,

rather than spike timing dependence of the induction mechanism.

Our plasticity rule allows to explain experiments from two different laboratories by one single principle. Both

the ”potentiation is rescued by depolarization” [23] scenario (Fig. 2F) and that of burst-timing dependent

LTP [35] (Fig. 3) show that LTP at low frequency is induced when the membrane is depolarized before the

pre-post pairing. This depolarization can be due to a previous spike during a postsynaptic burst [35] or to a

depolarization current. Our model is also consistent with results that LTP can be induced in distal synapses

only if additional cooperative input or dendritic depolarization prevent failure of backpropagating action po-

tentials [48]. A further unexpected result is that, with the set of parameters derived from visual cortex slice

experiments, synapses fluctuate between strong and weak weights. This aspect is interesting in view of synapse

mobility reported in imaging experiment [8].

There are, however, certain limitations to our plasticity rule. First, we did not address the problem of weight

dependence of synaptic plasticity and simply assumed that weights can grow to a hard upper bound. Neverthe-
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less, the rule can be easily changed to soft bounds [21] by changing the prefactors ALTP, ALTD accordingly [47].

Second, short term plasticity [49] could be added for a better description of the plasticity phenomena occurring

especially during high frequency protocols. Third, our plasticity rule describes only induction of potentiation

or depression during the early phase of LTP/LTD [50]. Additional mechanisms need to be implemented in the

model to describe the transition from early to late LTP/LTD [47, 51]. Finally, in modeling voltage-clamp ex-

periments, we assume in our model a unique voltage throughout the whole neuron. In particular the dendrite is

assumed to be equipotential to the soma. Yet, experiments controlling the voltage at the soma do not guarantee

an equal or even fixed voltage at the synapse with respect to the soma. An obvious and promising improvement

would be to use a multi-compartment neuron model (e.g. distinct compartments for the soma and dendrites).

In the presented work we did not use a more sophisticated multi-compartment model as this would introduce a

considerable number of new parameters making overfitting more likely to occur.

Our plasticity model leads to several predictions that could be tested in slice experiments. First, under the

assumption of voltage clamp, our rule is linear in the presynaptic activities (see Methods). Thus the model

predicts that in voltage clamp experiments the weight change is only dependent on the voltage and the number

of presynaptic spikes but not on their exact timing (e.g., low frequency, tetanus, burst input should give the

same result). Second, in the scenario where potentiation is rescued by depolarization, the amount of weight

change should be the same whether a depolarizing current of amplitude B stops precisely when the postsynaptic

spike is triggered or whether a current of slightly bigger amplitude B’ stops a few milliseconds earlier. Third,

multiple STDP experiments have shown that pre-post pairing (with 10 millisecond timing difference) repeated

at 10Hz leads to potentiation [23]. In our plasticity model, LTP occurs in that case because the depolarizing

spike-afterpotential of the last postsynaptic spike leads to an increase of the filtered membrane voltage just be-

fore the next postsynaptic spike. If this interpretation is correct, a hyperpolarizing current sufficient to cancel

the spike afterpotential during 40 milliseconds should block LTP (note that this is different from blocking LTP

by a hyperpolarizing current a few milliseconds before the next spike [23]). Alternatively cutting dendrites, i.e.

dendrotomy [52] would sharpen the spike after potential.

The influence of STDP on temporal coding has been studied in the past primarily with respect to changes

in the feedforward connections [21]. The effect of STDP on lateral connectivity has been studied much less

[28, 29, 27]. We have shown in this paper that, because of STDP, coding influences the network topology, because

different codes give different patterns of lateral connectivity. Our results are in contrast to standard STDP rules

which always suppress short loops, and in particular bidirectional connections [36]. Our more realistic plasticity

model shows that under a rate coding paradigm bidirectional connectivity and highly connected clusters with

multiple loops are not only possible, but even dominant. It is only for temporal coding, that our biologically

plausible rule leads to dominant unilateral directions. Our model also predicts that for a code consisting of

synchronous firing events at low frequencies synapses decrease, consistent with earlier findings [27]. We speculate

that the differences in coding between different brain areas could lead, even if the learning rule were exactly the

same, to different network topologies. Our model predicts that experiments where cells in a recurrent network

are repeatedly stimulated in a fixed order would decrease the fraction of strong bidirectional connections, whereas
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a stimulation pattern where clusters of neuron fire at high rate during episodes of a few hundred milliseconds

would increase this fraction. In this views it is tempting to connect the low degree of bidirectional connectivity

in barrel cortex [6] to the bigger importance of temporal structure in whisker input [37], compared to visual

input.
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Foundation.

5 Figure Captions

Figure 1: Illustration of the model. Synaptic weights react to presynaptic events (top) and postsynaptic
membrane potential (bottom) A. The synaptic weight is decreased if a presynaptic spike x (green) arrives when
the low pass filtered value ū− (magenta) of the membrane potential is above θ− (dashed horizontal line) B.
The synaptic weight is increased if the membrane potential u (black) is above a threshold θ+ and the low
pass filtered value of the membrane potential ū+ (blue) higher than a threshold θ− as well as the presynaptic
low pass filter x̄ (orange) non zero. C. Step current injection makes the postsynaptic neuron fire at 50Hz in
the absence of presynaptic stimulation (membrane potential u in black). No weight change is observed. Note
the depolarizing spike-afterpotential consistent with experimental data D., reproduced from [23]. E-H. Voltage
clamp experiment. A neuron receives weak presynaptic stimulation of 2Hz during 50s while the postsynaptic
voltage is clamped to values between -60mV and 0mV. E-G. Schematic drawing of the trace x̄ (orange) of the
presynaptic spike train (green) as well as the voltage (black) and the synaptic weight (blue) for the experimental
conditions E. Hyperpolarization F. Slight depolarization and G. Large depolarization. H. The weight change
as a function of clamped voltage using the standard set of parameters for visual cortex data (blue line, voltage
paired with 25 spikes at the synapse). With a different set of parameters the model fits experimental data (red
circles) in hippocampal slices [15], see methods for details.

Figure 2: A-B. Simulated STDP experiments. A. Spike-timing dependent learning window. The change of the
synaptic weight is shown for different time intervals T between the presynaptic and the postsynaptic spike using
60 presynaptic/postsynaptic spike pairs at 20Hz. B. Weight change as a function of repetition frequency for
5 spike pairs at frequency ρ with a time delay of +10ms (pre-post, blue) and -10ms (post-pre, red), repeated
15 times at 0.1Hz (only 10 times for frequency of ρ=0.1Hz). Weight changes are shown as a function of the
frequency, dots represent the data taken from Sjöström et al. [23] and lines the plasticity model simulation.
C-I. Interaction of voltage and STDP. C-E. Schematic induction protocols (green: presynaptic input, black:
postsynaptic current, blue: evolution of synaptic weight). C. Low-Frequency Potentiation is rescued by depo-
larization [23]. Low frequency (0.1Hz) pre-post spike pairs yield LTP if a 100ms-long depolarized current is
injected around the pairing. D. LTP fails in the previous scenario if an additional brief hyperpolarized pulse
is applied 14-ms before postsynaptic spike so that voltage is brought to rest. E. Hyperpolarization preceding
action potential prevents potentiation. Sjöström et al. [23] show that high frequency (40Hz) pairing leads to
LTP. However, when a constant hyperpolarizing current is applied on top of the short pulses inducing the spikes,
no weight change is measured. F. The simulated postsynaptic voltage u (black) following protocol A. is shown
as well as the temporal averages ū− (magenta) and ū+ (blue). The presynaptic spike time is indicated by the
green arrow. Using the model Eq. 3 this setting results in potentiation. G. Same as F, but following protocol
D. No weight change is measured. H. Same as F., but following protocol E. No weight change is measured.
I. Histogram summarizing the normalized synaptic weight of the simulation (bar) and the experimental data
[23] (dot, blue bar=variance) 0.1Hz pairing (control 1); 0.1Hz pairing with the depolarization (protocol C.);
0.1Hz pairing with the depolarization and brief hyperpolarization (protocol D.); 40Hz pairing (control 2); 40Hz
pairing with the constant hyperpolarization (protocol E.). The parameters are summarized in Table 1B.
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Figure 3: Burst-timing-dependent plasticity. One presynaptic spike is paired with a burst of postsynaptic
spikes. This pairing is repeated 60 times at 0.1Hz. A. Normalized weight is shown as a function of the number
of postsynaptic spikes (1,2,3) at 50Hz. (dots: data from [35], crosses: simulation). The presynaptic spike is
paired +10ms before the first postsynaptic spike (blue) or -10ms after (red). B. Normalized weight as a function
of the frequency between the three postsynaptic action potentials (dot: data, line: simulation; blue: pre-post,
red: post-pre). C. Normalized weight as a function of the timing between the presynaptic spike and the first
postsynaptic spike of a 3-spike burst at 50Hz (dot: data, line: simulation). A hard upper bound has been set
to 250% normalized weight.

Figure 4: Weight evolution in a all-to-all connected network of 10 neurons. A. Rate code: Neurons fire at
different frequencies, neuron 1 at 2Hz, neuron 2 at 4Hz... neuron 10 at 20Hz. The weights (bottom) averaged
over 100s show that neurons with high firing rates develop strong bidirectional connections (light blue: weak
connections (under 2/3 of the maximal value); yellow: strong unidirectional connections (above 2/3 of the
maximal value); brown: strong bidirectional connections). The cluster is schematically represented on top
(”after”). B. Temporal code: Neurons fire successively every 20ms (neuron 1 then 20ms later neuron 2, then
3..). Connections (bottom) are unidirectional with strong connections from presynaptic neuron with index
n (vertical axis) to postsynaptic neuron with index n+1, n+2 and n+3 leading to a ring-like topology (top:
schematic). C. D. Same but with standard STDP rule [17, 26, 21]. Bidirectional connections are impossible.

Figure 5: Plasticity during rate coding. A network of 10 excitatory neurons is connected to 3 inhibitory neurons
and receives feedforward inputs from 500 Poisson spike trains with a Gaussian profile of firing rates. The center
of the Gaussian is shifted randomly every 100ms A. The schematic figure shows the network before and after
the plasticity experiment. B-E. Learning with small amplitudes. Model parameters are taken from table 1B
(visual cortex data) except for the amplitudes ALTP and ALTD which are reduced by a factor 100. B. Mean
feedforward weights (left) and recurrent excitatory weights (right) averaged over 100s. The grey level graph
for the feedforward weights (left) indicates that neurons develop receptive fields that are localized in the input
space. The recurrent weights (right) are classified into: light blue - weak (less than 2/3 of the maximal weight),
yellow - strong (more than 2/3 of the maximal weight) unidirectional, brown - strong reciprocal connections.
The diagonal is white, since self-connections do not exist in the model. C. Same as (B) but for the sake of visual
clarity the index of neurons is reordered so that neurons with similar receptive fields have adjacent numbers,
highlighting that neurons with similar receptive fields (e.g., neurons 1 to 4) have strong bilateral connections.
D. Three snap shots of the recurrent connections taken 5s apart indicating that recurrent connections are stable.
E. Histogram of reciprocal, unidirectional and weak connections in the recurrent network averaged over 100s as
in (B). The total number of weight fluctuations during 100s is 79 (noted on the figure). The histogram shows
an average of 10 repetitions (errorbars are the standard deviation). F-I. Rate code during learning with normal
amplitudes. Same network as before but standard set of parameters (table 1B, visual cortex). F. Receptive
fields are localized; G. Reordering allows to visualize that the strong bidirectional give rise to clusters of neurons.
These clusters are stable when averaged over 100 seconds, but H connections can change from one time step to
the next. I. The percentage of reciprocal connections is high, but because of fluctuations (fluc) more than 1000
transitions between strong unidirectional to strong bidirectional or back occur during 100 seconds.
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Figure 6: Temporal coding paradigm. The setting is the same as in Fig. 5 (parameters from table 1B, visual
cortex) but the input patterns are moved successively every 20ms, corresponding to a step-wise motion of the
Gaussian stimulus profile across the input neurons. A. The schematic figure shows the network before and
after the plasticity experiment. B. Receptive fields are localized, but in the recurrent network no reciprocal
connections appear. C. Reordering of neurons shows that the network develops a ring-like structure with strong
unidirectional connections from neuron 8 (vertical axis) to neuron 7 and 6 (horizontal axis); from neuron 7 to
neuron 6, 5, and 4; from neuron 4 to neuron 3, 2, and 1 etc. D. Some of the strong unilateral connections appear
or disappear from one time step to the next, but the ring-like network structure persists, since the lines just
below the diagonal are much more populated than the line above the diagonal. E. Reciprocal connections are
completely absent, but unidirectional connections fluctuate several times between ’weak’ and ’strong’ during
100s.

Figure 7: A small patch of 16x16 pixels is chosen from the whitened natural images benchmark [40]. The patch
is selected randomly and is presented as input to 512 neurons for 200ms. The positive part of the image is
used as the firing rate to generate Poisson spike trains of the 256 ”ON” inputs and the negative one for the
256 ”OFF” inputs. B. The weights after convergence are shown for the ”ON” inputs and the ”OFF” inputs
rearranged on a 16x16 image. The filter is calculated by subtracting the ”OFF” weights from the ”ON” weights.
The filter is localized and bimodal, corresponding to an oriented receptive field.

Table 1: A. Parameters for the neuron model. B. Plasticity rule parameters for the various experiments.
VC stands for Visual Cortex cells (for experimental details see [23], ∗ standard set of parameters), SC for
Somatosensory Cortex cells (see [35]) and HP for Hippocampal cells (see [15]). Bold numbers indicate the free
parameters fitted to experimental data. Other parameters are set in advance to values based on the literature.

6 Methods

6.1 Neuron Model

In contrast to standard models of STDP, the plasticity model presented in this paper involves the postsynaptic

membrane potential u(t). Hence, predicting the weight change in a given experimental paradigm requires a

neuron model that describes the temporal evolution of u(t). For this purpose we chose the adaptive Exponential

Integrate-and-Fire (AdEx) model [53] with an additional current describing the depolarizing spike after potential

[54]. The neuron model is described by a voltage equation:

C
d

dt
u = −gL(u− EL) + gLΔT exp

(
u− VT

ΔT

)
− wad + z + I

where C is the membrane capacitance, gL the leak conductance, EL the resting potential and I the stimulating

current. The exponential term describes the activation of a rapid sodium current. The parameter ΔT is called

the slope factor and VT the threshold potential [53]. A hyperpolarizing adaptation current is described by the

variable wad with dynamics

τwad

d

dt
wad = a(u− EL)− wad,

where τwad
is the time constant of the adaption of the neuron. Upon firing the variable u is reset to a fixed

value Vreset whereas wad is increased by an amount b. The main difference to the Izhikevich model [55] is that
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the voltage is exponential rather than quadratic allowing a better fit to data [54]. The spike afterpotential of

the cells used in typical STDP experiments [23] have a long depolarizing spike after potential. We therefore

add an additional current z which is set to a value Isp immediately after a spike occurs and decays otherwise

with a time constant τz.

τz
d

dt
z = −z,

Finally, refractoriness is shown in pyramidal cells [54] and therefore is modeled with the adaptive threshold VT .

Therefore VT is set to VTmax
after a spike and decays to VTrest

with a time constant τVT
as measured in [54], i.e.

τVT

d

dt
VT = −(VT − VTrest

).

Parameters for the neuron model are taken from [53] for the AdEx, τz is set to 40ms in agreement with [23, 54]

and kept fixed throughout all simulations (see table 1A).

6.2 Plasticity Model

Since synaptic depression and potentiation take place through different pathways [33] our model exhibits separate

additive contributions to the plasticity rule, one for LTD and another one for LTP.

For the LTD part, we assume that presynaptic spike arrival at synapse i induces depression of the synaptic

weight wi by an amount −ALTD [u−(t) − θ−]+ that is proportional to the average postsynaptic depolarization

u−. The brackets [ ]+ indicate rectification, i.e. any value ū− < θ− does not lead to a change and implement

experimental findings showing that postsynaptic depolarization should exceed a certain value θ− to establish

depression of the synapse [14] (see Fig. 1H). The quantity u−(t) is an exponential low-pass filtered version of

the postsynaptic membrane potential u(t) with a time constant τ−:

τ−
d

dt
u−(t) = −u−(t) + u(t).

