Transactors: Unifying Transactionsand Actors

Mohsen
Abstract

Composability and deadlock-freedom are importargpprties
that are stated for transactional memory (TM). Camiy, the
Semantics of TM requires linearization of trangawsi It turns out
that linearization of transactions that have cyclienmunication
brings incomposability and deadlock. Inspired frafivi and

Actors, this work proposes Transactors that provadslities of

isolation from TM and communication from Actors. Vdefine
the semantics of Transactors including support @yclic

transactional communication. An algorithm impleniegt this

semantics is offered. The soundness of the algorighproved.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming — Parallel programming

General Term Algorithms, Languages, Theory
Keywords Transactional memory, Actors

1

To preserve consistency of data, concurrent opeErminvolving a
sequence of accesses (reads and writes) to shamdmnshould
be executed in isolation. To coordinate cooperathgis, threads
need to communicate. Therefore, a concurrent pnogiag
model is expected to provide means of isolation and
communication.

As a concurrency programming model, Transactionahidry
(TM) [9] allows the programmer to declare blocks of cade
transactions and the TM runtime system guarantdest t
transactions are linearized, i.e. run in isolationthis paradigm,
communication among transactions should also bee doy
reading and writing to shared memory. The sendamstction
writes to a memory location. The receiving tranisacteads from
the memory location after the sender transactionngits. TM is
shown to be deadlock-free and composdBlein provision of
isolation. Because of the linearization guaranéseexamples will
show, transactions with cyclic communication areomposable
and can deadlock.

Actors concurrency programming model, support
communication elegantly by message passing mechawistors
provide coarse-grained isolation by the fact thaaray point of
time at most one thread is scheduled to execute éodeach
actor instancg6]. This means that operations executed for an
actor instance are serialized and hence are donsolation to
each other.

This work aims at merging the strengths of the pacadigms,
i.e. isolation from TM and communication from ActorTo this
end, we define the semantics of the new model diegisupport
for transactional communication and propose an rtgo
realizing this semantics. The soundness of the righgo is
proved. Especially, it is proved that every tratisacis eventually
finalized, i.e. aborted or committed. This guarestahat the
algorithm is deadlock-free even while there are licyc
dependencies.

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2009 ACM 1-58113-000-0/00/0004...$5.00.

I ntroduction

Lesani

Motivating examples are presented in the next @ectin
subsequent sections, semantics of Transactorsefireed and the
algorithm that implements the semantics is expthirgoundness
theorems come afterwards. Related works finalize paper.
Some sections refer to the same section numbeteappendix
of the accompanying technical repfrt] for details or proofs.

2 Incomposability and Deadlock

To explain the problem of incomposability and deafll in
transactional communication, two examples are ptesein the
following subsections. First, as a simple exampdaindtrip is
presented and then barrier is explained as atiea&se.

21
211

Consider the simple roundtrip example that exhithis problem
abstractly. A transaction sends a message to anb#resaction
and then receives a message from it. This is impihded in
SSTM (Scala Software Transactional Memory) as Yadlo(We
have implemented SSTM very similar [®].) The Semantics of
conditionwait in SSTM matches the semantics afiry of
Haskell STM[8]. (If the condition fails, the transaction iscated
and not retried until one of the objects that th@saction has read
before being aborted is updated.)

Assume that two transactioffg andT, use respectively two
shared variables. andne to pass messages to each other:

Transactions
Roundtrip

val mL = new Tint(0), n2 = new Tint(0)
The first transactiorT, is
atom ¢ {

nl.value = 1

condi ti onWai t (nR2.val ue == 1)
}

The second onéy, is
atom ¢ {

condi ti onWait (ml. val ue

n2.value = 1

1)

}

We show that the execution of the two transactieass to a
deadlock either with a deferred-update or directatp STM
implementation. In a deferred-update STM implemgoathe
following happens. Wheff; is being executedit is tentatively
updated and then the conditiote. val ue 1 is checked.
Becausenz should be updated b, and updates are deferred,
condition of T; is only satisfied wheff, commits. WherT, is
being executed, it checks for conditien val ue == 1. Sincent
should be updated Iff and updates are deferred, the condition of
T, is satisfied only whef; commits. Therefore, neither f and
T, can pass the condition. So both abort and go éowthiting
state that results in a deadlock. Explanation ferattupdate STM
implementation is presented in the technical refddit

To see where such roundtrips can happen in practee
present the implementation of a barrier abstractiaith
transactions.

212

Transactional communication can bring deadlock whksses
implemented by transactions are composed. Consitier
following example: Barrier, the simplest thread hoation the

we adopted fronfil2]. Barri er class is implemented as follows:
class Barrier(partiesCount: Int) {

Barrier

val count = new TInt(0)
def await() {
atom c {
count . val ue
}

atom c {
condi ti onWait (count.val ue == partiesCount)
}

}

class Party(barrier:

override def run {

/1 Do some job
barrier. await

/1 Do some other job

}

There are two atomic blocks in theait method. The first
one increments the value efunt. count is a field ofBarrier
class of type transactional integer that counts rthenber of
parties that have called theait method. The second atomic
block waits for equality oftount to the number of expected
parties,parti esCount that is initialized in the constructor. If a
condition is not true, the thread is suspended ahieast one of
the objects that the transaction has read is ugdatthen the
value of count is incremented topartiesCount, all of the
suspended parties retry the atomic block and asdhéition is
satisfied, pass the atomic block. Effectively, peeties continue
together after calling thewai t method.

The implementedar ri er works properly if thewai t method
is not called inside a transaction. To semifri er is composable,
consider the followingrParty class that callawait inside an

atomic block.
class TParty(barrier:
override def run {
atomic {
/1 Do sone job
barrier. awai t
/1 Do some other job

= count.value + 1

Barrier) extends Thread {

}

Barrier) extends Thread {

}
}

For the purpose of presentation, the nesting canvittten

syntactically as follows:
atom c {
atom ¢ {
count.value = count.value + 1

}
atom ¢ {
condi ti onWii t (count.val ue == partiesCount)

}
There are two known semantics for nested atomickisto

closed nesting and open nestimgcrier is composable neither

with closed nor open nesting semantics.

By the closed nesting semantics, the updates ofirther
transactions are all committed when the outermcstsaction
commits. For aondi tionvait in an inner transaction, there are
two approaches. Either the condition is moved #liéginning of
the outermost transacti¢n] or the condition is evaluated in-place
and if the condition fails, the outer transactidiors and before
retrying waits until at least one of the objectattit has read is
updated[12]. In both of these approaches, all of the parthat
call theawai t method go to deadlock:

« If the condition is checked at the beginning of théermost
atomic block, it is never satisfied. This is be@uthe
evaluation result of the condition can only charge the
updates that are inside the atomic block itself.

« Also if the outer transaction aborts and goes tdtinga state
when the condition is failed, the parties go todieek. We
explain about deferred-update STM implementatiorre.he

Explanation for direct-update STM implementatiopiesented
in the technical repoft1]. If STM implementation is deferred-
update, the first transaction reads a value of fienm count
and tentatively updates it to one in its own copg the
condition fails, the transaction ignores its tentatupdate,
aborts and goes to the waiting state. As no traiosacommits
and updates are deferred, any transaction thas realdie of
count gets zero. Therefore, any later transaction dieots and
goes to the waiting state resulting in a deadlock.

Explanation for open nesting is presented in thehrial
report[11].

This means that thewai t method ofgarri er cannot be used
inside nested atomic blocks and therefeseri er implemented
by STM is not composable.

A solution to this problem based on closed nestaited TIC
is offered by Smaragdakis et E12]. TIC commits the transaction
and starts a new one before theit statement. By their
terminology, the transaction is punctuated befohe tait
statement. Committing before the wait statemenbsap updates
to other transactions and thus provides means mframication.
But punctuation of an atomic block breaks its itola
Furthermore, if an atomic block; is inside method/; andM; is
called by another methol, inside a nesting atomic block,,
punctuatingA, breaks isolation of not only; but also4,. To
make this break explicit to the programmer, TICigiesd a type
system that tracks methods that contain punctugtadic blocks.
If the programmer wants to call such methods imtamic block,
the type system forces him to call it insid@ose() and to write
code to compensate the breaking of isolationednabl i sh{}

block. The barrier case is implemented as follawsIC:
class TICBarrier(partiesCount: Int) {
val count = new TInt(0)
def await() {
atom ¢ {
count.value = count.value + 1
wai t (count . val ue == partiesCount)
}
}

class TParty(barrier:
override def run {
atomic {
/1 Do some job
expose (barrier.await)
establish { //... }
/! Do sonme other job

TICBarrier) extends Thread {

}
}

Even if any compensation is possible, re-estabigHocal
invariants is a burden on the programmer. More mgmtly, TIC
breaks isolation for communication while isolaticnthe main
promise of TM. Actually, TIC treats communicatidmetsame as
I/O. Side effects caused by I/O operations are afutontrol of
TM runtime system; thus they can break isolatiod eannot be
rolled back and retried. This is in contrast to owmication, for
which proper mechanisms can be designed
communications tentatively and to discard and réligm on
aborts. Our proposal for semantics and implemantatif these
mechanisms is explained in the following sectioBy. these
mechanisms, Transactors provide the facility fa pnogrammer
to send and receive messages inside transactionge wh
composability and isolation are preserved.