The variable ū− is an abstract variable which could, for instance, reflect the level of calcium concentration [24]

or the release of endocannabinoids [56], though such an interpretation is not necessary for our rule. Since the

presynaptic spike train is described as a series of short pulses at time tni where i is the index of the synapse and

n an index that counts the spike, Xi(t) =
∑

n δ(t− tni ), depression is modeled as the following update rule, see

also Fig. 1:

d

dt
w−

i = −ALTD(¯̄u) Xi(t) [u−(t)− θ−]+ if wi > wmin, (1)

where ALTD(¯̄u) is an amplitude parameter that is under the control of homeostatic processes [34]. For slice

experiment the parameter has a fixed value extracted from experiment. For network simulations, we make it

depend on the mean depolarization ¯̄u of the postsynaptic neuron, averaged over a time scale of 1 second. Eq. 1
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is a simple method to implement homeostasis; other methods such as weight rescaling would also be possible [34].

For the LTP part, we assume that each presynaptic spike at the synapse wi increases the trace x̄i(t) of some

biophysical quantity, which decays exponentially with a time constant τx in the absence of presynaptic spikes,

similar to previous work [17, 32]. The temporal evolution of x̄i(t) is described by:

τx
d

dt
x̄i(t) = −x̄i(t) + Xi(t),

where Xi is the spike train defined above. The quantity x̄i(t) could for example represent the amount of

glutamate bound to postsynaptic receptors [32] or the number of NMDA receptors in an activated state. The

potentiation of wi is modeled by the following expression, which is proportional to the trace x̄i(t) (see also

Fig. 1):

d

dt
w+

i = +ALTP x̄i(t) [u(t)− θ+]+ [u+(t)− θ−]+ if wi < wmax. (2)

Here, ALTP is a free amplitude parameter fitted to the data and u+(t) is another low-pass filtered version of

u(t) similar to u−(t) but with a shorter time constant τ+ around 10ms. Thus positive weight changes can occur

if the momentary voltage u(t) surpasses a threshold θ+ and, at the same time the average value u+(t) is above θ−.

The final rule used in the simulation is described by the equation

d

dt
wi = −ALTD(¯̄u) Xi(t) [u−(t)− θ−]+ + ALTP x̄i(t) [u(t)− θ+]+ [u+(t)− θ−]+, (3)

combined with hard bounds 0 ≤ wi ≤ wmax. For network simulation, ALTD(¯̄u) = ALTD
¯̄u2

u2
ref

where u2
ref is a

reference value.

6.3 Parameters and Data Fitting

For the plasticity experiments in slices, we take ¯̄u = uref as fixed and fit the parameters ALTD. The total number

of parameters of the plasticity model is then 7. For all data sets, except the one taken from [15], the threshold

θ− is set to the resting potential and θ+ to the firing threshold of the AdEx model, i. e. θ− = −70.6mV

and θ+ = −45.3mV. The remaining five parameters τx, τ−, τ+, ALTD and ALTP are fitted to each data set

individually by the following procedure. We calculate the theoretically predicted weight change Δwth,j
i by

integrating (analytically or numerically) Eq. (3), for a given experimental protocol j, as a function of the

free parameters. We then estimate the free parameters by minimizing the mean-square error E between the

theoretical calculations and the experimental data Δwexp,j
i :

E =
∑

j

(
Δwth,j

i −Δwexp,j
i

)2

.
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For the data set in hippocampus [15], we also fit the two parameters θ− and θ+ since completely different

preparations and cell type were used. Moreover for this data set, the time constant τx is taken from physiological

measurements given in [13] and fixed to the values of 16ms. The parameters for the various experiments are

summarized in table 1B.

6.4 Protocols and mathematical methods

Voltage clamp experiment. (Fig. 1H) The postsynaptic membrane potential was switched in the simulations

to a constant value uclamp chosen from -80mV to 0mV while presynaptic fibers were stimulated with either 25

(blue line) or 100 pulses (red line) at 50Hz. Due to voltage clamping, the actual value of the voltage u itself and

the low-pass filtered versions ū are constant and equal to uclamp. Hence, the synaptic plasticity rule becomes

d
dtwi = −ALTD Xi(t) [uclamp − θ−]+ + ALTP x̄i(t) [(uclamp − θ−)(uclamp − θ+)]+.

Frequency dependence experiment. (Fig. 2B) Presynaptic spikes in the simulation were paired with

postsynaptic spikes that were either advanced by +10ms or delayed by -10ms with respect to the presynaptic

spike. This pairing was repeated 5 times with different frequencies ranging from 0.1 to 50Hz. These 5 pairings

were repeated 15 times at 0.1Hz. However, the 5 pairing at 0.1Hz were repeated only 10 times to mimic the

experimental protocol [23].

Burst-timing-dependent plasticity. (Fig. 3A) The presynaptic spike is paired Δt =+10ms before (or Δt =-

10ms after) 1, 2 or 3 postsynaptic spikes. The frequency of the burst is 50Hz. The neuron receives 60 pairings at

a frequency of 0.1Hz. Fig. 3B: The presynaptic spike is paired with a burst of 3 action potentials (Δt =+10ms

and -10ms), while the burst frequency varies from 20 to 100Hz. Fig. 3C: A presynaptic spike is paired with a

burst of 3 postsynaptic action potentials with burst frequency of 50Hz. The time Δt between the presynaptic

spike and the first postsynaptic action potential varies from −80 to 40 ms. For a detailed description of the

experiments see [35].

Poisson input for functional scenarios.(Fig. 4-7) Poisson inputs are used in all the following experiments.

They are generated by a stochastic process where the spike is elicited with a stochastic intensity ν.

Relation between connectivity and coding: Toy model. (Fig. 4) Weights of ten all-to-all connected

neurons are initialized at 1, bounded between 0 and 3. Weights evolve with the voltage-based rule with

homeostasis (Eq. 3) for 100s. The model is compared to a canonical pair-based STDP model written as

d
dtwi = −Apair

LTD Xi ȳ + Apair
LTP x̄i Y , where Y is the postsynaptic spike train defined the same way as the presy-

naptic spike train Xi with a filter of the postsynaptic spikes ȳ similar to x̄i. The parameters are chosen

Apair
LTD = Apair

LTP = 1e−5 for the amplitudes and τx for the time constant of x̄i as well as for the time constant

of the postsynaptic low-pass filter ȳ. Rate code: Neuron 1 fire at 2Hz, neuron 2 at 4Hz... neuron 10 at 20Hz
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following a Poisson statistics, i.e. short current pulses are injected to make the neuron fire with Poisson statis-

tics at this frequency. The neurons have different reference values from u2
ref = 60 to 600mV2. Temporal code:

Neurons fire successively every 20ms, first neuron 1 fires then 20ms later neuron 2 then... 10 then 1 etc, in a

loop. The neurons have a reference value set to u2
ref = 60mV2.

Rate coding in network simulation. (Fig. 5) Five hundred presynaptic Poisson neurons with firing rates

νpre
i (1 ≤ i ≤ 500) are connected to 10 postsynaptic excitatory neurons. The inputs rates νpre

i follow a Gaussian

profile, i. e. νpre
i = A · exp(−(i − μ)2/(2σ2)), with variance σ = 10 and amplitude A = 30Hz. The center μ of

the Gaussian shifts randomly every 100ms between 10 different positions equally distributed. Circular bound-

ary conditions are assumed, i.e. neuron i = 500 is considered as neighbor of i = 1. Synaptic weights of the

feedforward connections are initialized randomly (uniformly in [0.5,2]) and hard bound are set to 0 and 3. The

10 excitatory neurons are all to all recurrently connected with a starting synaptic weight of 0.25 (hard bounds

set to 0 and 0.75). In addition, 3 inhibitory neurons are randomly driven by 8 excitatory neurons and project

on 6 excitatory neurons, also chosen randomly. Those random connections are fixed and have a weight equal

to 1. The reference value is set to u2
ref = 60mV2 and the simulation time to 1000s. Parameters are normally

chosen as in table 1B, visual cortex data, except for Fig. 5 B-E, where ALTP and ALTD where reduced by a

factor 100.

Temporal coding in network simulation. (Fig. 6) Same setting than rate code but the patterns are pre-

sented for 20ms successively (from center position 500, to 450, to 400 etc in a circular manner). The reference

value has been set to u2
ref = 80mV2.

ICA-like computation - Orientation selectivity with natural images. (Fig. 7) Ten natural images have

been taken from the benchmark of Olshausen et al. [40]. A small patch of 16 by 16 pixels from any of the images

is randomly chosen every 200ms. After prewhitening, the inputs for the ”ON” (”OFF”) image are Poisson spike

trains generated by the positive (negative) part of the patch (with respect to a reference grey value reflecting

the ensemble mean) with maximum frequency of 50Hz. The 2x16x16 inputs are connected to one postsynaptic

neuron. The initial weights are set randomly between 0 and 2 and hard bounds are set between 0 and 3. The

connections follow the synaptic rule (Eq. 3), where the reference value is set to u2
ref = 50mV2. Parameters

are chosen as in table 1B (visual cortex data) but ALTP and ALTD where reduced by a factor 10. Every 20 s

an extra normalization is applied to equalize the norm of the ”ON” weights to the one of the ”OFF” weights [31].
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Figure-1(Clopath)
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Figure-3(Clopath)
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Figure-4(Clopath)
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Figure-5(Clopath)
A

S
to

c
h

before after

B C

2 4 6 8 10

100

200

300

400

500

neuron index

in
pu

t i
nd

ex

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

in
pu

t i
nd

ex

2 4 6 8 10

100

200

300

400

500

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

D E

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

recip unidir weak
0

20

40

60

80

100
fluc = 79

F G

neuron index

in
pu

t i
nd

ex

2 4 6 8 10

100

200

300

400

500

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

in
pu

t i
nd

ex

2 4 6 8 10

100

200

300

400

500

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

H I

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

neuron index

ne
ur

on
 in

de
x

2 4 6 8 10

2

4

6

8

10

recip unidir weak
0

20

40

60

80

100
fluc = 1.8e4

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
36

2.
1 

: P
os

te
d 

22
 J

un
 2

00
9



Figure-6(Clopath)
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Figure-7(Clopath)
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Table-1(Clopath)

A

Parameters Value
C - membrane capacitance 281pF

gL - leak conductance 30nS
EL - resting potential -70.6mV

ΔT - slope factor 2mV
VTrest - threshold potential at rest -50.4mV
τwad

- adaptation time constant 144ms
a - subthreshold adaptation 4nS

b - spike triggered adaptation 80.5pA
Isp - spike current after a spike 400nA
τz - spike current time constant 40ms

τVT
- threshold potential time constant 50ms

VTmax - threshold potential after a spike −30.4mV

B

Exper. θ−(mV ) θ+(mV ) ALTD(mV )−1 ALTP(mV )−2 τx(ms) τ−(ms) τ+(ms)
VC∗ -70.6 -45.3 14e−5 8e−5 15 10 7
SC -70.6 -45.3 21e−5 67e−5 15 8 5
HP −41 −38 38e−5 2e−5 16

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
09

.3
36

2.
1 

: P
os

te
d 

22
 J

un
 2

00
9



54



Chapter 4

A model for the late phase
of long term synaptic

plasticity

T
he key element in understanding memory is the stable changes of the

synapses. It is therefore essential to describe the long lasting changes

which are for example measured by synaptic tagging experiments (Frey and

Morris 1997). These experiments exhibit three phases leading to a maintenance

of synaptic plasticity (1) the induction of long-term potentiation and depres-

sion (LTP/LTD) during the early phase of synaptic plasticity and the setting

of synaptic tags, (2) a trigger process for protein synthesis, and a slow tran-

sition leading to synaptic consolidation during (3) the late phase of synaptic

plasticity. In the following paper (Clopath, Ziegler, Vasilaki, Buesing, and Ger-

stner 2008) we present a minimal model that describes these three di�erent

phases of synaptic plasticity. The early phase of plasticity is modeled with the

induction model presented in the previous paper (Clopath, Vasilaki, Buesing,

and Gerstner xxxx) and leads directly to setting the tag. The synapses are

considered discrete, consistent to some experimental evidence that LTP under

minimal stimulation (Petersen, Malenka, Nicoll, and Hop�eld 1998; O'Connor,

Wittenberg, and Wang. 2005) or glutamate encaging (Bagal, Kao, Tang, and

Thompson 2005) is a switch-like process. This model explains a large body

of experimental data on synaptic tagging and capture, cross-tagging, and the

late phases of LTP and LTD. It o�ers structural similarities to reinforcement

learning models such as a dependence on neuromodulation.
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Introduction

Changes in the connection strength between neurons in

response to appropriate stimulation are thought to be the

physiological basis for learning and memory formation [1,2]. A

minimal requirement for proper memory function is that these

changes, once they are induced, persist for a long time. For several

decades, experimentalists have therefore focused on Long-Term

Potentiation (LTP) and Long-Term Depression (LTD) of synapses

in hippocampus [3,4] and cortical areas [5,6]. LTP can be induced

at groups of synapses by strong ‘tetanic’ high-frequency stimula-

tion of the presynaptic pathway [3] while stimulation at lower

frequency leads to LTD Dudek92. Both LTP and LTD can also be

induced at a single synapse or a small number of synaptic contacts

if presynaptic activity is paired with either a depolarization of the

postsynaptic membrane [5,7] or tightly timed postsynaptic spikes

[8,9].

While the induction protocol for LTP and LTD is often as short

as a few seconds, the changes in synaptic efficacy persist for much

longer [9]. In typical slice experiments on LTP [and similarly for

LTD or Spike-Timing Dependent Plasticity (STDP)] the persis-

tence of the change is monitored for 30 minutes to 1 hour.

Accumulating evidence suggests, however, that after this early

phase of LTP (E-LTP) different biochemical processes set in that

are necessary for the further maintenance of potentiated synapses

during the late phase of LTP (L-LTP) [10,11]. For an

understanding of the transition from early to late LTP, the

concept of ‘synaptic tagging and capture’ has become influential

[12,13]. During induction of the early phase of LTP, each

potentiated synapse sets a tag that marks that it has received a

specific afferent signal. A candidate molecule, involved in the tag

signaling LTP induction in apical dendrites of hippocampal

neurons, is the calcium-calmodulin dependent kinase II (CaMKII)

[13]. Newly synthesized plasticity-related proteins are ‘captured’

by the tagged synapse and transform E-LTP into L-LTP that can

be maintained over hours or days. A candidate protein involved in

the maintenance of potentiated hippocampal synapses is the

protein kinase Mf (PKMf) [11,14].

The stabilization and maintenance of potentiated synapses

poses a number of theoretical challenges. First, on the level of

single synapses we must require synaptic strength to remain stable,

despite the fact that AMPA channels in the postsynaptic

membrane are continuously exchanged and recycled [15–17].

Thus the synapse is not ‘frozen’ but part of a dynamic loop.

Second, on the level of neuronal representation in cortical areas,

one finds representations of input features that are stable but at the

same time sufficiently plastic to adjust to new situations [18]. In the

theoretical community, this paradox has been termed the stability-

plasticity dilemma in unsupervised learning [19]. Third, humans

keep the ability to memorize events during adulthood, but can also

remember earlier episodes years back. However, continued

learning of new patterns in theoretical models of associative

memory networks forces the erasure or ‘overwriting’ of old ones,

the so-called palimpsest property [20,21]. In the context of
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continued learning, theoretical arguments show that synaptic

plasticity on multiple time scales cannot prevent, but at most delay

the erasure of memories in the presence of ongoing synaptic

activity [22]. This suggests that additional mechanisms are

necessary to further protect existing memories and ‘gate’ the

learning of new ones.

Despite these challenges for the long-term stability of synapses,

most classical models of synaptic plasticity focus on the induction

and early phase of LTP or LTD and completely ignore the

question of maintenance. Traditional models of associative

memories separate the learning phase from the retrieval phase

[23] and the same holds for standard models of STDP [24–26].

Detailed biophysical models of LTP and LTD describe calcium

dynamics and Calcium/Calmodulin-Dependent Protein Kinase II

(CaMKII) phosphorylation during the induction and early phase

of LTP [27–29]. While these models show that switches built of

CaMKII proteins can be stable for years, they do not address

aspects of tagging leading to heterosynaptic interaction during L-

LTP and L-LTD. Moreover, while CaMKII phosphorylation is

necessary for induction of LTP and mediate tags in the apical

dendrites of hippocampal CA1 neurons [30], it is less clear

whether it is necessary for its maintenance [31]. On the other hand

protein kinase Mf is essential for maintenance of some synapse

types [11,13,14] but the same molecule is potentially relevant for

induction in others [30].

We wondered whether a simple model that connects the process

of LTP induction with that of maintenance would account for

experimental results on tagging and ‘cross-tagging’ [11–13,32]

without specific assumptions about the (partially unknown)

molecular pathways involved in the maintenance process. If so,

the model should allow us to discuss functional consequences that

are generic to the tagging hypothesis independent of the details of

a biophysical implementation in the cell. Even though we believe

that the model principles are more general, we focus on synapses

from the Schaffer-Collaterals onto the CA1 neurons in hippo-

campus as an experimentally well-studied reference system for

synaptic plasticity. Since typical tagging experiments involve the

extracellular stimulation of one or several groups of synapses (rather

than single synapses), our model of early and late LTP/LTD is

developed in the context of a neuron model with hundreds of

synapses. The application of the principles of synaptic consolida-

tion to experiments inducing E-LTP/E-LTD at single synapses is

considered in the discussion section.

Results

We study a model with a large number of synapses i onto a

single postsynaptic neuron. To be specific, we think of a pyramidal

neuron in the CA1 area of hippocampus. Our model combines

features of traditional models for the induction of potentiation [24–

26,33–36] with a simple description of tagging and synthesis of

plasticity related proteins that finally lead to the maintenance of the

induced changes. The section is organized as follows: We first

introduce the essential components of the model step by step

(‘Constructing the Model’). We then test the performance of the

model with a set of stimuli typically used to induce long-term

changes of synapses (‘Testing the Model’).

Constructing the Model
Our model contains three elements, Figure 1. The first one sets

the tag during the induction of E-LTP or E-LTD. A tag is

indicated by a value h = 1 for LTP or l = 1 for LTD. In the absence

of tags we have h = l = 0. The second one describes the process that

triggers the synthesis of plasticity related proteins. The final

component describes the up-regulation of a maintenance-related

process from a low value (z = 0) to a high value (z<1). The

dynamics of this component is intrinsically bistable and leads to a

consolidation of the previously induced change at the labeled

synapses upon interaction with the protein p (‘protein capture’).

The total change Dw of the synaptic strength reported in

experiments contains contributions [13] of the early components

l and h as well as the late component z. Since the model describes a

sequence of three steps ‘Tag-Trigger-Consolidation’ we call it in

the following the TagTriC-Model (Figure 1).

Tag and Induction of LTP/LTD
Results from minimal stimulation protocols which putatively

activate only a single synapse suggest that the induction of LTP is a

switch-like process [7,37]. We therefore model individual synapses

as discrete quantities that can switch, during the induction of LTP,

from an initial ‘non-tagged state’ (N) to a ‘high state’ (H) with a

transition rate rH that depends on the induction protocol.

Similarly, induction of LTD moves the synapse from the initial

non-tagged state (N) to a ‘low state’ (L) at a rate rL. If synapse i is

in the high state, the synaptic variable hi is equal to one. If it is in

the low state, another local variable li is set to one. These local

variables hi and li do not only control the weight of the synapse

during E-LTP and E-LTD, but also serve as ‘tags’ for up- or

down-regulation of the synapse. Tags reset to zero stochastically

with a rate kh and kl, respectively. If both tags are zero, the synapse

is in the non-tagged state N. Since the synapse is either up-

regulated OR down-regulated, at most one of the tags can be non-

zero (Figure 1A).

The stochastic transitions from the initial state N with hi = 0 and

li = 0 to the down-regulated state li = 1 or an upregulated state

hi = 1 depend in a Hebbian manner on presynaptic activity and the

state of the postsynaptic neuron. In the absence of presynaptic

activity, the LTD rate rL vanishes. Presynaptic activity combined

with a time-averaged membrane potential ū above a critical value

qLTD leads in the TagTriC model to a LTD transition rate rL

proportional to [ū(t)2qLTD]. For a transition from the initial state

to the high state, we require in addition that the momentary

membrane potential is above a second threshold qLTP. Hence the

transition rate rH is proportional to [ū(t)2qLTD][u2qLTP]

Author Summary

Humans and animals learn by changing the strength of
connections between neurons, a phenomenon called
synaptic plasticity. These changes can be induced by
rather short stimuli (lasting sometimes only a few seconds)
but should then be stable for months or years in order to
be useful for long-term memory. Experimentalists have
shown that synapses undergo a sequence of steps that
transforms the rapid change during the early phase of
synaptic plasticity into a stable memory trace in the late
phase. In this paper we introduce a model with a small
number of equations that can describe the phenomena of
induction of synaptic changes during the early phase of
synaptic plasticity, the trigger process for protein synthe-
sis, and the final stabilization. The model covers a broad
range of experimental phenomena known as tagging
experiments and makes testable predictions. The ability to
model the stabilization of synapses is crucial to understand
learning and memory processes in animals and humans
and a necessary ingredient for any large-scale model of the
brain.

TagTriC-Model of Early and Late LTP/LTD
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Figure 1. The three components of the Tag-Trigger-Consolidation (TagTriC) model. (A) A synapse can be in the non-tagged state N, the
high state H or the low state L. A synapse i in H (or L) has a tag hi = 1 (or li = 1, respectively). Transitions to a tagged state occur with rates rH for
potentiation and rL for depression. The tag hi = 1 is indicated by a red flag in both the flow graph and the schematic drawing below. (B) Synthesis of
plasticity related proteins p (green squares) is triggered if the total number of set tags is larger than a critical number Np. If the trigger threshold Np is
not reached, the protein concentration decays back to zero. (C) The consolidation dynamics can be visualized as downward motion in a potential
surface E(z). The function f(z) (shown to the right) is the derivative of E and characterizes the dynamics dz/dt = f(z). If a tag is set at the synapse (hi = 1)
and protein synthesis has been triggered (p<1), the dynamics can be imagined as downward motion into the right well of the potential E(z). In this
case, z<1 is the only fixed point of the dynamics (magenta circle). In the absence of tags (hi = li = 0, below) the consolidation variable zi of synapse i is
bistable and approaches (direction of flow indicated by arrows) stable fixed points at zi = 0 or zi = 1 (magenta circles). The steps of synaptic tagging
and capture are indicated immediately below the flow diagram. (D) The tagging rates for depression (2rL,(magenta)) and for potentiation rH (blue)
are shown as a function of the clamped voltage under the assumption that a presynaptic spike has arrived less than 1 millisecond before. Note that
for depression we plot the negative rate 2rL rather than rL to emphasize the fact that depression leads to a down-scaling of the synapse. (E) Voltage
dependence of early LTP and LTD. The weight change Dw/w(0) induced by a stimulation of 100 synapses at 2 Hz during 50 s while the postsynaptic
voltage is clamped is shown as a function of voltage. The percent change Dw/ŵ in simulations (circles) of LTP/LTD induction experiments can be
predicted from a theory (solid line) based on the difference in transition rates rH2rL. The simulation reflects the voltage dependence seen in
experiments [5,39]. (F,G) Frequency dependence of early LTP and LTD. Simultaneous stimulation of 100 synapses by 3 trains (separated by 5 min) of
100 pulses at rates ranging 0.03 to 100 Hz shows LTD at low frequencies and LTP at frequencies above 30 Hz. (G) If LTP is blocked in the model, LTD
(pink line) occurs up to high frequencies as in experiments [7]. Blue line: LTP with blocked of LTD.
doi:10.1371/journal.pcbi.1000248.g001

TagTriC-Model of Early and Late LTP/LTD
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whenever these threshold conditions are satisfied; see Methods for

details.

Our assumptions regarding the transition rates essentially

summarize the qualitative voltage dependence seen in the

Artola-Bröcher-Singer experiments [5]. Indeed, when 100 synap-

ses in the TagTriC model are stimulated at low frequency during

50 seconds while the membrane voltage is kept fixed at different

values (Figure 1D), the total weight change summed across all

synapses exhibits LTD at low voltage and LTP at high voltage

[38,39]. As expected, the resulting weight changes in the

simulations of Figure 1E reflect the voltage dependence of the

transition rates in Figure 1D.

Trigger for Protein Synthesis
Previously induced LTP or LTD needs to be consolidated in

order to last for more than one hour. Consolidation requires that

protein synthesis is triggered. Experimental evidence indicates that

triggering of protein synthesis needs the presence of neuromod-

ulators such as dopamine (in the apical CA1 region) or other

modulators (in other regions). In typical tagging experiments,

extracellular stimulation co-stimulates dopaminergic input leading

to a phasic dopamine signal [13,40]. In our model, induction of E-

LTP or E-LTD through appropriate stimulation protocols changes

the synaptic efficacy and sets tags at the modified synapses, both

described by the variables hi = 1 or li = 1. Protein synthesis in the

model is triggered (see methods for details) if the total number of

tags Si(hi+li) (which indirectly reflects the phasic dopamine signal)

reaches a threshold Np which depends on the level of background

dopamine (and other neuromodulators). More specifically, Np

decreases with the concentration of background dopamine so that

the presence of dopamine facilitates the trigger process [32].

If the trigger criterion is satisfied, the concentration p of

synthesized plasticity related proteins approaches with rate kp a

value close to one. If the number of tags falls below the threshold

Np, the protein concentration p decays with a time constant tp back

to zero. Further details on the role of the trigger threshold and its

relation to neuromodulators can be found in the discussion section.

Consolidation and Late LTP
The total weight wi of a synapse i depends on the present value

of the tags hi or li as well as on its long-term value zi. The slow

variable zi is a continuous variable with one or two stable states

described by a generic model of bistable switches, that could be

implemented by suitable auto-catalytic processes [16]. While the

concentration p of plasticity related proteins is zero, the variable zi

has two stable states at zi = 0 and zi = 1, respectively. If the protein

concentration takes a value of p<1, one of the stable states

disappears and, depending on the tag that was set, the long term-

value of the synapse can be up- or down-regulated; see methods

and Figure 1C for details.

In order to illustrate the mechanism of induction of L-LTP, let

us suppose that the synapse has been initially close to the state

zi = 0. The dynamics of the synapse can be imagined as downward

motion in a ‘potential’ E. The current stable state of the synapse is

at the bottom of the left well in the potential pictured in Figure 1C.

We assume that during a subsequent LTP induction protocol the

synapse has been tagged with hi = 1 and that the total number of

tags set during the LTP induction protocol surpasses the trigger

threshold Np. If the protein concentration p approaches one, the

potential surface is tilted so that the synapse now moves towards

the remaining minimum at z<1. After decay of the tags, p returns

to zero, and we are back to the original potential, but now with the

synapse trapped in the state z = 1. It can be maintained in this state

for a long time, until another strong tagging event occurs during

which the synapse is tagged with li = 1 as a result of LTD

induction. In this case the potential surface can be tilted towards

the left so that the only equilibrium point is at z = 0. Since

consolidation is typically studied in animals that are more than 20

days old [13], we assume that before the beginning of the

experiment 30 percent of the synapses are already in the

upregulated state z = 1 and the remaining 70 percent in the state

z = 0; see also [7]. Because of the bistable dynamics of

consolidation, only synapses that are initially in the upregulated

state z = 1 can undergo L-LTD and only synapses that start from

z = 0 can undergo L-LTP; compare [7]. Note, however, that tags

for potentiation and depression can be set independently of the

value of z. We may speculate that the variable z is related to the

activity of PKMf [11,14], or to the self-sustained clustering of

AMPA receptors [41], but the exact biochemical signaling chain is

irrelevant for the functional consequences of the model discussed

in the results section. In our model, the bistable dynamics of the z-

variable captures the essence of synaptic persistence despite

molecular turnover [15,16,28] and mobility of AMPA receptors

[41].

Tests of the Model
The TagTriC model has been tested on a series of stimulation

protocols that reflect induction of LTP and LTD as well as the

consolidation of plasticity events.

Induction of Synaptic Changes
A typical LTP induction experiment starts with extracellular

stimulation of a bundle of presynaptic fibers (i.e., the Schaffer

collaterals leading from CA3 to CA1) that activate a large number

(typically hundreds [13]) of presynaptic terminals. With an

extracellular probe electrode placed close to one of the

postsynaptic neurons, a change in synaptic efficacy is measured

via the amplitude (or initial slope) of the evoked postsynaptic

potential, representing the total response summed across all the

stimulated synapses. In our simulations, we mimic these

experiments by simultaneous stimulation of 100 synapses. The

state of the postsynaptic neuron is described by the adaptive

exponential integrate-and-fire model [42] and can be manipulated

by current injection.

In a preliminary set of simulation experiments done with

presynaptic stimulation alone (no manipulation of the postsynaptic

neuron), the TagTriC model exhibits LTD or LTP depending on

the frequency of the presynaptic stimulation (Figure 1F) in

agreement with experimental results [4,43]. Moreover, under the

assumption that LTP has been blocked pharmacologically (rH = 0

in the model), our model shows LTD even for high stimulation

frequencies (Figure 1G). This stems from the fact that LTD and

LTP are represented in the TagTriC model by two independent

pathways (Figure 1A) which are under control condition in

competition with each other, but show up individually if one of the

paths is blocked [43]. Together with the voltage dependence of

Figure 1E, the above simulation results indicate that our model of

LTP and LTD induction can account for a range of experiments

on excitatory synapses in the hippocampal CA1 region, in

particular, voltage and frequency dependence.

Consolidation of Synaptic Changes
In order to study whether consolidation of synaptic changes in

our model follows the time course seen in experiments, we

simulate standard experimental stimulation protocols [12,13]. A

weak tetanus consisting of a stimulation of 100 synapses at 100 Hz

for 0.2 seconds (21 pulses) leads in our model to the induction of

LTP (change by +15 percent) which decays back to baseline over

TagTriC-Model of Early and Late LTP/LTD
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the time course of two hours (Figure 2A). Thus, after the early

phase of LTP the synapses are not consolidated. A stronger

stimulus consisting of stimulating the same group of hundred

synapses by 100 pulses at 100 Hz (repeated 3 times every

10 minutes) yields stronger LTP that consolidates and remains

elevated (weight change by 2265 percent) for as long as the

simulations are continued (more than 10 hours, only the first

5 hours are shown in Figure 2B). Thus our model exhibits a

transition from early to late LTP if E-LTP is induced by the strong

tetanic stimulation protocol, but not the weak one, consistent with

results in experiments [12,13]. If, however, the weak tetanus at a

first group of 100 synapses is given 30 minutes before or after a

strong tetanus at a second group of 100 synapses, the synapses in

both the weakly and strongly stimulated groups are consolidated

(Figure 2C and 2D). If the weak tetanus in group one is given

120 minutes after the strong tetanus in group two, then

consolidation of the synapses in the weakly stimulated group does

not occur (Figure 2E). Thus our model exhibits a time course of

heterosynaptic interaction between the two groups of synapses as

reported in classical tagging experiments [12,13].

An advantage of a modeling approach is that we can study the

dependence of the heterosynaptic interaction between the two

groups of synapses upon model parameters. A critical parameter in

the model is the trigger threshold Np that needs to be reached in

order to start protein synthesis (Figure 1B). With our standard

choice of parameters, where Np = 40, we can plot the consolidated

weight change Dw/w(0) in the weakly stimulated group (measured

10 hours after the induction) as a function of the time difference

between the stimulation of the group receiving the strong tetanus

and that receiving the weak tetanus. The curve in Figure 2F shows

that for a time difference up to 1 hour there is significant

interaction between the two groups of synapses leading to synaptic

consolidation, whereas for time differences beyond 2 hours this is

no longer the case. If the trigger threshold is increased to Np = 60

(corresponding to less available neuromodulator), then the

maximal time difference that still yields L-LTP in the weakly

stimulated group of synapses is reduced to about 20 minutes

(Figure 2F) whereas a reduction of Np yields an increased time

window of interaction (data not shown). If Np is reduced much

further, the weak tetanus alone will be sufficient to allow a

transition from the early to the late phase of LTP. We speculate

that Np could depend on the age of the animal as well as on the

background level of dopamine or other neuromodulators so as to

enable a tuning of the degree of plasticity (see discussion for

details).