}

2.2

A transactor is essentially a thread that can samdl receive
messages both outside and inside transactionactnTfransactor
model includes features from both TM and Actor nmisdén

Transactors

to perform

atomic block inside a transactor can not only rieacth and write

to shared memory but also send messages to arider@cessages
from other transactors. All of the required meckers to keep
track of messages sent by aborted transactionsairgained by

the Transactors runtime system.
class MyTransactor(peer: Transactor) extends Transactor {
val il =0, i2 =0 //Non-transactional objects
val til = TInt(), ti2 = TInt() //Transactional
override def act {
/1 Qutside atomic block
val v =il //Read non-transactional objects
i2=v [//Wite non-transactional objects
peer ! new MessageCl ass //Send a nessage
receive { //Receive a nessage
case MessageCl assl => //...
case MessageClass2 => //...

obj ects

atom ¢ {
/1 Inside atom c bl ock
val tv = til.value //Read transactional objects
ti2.value = tv //Wite transactional objects
peer ! new MessageCl ass //Send a nessage
receive { // Receive a nessage

case MessageCl assl => //...

}

}
}
}
Similar to actors, each transactor has a mailboxerah

messages sent to the transactor are enqueuedngadtar can
dequeue messages from its mailbox dmteive. The input
parameter to ecei ve is a partial function which is defined for a
set of message types. When a transactor execedesve, if a
message of a type that the partial function israefifor is not in
the mailbox, it waits until such a message is engde

221

The roundtrip example can be coded simply in STaémsactors

as follows:
class Transactor 1(peer:
override def act {
atom c {
peer ! new Message
receive { case Message => }

Roundtrip

Transactor) extends Transactor {

}
}

cl ass Transact or2(peer:
override def act {
atom c {
receive { case Message => }
peer ! new Message

Transactor) extends Transactor {

}
}
}
Transactions inside Transactors can send and set&native

messages from each other. After completion, they farally
committed together. The mechanisms behind transactoe
explained in the following sections.

222

This subsection explains implementation of theibagase by
Scala Transactors. Consider the following code patipA class
called BarrierActor that extends base classansactor is
defined insideBarrier class. Inside an atomic block in #st
methodBarri er Act or waits to receivaoi nNot i fi cati onRequest
message from the parties and adds the sender ¢tansd each
received message parties set. After receiving the request form
parti esCount parties, it sends &i nNotificati on message to all
the parties irparties set. On construction of Barrier, a new
object calledbarrierActor of typeBarrierActor is created and

Barrier

started. When a party calls thei t method on @&arrier object,

an atomic block is executed that sends a
Joi nNoti ficationRequest mMmessage to thevarrierActor and
waits to receiveJoinNotification message. In Transactor
model, transactions can communicate tentativelyheymessage
passing mechanism. Therefore, in contrast to th& farrier
implementation using TM transactions, the current
implementation does not go to deadlock waiting fieessages
from others. Theawait method can be called inside a nested
atomic block and the implemented barrier is complesaln
addition, in contrast to TIC, composable commuiicatis

supported without breaking isolation.
class Barrier(partiesCount: Int) {
class BarrierActor extends Transactor {
override def act {
atom c {
val parties = Set[Transactor]()
for(i <- O until partiesCount) {
val request = receive {
case Joi nNotificati onRequest =>
parties += request. sender

for(party <- parties) {
party ! new JoinNotification

val barrierActor = new BarrierActor
barrierActor.start
def await() {
atom ¢ {
barrierActor ! new JoinNotificati onRequest
self.receive { case JoinNotification =>}
}
}

class TParty(barrier:
override def act {
atom ¢ {
barrier.await
}

Barrier) extends Transactor {

}

As will be explained in the next sections, by teenantics, a
receiving transaction becomes dependent on the esend
transaction. A transaction can be aborted as dtreSonflict
resolution with another transaction. When a tratsads aborted,
abortion is propagated to dependent transactions.

When a party has sent a message to the barrieqagtom and
is waiting to receive a reply message, the traimaci the barrier
is dependent on the transaction of the party. dfttansaction of
the party aborts, the abort is propagated to thesaction of the
barrier. While the transaction of barrier is abagtithe messages
from the other parties that are not aborted artomed to the
barrier's mailbox. Therefore, on retry, the atorblock of the
barrier can receive the same set of request messageits
previous execution other than the request fromatharted party.
This means that the barrier transactor effectivigyores the
aborted party and waits for another.

When the barrier has received request messagesdilotine
parties and the parties are released after receiiessages from
the barrier, the transaction of each party andrdmesaction of the
barrier are interdependent. If the transactionrad of the parties
aborts, abort propagates to the transaction ob#irdger and then
transactions of all of the other parties. In otlwerds, if one of the
parties aborts, the barrier and all of the paréies aborted and
retried. This matches the expected behavior frombérrier that
all of the parties together or none of them shqalsis the barrier.

3 Semantics

In this section, properties that are expected feofiransactor
algorithm are specified the first subsection. Tdrarhas needed as
the background for the operational semantic a@béshed in the
second subsection. The last subsection presentspietional
semantics.

3.1 Algorithm Specification

A transaction starts from the running state and daange states

as shown in Figure 1.
N —

Terminate:
Figure 1. Statetransitions of a transaction.

DeriNITION 1: A transaction is terminated iff it has reactibd
end of its atomic block (but is not committed yét)transaction is
committed iff its updates to shared memory are catach A
transaction is aborted iff its execution is stopped its tentative
updates to shared memory are discarded.

DEFINITION 2: A transaction is finalized iff it is aborted or

committed.

The first property that is expected from a transaetgorithm
is finalization that is defined as follows:

ProOPERTY 1: Finalization:
finalized.

Every transaction is eventually

DerINITION 3: A message is stable iff its sender transact®n i
committed.

PrROPERTY 3: Non-triviality: Only transactions that are non-
committable are aborted.

Therefore soundness is defined as follows:

DEFINITION 8: A transactor algorithm is sound if it has the
following properties: ROPERTY 1: Finalization, ROPERTY 2:
Commit Accuracy, ROPERTY3: Non-triviality.

3.2 Operational Semantics Background

LemmA 1: Dependency is transitive, i.e.Tf - T, andT, - T;
thenT; — T5. (We use~* to denote transitive dependency.)
PROOE It is trivial from DEFINITION 4. m

LEMMA 2: If Ty > T, and T, is aborted, non-triviality is not
violated ifT; is aborted.

ProoFR Aborted is a final state for a transaction. Bsis aborted,

it can never commit. BY; — T, and DEFINITION 4, T; can only

commit whenT, is committed. HenceT; is non-committable;
thus, aborting it does not violate non-trivialiBROPERTY3. m

DerINITION 9: A transactionT; is called a failed transaction if
there is a transactidfy such thaf; »* T, andT, is aborted.

LeEMMA 3: Abort Propagation: Aborting a failed transactiboes
not violate non-triviality.

ProoF Direct from DEFINITION 9, LEMMA 1 and IEMMA 2. m
DerINnITION 10: Transaction dependency relatienfor the set of

transactionsT’ corresponds to the transaction dependency graph
Grp[V, E] defined as follows:
(€]

V=Tand (T, T,) €) © (T, T,) € E)).
A path in the dependency graph corresponds to resitiee

If a transactiorl; receives a message that is sent by another dependency relation. So we use them interchangeably

transactiorT,, as computation of; is reliant on the message, it
cannot commit unless the message becomes stablsa\Wten
that the receiving transaction is dependent on s$keding
transaction. The notion is formalized as follows:

DerINITION 4: Transaction dependency relation: A transacfipn
is dependent on transactidi, i.e. T, » T,, iff T, can be
committed only ifT, is committed.

DEerINITION 5: A message is pending iff its sender transacison
running or terminated.

DerINITION 6: If transactiorT; receives a pending message that is
sent by transactiofi,, T; becomes dependent By, i.e.T; — Ts.

The second property that is expected from a traosadgorithm
is that when a transaction is committed, no deperyes
violated. The property is formalized as follows:

PrRoPERTY 2: Commit Accuracy: For any committed transaction
T;, all transaction&, thatT; is dependent on are also committed.

To satisfy only RoPerty 1 and ROPERTY 2, a trivial
algorithm can abort any transaction. The third propis non-
triviality of the algorithm.

DerinITION 7: A transaction is non-committable iff its
commitment even in the future violates commit aacyr

For example, a transaction that has dependency &barted
transaction is non-committable but a transactiomt tihas
dependency to only running or committed transastismot non-
committable.

It is known that a subgraph of a directed graplcafied
Strongly Connected Subgraph (SCS) if there is & frain each
vertex of the subgraph to every other vertex offlie Strongly
Connected Components (SCC) of a directed graphsaneaximal
SCSs. A node that is on no cycle is an SCC itself.

LEMMA 4: Any two transactions in an SCS of the transactio
dependency graph are interdependent.

PrOOF In an SCS of the dependency graph, for every two
transactiong; andT,, there is a path frorfi; to T, and a path
from T, to T,. By DeriNniTioN 10, T; »*T, and T, -»*Tj;.
According to lEMMA 2,T; > T, andT, > T;. m

LeEmmMA 5: To preserve commit accuracy, all of the trarieastin
an SCS of the transaction dependency graph shaijydcommit
together.

Proof: By Lemma 4, for any two transactiofisand T, in an
SCC, T, » T, and T, —» T;. To preserve commit accuracy, by
Definition 4, T; can only be committed I, is committed and
vice versa. This means th@ and T, can only be committed
togetherm

The lemma presents the fact that a sound algorghould
perform collective commit when there are cyclic elegencies.
This means that transactions of an SCS shouldenthearized to
distinct points but all of them should be lineadz® a single
point.

DEerFINITION 11: A dependency to a transaction is resolved éf th
transaction is committed.

Atomic: Atomicl: T fresh
(Ala » (, R[atomict])]- T -_) Lt
(Ala = (L RJ[t])] - T[r & (r,R[atomic t], (})] -)
Atomic2: (Ala = QR[] - T[x o (5,)]) >
(Ala = QR D] - Tt)] -)
Send: Sendl: (Ala; = (Relaz send v])]ay = (Mg,)] -_-)
(Alay = { R [unit])][a; - (M ¥ {(V.T)}._R)])
Send2: (Alay » (Rla, send v])][a; = (M,)] -+)=
_ (Alay = RlunitD][a, = (Mp ¥ {V, Teommitteaddr M - -)
Recelve: | Receivel: (Alay = (My U {(v,7,)}, Rlreceive])] - [r; = (€,)] -)
(Ala; » My, RWD] - [r, = (e,)] -
Receive2: (Jl[al =My W {(v, 7)) Ry, [receive])] Tty = LBtz » (S, 0]) 5
(‘A[al = (M, Ry, [17]>] Ty LB {w oDl = (e L] 0)
Receive3: (Alay = (My ¥ {(v,T2)}, Ry, [receive])] - T[t, - (a,_,)] '_)i
(Alay = (M, Ry [receive])] - T[r, = (a,,)])
Received: (Jl[al =My W {(v, 1)}, Ry, [receive])] Tty » B[tz » (rort,__)]-D) 5
(fﬂ[al o (M, Ry, [U])] Tt =GB, »(rort,,)] - DU {t; = 15})

Fiaure 2. Operational Semantics of Transactor Alagorithm 1/2

LEMMA 6: To preserve commit accuracy and non-trivialifya
transaction has dependency to no aborted but ainginn
transaction, it cannot be committed or aborted.

ProoE If it is committed, as it has an unresolved dejssrty,
commit accuracy is violated. If all its dependescige resolved
later, it can be committed; so, it is not non-commble. Hence
aborting it violates non-trivialitym

DerINITION 12: A set of transaction€ is a cluster iff all its
transactions are terminated and any unresolvedndepey of
them is to each other. Formally, a set of traneast is a cluster
iff

VTt EC:

(1 is terminated)and

VT’ € GTD:
(r = ') = ((t'is committed) or (t' € C))

@

LEMMA 7: Collective Commit: Committing all transaction @
cluster together does not violate commit accuracy.

Proor By DEeFINITION 12, in a cluster, any dependency of each
transaction is either already resolved or will lesalved by
committing other transactions in the cluster. Cotting all
transactions of the cluster together leaves no sohved
dependency for them. Therefore committing them ttogredoes
not violate commit accuracy

LEMMA 8: A Transactor algorithm is a sound algorithmtifhas
the finalization property and only aborts failedrsactions and
only commits transactions of clusters together.

PROOF. By DEFINITION 8, LEMMA 3, LEMMA 7.
3.3

The operational semantics is defined for the foifmnlanguage of
terms and values:

Operational Semantics

tounit | I | x | Ax.t | tt Terms
| reft | t==¢t | 't
| "atomic"t | t"send"t | "receive" | "abort"
vounit | 1| x.e | A Values
A={ay,a,as, ..} Actor names

Figure 2 and Figure 3 show the operational semantit
essentially represents abort propagation for fail@dsactions and
collective commit for transactions of clusters tihge. Therefore
by LemmA 8, an algorithm is sound if it has the finalization

property and it satisfies the operational semaotiEigure 3 and
Figure 2. Before explaining the transition ruleg ®&stablish the
notational conventions.

331 Notational Conventions

Tuple:"()" denotes a tuple and’‘is used to separate elements
of a tuple. For instanc& - b - ¢) denotes a tuple of elementsh
andc. Sets and Multisets: Union and multiset unionasated by
U andu respectively. For a multiset, S / x is a multiset that is
the same a$ except that an instance ofis removed. Maps is
used to denote a mapping. For instange» b represents a
mapping froma to b. A map is a set of mappings. For a nidp
M (x) denotes the element to whigh mapsx. For a mapV, the
set of elements that it maps from is called its diomand is
denoted bydom(M). M / x denotes a map’ that is the same as
M except thak € dom(M").

Pattern matching: Pattern matching is used to oher the
applicability of a particular rule, and to matchngmonents of
terms to variables. Applying term constructors &niables makes
simple patterns. For instancér,y) matches tuples of two
elements where variables and y match the first and second
elements respectively. The underscore charactentatthes any
term. The patterM [a ~ y] matches any map’ wherea € M’,

y matchesM’(a) andM is bound toM’ / a. The patterr§ v {x}
matches any multis&f wherex is bound to an element &' and
S is bound t&5 / x. a or b matches eithet or b.

Transaction Statesr, a, t and ¢ denote running, aborted,
terminated and committed states of a transactioeduBtion
Context: In each transition rule, a particuledex term is reduced.
The redex is considered in raduction context. R[] denotes
reduction context for terms that are evaluateddmsiansaction
and R[] denotes reduction context for terms that are ewetl
outside transactions. We c&ll[] andR][| transactional and non-
transactional reduction contexts respectively.

R[]I Rt vR|refRIIR|R=t|v=R
| Rsendt | vsend R | "atomic" R,

Re=o[l I Rt | vR | ref Ry | IR [Rei=t | vi=R,
| R, sendt | vsend R,

Configuration: A configuration describes state gfragram at
a single point at runtime. A configuration is glkei of the form
(AT D). A is a mapping from transactor ifls;} to pairs of
the form (M; - R[redex];) where M; denotes the mailbox of
transactown; andR[redex]; denotes the current reduction context

Abort: Abortl:

(Alay > (R, [abort)] - T[t, = (@,)] -) >
(Ala, = Ry unit])] - Tlr, = (@,)] -)

Abort2:

(‘ﬂ[al ind (_! R‘rl [abort TZ])] [aZ ind (_! R‘rz [—])] : T[TZ nd (Ir ort,_, —)])5)
(c/l[al =GR, [unit])] [a2 = (LR, [abort])] Tty - (rort,_)] -.)