LTD and Cross-Tagging
We consider two experimental protocols known to induce

LTD—a weak low-frequency protocol consisting of 900 pulses at

1 Hz and a strong low-frequency protocol consisting of 900

repetitions at 1 Hz of a short burst of three pulses at 20 Hz. This

strong low-frequency protocol applied to 100 model synapses leads

to a significant level of LTD (reduction of weights to 7064 percent

of initial value) which is consolidated 5 hours later at a level of

8363 percent of initial value. If a group of 100 synapses is

stimulated with the weak low-frequency protocol, an early phase of

LTD is induced that is not consolidated but decays over the time

course of 3 hours (Figure 3A and 3B). However, if the weak low-

frequency stimulation occurs after another group of 100 synapses

had been stimulated by the strong low-frequency protocol, then

the group that has received the weak stimulation shows

consolidated synapses (at 9062 percent 5 hours after stimulus

induction, Figure 3C). Moreover, consolidation of LTD (at 9263

percent 5 hours after stimulus induction) in the group of synapses

receiving the weak low-frequency protocol also occurs if it was

stimulated thirty minutes after the stimulation of a second group of

synapses by a strong tetanus, leading to LTP (Figure 3D). Thus,

the TagTriC model exhibits cross-tagging consistent with

experiments [11,32]. In our model, cross-tagging occurs because

the tags for LTP and LTD (hi and li, respectively) enter in a

symmetric fashion into the trigger criterion for the synthesis of

plasticity-related proteins (see Figure 1 and Methods).

Model Mechanism for Tagging, Cross-Tagging, and
Consolidation

In order to elucidate how the model gives rise to the series of

results discussed in the preceding paragraphs, we have analyzed

the evolution of the model variables during and after induction of

LTP (Figure 4). Critical for consolidation is the synthesis of

plasticity related proteins, characterized by the variable p in the

model. Synthesis is only possible while the total number of tagsPN
i hizli is above the protein triggering threshold Np. For the

strong tetanic stimulus this criterion is met for about 90 minutes

(shaded region in Figure 4A) leading to high levels of plasticity

related proteins. After 90 minutes the concentration of proteins

starts to decay back to baseline. While the level of proteins is

sufficiently elevated the consolidation variable zi of each tagged

synapse moves towards zi<1 since this is the only stable fixed point

of the dynamics (Figure 1C). This leads to a consolidation time of

about 2 hours, enough to switch a large fraction of synapses into

the up-regulated state z<1 (green line, Figure 4A). Hence the

average weight of the stimulated synapses stabilizes at a value

above baseline, indicating L-LTP (Figure 4A, solid line).

If, in a different experiment, 100 synapses are stimulated by the

weak tetanus, the synthesis of plasticity related proteins is only

possible during a few minutes (Figure 4B, red line), which is not

sufficient to switch tagged synapses from z = 0 into the upregulated

state z<1. Hence the weights (Figure 4B, black line) decay

together with the tags (Figure 4B, magenta line) back to baseline

and the transition from early to late LTP does not occur. The

decay of the weights is controlled by the rate kH at which tags

stochastically return to zero. The evolution of the protein

concentration p and the consolidation variable z after a strong

tetanus that leads to 90 minutes of protein synthesis and a weaker

tetanus that only leads to 40 minutes of protein synthesis has been

illustrated in (Figure 5A).

The total amount of available protein that is synthesized

depends in our model on the time that the total number of tags

stays above the protein triggering threshold Np. Even though

always 100 synapses are stimulated in our model, not all receive

tags in each experiment; moreover because of the competition for

potentiation tags (hi = 1) and depression tags (li = 1) during

induction of plasticity, different synapses can receive different tags

in the same experiment. With our strong tetanus protocol, on

average 70 (out of 100) synapses receive a potentiation tag and 30

a depression tag while with the weak tetanus the numbers are 30

and 10, respectively. For the depression protocols, on average 10

synapses receive a potentiation tag and 90 a depression tag under

strong low-frequency stimulation, and typically zero a potentiation

tag and 40 a depression tag under the weak low-frequency

protocol. These numbers vary from one trial to the next so that

sometimes the protein trigger threshold Np = 40 is reached with the

weak protocols and sometimes not. The important aspect is that

even if the threshold is reached for a short time, the duration of

protein synthesis is not long enough to provide a sufficient protein

concentration p for consolidation of the tagged synapses; see

Figure 4B and Figure 5A.

TagTriC-Model of Early and Late LTP/LTD
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Since the concentration p of plasticity related proteins is crucial

for the transition from early to late LTP we wondered how a block

of protein synthesis would interfere with the consolidation of

weights in the TagTriC model. Application of a protein synthesis

inhibitor (modeled by setting the rate kp of protein synthesis to

zero) during 1 hour starting thirty minutes before a strong tetanus

is given to a group of 100 synapses that would normally lead to L-

LTP, induced E-LTP but prevented consolidation into L-LTP

(data not shown). However, if the same simulation experiment was

repeated after a second group of synapses had received a strong

tetanic stimulation 35 minutes prior to the application of protein

synthesis blocker, then both groups of synapses showed consoli-

dation of weights (Figure 4D), consistent with experiments [12].

Closer inspection of the lower panel in Figure 4D shows that two

components contribute to consolidation: Firstly, the concentration

of plasticity related proteins (red line) that has increased because of

Figure 2. The model accounts for tagging paradigms. (A) A weak tetanus (21 pulses at 100 Hz) applied at a group of 100 synapses at
t = 10 min (arrow) leads to an increased connection weight (w/w(0), blue line) that decays back to baseline. (B) A strong tetanus (100 pulses at 100 Hz
repeated three times, arrows) leads to late LTP that is sustained for 5 hours (black line). (C) If the weak tetanus (blue arrow) in a first group of synapses
is followed thirty minutes later by a strong tetanus (black arrows) in a second group of synapses, the weights in the first group (blue line) and the
second group (black line) are stabilized above baseline. (D) Stimulating a group of synapses by a weak tetanus (blue arrow) 30 minutes after the end
of the strong tetanic stimulation of a second group also leads to stabilization of the weights in both groups above baseline. (E) If the weak tetanic
stimulation occurs 2 hours after the strong tetanic stimulation of the other group, only synapses in the strongly stimulated group will be stabilized
(black line), but not those in the weakly stimulated group (blue line). (F) Fraction of stabilized weights Dw/w(0) in the weakly stimulated group
measured 10 hours after induction of LTP as a function of the time difference between the weak stimulation and the end of the strong tetanic
stimulation in the second group. Blue line: normal set of parameters (Np = 40). Black line: protein trigger threshold increased to Np = 60. In panels A–E,
lines indicate the result averaged over 10 repetitions of the simulation experiments and bars standard deviation. In panel F, line indicates the result
averaged over 100 repetitions. 90 of the 100 individual trials stayed within the bounds indicated by the error bars.
doi:10.1371/journal.pcbi.1000248.g002
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the first strong tetanic stimulus decreases only slowly back to

baseline enabling the switching of the slow components (variable z,

green line) even in the presence of protein synthesis blocker.

Secondly, even after the end of the application of the blocker, the

total number of tags that has been set by LTP induction is still

above the critical value Np (shaded region in Figure 4D) so that

protein synthesis can be resumed after the end of the blocking

period. In summary, the detailed analysis of the TagTriC model

allows to account for many aspects of tagging experiment in terms

of a limited number of variables.

Discussion

Relation of Models to Experiments
Synaptic plasticity is based on intricate signal transduction

chains involving numerous processing steps and a large number of

different molecules [2,13,17]. Despite the complexity of the

molecular processes, synaptic plasticity has experimentally been

characterized by a small set of distinct phenomena such as short-

term plasticity [44] as well as early and late phases of LTP and

LTD [13].

Existing models of synaptic plasticity have focused on the

description of short-term plasticity [44] and on the induction of

LTP and LTD [24–26,33–36]. The question of maintenance has

received much less attention and was mainly addressed in the

context of bistability of the CaMKII auto-phosphorylation process

[27–29], AMPA receptor aggregation [41], or four identified

kinase pathways [45]. While CaMKII is necessary for induction of

long-term potentiation [46], it is probably too narrow to focus

modeling studies only on a single or a few kinases such as CaMKII

and neglect other proteins and signaling cascades that are involved

in synaptic maintenance [13]. For example, there is strong

evidence that PKMf is involved in synaptic maintenance and

necessary for the late phase of LTP in vitro [11] and in vivo [14].

However, the actual processes are complex and the molecules

involved in setting tags may differ between different parts of the

dendrite. For example PKMf is involved in setting tags during E-

LTP in the basal dendrite, whereas CaMKII (or MAPK for E-

LTD) plays a similar role in apical dendrites [30].

Instead of focusing on specific signaling cascades, the TagTriC

model presented in this papers aims at describing the essential

ingredients of any possible functional model of L-LTP and

tagging. These ingredients include (i) a bistable switch (described

by the dynamics of the zi-variable) for each synapse that

guarantees long-term stability in the presence of molecular turn-

over [16]; (ii) a global triggering signal for protein synthesis

(described by the dynamics of the p variable); a formalism to (iii)

induce early forms of LTP and LTD and (iv) set synaptic tags.

Since we aimed for the simplest possible model, we have identified

the synaptic tags hi and li for potentiation and depression with the

Figure 3. The model accounts for cross-tagging between LTP and LTD. (A) A strong low-frequency stimulus (3 pulses at 20 Hz, repeated 900
times every second) applied to a group of N = 100 synapses induces LTD with mean weights (w/w(0)) stabilized at 8363% of initial value after 5 hours
(black line). (B) A weak low-frequency stimulus (1 pulse repeated 900 times at 1 Hz) induces early LTD, which is not consolidated. (C) If the weak low-
frequency stimulus is applied 30 minutes after a second group of synapses has received the strong low-frequency protocol, the weights in both
groups (blue, weak stimulus; black, strong stimulus) are consolidated at values below baseline. (D) Consolidation of LTD in the group receiving weak
low-frequency stimulation (blue line) also happens if induction occurs 30 minutes after stimulating a second group of synapses with a strong tetanic
protocol (see Figure 2) inducing LTP (black line). Downward arrows indicated the period of weak (blue arrow) or strong (black arrow) low-frequency
protocols. The black upward arrows indicate strong tetanic stimulation. Lines show mean results, averaged over 10 repetitions of the simulation
experiment. Error bars are standard deviation.
doi:10.1371/journal.pcbi.1000248.g003
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synaptic weights during the early phase of LTP and LTD,

respectively, so that points (iii) and (iv) are described by the same

transition of the synapse from an initial non-tagged state to the

high or low state, respectively. Variants of the model where the

weight during the early phase of LTP and LTD is not directly

proportional to the value of the tags are conceivable.

Even though we do not want to identify the synaptic variables hi,

li, zi with specific biochemical signals, a couple of candidate

molecules and signaling chains should be mentioned. The setting

of the tag for LTP under normal physiological conditions involves

NMDA receptor activation and elevated levels of calcium which in

turn trigger a signaling chain involving Calmodulin and CaMKII.

We therefore think that the hi variable (representing both the tag

for LTP induction and the weight increase during the early phase

of LTP) should be related to the activation of CaMKII [13,46].

The molecular interpretation of the tag li for LTD is less clear

[13]. In our model we have taken the tags as discrete quantities

that decay stochastically, but a model with continuous tags that

decrease exponentially gives qualitatively the same results (data not

shown). The reason is that triggering protein synthesis in our

model requires a large number of tags to be set, so that even in the

stochastic model only the mean number of tags is relevant–and the

mean (more precisely, its expectation value) is a continuous

variable. Nevertheless, we prefer the model with discrete values

over the continuous one in view of the switch-like transitions of

synapses after induction of LTP and LTD [7,37]. Maintenance of

enhanced synaptic weights is probably implemented by an

increased number of AMPA receptors in the postsynaptic

membrane. Whether the stability arises from a self-organization

process of receptors [41] or from interaction with persistently

activated CaMKII molecules [46] or from additional kinases such

as PKMf [11,14], is an open problem of experimental

investigation. Similarly, the exact identity of many plasticity

related proteins is still unknown [13]. In our model we assume that

recently synthesized plasticity related proteins are accessible to all

synapses onto the same postsynaptic neuron. However, a

distinction between proteins synthesized in, say, basal dendrites

and that synthesized in apical dendrites would be possible by

Figure 4. Dynamics of the TagTriC Model during different tagging protocols and protein synthesis blocking. The change of the total
synaptic weight (top panels, black line Dw~

PN
i~1 wi tð Þ{wi 0ð Þ=N½ �) has contribution from early LTP (top panels, magenta line representsPN

i~1 hi{ali=Nð Þ) and from late LTP (top panels, green line represents
PN

i~1 b zi{zi 0ð Þð Þ=N). The protein variable p (red line, bottom panels) grows
as long as the average number of tags (

PN
i~1 hizlið Þ=N , blue line) is above the protein synthesis trigger threshold (Np/N, dashed horizontal line). For

better visibility, the regions where the blue line is above the trigger threshold is shaded. (A) A strong tetanus (N = 100 synapses, stimulated by 100
pulses at 100 Hz, repeated three times every ten minutes) leads to a sustained period of about 90 minutes where the number of tagged synapses is
above the protein synthesis triggering threshold (lower panel, blue shaded). During this time the protein synthesis variable p is close to one (red line,
lower panel), causing an increase in the fraction of consolidated weights (green line, top panel). (B) During a weak tetanus (N = 100 synapses,
stimulated by 21 pulses at 100 Hz) the number of tags surpasses the protein triggering threshold only for a short time which does not enable
switching of the z variable (top panel, green line) to the up-regulated state. (C) If the weak tetanus is given 30 minutes after the strong one, the
number of tags set by the strong tetanus is still above the threshold, which allows protein synthesis stabilizing both the group of 100 synapses
receiving the strong tetanus (top panel) and the group of 100 synapses receiving the weak tetanus (middle panel). (D) Protein synthesis is blocked for
1 hour (indicated by black bar at bottom of panel) starting 35 minutes after a first group of 100 synapses has been stimulated by a strong tetanus.
Despite protein synthesis blocking, both the first group of synapses (top panel) and a second group of 100 synapses that received a strong tetanus
during the blocking period (middle panel) develop late LTP because proteins synthesized during the induction of early LTP in the first group decay
only slowly (bottom panel).
doi:10.1371/journal.pcbi.1000248.g004
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replacing the variable p by two or more distinct variables pk with

similar dynamics (but potentially different trigger thresholds Np),

allowing for a compartmentalization of tagging [13].

Experimental cross-tagging results clearly indicate that there are

two different types of synaptic tags, one for LTP and one for LTD

[13,32], which we called hi for LTP and li for LTD, leading to

three different states during tagging (Figure 1A). Since we have

identified the tagging with the early phase of LTP and LTD, our

model of E-LTP and E-LTD also has three different states

(whereas our model of late LTP/LTD has only two states

characterized by zi = 0 and z2 = 1). The three-state model of early

LTP/LTD presented in this paper would predict that all non-

tagged synapses can undergo a transition to E-LTP or E-LTD

depending on the induction protocol–whereas experiments suggest

that about 70 percent of synapses show LTP but not LTD and the

remaining 30 percent LTD but not LTP [7]. Moreover, only those

synapses that are initially weak can be potentiated and only those

that are initially strong can be depressed [7]. This aspect can be

included in our model if we replace the induction rates rH for LTP

by rH(12zi) and rL for LTD by rlzi so LTP is only possible from a

state with zi = 0 and LTD only from an initial state zi = 1 — in

agreement with a two-state model of early LTP/LTD [7]. For the

tagging and induction experiments presented in this paper, the

results do not change significantly when we implement this

extension of the induction model.

Functional Consequences and Predictions
One of the advantages of a simple phenomenological model is

that it should be capable of illustrating the functional consequences

of tagging and L-LTP or L-LTD in a transparent manner. What

are these functional consequences?