Abort3:

3t (r-> 1) ED)and (T(x') =(a,__)))

(Ala ~ R T[r o (rort,,)] -D) >
(Ala » (R [abort)] - T[t » (rort,__)]-D)

Abort4:

(Ala » (M, R [abort])] - T[t » {, R[atomic t], B)] -_)i
(Ala » (M Y B, R[atomic t])] - T[t » (&, R[atomic t],{}]-)

Commit: Commit:

vi=1l.n: [@u(r;~>1)€D))=> (T =(c,_Nor(3Fj=1.n:1=15))]

(cﬂ[ai =, Rri [Vi])].
(Cﬂ[ai L (-;R[Ui]ﬂi:l..n . T[Ti i (C:_'_>]i=1..n -D)

R
‘Tt =t Di=1.n - D) =

i=1.n

Figure 3. Operational Semantics of Transactor Algorithm 2/2

and redex ofi;. A mailboxM is a multiset ofm, 7) pairs where
m is a message and is the sender transaction of. T is a
mapping from transaction namgs;} to triples of the form
(state;, R[redex];, B;). state;, a value from the sefr, a,t, c}
denotes the current state gf R[redex]; denotes the reduction
context and redex just before the atomic block;d§ started. As
will be explained, at the beginning of each atonhiock,
reduction context and redex are saved in the seelamient of the
triple for the new transaction instance and itestored when the
transaction is aborted and the atomic block needtretriedB;

is a multiset of(m,t) pairs. B; is the multiset of messages
received byr;. As will be explained, ifr; is abortedB; is added
to the mailbox multiset. T contains the dummy entry
Teommittea ™ (G, __) from the beginning. As will be explained,
Tcommittea 1S S€L @s the sender transaction of messagesrhat
sent outside transaction®. is the set of dependencies between
transactions oflom (7).

332 Reduction Rules

The relationi is a single-step transition on configurations.

Atomic: Atomicl: Reduction of atomict adds a new
mapping ta7. The new mapping ~ (r, R[atomic t]) is from a
fresh transaction id. The state of the new transaction is set to
runningr and the current reduction context and redex ase al
saved. The reduction context and redex are restated if the
transaction is aborted and the atomic block is &o rétried.
atomic t is reduced tot in the context of transactian Atomic2:
When a transaction reaches the end of the atomickpl.e. it
evaluates to a value, the state of the transadi@manged from
runningr to terminated.

Send: Sending messages is asynchronous, i.e. rofirizo A
sent message is enqueued to the recipient tram'sactailbox and
can be received latefend1: When transactoa; sends message
m to transactom, inside the reduction context of transactign
the pair(m, 1) is added to the mailbox af,. Thesend statement
itself is then reduced tonit. The sender transaction that is saved
here is checked not to be aborted whenis being received.
Send2: When transacton; sends messagen to transactom,
inside a non-transaction reduction context, the r pai
(M, Tcommittea) 1S added to the mailbox of,. The dummy
transactiontcommittea 1S @ member of” and the status of it is
always committed from the beginning. As the sender transaction
of messages that are sent outside transactioe$ I8 ,mmitted:
these messages are immediately stable.

Receive:Receivel: If transactora; receives inside a non-
transactional reduction context, it receives oribble messages.
If transactor a; receives inside the reduction context of
transactionr; and({m,7,) is an arbitrary member of its mailbox,

three different reductions can happen based orstéte of the
sender transactiom,. Receive2: If T, is committed, i.e. if the
message is stable, the pair is eliminated fromrtfaébox and
receive is reduced ton. Receive3: If 1, is aborted, the pair is
dropped from the mailbox andeceive reduces to itself, i.e.
receiveing should be retriedReceive4: If 7, is running or
terminated, the pair is eliminated from the maillaowireceive is
reduced tom, the same as when, is committed, but also a
dependency front; to t,, i.e.t; —» 7, is added tdD. When a
message is received inside a transactional corttextpair of the
message and its sender transaction is added tohiset B of
the transaction. The elements of the multiset alded to the
mailbox if the transaction aborts.

Abort: A transactiorr can be aborted in three ways. It can be
aborted by another transaction due to a shared nyecumflict
resolution dbortl and Abort2). It can be aborted following
abortion of a transaction thatis dependent omport3). Also, it
can be aborted by a user programmed abort statenside the
atomic block Qbort4). Abortl and Abort2: It is notable that
abort T is not a term of the language but is executed Hey t
transactors runtime system when a shared memorfiatds to
be resolved.Abort1l: Aborting a transaction that is already
aborted has no effectdbort2: If transactora, is running
transactiont, andt, is running or terminated then evaluating
abort 1,, changes the redex af, to abort statement regardless
of its current redex. This reduceédort2 to Abort4. Abort3:
This rule encodes abort propagation. If a transacts running
transactiont, 7 is running or terminated, and the state of a
transactiont’ thatt is dependent on is abortedis also aborted.
This case is also reduced4bort4 by changing the current redex
of a to abort statementAbort4: Reduction ofabort, restores
R[atomic t] that is saved at the beginning of the atomic hlock
Restoring R[atomic t] effectively restarts the atomic block.
Besides, messages that are received throughoutitexe@nd are
in the multisetB of the aborted transaction are added to the
mailbox.

Commit: The commit rule encodes collective commit of a
cluster. If there is a set of terminated transactidhat their
dependencies are either to committed transactionso ceach
other, they are committed together and transactmluation
contexts return back to non-transactional contexts.

4 Transactor Algorithm
4.1 Sending and Receiving M essages

When an atomic block starts, a new transactionrigssc is
created and stored in a thread local variable. ijEec of a
transaction is a data structure that stores all itfiermation

regarding that transaction. To get the descriptothe current
transaction, this thread local variable is checkédhe value of
the variable is null, evaluation is out of atomlodks and if it is
not null, it is the descriptor of the current tractson. The value of
the variable is set to null after a transaction Eots

Transactors provide the facility for the programntersend
and receive messages inside transactions. Whemnaattion
aborts, all its tentative effects should be disedrdParticularly, if
it has sent a message, the message should be ddidcai
message can have three different states: stabtehilated and
pending. Stable is the state of messages sent bymitted
transactions or sent outside transactions. Annédlés the state of
messages sent by aborted transactions. Pendirte istate of
messages that are sent by transactions that amginguror
terminated, i.e. not committed or aborted yet.

When a message is being sent, instead of only thesage
itself, a cell containing the message is enqueoetthé mailbox.
The information that a receiving transaction ndatr are stored
in the cell. Besides the message, the cell con@ireference to
the descriptor of the sender transaction, the sthtbe message
and a reference to a notifiable object. We expédiout this data
as we proceed. Figure 4 and Figure 5 depict datatates and
their relations while sending and receiving a mgssa

Transactor 1 Transactor 2
| Ta To 1

Dependencies

Dependencieg

Notifiables | Notifiables
Mailbox (of Transactor 2
Cell
Notifiable v
Message m
Cell _
. State pending
ReceiverTrans|

SenderTrans | T;

A

Notifiable

Figure 4. Sending M essage

Tra_rll_factorl T Transhctor 2
I \/ > - T
Dependencieg Dependencies
Notifiables Notifiables
Mailbox (of Trgnsactor 2)
o Cell
Notifiable Y
v Message m
Cell _
) State pending
ReceiverTrans|
SenderTrans | T

A

Notifiable

Figure 5. Receiving M essage
The state of a message sent respectively outsidénaide a
transaction is stable and pending at the begintiragtransaction
commits, the state of the messages that it has semild be
changed to stable and if it aborts, the state shbalchanged to
annihilated. This is done by notifiable objects. &llfa transaction
sends a message, a new cell containing the messageueued
to the recipient’'s mailbox and furthermore a nabfe object
having a reference to the new cell is created agistered to the
descriptor of the sender transaction. On abort @nmmit of a
transaction, all of the registered notifiables roéfied of abortion

or commitment. Notifiables, when notified, update state of the
cells that they reference. When a notifiable igfigat of abortion,
it sets the state of the cell to annihilated. Witeis notified of
commitment (also called dependency resolutionets the state
of the cell to stable.

If a message is to be received outside a transacticstable
message is required. If it is to be received insideansaction, a
non-annihilated message is required. When a messajeing
received, cells are dequeued from the mailbox aydaanihilated
message is dropped until the required message uisdfoThe
thread suspends if no required message existeimgilbox until
one is enqueued.

The dependencies of each transaction are kepteinggd
transaction descriptor. To track dependencies, véhglansaction
Ty receives a pending message, a reference to togptes of the
sending transactiofi; should be added to the dependency set of
descriptor of T,. Hence, when a pending message is being
received, a reference to the descriptor of theigsgndansaction is
needed. To have this reference, when a transaigtieanding, it
saves a reference to the descriptor of itself énrtaw cell.

Finalization process of transactions is described the
following subsection but for the purpose of comiplgt the
explanation of this subsection, assufjeto be a transaction that
is terminated andep = {Ts,_, ,} to be the set of transactions that
it is dependent onTg's are transactions thdl; has received
pending messages from. ByMvA 6, if there is no aborted but
running transactions ifep, Tz cannot be committed or aborted.
ThereforeT, goes to the waiting state to get notified of aioort
or commitment offs’s. Hence, aTs, i.e. a sender transaction,
when aborted or committed, should notify the tratiea that has
received its sent message. Notifying waiting depend
transactions is done by the same notifiables tpdate the state
of cells. After a transactiofi, receives a pending message, the
notifiable object, when notified, should notiffi;. Therefore,
when the message is received, the receiving trdoraghould be
subscribed to the notifiable object as a notifmatisink. This
means that a reference to the notifiable objeneeded when the
message is being received. To have the notifiabiéeweceiving,
it is saved in the cell when the message is beard. Vhen a
pending message is being received, the notifiabjecb that is
previously registered in the descriptor of the sertcansaction is
obtained from the cell that contains the messageaaeference to
the receiving transaction is subscribed to it. Beecode of the
send and receive methods is presented in the tedhrepori11].

When a transaction aborts, its effects should lleddack.
While aborting, a transaction that has receivedsagss from the
transactor mailbox should put the messages backreTdre, to
track received messages, when a message is bewmiga® inside
a transaction, the cell that the message is oltdioen is added
to a backup set in the transaction descriptor. Jéteis iterated
while the transaction is being aborted and any twlt is not
annihilated is put back to the mailbox. As the a#lla received
message may be later put back to the mailbox, lasheuld be
notified to become stable or annihilated by itsresponding
notifiable object not only when it is in the maifbbut also when
the message is received and the cell is dequeumd fhe
mailbox. Thus, the notifiable object notifies thell@ven after the
receiving transactor is subscribed.

4.2 Finalization
421

Consider a transactidfy and the set of transactiofi,_, .} that
are dependent ofi. The state of a transactidly can be set to

Abort Propagation

aborted in three different ways that were explaiimetthe previous
section. In any of the ways thd& is aborted,T; propagates
abortion to dependent transactiond,_, .} by notifying
notifiables {Ng,_, , } corresponding tdTg,_, }. Every notifiable
Ng,, in turn, sets the status of the transaction detscrof Ty, to
aborted state. By EFINITION 9, T,s are failed transactions and by
LEMMA 3, aborting them does not violate non-triviality.

The same situation recurs on abortion of Ths, i.e. each of
them notifies their own notifiables. Therefore, glom is
propagated by an implicit traversal of the transactlescriptors
that are (transitively) dependent dj. It is notable that by
notifiable objects, the traversal is done in regedirection of
dependencies. Setting the status of an abortedsattion
descriptor to aborted returns without any actiorente, the
traversal avoids infinite loops by terminating et\aously aborted
transaction descriptors.

As previously explained, any non-annihilated cedfs the
backup set are put back to the mailbox. Finallierad transaction
is aborted, its atomic block is restarted as a tnamsaction.

422 Termination

Every transactor that reaches the end of the atbfoik sets the
status of its descriptor to terminated. Then ittstahe cluster
search to check if it is possible to commit at ttime. If the
cluster search succeeds finding a cluster, it cammil of its
transactions together. Cluster search is explaimedhe next
subsection. If the cluster search returns faildne, transaction
goes to the waiting state. There are three diffeeaents that
wake up a transaction from the waiting state: AbDegpendency
Resolution and Commit events.

« An Abort event is raised when the transaction dptaris set to
aborted. On this event, the transaction aborts xqdaieed
before.

« A Dependency Resolution event is raised when thestction
descriptor is notified of a dependency resolutiés. will be
explained in the next subsection, a transaction toanmits
notifies all of the transactions that are dependenit about the
dependency resolution. On this event, as a depepdanthe
current transaction is known to be resolved, it rhayable to
commit; therefore, the cluster search algorithmetsed.

« A Commit event is raised when the transaction sroitted by
the cluster search of another transaction. On amibmvent,
the atomic block successfully returns.

423 Collective Commit

The dependencies of transaction descriptors cgerieral form a
cyclic graph. If the transactions in a cycle oldivsly wait until
all of their dependencies are resolved, they mait feaever.

Therefore, without a cycle detection mechanismgdtbeks occur.

Cluster search tries to find cycles containing therrent

transaction that make a cluster and to commit tbeltectively.

Cluster search employs the Tarjan algorifi8] that given a
graph and a starting node, finds the set of SCCthefgraph
reachable from the starting node. For each SCGarTalgorithm
obtains the set of vertices of the SCC. It perfoandepth first
traversal of the graph to traverse all the reaghabbes. For each
present node, it gets the adjacent nodes and cestimaversal by
moving to one of them. Getting the set of adjacentes of a node
is where cluster search hooks to Tarjan algorithm:

« If an adjacent transaction is aborted, the seadefi and the
current transaction aborts itself. In this casee tturrent
transaction has a path to and hence is transitokehendent on
an aborted transaction. Therefore, lgFITION 9, it is a failed

transaction and bydmma 3, aborting it does not violate non-

triviality.
« If an adjacent transaction is running, the seascleft and the
current transaction goes to the waiting statehis tase, since
the current transaction is transitively dependemtaorunning
transaction, by EmmA 1 and LEMMA 6, it cannot be aborted or
committed. Therefore it goes to waiting state to rytified by
other transactions.
As the dependency to committed transactions is iqusly
resolved, it is as if they didn't exist. Thereforadjacent
committed transactions are ignored.
Any adjacent transaction that is terminated isrretd as an
adjacent transaction.

The pseudo code of getting adjacent nodes is piexsém the
technical reporfl1].

Let Gy, denote the transaction dependency graph. Thelsearc
is left when an aborted or running transactioremched and also
it ignores committed transactions. This means thatjan
algorithm effectively searches on a subgraphGef, that is
induced by terminated transactions. LGgt denote this subgraph.
As G is a subgraph ofi;p, any SCC ofG; is an SCS ofiyp.
Therefore, if Tarjan algorithm finds an SCC ®f, the cluster
search has found an SCS@&f,.

LemMmA 9: If the cluster search finds one SCS of the deépeay
graph, it is a cluster.

ProOFE The cluster search is left when an aborted oningm

transaction is reached. Therefore, none of thesa@tions of the
found SCS can be aborted or running and also taepat have
dependency to any aborted or running transactidre dluster

search also ignores committed transactions. Henakl,

transactions of the found SCS are terminated. Ag @ame SCS is
found, any dependency from transactions of the GSther to

other transactions of the SCS or to the committ@disactions that
are ignored in the traversal. Hence, IsFiTION 12, the SCS is a
cluster.m

If the cluster search finds only one SCS, the dlgor
commits all of its transactions together. As prowaibve, the
found SCS is a cluster. Therefore, sMma 7, committing all its
transactions together does not violate commit aayur

If the cluster search finds more than one SCS, [tossible to
commit SCSs in the order that they are found. Butsfmplicity,
the transaction goes to the waiting state. (Pleasethe technical
report[11] for more explanation.)

According to lEmmA 5, all of the transactions of the SCS
should be committed together, i.e. committed ataityicStatus of
the transaction descriptors is changed to comméfet the locks
of the status of all of them are acquired. To pnéweadlock, the
locks are acquired in the order of the unique tatisn descriptor
numbers.

When a transactiofi is set to committed, it sends dependency
resolution notification to all its registered natlfles {N;_; ,.}.
When a notifiableN; is notified of dependency resolution, it
performs two actions. It sets the status of thé Cglthat it
references to stable. In addition, if a receiveansaction
descriptor T, is subscribed taV;, N; notifies Tp;, about the
dependency resolution. This makes a Dependency |Rieso
event forTg;.

5 Algorithm Soundness

The reader is invited to see the same section nunmbehe
appendix of the technical repéitl] for full proofs.

LeEMMA 10: The Transactor algorithm has Commit Accuracy.

LEMMA 11: The Transactor algorithm has Non-triviality.

THEOREM 1: The Transactor algorithm has Finalization, éeery
transaction eventually finalizes.

Theorem 2: The Transactor algorithm is sound.

Proor Direct from CeFiNniTION 8, LEMMA 10, LEMmA 11 and
THEOREM1.

6 Related Works

Argus [10] language provides programming with objects

called Guardians which implement a number of pracesl that
are run in response to remote handler calls frameroguardians.
Calling the handler of a procedure of a Guardiardsea message
to the Guardian. In addition to Guardians, the paogner is
provided with Actions that are essentially isolatead failure-
atomic transactions. If a handler is called insideAction, Argus
runs the handler call as a subaction. It is guasththat none or
all of the topaction and its subactions are conamitt

Sinfonia [1] provides support for a subset of distributed

transactions called minitransactions. A minitratissicis a one-
level distributed transaction that can be decompoge
independent subcomputations on participant nodetie T
computation on each participant node is a numbetoofition
checks, reads and writes. This constraint on taiwees allows
Sinfonia to piggyback sending requests to nodes geiting
results from them into the roundtrip of the firstage of the two-
phase commit protocol. Sinfonia provides variousmagisms for
fault tolerance.