A characteristic feature that is made transparent in our model

(and which we expect to be present in any model of tagging) is

that, under typical experimental conditions, the transition from

early to late LTP is only possible if a sizable group of synapses have

undergone E-LTP or E-LTD. Hence, while induction of E-LTP is

a local Hebbian process that is likely to take place at the

postsynaptic site of the synapse (e.g., the dendritic spine), the

transition from the early to the late phase of LTP requires a

minimum number of synapses to be activated by appropriate

stimulation including co-activation of neuromodulatory input so as

to trigger synthesis of plasticity related proteins. A direct

consequence of this is that synapses cannot be considered as

independent. In order to predict whether a synapse memorizes an

item for a long time or forgets it and re-learns some other item, it is

not sufficient to consider a ‘Hebbian’ induction model, where

synaptic changes depend only on the activity of pre- and

postsynaptic neurons. For maintenance, it is not the synapse

which decides individually, but it is the neuron as a whole (or a

large functional compartment sharing the same site of synthesis of

plasticity-related proteins [13,30,47]) which ‘decides’ whether it is

going to store the present information, or not. Hence, classical

[20,21,34] and recent [22] theoretical models which studied

memory maintenance in the presence of ongoing neuronal activity

on the level of single synapses need to be reconsidered, since the

assumption of independent synapses does not hold (Figure 5A and

5B). In particular, our model predicts that, after an ensemble of

identical neurons have received the same stimulus, some neurons

learn (adapt a large fraction of their synapses to the stimulus) and

others don’t (keep all their synapses unchanged). With our choice

of parameters, this happens in the TagTriC model if the number

of synapses that have been tagged during the induction protocol is

between 55 and 70 (Figure 5B). This neuronal, rather than

synaptic, decision about memorizing an input (see also [48]) is

potentially attractive for prototype learning–a standard paradigm

in neuronal clustering and categorization algorithms, e.g., [19]. In

contrast to traditional neuronal clustering models where learned

Figure 5. Theory and predictions. (A) Evolution of the variables p and z during tagging. If protein synthesis is ‘ON’ and the synapse tagged, p and
z move along the black dashed line towards the stable fixed point on the upper right (p<1, z<1) (red filled circle). If protein synthesis stops after
some time (yellow line, after 90 min; orange line, after 40 minutes) but the synapse remains tagged, the dynamics converges towards the fixed point
p = 0, z = 1 (red filled circle) indicating that the synapse is consolidated (yellow and orange trajectories). However, if protein synthesis stops too early
(after 25 min, pink line), or if the synaptic tag is lost too early (after 60 min, magenta line), the synapse is not consolidated and the trajectories
converge towards the non-tagged initial state p = 0, z = 0 (red filled circle). The green dashed vertical line at z = 0.5 indicates the threshold beyond
which a loss of the tag does not affect consolidation; the green solid line indicates the separatrix between the stable fixed points at z = 0 and z = 1.
The minimal duration of protein synthesis to allow any consolidation is given by the intersection of the black dashed line with the separatrix. (B)
Number of consolidated synapses (Nup, vertical axis) as a function of the number of initially tagged synapses (Ntag, horizontal axis) in simulations (red
filled circles) and theory (solid line). Some of the initially tagged synapses fail to be consolidated because either they lose their tag or protein
synthesis stops too early (see A). With a protein synthesis threshold Np = 40 (arrow) we need about 60 initially tagged synapses to achieve any
consolidation (solid line). If the protein synthesis threshold is reduced to Np = 10 (dashed arrow), we need at least 15 tagged synapses to see any
consolidation (dashed line).
doi:10.1371/journal.pcbi.1000248.g005
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memories need to be protected against overwriting by completely

different memory items [19], a model based on tagging would

have an intrinsic vigilance threshold via the trigger threshold Np.

Hence it is resistant to changes at a single synapse.

In our view, the protein synthesis trigger threshold NP is an

important control parameter in the model. The results of Figure 2F

show that an increase of the trigger threshold reduces the maximal

delay after which a weak tetanus leads to L-LTP after a strong

tetanic stimulation in a different group of synapses. With our

normal value of Np = 40 we need around 60 synapses to be initially

tagged in order to retain any memory. If we decrease the trigger

threshold to Np = 10 and keep all other parameters of the model

unchanged, then we need at least a group of 15 synapses tagged

during the induction protocol to get any consolidation since some

of the initially tagged synapses loose their tag too early to get

consolidated (Figure 5B). Only for a very small trigger threshold,

say Np = 1, (which could occur at high concentration of

neuromodulators) synapses become (nearly) independent, since a

tag at a single synapse would be sufficient to trigger the synthesis of

proteins which would then become available at that synapse.

Repeated stimulation of the synapse alone would then be sufficient

to transform E-LTP into L-LTP.

In our opinion, the trigger threshold Np is significantly lower in

the presence of neuromodulators such as, for example, dopamine

(for synapses from Schaffer collaterals onto CA1 pyramidal

neurons) or noradrenaline (for synapses in the dentate gyrus). A

simple model for the dependence of Np on dopamine would be

Np = n0/(DAbg+c0) where n0 is some arbitrary number (say n0 = 1),

c0 a small number (say 0.001) and DA denotes the stationary

‘background’ concentration of dopamine (that is, before the start

of the experiment), normalized to 0,DAbg,1. The phasic

dopamine signal caused by co-stimulation of dopaminergic input

during tagging experiments is assumed to be proportional to the

number of tags
PN

i hizli. The trigger condition
PN

i hizliwNp

becomes then equivalent to the conditionPN
i hizli

� �
DAbgzc0

� �
wn0 which shows a trade-off between

the phasic dopamine signal and the stationary background level of

dopamine. In particular in the presence of a large concentration of

dopamine (DA<1), single synapses can be consolidated. With the

assumption that standard tagging experiments in a large group of

synapses are performed at a low dopamine concentration of

DA = 0.024 before stimulation, we retrieve the value of Np = 40

used in the main part of the results section. The dependence of the

trigger criterion on the number of tags
PN

i hizli takes implicitly

the co-activation of neuromodulatory input during the experi-

mental stimulation protocol into account: the larger the number of

stimulated neurons and the stronger the stimulus, the higher the

probability of co-activation of dopaminergic fibers. Blocking

dopamine receptors amounts in the model to setting both the

background and the phasic dopamine signal to zero. In this case,

protein synthesis is not possible.

Our model of LTP/LTD induction does not only account for

voltage and frequency dependence of LTP/LTD induction, but

also for spike timing dependence. In fact, for a stimulation

paradigm where postsynaptic spikes are induced by short current

pulses of large amplitude either a few milliseconds before or after

presynaptic spike arrival, the model of LTP/LTD induction used

in the TagTriC model becomes formally equivalent to a recent

model of spike-timing dependent plasticity [35] which can be seen

as an extension of classical models of STDP [24–26]. In the case of

stochastic spiking of pre- and postsynaptic neurons our model

shares important features with the Bienenstock-Cooper-Munro

model [33], in particular the quadratic dependence upon the

postsynaptic variables. In addition, our model also accounts for the

voltage dependence of the Artola-Bröcher-Singer model [38].

Thus, the model of LTP/LTD induction shares features with

numerous established theoretical models and covers a large range

of experimental paradigms known to induce LTP or LTD [3–6,8].

Since the subsequent steps of protein synthesis trigger and

stabilization are independent of the way early phase of LTP is

induced, our model predicts that tagging experiments repeated

with different stimulation paradigms, but otherwise identical

experimental preparation and age of animal, should give similar

results as standard tagging protocols. In particular we propose to

stimulate a group of synapses in hippocampal slices by 40–60

extracellular current pulses at 10 Hz while the postsynaptic

neuron is receiving intracellular current injection that triggers

action potential firing either a few milliseconds before or after

presynaptic spike arrival and keeps the membrane potential at a

depolarized level between postsynaptic action potential firing. Our

model predicts that this will induce early LTD or LTP depending

on spike timing and depolarization level that is not maintained

beyond 1 or 2 hours. However, if the same stimulation occurs after

a second group of synapses has received a strong tetanus, then

stabilization of synapses at potentiated or depressed levels should

occur, similar to standard tagging and cross-tagging experiments.

In our opinion, these predictions should not depend on model

details, but hold for a broad class of models that combine a

mathematical description of induction of synaptic plasticity with a

mechanism of consolidation.

Another finding—which is somewhat unexpected and in

contrast to other conceptual models of synaptic tagging and

capture [12,13,47]—is that during a strong tetanic stimulation a

fraction of synapses receives tags for depression (while most, but

not all, receive tags for potentiation). This is due to the fact that

during induction of plasticity, transition to E-LTP and E-LTD act

in parallel [7]. The prediction is that after consolidation (say

2 hours after the strong tetanic stimulation) a small fraction of

synapses would show L-LTD, rather than L-LTP.

An essential ingredient of our model that allows long-term

stability of consolidated synapses is the bistable dynamics of the

variable z. In our opinion, such bistability (or possibly multi-

stability [49] with three or four stable states) is necessary for

synaptic maintenance in the presence of molecular turn-over, as

recognized in earlier theoretical work [15,16,34]. Our model

therefore predicts that L-LTP and L-LTD should have bistable,

switch-like properties. While there is evidence for switch like

transitions during the induction of E-LTP and E-LTD [7,37], the

bistability of the late phase of synaptic plasticity has so far not been

shown. A possible experiment would be to combine a minimal

stimulation protocol (e.g., a weak tetanus) at a single synapse

[7,37] with a medium to strong stimulus at a group of other

synapses (e.g., tetanic stimulus varying between 30 and 100 pulses).

The prediction is that the weight of the single synapse shows an all-

or-none phenomenon with transition probabilities that depend on

the stimulation of the group of other synapses. In particular, as the

number of pulses of the tetanic stimulation is reduced (covering a

continuum from strong to weak tetanic stimulation), the

maintenance in the potentiated state should become less likely

(averages across many experiments decrease) whereas the results of

individual experiments show either full potentiation or none,

which should give rise to a bimodal distribution of normalized

synaptic weights.

Open Questions and Perspectives
A lot of questions remain open and need to be addressed in

future studies. First, can a synapse that has been potentiated in the

past and is maintained after a transition to late LTP undergo a

TagTriC-Model of Early and Late LTP/LTD
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further potentiation step [13]? In our current model this is not

possible since the consolidation variable z has only two stable fixed

points. If we replace the function f(z) depicted in Figure 1 by

another one with more than two stable fixed points, then the

answer to the above question would be positive. Indeed, there

have been suggestions that self-organization of receptors into

stable sub-groups could lead to multiple stable states [49].

Second, induction of LTP or LTD is not only possible by

strong extracellular stimulation of groups of synapses, but also at

single synapses if presynaptic activity is paired with either a

depolarization of the postsynaptic membrane [5,7] or tightly

timed postsynaptic spikes as in STDP experiments [6,8]. How

can it be that the change induced by STDP seems to be

maintained over one hour without visible degradation? [6,7].

Are synapses in these experiments consolidated, and if so what is

the concentration of neuromodulators? In the TagTriC model

with the choice of parameters used in the present paper,

consolidation would not be possible, since the minimum number

of synapses that have undergone E-LTP or LTD is Np = 40 in

order to trigger protein synthesis, but, as explained above, an

increased neuromodulator concentration would make consolida-

tion possible.

Third, what is the role of NMDA receptor activation during

synaptic consolidation? In our present model, protein synthesis is

triggered by appropriate induction protocols, but is independent of

synaptic activity during the consolidation process. However, recent

experimental results suggest that protein synthesis blocker needs

synaptic stimulation during the consolidation period to become

effective [50], suggesting a subtle interplay between protein

synthesis and synaptic activation that cannot be captured by our

model.

Fourth, has each neuron a single protein synthesis unit or is

protein synthesis a local process confined to each dendritic

branch? In the first case, there is a single neuron-wide protein

synthesis trigger threshold [12] and the neuron as a whole

‘decides’ whether early forms of synaptic potentiation and

depression will be consolidated or not. This is the paradigm

posited in the TagTriC model. In the alternative model of local

protein synthesis [13,47], the critical unit for consolidation are

local groups of synapses on the same dendritic branch. Thus, for

the same number of tagged synapses, a local group of synapses

on the same dendritic branch is more likely to undergo

consolidation than a distributed set of tagged synapses, leading

to a form of clustered plasticity [47]. The TagTriC model can

be easily adapted to the case of clustered plasticity by (i)

replacing the point-neuron model by a neuron model with

spatially distributed synapses and (ii) replacing the neuron-wide

trigger equation (see 4 and Figure 1B) by a finite number of

analogous, but dendrite-specific equations.

Fifth, how can tags be reset? Experiments show that a

depotentiating stimulus given 5 minutes after a weak tetanus

erases the trace of E-LTP (resets the tag) whereas depotentiation

10 or 15 minutes after the strong tetanus only transiently

suppresses the E-LTP, making the consolidation of the synapse

by protein capture possible [51]. We have checked in additional

simulations that our present model cannot account for these

experiments. In our opinion, the above tag-reset experiments show

that the synapse has additional hidden states currently not

included in the TagTriC model. Additional states would allow

to (i) separate the measured early LTP during the first 5 minutes

from setting the tag; and (ii) distinguish between depotentiation

and depression of synapses. One interpretation of the tag-reset

experiments [51] is that during the first five minutes the tag is not

yet set whereas early LTP is already visible. The tag would be set

only with a delay of 5–10 minutes. Application of a depotentiating

stimulus more than 10 minutes later would then leave the

potentiation tag intact, but move the synapse to a transiently

depotentiated state.

The final and potentially most interesting question is that of

functional relevance: Can the TagTriC model be used to simulate

reward-based learning in experiments in vivo [13]? The formal

theory of reinforcement learning makes use of an eligibility trace

[52] which can be interpreted as a synapse specific tag. In the

future we want to check whether the TagTriC model can be linked

to reinforcement learning models [53–56] under the assumption

that reward prediction errors are represented by a dopamine

signal [57] which influences the protein synthesis dynamics in our

model. This open link to reward-based learning is of fundamental

functional importance.

Methods

Model of Early LTP/LTD and Tagging
In our model we assume that presynaptic spike arrival needs to

be combined with a depolarization of the postsynaptic membrane

(e.g., [5]) in order to induce a change of the synapse. In voltage

clamp experiments (e.g., [39]) the postsynaptic voltage would be

constant. However, in general the voltage is time-dependent and

described by a variable u(t). In the TagTriC model, we assume that

the low-pass-filtered voltage

u tð Þ~ 1

tlowP

ð?
0

exp {
s

tlowP

� �
u t{s{eð Þds:

needs to be above a critical value qLTD to make a change of the

synapse possible. tlowP is the time constant of the low-pass filter

and e = 1 ms is a short delay twice the width of a spike (see

Table 1). This short delay ensures that ū includes effects of

previous presynaptic inputs and postsynaptic spikes, but not of an

ongoing postsynaptic action potential.

Table 1. Parameter values used throughout all simulations,
except Figure 1E–G where Np = 10 and initial percentage of
zi = 1 was 10%, because these simulations refer to
experiments with younger animals.

Tag Trigger Consolidation

N = 100 kp = 1/(6 min) N = 100

ALTD = 0.01 tp = 60 min c = 0.1

ALTP = 0.014 Np = 40 tz = 6 min

tx = 100 ms b = 2

tLTP
lowP~100 ms Initialisation:

N(zi = 1) = 30

tLTD
lowP~1 s

e= 1 ms

kh = 1/h

kl = 1/(1.5 h)

HLTD = 270.6 mV

HLTP = 250 mV

a = 0.5

Initialisation: li = hi = 0

doi:10.1371/journal.pcbi.1000248.t001
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Combining presynaptic spike arrival at synapse i (represented by

xi) with a depolarization ū of the postsynaptic neuron above a

threshold qLTD we get a rate of LTD

rL~ALTDxi tð Þ u tð Þ{qLTD½ �z ð1Þ

where ALTD.0 is a parameter and [.]+ denotes rectification, i.e.,

[y]+ = y if y.0 and zero otherwise. Here xi tð Þ~
P

f d t{t
f
i

� �
denotes the presynaptic spike train with pulses at time t

f
i and d the

Dirac-delta function. Formally, rL describes the rate of stochastic

transitions from the non-tagged state h = 0, l = 0 to the low state

l = 1, Figure 1. In simulations we work with discrete time steps of

D= 1 ms. Eq. 1 indicates that the probability Pl = 0Rl = 1 of a

transition to the low-state during the time step D vanishes in the

absence of presynaptic spike arrival and takes a value of

Pl = 0Rl = 1 = 12exp(2ALTD[ū(t)2qLTD]+D)<ALTD[ū(t)2qLTD]+D if

a presynaptic spike arrives at the synapse i during the time step D.