A Reactor[4] consists of a collection of relations and rules

which constitute a stateful, reactive and atomicit uof
distribution. A reaction begins when an update beiiglreceived.
An update bundle is a map from the set of relatwinthe reactor
to sets of tuples to be added to or deleted. Etialuaf the rules
of the reactor according to current and tentativgigiated state of
relations specifies the future state of the loefdtions and update
bundles for other relations. Update bundles irgtiatibsequent
reactions; thus they play a role similar to messdgemessage-
passing models. In the Reactor terminology, thepscof the
reaction is extruded to include subsequent reastiome. the
reactions are interdependent. A whole reactiomisritted when
each of the involved reactors reaches a states#tiafies its rules.
From the view of external reactors, a reaction iecated
atomically.

In fact, inside Argus actions, Sinfonia minitransats and
Reactor reactions, messages can be sent, but caareteived.
A message is always received at the beginning afhea
subtransaction. In models that a message can enhgdeived at
the beginning of a transaction, the distributedgeation takes the
form of a tree. To finalize tree-shaped distributezhsactions,
hierarchical commit can be employed or it can ladtdhed to a
two phase commit as in Argus. But if messages @nebeived
inside transactions, dependencies can form a gfiplalization
of transactions with a dependency graph gets moneplicated
than with a dependency tree. We proposed clusterclse
collective commit and abort propagation for finatibn of
transactions with dependency graphs.

Field and Vareld5] has proposed tau-calculus which extends

lambda calculus with facilities for getting and tew,

checkpointing and rolling back the state of tratmacand also
sending and receiving messages. A transactiontadrsactor is
started when the first message is received, comroits
checkpointing and aborts on rolling back. In thisd®l, a receiver
is dependent on the sender. Transitive dependen€iassender

transactor to other transactors are propagated thith sent
message. On arrival of a message, the dependeircidse
messagd,, and dependencies of the receiving transaBfoare
compared. IfDy, and Dp do not invalidate each other, the
dependencies of the transactor are updatedpy If Dy, is
invalidated byDg, the message is droppedDif is invalidated by
Dy, the transactor rolls back. By the semantic ofdalgulus,
checkpointing in a transactor succeeds only when tla
transactors that it is dependent on are checkpbimtare ready to
checkpoint. To make each participating transactbte ato
checkpoint or rollback, the programmer should paogr
transactors so that each participant receives messt know
about the state of other participants. Briefly, Taansactors
provide the programmer with features to program duogs not
automatically support distributed state atomicitg, all-or-none
state update of the participating transactors. |3b aloes not
support isolation of local concurrent transactioits each
transactor.

With Stabilizers[14], the programmer can mark locations of
code as stable checkpoints. Threads can send a&lvee
messages synchronously on definite channels. Tidesand the
receiver of a message become interdependent. Andepey
graph is maintained throughout the program exenutidhe
checkpoint, sends and receives locations are nadeshe
dependency graph. Edges of the graph are of tliffeeett types:

1. Edges between corresponding send and receives nafdtwo
threads. For each thread: 2. Edges from each seddexeive
node to the latest passed checkpoint node, 3. Efilges each
node to the first node after it. On a transienttfahe programmer
calls stabilize in the fault experiencing threadnéfv stabilize is
called, the runtime system reverts back the curterdgad and
each of its dependent threads to their latest plessstable
location. This is done by finding the furthest tealgle checkpoint
node of each thread from the latest node of theaththat calls
stabilize. The dependency graph maintained by Btats is
interestingly in correspondence with the call stawfk nested
atomic blocks where stable checkpoints correspondthe
beginning of atomic blocks. Essentially, Stabil&zesupport
program location recovery. Assume a transactjpthat is nested
inside transactionsT;—, ,—; and is dependent on aborted
transactiornT,. Program location recovery is defined as follows:
For every such transactidt, the thread executing, is reverted
back to the beginning of the latest possible ermpsiested
transactiorl; whereT; = T; orT;_; is not dependent GFy.

TE [2] provides the user with a sequencing combinator
combine two events such as synchronous sendingceiving of
messages into one compound event. The combinasisengally
makes a transaction in the sense that synchroninimgthe
resulting event either performs both or neithertloé events.
Therefore, TE supports isolation for a sequence of
communications but not for shared state manipuiatio
Throughout the execution, the sender and the receivents of a
message get interdependent. To try different symdhation
possibilities, a new search thread is spawned &oh enessage
that a receiving event can receive from a channdlamessage
sent to a channel can be received by several sdéarelads
receiving on the same channel. In addition to segung, TE
supports the choice combinator, chooseEvt. Synéhirapon a
choice event succeeds if synchronizing on the evkeither of its
branches succeeds. Employing chooseEvt, guarded
conditional) receive can be programmed. To supploooseEwvt,
two search threads are spawned to tentativelydch éoranch of
chooseEvt. Each search thread maintains a pathdiegahe path
of communication partners at points where it seodseceives

(or

Table 1. Related Works
2. Guarantees:
2.1.Finalization
2.2.Non-triviality
2.3.Commit Accuracy
2.3.1.Distributed state atomicity,
2.3.2.Program location atomicity

1. Features:
1.1.Local state isolation
1.2.Asynchronous sends
1.3.Receive in transactions

+: Supported, 1 2
—: Not Supported,

*: Semi—aﬁt%matically 11 23] 1] 2 3
Supported 1| 2
Separate Memory Space (Distributed)

Argus Actiong[10] + |+ [=T+ +]+]+
Sinfonia[1] + |+ | =T+ +] +]+
Reactorg4] + -+ [+ |+ |-
Tau Transactorgb] -+]+ * * | * | —

Shared Memory Space

Stabilizerg14] - =+ =+ -]+
TE[2] - -1+ +]+] -1+
TE in ML [3] - — I+ 1 + T —_ |+
TIC [12] - + |+ | + T _
Current work + + + + + + +

messages and also the alternatives it takes atseBeots. The
transitive dependencies of the path of each sehrelad specify
the set of threads that the search thread is depémh and an
expected path for each of them. A set of searchatty are
committable if all of the threads of the set armpteted, the set is
closed under the transitive dependency and the thatheach of
them expects from the others is consistent withctiveent path of
the them. The synchronizations of a set of combiitasearch
threads are committed together. There is a noatrikintime
overhead to spawn search threads to match diffeemders and
receivers and chooseEvt branches, to track pathsocasearch for
committable search threads.

TE in ML [3] extends TE to support mutation of shared
memory in transactional events and also nestechsynizations.
A transactional event is logically divided into 8ens called
chunks. Chunks are delimited by sends and recenside the
transactional event. Isolation of a synchronizatohbroken at the
end of chunks. At these points, i.e. before semdisraceives, the
mutations done in the chunk can be seen
synchronizations. This semantics seems countdiivguas it is
expected that all of the shared memory mutatiores wansaction
be executed in isolation. Similar to TE, severalrsk threads are
spawned to support nondeterministic choices of eenahd
receiver matchings and chooseEvt branches. To suppaation,
chunks mutate heaps called search heaps tentatiVelylet a
chunk read a value written by another chunk, chwfldifferent
synchronizations are allowed to interleave. Towalloterleaving
of chunks, first, when a chunk is finished, itshé&aentered to the
pool of search heaps and second, when a chunkbie started, a
heap from the pool of search heaps is selected. fidwe
determinism in choice of the heap from the heapl pemds to
spawn of a search thread for each of the possddgs For each
search heap, a path is maintained that recordpdtteof search
threads that contributed toward producing it. Wheset of search
threads are to be committed, not only consistentytheir
dependencies to each other but also to the depeiedeaf the
path of the heap that is going to be committedhiscked. Thus,
the runtime cost of TE in ML is even more than tost of TE.
Semantics of nested synchronizations is similathto semantics
of closed nesting. TICL2] was explained in sectichl.2.

It is elicited from each of the related works ieyhsupport
each of the features and guarantees defined asviolThe results

by other

are presented in Table 1. Local state isolatioterinediate state
updates of each transaction are hidden from ottarsactions.
Asynchronous (non-blocking) sends: Sending a mesgagon-
blocking. Receive inside transactions: Messagesn frother
transactions can be received inside a transadiimtributed state
atomicity (consistency): The state updates of asaationT are
committed only if the state updates of transactitimst T is
dependent on are committed. Program location attmitVe
define that a transaction is passed through, éxecuting thread
has started executing the code after the transactide. By this
definition, program location atomicity is defineds dollows:
Every transactiofT is passed through only if the transactions that
T is dependent on are passed through.

7 Conclusion and Future Works

This work proposes Transactors that provide thgnarmmer with

facilities of isolation from TM and facilities ofocnmunication

from Actors. In the Transactors model, asynchronmessages
can be sent and received inside transactions wielguarantee of
transaction isolation is still preserved. The setmarof the model

is defined, an algorithm implementing the semanicproposed
and proven sound.

Our preliminary performance evaluations[irl] suggest that
Transactors perform competitive to TM for isolatamd to Actors
for communication. Our future work is to program rema@ase
studies and gain more performance evaluations.

References
[1]

Aguilera, M. K., Merchant, A., Shah, M., Veitch, ,Aand

Karamanolis, C. 2007. Sinfonia: a new paradigm failding

scalable distributed systems. In Proc. of SOSP189-174.

[2] Donnelly, K. and Fluet, M. 2008. Transactional eged. Functional
Programming. 18, 5-6 (Sep. 2008), 649-706.

[3] Effinger-Dean, L., Kehrt, M., and Grossman, D. 200&nsactional
events for ML. In Proc. of ICFP '08. 103-114.

[4] Field, J., Marinescu, M., and Stefansen, C. 20@ad®rs: A data-

oriented synchronous/asynchronous programming moétsi

distributed applications. Theor. Comput. Sci. 23, 168-201.

Field, J. and Varela, C. A. 2005. Transactors:ay@mmming model

for maintaining globally consistent distributed tetan unreliable

environments. In Proc. of POPL '05. 195-208.

Haller, P. and Odersky, M. 2009. Scala Actors: Yng thread-

based and event-based programming. Theor. Comput48), 2-3

(Feb. 2009), 202-220.

Harris, T. and Fraser, K. 2003. Language suppartlifttweight

transactions. SIGPLAN Not. 38, 11 (Nov. 2003), 38&-

Harris, T., Marlow, S., Peyton-Jones, S., and HgrliM. 2005.

Composable memory transactions. In Proc. of PP@®R8-60.

Herlihy, M., Luchangco, V., and Moir, M. 2006. Aefible

framework for implementing software transactionaémory. In

Proc. of OOPSLA '06. 253-262.

[10] Liskov, B. 1988. Distributed programming in Argu€ommun.
ACM 31, 3 (Mar. 1988), 300-312.

[11] Unifying Transactions and Actors, Tech. Report LAREPORT-
2009-003, IC, EPFL. http://infoscience.epfl.ch/neti39381

[12] Smaragdakis, Y., Kay, A., Behrends, R., and Youki, 2007.
Transactions with isolation and cooperation. IncPraf OOPSLA
'07. 191-210.

[13] Tarjan, Robert, 1971. Depth-first search and linemaph
algorithms. In Proceedings of thel2th Annual Symposium
on Switching and Automata Theof§3-15 Oct. 1971)114-121.

[14] Ziarek, L., Schatz, P., and Jagannathan, S. 20€#biligers: a

modular checkpointing abstraction for concurrentnctional

programs. In Proc. of ICFP '06. 136-147.

(5]

Technical Report Appendix

The material presented in each section complentkatsection of
the paper with the same number.

2 Incomposability and Deadlock

2.1 Transactions

2.1.1 Roundtrip

Second, for direct-update STM implementation, obesithe
following execution schedulel; updatesmi and then before
checking the conditior, executesT, checks the condition that
is satisfied because of direct updates and themtapsle. Thus
condition in T, is satisfied because of the direct update. Both
transactions can reach the end of the atomic Watkecause of
reading tentative updates of each other, eachacsins waits for
the other one to commit. This leads to deadlocky Ather
schedule (i.e. if; updatesm and checks its condition befofg
executes or ifT, executes first), the same situation as deferred-
update implementation of STM happens.

2.1.2 Barrier

« If the outer transaction aborts and goes to waisitage when
the condition is failed,

e If STM implementation is direct-update, sineeunt is
written by the transaction of each party, the uuitée
conflict lets only one of them run at a time. THere
transactions cannot see direct updates of each. offteus,
similar to the previous argument, each transacteads a
value of zero frontount, updates it to one and checks the
condition. Since the condition fails, the transactaborts
and the update rolls back and the transaction ¢medke
waiting state. As the value ebunt rolls back to zero, the
same happens to any later transaction.

By open nesting, the updates of an inner transactice
committed on completion of the transaction itsélfwe change
the first atomic block of thewai t method to an open transaction,
then parties can see the updates of each othewuite field and
therefore, on completion of the first atomic bladfkthe last party,
all of the suspended parties can retry and passathdition check
of the second atomic block. It may seem that opestimg
provides the required behavior. But consider tffi@tr ahe barrier
releases the parties, if the outer transactionpréy aborts, on its
retry, count is incremented once more and becomes equal to
partiesCount + 1. This does not satisfy the condition and the
retrying party is blocked forever. Even if we chartge condition

to
condi ti onWait (count.val ue >= partiesCount)

to let retrying transactions pass the conditior, phoblem is that
retrying transactions pass the barrier later thidwerotransactions
that have passed the barrier and are not abortéd.contradicts
the expected behavior from a barrier to releasefalie parties at
once.

3 Semantics
3.2 Operational Semantics Background

LEMMA 12: A terminated transaction with no unresolved
dependencies is a cluster.

Proor For a terminated transaction with no unresolved
dependency

®)

(Vt' € Grp: (T - ') = (t'is committed))

Therefore, by BFINITION 12, it is a singleton clustem

4 Transactor Algorithm

4.1 Sending and Receiving M essages

Pseudo code of send and receive methods are adoll

Send:
def send(nmsg: T) {
val sender TransDesc
thread | ocal variable for transaction descriptor
val cell new Cel | (msg, sender TransDesc)
if (senderTransDesc null) //outside of atomc
cell.setStable
else { //inside atom c
cel | . set Pendi ng
val notifiable = new Notifiable(cell)
cell.setNotifiable(notifiable)

sender TransDesc. addNot i fi abl e(noti fi abl e)
}

if (isReceiverSuspended) {
cel | For SuspendedRecei ver = cell
desuspendRecei ver

} else
mai | box. enqueue(cel I)

}

Receive:
def receive(): T = {
val currentTransDesc
thread | ocal variable for transaction descriptor
if (currentTransDesc null) //outside of atomc
a stable cell is required
else //inside atomc
a non-anni hil ated cell

is required

iterate the mailbox to find a required cel
while (a required cell is not found) {
suspend
cell = cell For SuspendedRecei ver
if (the cell is not a required cell)
mai | box. enqueue(cel |)
}

val nmsg = cell.nessage

if (currentTransDesc
return nmsg

null') //outside of atomc

sender TransDesc = cel | . sender TransDesc
notifiable = cell.notifiable

val
val

if (lcell.isStable) {
current TransDesc. addDependency(sender Tr ansDesc)
noti fi abl e. addTransAsSi nk(current TransDesc)

}
current Trans. backupCel | (cel I)

msg

}

The fact that pending messages in addition to stat@ssages
are also received inside transactions is to suppydlic
communication. As an instance, consider the roimdase: two
transactors running two transactions that one pada send and
then a receive and the other performs a receivalarda send. If
a message could not be received until it becantdestthe two
transactions would wait for each other for ever.

The reader may have noticed that a push mechagisised to
update cell state in the sense that the cell idiedtwhenever its
state should change. This could be implemented bpuk
mechanism as well. The cell could check the stathe sender
transaction to determine its own state. But as mbeeiving
transaction should be notified by the sender tratits, the sender
pushes the update information anyways. Therefgudating the
state of cells is also implemented by a push méshahbenefiting
the same notification.

4.2 Finalization

421 Abort Propagation

As an implementation detail, some messages mayeteirs the
short period between when the transaction descrigtset to
aborted and when executing the atomic block is pdp The
notifiables corresponding to these messages weraatdied of
the abortion when the transaction descriptor wasgbeet to
aborted. They are notified after execution of thaac block is
stopped.