Note that the transition from l = 0 to l = 1 is only possible if h = 0

and h remains zero during the transition.

Similarly, a switch from the non-tagged state h = 0, l = 0 to the

high state h = 1 occurs at a rate rH which also depends on

postsynaptic voltage and presynaptic spike arrival. We assume that

each presynaptic spike at synapse i leaves a trace x̄i that decays

exponentially with time constant tx. The exact biophysical nature

of the trace is irrelevant, but could, for example, represent the

amount of glutamate bound to the postsynaptic receptor. The

value of the trace at time t caused by earlier spike arrivals at time

t
f
i is then xi tð Þ~ 1=txð Þ

P
f exp { t{t

f
i

� �.
tx

h i
where the sum

runs over all firing times t
f
i vt. With the trace x̄i we write

rH~ALTPxi tð Þ u tð Þ{qLTD½ �z u tð Þ{qLTP½ �z ð2Þ

which indicates that, in addition to the conditions for LTD

induction we also require the momentary membrane potential u(t) to

be above a second threshold qLTP. This threshold could change on

the time scale of minutes or hours as a function of homeostatic

processes. To summarize, the rate of LTP transition rH is different

from rL in five aspects. First, the constant ALTP is not the same as

ALTD. Second, LTP is caused by the trace x̄i left by presynaptic

spikes, rather than the spikes themselves. This trace-formulation

ensures that presynaptic spikes can interact with later postsynaptic

spikes as in classical models of STDP [24–26]. Third, the time

constant of the low-pass filter in ū is different; fourth, the

momentary voltage needs to be above a threshold qLTP; and fifth,

the total dependence upon the postsynaptic voltage is quadratic,

rather than linear. The quadratic dependence ensures that for

large depolarization LTP dominates over LTD [39]. Tagged

synapses with hi = 1 decay with probability Ph = 1Rh = 0 = kHD back

to the non-tagged state (and analogously, but with rate kL for the

transition li = 1Rli = 0).

In the TagTriC model, the local synaptic values h = 1 for

potentiation or l = 1 for depression act as tags indicating potential

sites for further consolidation, but are also directly proportional to

the weight of the synapse after induction of LTP or LTD. Since in

minimal stimulation experiments LTD leads to a reduction of

about 50 percent of the synaptic efficacy whereas LTP leads to an

increase by up to 100 percent [7], we model the weight change

during the early phase of LTP as Dwi = (hi2ali)ŵ where ŵ is the

weight of the non-tagged synapse and a = 0.5. The total weight

change Dw/ŵ measured shortly after induction of LTP or LTD

with extracellular protocols corresponds to the fraction of synapses

in the high or low states, respectively, hence, if all synapses start

from the non-tagged state the measured weight change is

Dw
.

ŵ~
PN

i~1 hi{alið Þ=N~ShT{aSlT where N is the number

of synapses stimulated by the protocol. The set of parameters of

LTP/LTD induction and tagging is given in table 1.

Trigger
The triggering process is controlled by the dynamics of a variable

p which describes the amount of plasticity related proteins

synthesized in the postsynaptic neuron. Protein synthesis is triggered

and the variable p increases while the concentration of dopamine

exceeds a critical level qp [58]. If the dopamine concentration DA

falls below qp, the protein concentration decays with a time constant

tp. Assuming standard first-order kinetics we have

dp

dt
~kp 1{pð ÞH DA{qp

� �
{

p

tp

ð3Þ

Protein synthesis has a maximum rate dp/dt of kp and saturates if the

amount of protein approaches a value one. H[y] denotes the unit

step function with H[y] = 1 for y.0 and zero otherwise.

Dopamine is present at a low stationary background value. In

addition a phasic dopamine component is induced in standard

tagging experiments in hippocampal slices, because of co-

stimulation of dopaminergic inputs during extracellular stimula-

tion of presynaptic fibers [40]. To describe the time course of the

phasic dopamine component in our model, we assume that the

dopamine is proportional to the total number of tags Si(hi+li)

induced by the stimulation protocol. The stationary background

level of dopamine DAbg is included in the threshold qp = Np(DAbg)

for protein synthesis. Hence Eq. 3 can be rewritten in the form

dp

dt
~kp 1{pð ÞH

X
i

hizlið Þ{Np DAbg

� �" #
{

p

tp

ð4Þ

Note that we have chosen units so that the threshold for protein

synthesis Np can be interpreted as the minimal number of tags

necessary to stimulate protein synthesis. This interpretation is

important for the discussion of the model results, in particular

Figures 4 and 5.

A suitable model for dependence of the protein synthesis

threshold on the background level of dopamine is Np(DAbg) = n0/

(DAbg+c0) where n0 = 1 is a scaling factor, c0 = 0.001 a constant and

0#DAbg#1 is the normalized dopamine concentration. We note

that the trigger condition [Si(hi+li)2Np(DAbg)].0 is then equiva-

lent to the condition (DAbg+0.001)[Si(hi+li)].1. This formulation

shows that there is a trade-off between background levels and

phasic dopamine. Unless stated otherwise we always use in the

simulation a fixed dopamine level DAbg = 0.024 so that Np = 40.

The specific model Np(DAbg) of the dependence upon background

dopamine levels is therefore irrelevant.

We assume that the plasticity related protein p synthesized in the

postsynaptic neuron is diffused in the dendrite of the postsynaptic

neuron and hence available to all the synapses under consider-

ation. Hence, the tags hi and li have indices, since they are synapse-

specific, whereas p in Eq. 4 does not.

Consolidation and Late LTP
The consolidation variable z describes the late phase of LTP

and follows the dynamics

tz

dzi

dt
~f zið Þzc DAð Þ hi{lið Þp: ð5Þ

TagTriC-Model of Early and Late LTP/LTD

PLoS Computational Biology | www.ploscompbiol.org 12 December 2008 | Volume 4 | Issue 12 | e1000248



The scaling factor c is a function of the dopamine level DA. In the

simulations we always assumed a fixed dopamine level and set

c(DA) = 0.1.

In the absence of plasticity related proteins (p = 0), or if no tags

are set (hi = li = 0), the function f(z) = z(12z)(z20.5) generates a

bistable dynamics with stable fixed points at z = 0 and z = 1 and an

unstable fixed point at z = 0.5 marked by the zero crossings of the

function f, Figure 1C. In the presence of a finite amount of

proteins p.0 and a non-zero tag, the location of the fixed points

changes and for p.0.47, only one of the stable fixed points

remains. The potential shown in Figure 1C is a function E with

dE/dz = 2f(z) so that dz/dt = 2dE/dz. We note that a synapse i can

change its consolidated value only if both a tag (hi = 1 or li = 1) and

protein p.0.47 is present–summarizing the essence of ‘synaptic

tagging and capture’ [12,13].

Synaptic Weight
The synaptic weights have contributions from early and late

LTP and LTD. The total synaptic weight of a synapse i is

wi = ŵ(1+hi2ali+bzi) where ŵ is the value of a non-tagged synapse,

a = 0.5 and b = 2 are parameters, hi and li are binary values

indicating E-LTP and E-LTD, respectively, and zi is the value of

the L-LTP trace of synapse i. Since we model slice experiments in

animals older than 20 days, we assume that 30 percent of the

synapses have undergone previous potentiation and have z = 1

while the remaining 70 percent of synapses are in the state z = 0

[7]. In all simulation experiments we stimulate one or several

groups of N = 100 synapses each. Assuming that no tags have

been set in the recent past (hi = li = 0), the initial value of the

average weight in a group of N synapses is then

w 0ð Þ~ŵ
PN

i~1 1zbzi

h i.
N~1:6ŵ.

Neuron Model
For all simulations in this paper we use the adaptive exponential

integrate-and-fire model [42] as a compact description of neuronal

firing dynamics. Briefly, it consists of two equations. The voltage

equation has an exponential and a linear term as measured in

experiments [59]. The second equation describes adaptation.

Although firing rate adaptation is not important for the present

study, it would be relevant in the context of other stimulation

paradigms. Parameters for the neuron model are as in [42] and are

kept fixed for all simulations presented in this paper. The voltage

threshold Vs of spike initiation by a short current pulse is 25 mV

above the resting potential of 270.6 mV [42]. Synaptic input is

simulated as a short current pulse. The initial connection weight ŵ

was adjusted so that simultaneous activation of 40 or more

synapses triggers spike firing in the postsynaptic neuron. Hence the

amplitude of a single EPSP is about 0.6 mV.

The adaptive exponential integrate-and-fire model is defined in

continuous time. If a spike is triggered by a strong current pulse,

the voltage rises within less than 0.5 millisecond to a value of

20 mV where integration is stopped. The voltage is then reset to

resting level, and integration restarted after a refractory time of

1 ms. In order to enable us to perform simulations of plasticity

experiments with a time step of D= 1 ms, the voltage equation

during the rising slope of the action potential was integrated once

at a much higher resolution (time step 0.02 ms), so as to determine

the exact contribution of each postsynaptic spike to the probability

of LTP induction. Every postsynaptic spike was then treated as an

event in the plasticity simulations that contributed a probability

Ph = 0Rh = 1 of flipping the tag from h = 0 to h = 1 in a time step

D= 1 ms which we can write as Ph = 0Rh = 1 = aDx̄(t)[ū(t)2qLTD]+

with a numerical conversion factor aD = ALTP 5 ms mV derived by

the above procedure; see Eq. 2.

Number of Consolidated Synapses
In Figure 5 we plot the number of synapses that have been

consolidated as a function of the number Ntag of initially tagged

(hi = 1) synapses. Since the number of tags decays exponentially

with rate kH, the expected duration TON
P of protein synthesis is

TON
P ~ 1=kHð Þln Ntag

	
Np

� �
where Np is the protein trigger

threshold. While protein synthesis is ‘ON’ the variables p and z

move along the black dashed line in Figure 5A which crosses after

a time t1 the separatrix (green line in Figure 5A) and at a time t2
the line z = 0.5 (vertical dashed green line). Different cases have to

be distinguished. (i) TON
P vt1, no consolidation takes place (see

pink trajectory), hence Nup = 0. (ii) TON
P wt2, consolidation is

guaranteed for all synapses that are still tagged at time t2, hence

Nup = Ntagexp(2kt2). (iii) In the case of t1vTON
P ƒt2, the time tcross

needed to cross the vertical line z = 0.5 is numerically calculated by

integrating the equations dp/dt = 2p/(tp) and dz/dt = f(z)+c p

starting at t~TON
P at the point p TON

P

� �
,z TON

P

� �
on the black-

dashed line (see orange line in Figure 5A for a sample trajectory).

The number of consolidated synapses is then Nup = Ntagexp(2ktcross).

The solid line in Figure 5B represents Nup as a function of Ntag

calculated for the cases (i)–(iii). With our standard set of parameters,

we have t1<28 min and t2<60 min.
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5. Artola A, Bröcher S, Singer W (1990) Different voltage dependent thresholds for

inducing long-term depression and long-term potentiation in slices of rat visual

cortex. Nature 347: 69–72.
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Chapter 5

A top down approach to a
rule performing

Independent Component
Analysis

I
ndependent Component Analysis (ICA) is a technique able to �nd original

source signals out of mixtures of those signals, the so-called cocktail party

problem. How do we recover a voice in a cocktail party when mixed with

music? There are powerful ICA algorithms that take into account either the

spatial distribution of the signal ("spatial ICA") (Hyvärinen, Karhunen, and

Oja 2001) or the temporal correlations of the signal ("temporal ICA") (Tong,

Liu, Soon, and Huang 1991; Molgedey and Schuster 1994; Belouchrani, Abed-

Meraim, Cardoso, and Moulines 1997; Ziehe and Müller 1998). Those algorithms

are however di�cult to interpret biologically since they are either not online

or require di�cult preprocessing of the data such as whitening (Hyvärinen,

Karhunen, and Oja 2001). Thus the way the brain is able to solve the cocktail

party problem is still unclear. In Chapter 3 however, the induction model

was shown to perform spatial ICA. We were wondering if a model could solve

temporal ICA and what would be the link to the induction model. In the

following paper (Clopath, Longtin, and Gerstner 2008) we present a top down

approach leading to a biologically plausible model performing ICA. It takes into

account the temporal correlations of the signals. By decorrelating the signal

mixtures at 2 di�erent time lags, it is possible to recover the original sources.

The rule is a standard rate-based Hebbian rule where the rate is taken at those

two di�erent time lags. This rule does not require any preprocessing of the data.

It allows to de-mix the di�erent sound signals of the standard ICA benchmarks

(Hyvärinen, Karhunen, and Oja 2001). The link between this model and the

early phase of plasticity model is explained in the "future work" section.
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Abstract

Independent component analysis (ICA) is a powerful method to decouple signals.
Most of the algorithms performing ICA do not consider the temporal correlations
of the signal, but only higher moments of its amplitude distribution. Moreover,
they require some preprocessing of the data (whitening) so as to remove second
order correlations. In this paper, we are interested in understanding the neural
mechanism responsible for solving ICA. We present an online learning rule that
exploits delayed correlations in the input. This rule performs ICA by detecting
joint variations in the firing rates of pre- and postsynaptic neurons, similar to a
local rate-based Hebbian learning rule.

1 Introduction

The so-called cocktail party problem refers to a situation where several sound sources are simul-
taneously active, e.g. persons talking at the same time. The goal is to recover the initial sound
sources from the measurement of the mixed signals. A standard method of solving the cocktail
party problem is independent component analysis (ICA), which can be performed by a class of pow-
erful algorithms. However, classical algorithms based on higher moments of the signal distribution
[1] do not consider temporal correlations, i.e. data points corresponding to different time slices could
be shuffled without a change in the results. But time order is important since most natural signal
sources have intrinsic temporal correlations that could potentially be exploited. Therefore, some
algorithms have been developed to take into account those temporal correlations, e.g. algorithms
based on delayed correlations [2, 3, 4, 5] potentially combined with higher-order statistics [6], based
on innovation processes [7], or complexity pursuit [8]. However, those methods are rather algorith-
mic and most of them are difficult to interpret biologically, e.g. they are not online or not local or
require a preprocessing of the data.

Biological learning algorithms are usually implemented as an online Hebbian learning rule that trig-
gers changes of synaptic efficacy based on the correlations between pre- and postsynaptic neurons.
A Hebbian learning rule, like Oja’s learning rule [9], combined with a linear neuron model, has been
shown to perform principal component analysis (PCA). Simply using a nonlinear neuron combined
with Oja’s learning rule allows one to compute higher moments of the distributions which yields
ICA if the signals have been preprocessed (whitening) at an earlier stage [1]. In this paper, we are
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Figure 1: The sources s are mixed with a matrix
C, x = Cs, x are the presynaptic signals. Us-
ing a linear neuron y = Wx, we want to find the
matrix W which allows the postsynaptic signals
y to recover the sources, y = P s, where P is
a permutation matrix with different multiplicative
constants.

interested in exploiting the correlation of the signals at different time delays, i.e. a generalization of
the theory of Molgedey and Schuster [4]. We will show that a linear neuron model combined with a
Hebbian learning rule based on the joint firing rates of the pre- and postsynaptic neurons of different
time delays performs ICA by exploiting the temporal correlations of the presynaptic inputs.

2 Mathematical derivation of the learning rule

2.1 The problem

We assume statistically independent autocorrelated source signals si with mean < si >= 0 (<>
means averaging over time) and correlations < si(t)sj(t′) >= Ki(|t − t′|)δij . The sources s are
mixed by a matrix C

x = Cs, (1)

where x are the mixed signals recorded by a finite number of receptors (bold notation refers to a
vector). We think of the receptors as presynaptic neurons that are connected via a weight matrix W
to postsynaptic neurons. We consider linear neurons [9], so that the postsynaptic signals y can be
written

y = Wx. (2)

The aim is to find a learning rule that adjusts the appropriate weight matrix W to W ∗ (* denotes the
value at the solution) so that the postsynaptic signals y recover the independent sources s (Fig 1),
i.e. y = P s where P is a permutation matrix with different multiplicative constants (the sources are
recovered in a different order up to a multiplicative constant), which means that, neglecting P ,

W ∗ = C−1. (3)

To solve this problem we extend the theory of Molgedey and Schuster [4] in order to derive an online
biological hebbian rule.

2.2 Theory of Molgedey and Schuster and generalization

The paper of Molgedey and Schuster [4] focuses on the instantaneous correlation matrix but also the
time delayed correlations Mij =< xi(t)xj(t + τ) > of the incoming signals. Since the correlation
matrix Mij is symmetric, it has up to n(n + 1)/2 independent elements. However, the unknown
mixing matrix C has potentially n2 elements (for n sources and n detectors). Therefore, we need to
evaluate two delayed correlation matrices M and M̄ with two different time delays defined as

Mij =< xi(t)xj(t + τ2) > M̄ij =< xi(t)xj(t + τ1) > (4)

to get enough information about the mixing process [10].

From equation 1, we obtain the relation Mij =
∑

l CilCjlΛll and similarly M̄ij =
∑

l CilCjlΛ̄ll

where Λij = δijKi(τ2) and Λ̄ij = δijKi(τ1) are diagonal matrices. Since M = CΛCT and
M̄ = CΛ̄CT , we have

(MM̄−1)C = C(ΛΛ̄−1). (5)
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It follows that C can be found from an eigenvalue problem. Since C is the mixing matrix, a simple
algorithmic inversion allows Molgedey and Schuster to recover the original sources [4].

2.3 Our learning rule

In order to understand the putative neural mechanism performing ICA derived from the formalism
developed above, we need to find an online learning rule describing changes of the synapses as
a function of pre- and postsynaptic activity. Taking the inverse of (5), we have C−1M̄M−1 =
Λ̄Λ−1C−1. Therefore, for weights that solve the ICA problem we expect because of (3) that

W ∗M̄ = Λ̄Λ−1W ∗M, (6)

which defines the weight matrix W ∗ at the solution.

For the sake of simplicity, consider only one linear postsynaptic neuron. The generalization to many
postsynaptic neurons is straightforward (see section 4). The output signal y of the neuron can be
written as y = w∗Tx, where w∗T is a row of the matrix W ∗. Then equation 6 can be written as

w∗T M̄ = λw∗TM, (7)

where λ is one element of the diagonal matrix Λ̄Λ−1.

In order to solve this equation, we can use the following iterative update rule with update parameter
γ.

ẇ = γ[wTM̄ − λwTM ]. (8)

The fixed point of this update rule is giving by (7), i.e. w = w∗. Furthermore, multiplication of (7)
with w yields λ = wTM̄w

wTMw
.

If we insert the definition of M from (2), we obtain the following rule

ẇ = γ[< y(t)x(t + τ1) > −λ < y(t)x(t + τ2) >], (9)

with a parameter λ given by

λ =
< y(t)y(t + τ1) >

< y(t)y(t + τ2) >
.

It is possible to show that ẇ is orthogonal to w. This implies that to first order (in |ẇ/w|), w will
keep the same norm during iterations of (9).

The rule 9 we derived is a batch-rule, i.e. it averages over all sample signals. We convert this rule
into an online learning rule by taking a small learning rate γ and using an online estimate of λ.

ẇ = γ[y(t)x(t + τ1)− λ1

λ2
y(t)x(t + τ2)] (10)

τλλ̇1 = −λ1 + y(t)y(t + τ1)

τλλ̇2 = −λ2 + y(t)y(t + τ2).

Note that the rule defined in (10) uses information on the correlated activity xy of pre- and postsy-
naptic neurons as well as an estimate of the autocorrelation < yy > of the postsynaptic neuron. τλ

is taken sufficiently long so as to average over a representative sample of the signals and |γ| ¿ 1 is
a small learning rate. Stability properties of updates under rule (10) are discussed in section 4.

3 Performances of the learning rule

A simple example of a cocktail party problem is shown in Fig 2 where two signals, a sinus and a
ramp (saw-tooth signal), have been mixed. The learning rule converges to a correct set of synaptic
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Figure 2: A. Two periodic source signals, a sinus (thick solid line) and a ramp (thin solid line), are
mixed into the presynaptic signals (dotted lines). B. The autocorrelation functions of the two source
signals are shown (the sinus in thick solid line and the ramp in thin solid line). The sources are
normalized so that Λ(0) = 1 for both. C. The learning rule with τ1 = 3 and τ2 = 0 extracts the
sinusoidal output signal (dashed) composed to the two input signals. In agreement with the calcula-
tion of stability, γ > 0 , the output is recovering the sinus source because Λsin(3) > Λramp(3). D.
The learning rule with τ1 = 10, τ2 = 0, converges to the other signal (dashed line), i.e. the ramp,
because Λramp(10) > Λsin(10). Note that the signals have been rescalled since the learning rule
recovers the signals up to a multiplicative factor.

weights so that the postsynaptic signal recovers correctly one of the sources. Postsynaptic neurons
with different combinations of τ1 and τ2 are able to recover different signals (see the section 4 on
Stability). In the simulations, we find that the convergence is fast and the performance is very accu-
rate and stable. Here we show only a two-sources problem for the sake of visual clarity. However,
the rule can easily recover several mixed sources that have different temporal characteristics.

Fig 3 shows an ICA problem with sources s(t) generated by an Ornstein-Uhlenbeck process of the
form τsi ṡi = −si + ξ, where ξ is some gaussian noise. The different sources are characterized
by different time constants. The learning rule is able to decouple these colored noise signals with
gaussian amplitude distribution since they have different temporal correlations.

Finally, Fig 4 shows an application with nine different sounds. We used 60 postsynaptic neurons
with time delays τ1 chosen uniformly in an interval [1,30ms] and τ2 = 0 . Globally 52 of the 60
neurons recovered exactly 1 source (A, B) and the remaining 8 recovered mixtures of 2 sources (E).
One postsynaptic neuron is recovering one of the sources depending on the source’s autocorrelation
at time τ1 and τ2 (.i.e. the source with the biggest autocorrelation at time τ1 since τ2 = 0 for all
neurons, see section Stability). A histogram (C) shows how many postsynaptic neurons recover
each source. However, as it will become clear from the stability analysis below, a few specific
postsynaptic neurons tuned to time delays, where the autocorrelation functions intersect (D, at time
τ1 = 3ms and τ2 = 0), cannot recover one of the sources precisely (E).
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Figure 3: A. The 3 source signals (solid lines generated with the equation τsi
ṡi = −si + ξ with

different time constants, where ξ is some gaussian noise) are plotted together with the output signal
(dashed). The learning rule is converging to one of the sources. B. Same as before, but only the one
signal (solid) that was recovered is shown together with the neuronal output (dashed).

A B

1 2 3 4 5
time [s]

si
g

n
a

ls

time

si
g

n
a

ls

 

10 ms

C D

1 2 3 4 5 6 7 8 9
0

5

10

15

sources #

#
 o

f 
o

u
p

u
t

−4 −2 0 2 4
time [ms]

a
u

to
c

o
rr

e
la

ti
o

n

E

1 2 3 4 5
time [s]

si
g

n
a

ls

Figure 4: Nine different sound sources from [11] were mixed with a random matrix. 60 postsynaptic
neurons tuned to different τ1 and τ2 were used in order to recover the sources, i.e. τ1 varies from 1ms
to 30ms by steps of 0.5ms and τ2 = 0 for all neurons. A. One source signal (below) is recovered
by one of the postsynaptic neurons (above, for clarity reason, the output is shifted upward). B.
Zoom on one source (solid line) and one output (dashed line). C. Histogram of the number of
postsynaptic neurons recovering each sources. D. Autocorrelation of the different sources. There
are several sources with the biggest autocorrelation at time 3ms. E. The postsynaptic neuron tuned
to a τ1 = 3ms and τ2 = 0 (above) is not able to recover properly one of the sources even though it
still performs well except for the low amplitude parts of the signal (below).
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4 Stability of the learning rule

In principle our online learning rule (10) could lead to several solutions corresponding to different
fixed points of the dynamics. Fixed points will be denoted by w∗ = ek, which are by construction
the row vectors of the decoupling matrix W ∗ (see (5) and (7)). The rule 10 has two parameters, i.e.
the delays τ1 and τ2 (the τλ is considered fixed). We assume that in our architecture, these delays
characterize different properties of the postsynaptic neuron. Neurons with different choices of τ1

and τ2 will potentially recover different signals from the same mixture. The stability analysis will
show which fixed point is stable depending on the autocorrelation functions of the signals and the
delays τ1 and τ2.

We analyze the stability, assuming small perturbation of the weights, i.e. w = ei + εej where {ek},
the basis of the matrix C−1, are the fixed points. We obtain the expression (see Appendix for
calculation details)

ε̇ = γε
Λjj(τ1)Λii(τ2)− Λii(τ1)Λjj(τ2)

Λii(τ2)
, (11)

where Λ(τ)ij =< si(t)sj(t + τ) > is the diagonal correlation matrix.

To illustrate the stability equation (11), let us take τ1 = 0 and assume that Λii(0) = Λjj(0), i.e. all
signals have the same zero-time-lag autocorrelation. In this case (11) reduces to ε̇ = γε[Λjj(τ1) −
Λii(τ1)]. That is the solution ei is stable if Λjj(τ1) < Λii(τ1) for all directions ej (with biggest
autocorrelation at time τ1) for γ > 0. If γ < 0, the solution ei is stable for Λjj(τ1) > Λii(τ1).

This stability relation is verified in the simulations. Fig 2 shows two signals with different autocor-
relation functions. In this example, we chose τ1 = 0 and Λ(0) = I, i.e. the signals are normalized.
The learning rule is recovering the signal with the biggest autocorrelation at time τ1, Λkk(τ1), for a
positive learning rate.

5 Comparison between Spatial ICA and Temporal ICA

One of the algorithms most used to solve ICA is FastICA [1]. It is based on an approximation
of negentropy and is purely spatial, i.e. it takes into account only the amplitude distribution of the
signal, but not it’s temporal structure. Therefore we show an example (Fig. 5), where three signals
generated by Ornstein-Uhlenbeck processes have the same spatial distribution but different time
constants of the autocorrelation. With a spatial algorithm data points corresponding to different time
slices can be shuffled without any change in the results. Therefore, it cannot solve this example. We
tested our example with FastICA downloaded from [11] and it failed to recover the original sources
(Fig. 5). However, to our surprise, FastICA could for very few trial solve this problem even though
the convergence was not stable. Indeed, since FastICA algorithm is an iterative online algorithm, it
takes the signals in the temporal order in which they arrive. Therefore temporal correlations can in
some cases be taken into account even though this is not part of the theory of FastICA.

6 Discussions and conclusions

We presented a powerful online learning rule that performs ICA by computing joint variations in
the firing rates of pre- and postsynaptic neurons at different time delays. This is very similar to a
standard Hebbian rule with exception of an additional factor λ which is an online estimate of the
output correlations at different time delays. The different delay times τ1, τ2 are necessary to recover
different sources. Therefore properties varying between one postsynaptic neuron and the next could
lead to different time delays used in the learning rule. We could assume that the time delays are
intrinsic properties of each postsynaptic neuron due to for example the distance on the dendrites
where the synapse is formed [12], i.e. due to different signal propagation time. The calculation of
stability shows that a postsynaptic neuron will recover the signal with the biggest autocorrelation at
the considered delay time or the smallest depending of the sign of the learning rates. We assume that
for biological signals autocorrelation functions cross so that it’s possible with different postsynaptic
neurons to recover all the signals.

6



A B

signals

di
st

rib
ut

io
n

time delay

a
u

to
c

o
rr

e
la

ti
o

n

C D

time

si
g

n
a

ls

time
si

gn
al

s

Figure 5: Two signals generated by an Ornstein-Uhlenbeck process are mixed. A. The signals have
the same spatial distributions. B. The time constants of the autocorrelations are different. C. Our
learning rule converges to an output (dashed line) recovering one of the signals source (solid line).
D. FastICA (dashed line) doesn’t succeed to recover the sources (solid line).

The algorithm assumes centered signals. However for a complete mapping of those signals
to neural rates, we have to consider positive signals. Nevertheless we can easily compute an
online estimate of the mean firing rate and remove this mean from the original rates. This way the
algorithm still holds taking neural rates as input.

Hyvaerinen proposed an ICA algorithm [8] based on complexity pursuit. It uses the non-
gaussianity of the residuals once the part of the signals that is predictable from the temporal
correlations has been removed. The update step of this algorithm has some similarities with our
learning rule even though the approach is completely different since we want to exploit temporal
correlations directly rather than formally removing them by a ”predictor”. We also do not assume
pre-whitened data and are not considering nongaussianity.

Our learning rule considers smooth signals that are assumed to be rates. However, it is com-
monly accepted that synaptic plasticity takes into account spike trains of pre- and postsynaptic
neurons looking at the precise timing of the spikes, i.e. Spike Timing Dependent Plasticity (STDP)
[13, 14, 15]. Therefore a spike-based description of our algorithm is currently under study.

Appendix: Stability calculation

By construction, the row vectors {ek, k = 1,..,n} of W ∗ = C−1, the inverse of the mixing matrix,
are solutions of the batch learning rule 9 (n is the number of sources). Assume one of these row
vectors eT

i , (i.e. a fixed point of the dynamic), and consider w = ei + εej a small perturbation in
direction eT

j . Note that {ek} is a basis because det(C) 6= 0 (the matrix must be invertible). The rule
(9) becomes:

7



ε̇ei =γ[< x(t + τ1)(ei + εej)T x(t) > (12)

− < (ei + εej)T x(t)(ei + εej)T x(t + τ1) >

< (ei + εej)T x(t)(ei + εej)T x(t + τ2 >)
< x(t + τ2 >)(ei + εej)T x(t) >].

We can expand the terms on the righthand side to first order in ε. Multiplying the stability expres-
sion by eT

j (here we can assume that eT
j ej = 1 since the recovering of the sources are up to a

multiplicative constant), we find:

ε̇ =γε
[eT

j CΛ(τ1)CT ej ][eT
i CΛ(τ2)CT ei]− [eT

i CΛ(τ1)CT ei][eT
j CΛ(τ2)CT ej ]

eT
i CΛ(τ2)CT ei

(13)

− ε
4[eT

i CΛ(τ1)CT ej ][eT
j CΛ(τ2)CT ei]

eT
i CΛ(τ2)CT ei

.

where Λ(τ)ij =< si(t)sj(t + τ) > is the diagonal matrix.

This expression can be simplified because eT
i is a row of W ∗ = C−1, so that eT

i C is the unit vector
of the form (0,0,...,1,0,...) where the position of the ”1” indicates the solution number 0. Therefore,
we have eT

i CΛ(τ)CT ek = Λ(τ)ik.

The expression of stability becomes

ε̇ = γε
Λjj(τ1)Λii(τ2)− Λii(τ1)Λjj(τ2)

Λii(τ2)
(14)
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Chapter 6

Conclusions and Future
Work

6.1 Summary of the results

T
he four papers presented in this thesis aim for a better understanding of

synaptic plasticity. The �rst paper (Clopath, Jolivet, Rauch, Luescher,

and Gerstner 2007) is dedicated to choose an appropriate neuron model that

is compact and reproduces well experimental voltage traces of layer V pyrami-

dal cells. The same neuron model, the adaptive Exponential Integrate and Fire

model (AdEx), was shown later on to operate in di�erent dynamical regimes and

exhibit various �ring patterns (Naud, Marcille, Clopath, and Gerstner 2008).

The voltage time course of the neuron turns out to be important for the descrip-

tion of the early phase of plasticity (Clopath, Vasilaki, Buesing, and Gerstner

xxxx), i.e. not only is the postsynaptic spike timing important but so is the

level of depolarization of the postsynaptic neuron (Artola, Bröcher, and Singer

1990; Ngezahayo, Schachner, and Artola 2000; Sjöström, Turrigiano, and Nel-

son 2001). Thus the model for the early phase of plasticity presented in the

second paper (Clopath, Vasilaki, Buesing, and Gerstner xxxx) combines the

presynaptic spike time arrival and the postsynaptic membrane potential �ltered

with di�erent time constants. It is very robust in reproducing experimental data

like voltage clamp experiments (Artola, Bröcher, and Singer 1990; Ngezahayo,

Schachner, and Artola 2000), frequency dependence (Sjöström, Turrigiano, and

Nelson 2001), burst-timing dependent plasticity (Nevian and Sakmann 2006)

and a several subtle combinations of spike-timing and voltage depolarization

or hyperpolarization. Moreover, this model exhibits some important functional

implications like selectivity in the input, for example receptive �eld develop-

ment, ICA-like computation and exhibits a tight relation between coding and

connectivity. Rate coding leads to few strong bidirectional connections in a

sea of weak connections as measured in visual cortex (Song, Sjöström, Reigl,

Nelson, and Chklovskii 2005) in contrast to temporal coding which expresses

few unidirectional connections as measured in the barrel cortex (Lefort, Tomm,

Sarria, and Petersen 2009). This is an interesting interpretation suggesting that

di�erent coding schemes exist in di�erent cortical areas. Interestingly, standard

STDP models (Gerstner, Kempter, van Hemmen, and Wagner 1996; Gerstner

and van Hemmen 1993; Roberts and Bell 2000; Kistler and van Hemmen 2000;
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Mehta, Quirk, and Wilson 2000; Song, Miller, and Abbott 2000; Legenstein,

Naeger, and Maass 2005; Guyonneau, VanRullen, and Thorpe 2005) cannot

sustain stable bidirectional connections (Song, Miller, and Abbott 2000). This

early phase model is combined with a late-phase model of long term synaptic

plasticity, the TagTriC model (Clopath, Ziegler, Vasilaki, Buesing, and Gerstner

2008) presented in the third paper. It takes into account discrete synapses for

the early phase where the probabilities of transition are given by the model de-

scribed in the previous paper (Clopath, Vasilaki, Buesing, and Gerstner xxxx).

These discrete states also set the tags at the synapses. It is combined with a

triggering process of plasticity related proteins and a consolidated phase which

includes bistable states. This model reproduces a large number of synaptic tag-

ging experiments and cross tagging. Finally, a top down approach of computing

temporal ICA in a biologically plausible manner was derived in the last paper

(Clopath, Longtin, and Gerstner 2008). This rate-based rule decorrelates the

signal mixtures at di�erent time points (lags) so that the original signal recov-

ered is the one with the biggest autocorrelation at these time points. It allows

di�erent neurons, with di�erent properties (i.e. lag) to recover di�erent sources.

The model performed greatly on standard ICA benchmarks with sound sources.

6.2 Open questions and future work

This thesis work has revealed a range of open questions and therefore o�ers

a list of possible future work:

Spike-based rule performing temporal ICA

The last paper of the thesis presents a rate-based rule performing ICA

(Clopath, Longtin, and Gerstner 2008). The next step is to develop a spik-

ing version of this model. The type of encoding has to be decided but the most

straightforward is to use Poisson neurons that �re with probability correspond-

ing to the signal. Thus the presynaptic spike trains would encode the signal

mixtures. Postsynaptic neurons can also be considered as Poisson neurons that

�res with the probability re�ecting the weighted sum of the inputs. Synaptic

plasticity should converge to a set of weights so that the postsynaptic neuron

encodes one of the original sources. The plasticity model can take the form of

a standard STDP learning window (Markram, Lübke, Frotscher, and Sakmann

1997; Bi and Poo 1998) re�ecting the correlation at two di�erent lags in the

rate-based framework. The amplitudes of this window have to vary depending

on the output correlation, like the λ term in the rate-based rule. This variable

amplitudes can be interpreted for instance as homeostasis. This STDP model

with homeostasis could be su�cient to perform temporal ICA. The encoding

with Poisson neurons is however not exploring precise timing of the spikes. A

temporal code could be considered, like the time to �rst spike.
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Biological ICA

Humans have two ears to solve the cocktail party problem! At one given

point in time they have access to two di�erent mixtures of the original sources.

However, classical ICA benchmarks contain the same number of sources as mix-

tures to prevent loss of information. The question remains how humans do to

decouple more than two di�erent sources? Can they recover only two sources

at the same time and attention is then shifted to recover the other ones? Do

they have to move slightly their head to decode di�erent mixtures? Does the

auditory preprocessing help for this problem? In fact auditory preprocessing is

known to decompose the sources in di�erent frequency bands due to the hair

cells in the cochlea. Should Fourier decomposition be taken into account in this

case?

Relation between spike-based rule performing temporal ICA and the model

for early phase plasticity

The second paper (Clopath, Vasilaki, Buesing, and Gerstner xxxx) shows

that a nonlinear rule in the postsynaptic term combined with homeostasis, i.e.

BCM form, is su�cient to perform spatial ICA. It would be interesting to �nd

out whether the nonlinearity could be shifted from the postsynaptic term to a

simple non linear neuron or not. Moreover the link between the spiking spatial

ICA model (Clopath, Vasilaki, Buesing, and Gerstner xxxx) (i.e. taking into

account spatial distribution of the signal) and the spiking temporal ICA model

(follow up of Clopath, Longtin, and Gerstner 2008, taking into account temporal

correlations of the signal) is not yet clear. It remains an open question whether

di�erent models exist in the brain and operate with di�erent inputs. For example

visual inputs would be processed by spatial algorithms and audio inputs by

temporal algorithms. On the contrary, a combined model performing temporal

and spatial ICA (Müller, Philips, and Ziehe 1999; Hyvärinen 1998; Hyvärinen

2001) would be more robust to any kind of sources, like for example a movie.

If that is the case, the way those two models (Clopath, Vasilaki, Buesing, and

Gerstner xxxx and follow up of Clopath, Longtin, and Gerstner 2008) should

be combined has to be clari�ed.

Extension of the model for early phase of plasticity

This model takes into account the voltage of the postsynaptic neuron which

turns out the be critical for synaptic plasticity (Artola, Bröcher, and Singer

1990; Sjöström, Turrigiano, and Nelson 2001). However the proposed plasticity

rule uses a neuron model with a single compartment, i.e. equal voltage at the

soma and at the synapses. This is de�nitely not the case and a more detailed

neuron model giving the voltage at the synapse would be helpful, especially

describing the back propagating action potential. It would then be possible to

describe quantitatively plasticity depending on dendritic location, e.g. the di�er-
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ence between apical plasticity when the back propagating action potential fails

and basal dendrite plasticity (Sjöström and Häusser 2006). Moreover some ad-

ditional non-linearities should be taken into account. For example, there seems

to be a non-linearity in the number of pairing, where a small number of pairing

only leads to LTP (Wittenberg and Wang 2006) and a saturation e�ects may

occur. Finally di�erent weight dependencies should be explored. Note that op-

timal models clearly predict that nonlinearities are crucial (Toyoizumi, P�ster,

Aihara, and Gerstner 2005).

Interestingly, pre-post pairing at low frequency when the neuron is stimulated

intracellularly does not change the weights (Sjöström, Turrigiano, and Nelson

2001) whereas extracellular stimulation leads to potentiation (Froemke and Dan

2002). This results suggest that pre-post pairing would lead to potentiation only

if previously there was some depolarization (Sjöström, Turrigiano, and Nelson

2001), high activity of the slices via extracellular stimulation (Froemke and Dan

2002), or neuromodulation (Schultz and Dickinson 2000) (the last two could be

the same since extracellular stimulation can excite dopaminergic �bers). The

model should then be adjusted so that the potentiation term contains a corre-

lation between pre-post with an additional term which could be either voltage

(Clopath, Vasilaki, Buesing, and Gerstner xxxx) or neuromodulation (Schultz

and Dickinson 2000), unifying triplet rule and reward-modulated learning rules.

Moreover, the neuromodulation term seems to be complex and has to be tuned

with additional experiments.

Finally it would be interesting to validate the model with the predictions ex-

plained in the paper (Clopath, Vasilaki, Buesing, and Gerstner xxxx).

Combing short term plasticity with long term plasticity

In the second paper (Clopath, Vasilaki, Buesing, and Gerstner xxxx) the

model describes long term plasticity lasting 2 to 3 hours. However, synapses

are also plastic at a much shorter time scale lasting hundreds of milliseconds,

the so-called short-term plasticity. It would be worthwhile to combine short

term (Markram and Tsodyks 1996; Abbott, Varela, Sen, and Nelson 1997) and

long term plasticity models especially in protocols using high frequency spiking.

The impact of short term plasticity would then be more clear and the long term

model may have to be readjusted.

Extension of the TagTriC model

The TagTriC model has some limitations at least concerning one set of ex-

perimental data set which resets the tags (Sajikumar and Frey 2004b). This

model is thus oversimpli�ed and needs to di�erentiate between setting the tags

and the early phase of plasticity. A more elaborate model with additional states

should allow for tag resetting, possibly a hybrid model between our model and

another model for synaptic tagging (Barrett, Billings, Morris, and van Rossum

2009).
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Many open questions still exist concerning the late-phase of long-term plastic-

ity. For example it is not clear what are the states of the synaptic weights 10

hours after a STDP protocol, since weights are recorded usually for 30 minutes.

Do they undergo consolidation? If yes, does reducing the number of pairing

prohibits maintenance? If not, is a longer STDP protocol su�cient to reach the

late phase or is it necessary to pair a strong extracellular protocol in a di�erent

pathway, stimulating dopaminergic �bers? Maintenance depends on neuromod-

ulation but how? More experiments are required using pharmacological tools.

Link between the TagTriC model and reinforcement learning models

The TagTriC model presented in the third paper (Clopath, Ziegler, Vasi-

laki, Buesing, and Gerstner 2008) exhibits some structural similarities to the

reinforcement learning framework: (i) The selection of "de�nitive" memories

depends in both cases on neuromodulators, such as dopamine (Schultz and

Dickinson 2000). In reinforcement learning, the weights are updated in the

presence of dopamine encoding prediction of reward and in the tagging experi-

ment maintenance requires stimulation of dopaminergic �bers. (ii) The presence

of a memory trace. In reinforcement learning the eligibility trace keeps a mem-

ory of the pre-post correlation and in the tagging experiment, the early phase

of plasticity keeps a memory of the induction. However, the time scales for

the early phase and the eligibility trace seem to be di�erent. Thus the TagTriC

model should be tested against standard reinforcement learning tasks like learn-

ing a location in a maze.

Moreover, recent experiments provide evidence for behavioral tagging (Mon-

cada and Viola 2007), memory reconsolidation and extinction (Eisenhardt and

Menzel 2007) where the time scales seem to be more consistent with the ones

measured in tagging experiments (Frey and Morris 1997). The TagTriC model

should be further validated with these recent experimental �ndings.

Functional implications of the early phase of plasticity

It is necessary to check that the functional implications of the early phase of

our plasticity model (Clopath, Vasilaki, Buesing, and Gerstner xxxx) still hold

when combined with the late phase model, i.e. selectivity, ICA computation, re-

lation between connectivity and coding. Would it open up more computational

possibilities? What are the consequences when applied to bigger networks?

Analytical study of a plastic recurrent network under this nonlinear model

should be investigated, similarly to the case with standard STDP rule (Kempter,

Gerstner, and van Hemmen 1999; Burkitt, Gilson, and van Hemmen: 2007;

Gilson, Burkitt, Grayden, Thomas, and van Hemmen 2009a; Gilson, Burkitt,

Grayden, Thomas, and van Hemmen 2009b).

Functional implications of the voltage dependency

The functional consequences of the early phase plasticity model (Clopath,
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Vasilaki, Buesing, and Gerstner xxxx) were essentially taking advantage of the

nonlinearity of the model and the homeostatic properties. However, the con-

sequence of the voltage dependence was not explored. It would be interesting

to study the implications in a network with background activity that probably

leads to a much higher average voltage. What are the consequences in vivo,

where the voltage is closer to threshold?

Functional implications of the TagTriC model in a large network

What are the functional consequences of the TagTriC model in a large net-

work? Does the network learn over a long period? In contrary, a network with

multiplicative STDP shows no stable strong synapses over time (Morrison, Aert-

sen, and Diesmann 2007). What is the �nal weight distribution? Does memory

consolidation increase memory capacity in a network? In fact the TagTriC

model can be seen as a shallow cascade model (Fusi, Drew, and Abbott 2005)

with only two levels. How good is the trade-o� between a plastic network and

a long lasting memory, i.e. palimpsest property (Nadal, Toulouse, Changeux,

and Dehaene 1986; Amit and Fusi 1994)? However the exact construction of

such a network is not straightforward: (i) Should the inhibitory plasticity in

such a network be taken into account? For this, more experimental data (Ga-

iarsa, Caillard, and Ben-Ari 2002; Haas, Nowotny, and Abarbanel 2006) and

an appropriate model is needed. (ii) Plasticity is very diverse across synapses

(Caporale and Dan 2008; Sjöström, Rancz, Roth, and Hausser 2008). Should

this inhomogeneity be taken into account? (iii) What would be the inputs to

the network and the learning benchmarks?

6.3 Conclusion

The present thesis explores di�erent types of long-term synaptic plasticity by

developing models based upon simple mechanistic principles. Such models can

be applied to plastic arti�cial networks mimicking brain areas, o�ering a direct

interpretation of the obtained results. They reveal induction mechanisms of

synaptic plasticity as well as mechanisms of its maintenance and consolidation.

The proposed models o�er a good trade-o� between the brain plasticity

and maintenance of previous memories (known as stability-plasticity dilemma).

Under di�erent coding scheme scenarios they produce distinctive connectivity

patterns that can be related to di�erent brain areas, suggesting that the un-

derlying reason of the experimentally observed di�erences may be the di�erent

encoding schemes used in the various areas, for instance rate coding in visual

cortex and temporal coding in barrel cortex.

Finally these models explain how experience modi�es structural properties

like receptive �eld development and how the brain computes Independent Com-

ponent Analysis when in a noisy environment such as the cocktail party prob-

lem.
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Appendix A

Additional Work

I
n this appendix, a few extra experiments with the induction model from

(Clopath, Vasilaki, Buesing, and Gerstner xxxx) is shown. These are un-

published results.

Extended induction model fits triplet and quadruplet data

We simulate three sets of experiments on hippocampal cultures from (Wang,

Gerkin, Nauen, and Bi 2005). In the �rst experiment, we apply a standard

pairing protocol. In the second experiment we apply the triplet protocol, i.e.

a set of pre-post-pre and post-pre-post triplets with variable time distances

between the spikes. In the third experiment we apply the quadruplet protocol,

i.e. either a post-pre pair of spikes is followed after time T by a pre-post pair

of spikes (if T positive) or a pre-post pair of spikes is followed after time -T

by a post-pre pair of spikes (if T negative). For a detailed description of the

protocols see (Wang, Gerkin, Nauen, and Bi 2005).

We �t the model parameters such that the data of the pairing, triplet and

the quadruplet protocol are reproduced altogether with the same parameters

(Fig. A.1). It turns out that for the hippocampal cultures, an additional term

is necessary, i.e. a pre-post pair-term for potentiation, similar to the triplet rule

from (P�ster and Gerstner 2006).

Functional consequences of the induction model

The induction model is used in di�erent scenarios of rather simple feedfor-

ward networks. Selectivity is observed when a group of inputs undergoes rate

modulation (Fig. A.2A) or shares spike-spike correlation (Fig. A.2B). Addition-

ally the weights of set of common inputs exhibit spontaneous selectivity after a

very long time, showing the unstable dynamics (Fig. A.2C).
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Figure A.1: Weight change according to pair (A), triplet (B) and quadruplet pro-
tocols (C) following the induction model with an additional pre-post term for poten-
tiation. A. 60 pairing at 1Hz where T is the time between the pairs (red: post-pre,
blue: pre-post). B. 60 triplets at 1Hz (red:pre-post-pre, blue: post-pre-post) C. 60
quadruplet at 1Hz (red:pre-post-post-pre, blue:post-pre-pre-post). Dots are experi-
mental data taken from (Wang, Gerkin, Nauen, and Bi 2005).
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Figure A.2: A. Rate modulation. 100 presynaptic Poisson inputs are connected to
one postsynaptic neuron that receives as a current the weighted sum of the inputs. The
80 last inputs �re at 10Hz. The 20 �rst inputs undergo a rate-modulation: a random
number is chosen every 200ms between 0-10, 0-30, 0-50, 0-30, 0-10Hz for 10min each.
Selectivity is observed as well as a hysteresis meaning that the selection is stable
within those 10min. B. Spike-spike correlation. The 100 inputs �re at 10Hz but the
50 lasts share spike-spike correlation of c=2. Selectivity is observed. C. Spontaneous
selection. The 100 inputs �re at 10Hz. Spontaneous selectivity is observed after
10hours indicating two stable points of the dynamics.
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