423 Collective Commit

The pseudo code of getting adjacent nodes is &mv&l As an
implementation detail, Tarjan algorithm stores watues for each
graph node. These two values are stored in thehgrayples
themselves by Tarjan algorithm. As multiple insesmf the
cluster search from different transactions can bsive
simultaneously on the dependency graph, the twoegatannot
be stored in the transaction descriptors. Thergfeaeh instance
of the cluster search maintains a map from trarmactescriptors
to search nodes containing the values.

val nodes = Map[Transacti onDescri ptor, Node] ()

def get Nei ghbors = {
val deps = transDesc. get Dependenci es
val nei ghbors = Set[Node] ()
for (depTransDesc <- deps) {
if (n.transDesc.isActive)
t hrow new Wi t Excepti on(n.transDesc)
if (n.transDesc.isAborted)
throw new Abort Exception(n.transDesc)
if (!depTransDesc.isConmitted)
i f (nodes. contains(depTransDesc))
nei ghbors += nodes(depTransDesc)
el se {
val node = new Node(depTransDesc)
nodes += (depTransDesc -> node)
nei ghbors += node

}

nei ghbor s
}
The Tarjan algorithm finds all of the SCCs that ewachable

from the starting node. It outputs SCCs in the saga where any
later SCC can only reach earlier SCCs. The last 8@Cis found
is the SCC containing the starting node. As exgldibefore, any
SCC found by Tarjan algorithm is an SCS of the ddpecy
graph.

Consider the case when the cluster search finds than one

transactions o§CS, cannot be committed befofeis committed.
Therefore, for simplicity, the current transactigoes to the
waiting state. But, it is possible to commit SC8gHhe order that
they are found.

LeEMmA 13: Committing SCSs in the order that they are ¢bbp
the cluster search does not violate commit accuracy

PrROOF Induction is on the position of the SCS in theurfd
sequence.

Base case: Transactions of the first SCS have depey to only
transactions within the SCS itself or committednsactions.
Thus, by EFINITION 12, the first SCS is a cluster. Therefore, by
LEMMA 7, its transactions can be committed together.
Induction case: If all of the SCSs before the qurr8CS are
committed, we show that the current SCS can be dtieun
Any later SCS can only reach earlier SCSs in tiggieece. All of
the earlier SCSs are already committed. Therefmaasactions of
the current SCS only have dependencies to othesdcdions of
the current SCS or committed transactions. Theeefdry
DEFINITION 12, the current SCS is a cluster. Thus, leyua 7,
transactions of it can be committed together.

5 Algorithm Soundness

5.1. Commit Accuracy

LEMMA 10: The Transactor algorithm has Commit Accuracy
property.

ProOOFE As explained in the collective commit subsectitime
Transactor algorithm only commits when the clusearch finds
one SCS of the dependency graph and it commitsaabactions
of the SCS together. Byevma 9, if the cluster search finds one
SCS of the dependency graph, it is a cluster. ByMa 7,
committing all transactions of a cluster togetheesl not violate
commit accuracy. Therefore the Transactor algoritia® commit
accuracym

5.2. Non-triviality

LeEMMA 11: The Transactor algorithm has Non-triviality peoty.

Proor Throughout the algorithm explanation, whenever a
transaction is aborted by the algorithm, it is shathat it is a
failed transaction. The Transactor algorithm onborgs failed
transactions. Therefore, bglmA 3, it is non-trivial.m

53.

The presented algorithm waits at some points ftification. We
show that this suspension cannot incur deadloclespiive that
each transaction is eventually finalized, i.esieventually aborted
or committed. It is assumed that we do not have pigrammed
deadlocks; thus every transaction is eventuallpiteaited if not
aborted sooner.

Finalization

53.1.
Some operations of the algorithm are highlightedAasOrs in

Algorithm operations

SCS. LetSCS, denote the last SCS that is found. The current this subsection. They are used in the followingssations for the
transaction is a member 8£S,. Cluster search has found an least proof of finalization.

an SCS beforéCS,. This means that the current transaction can
reach an SCS other thafiCS,. Thus, at least one of the
transactions o8CS, is dependent on a terminated transacfion
that is not a member ofCS,. Therefore all of the transactions of
SCS, are dependent oif. To preserve commit accuracy,

ALGOP 1: For any transactiofy that is dependent off;, a
notifiable referencin@y, is registered t@.

Explanation: IfT is dependent offi;, T has received a pending
message fronf. By the algorithm, when the pending message is

being receivedT is subscribed to the notifiable object. The
notifiable object is previously registered T since the message
has been sent. Therefore, a notifiable referen€ing registered
inTg. m

ALGOP 2: If a transactiorT is aborted, any transactidl such
thatT; — Ts is eventually aborted.

Explanation: By AcOp 1, for any transactionTp that is

dependent offi, a notifiable referencingy is registered iff;. By

the algorithm, all notifiables registered @ are notified of
abortion whenTs is aborted. Sds notifies the notifiable that
referencesl that in turn aborts,. Therefore, anyl that is

dependent offig is eventually aborteds

ALGOP 3: Any failed transaction is eventually aborted.

Explanation: By BFINITION 9, A transactiorTy is called a failed
transaction if there is a transactifnsuch thaffy - Tg andTs is
aborted. That any failed transaction is eventuaborted is
evident from the implicit traversal that was expkd but it can
also be shown by induction on length of transittependency. If
the length is one, by &OP 2, any Ty such thatT — Ts is
eventually aborted. If an, that is transitively dependent @k
with a length ofn is aborted, again by &OP 2, any transaction
that is dependent ofg with a length ofn + 1 is also eventually
abortedm

AlgOp 4: If a transaction in an SCC is aborted, afl the
transactions in that SCC are eventually aborted.

Explanation: By EMMA 4 and AGOP3. m

ALGOP5: If the cluster search starts from a transadtioan SCC

C, it commits all of the transactions @fif

¢ All of the transactions of are terminated and

« If there is any dependency from transactions ingitlgo
transactions outside of it, the dependency is tocommitted
transaction.

Explanation: In this setting, the cluster searelvarses in an SCC
of terminated transactions and the only edges btheoSCC are
to committed transactions. Thus, no running or t@abiransaction
can be reached; therefore, the search is not pueehat

terminated. As all of the transactions of an SCE machable
from each other, the search can reach all of thesactions of the
SCC. As any dependency from a transaction insideS6C to

outside transactions is to committed transactiom @ommitted

transactions are not traversed, the search canti@vgrse within

the SCC. Therefore the cluster search finds onty$ICC. Hence,
as explained, the algorithm commits all of the $emtions of the
SCC.m

ALGOPG6: If a transaction is committed, all of the tractgans that
are directly dependent on it are notified about dependency
resolution. Formally

Ts is committed =

VTR € VGTD (TR' Ts) € EGTD: EQ 4

Ty is notified of dependency resolution|
Explanation: From AcOp 1, for any transactiorfy, that is
dependent offg, a notifiable,N;, referencingl’y; is registered in
Ts. By the algorithm, when a transactiBpis set to committed, it
sends dependency resolution notification to all négistered
notifiables {N;—; ,}. N; notifies T, about the dependency

resolution. Therefore, any transactiBnthat is dependent dfy is
notified about the dependency resolutimn.

5.3.2. Background

DeFNITION 13: For every directed graphG[V¢ ES], its
condensation (or component) gra@G)[V¢©), E¢®)] is defined
as follows:

Assuming that{SCC;—; ,} is the set of strongly connected
components off, there is a bijective functiofi (or a one to one

correspondence) betwegh(® = {vfz(f_?n} and{SCCi=; ,}, i.e.
Vi=1.n:
f(scc) = vi@ and f~ (v7@) = scc; EQ.-5
(contracting eacSCC; into a supervertenf(c)) and
Vij=1.ni%#j:
[(uf“),vf“)) € E‘C(G)] PN
EQ.6
v, vf e VE:
vg € SCC; and v{ € SCCj and (v§,vf) € EC
[15].

THEOREM 3: Condensation graph is a DAG (directed acyclic
graph).[15]

DerINITION 14: The reverse (or transpose) graph of a directed
graphG[V, E] is a directed grapR(G)[V, ER()] such that

vo,u€V: [(v,u) € ERO® o (u,v) € E| EqQ.7
[15].

DEerFINITION 15: A topological ordering (or topological sort) af
DAG G[V,E] is a permutationr of V (a bijective function from
{1..]V|} to V) such that

vo,ueV: [n71(v) <t t(uw) = (w,v) € E] EqQ.8
or equivalently

vo,u€eV: [(wv) €EE=rn"1(w) <n 1(v)] EQ.9
[15].
5.3.3. Finalization Theorems

THEOREM 1: The Transactor algorithm has the Finalization
property, i.e. every transaction eventually finaéiz

Proor The dependencies of transaction descriptors farm
directed graphG[V¢, E€]. Let SCCs denote the set of strongly
connected components 6f Obviously, For every® € V¢, there
is an SCC € SCCs that v¢ € SCC. Therefore the theorem is
reduced to the following theorem.

The theorem shows that communicating transactievemgo
to deadlock.

DEerFINITION 16: We say that an SCC of the dependency graph is
aborted iff all of its transactions are aborted amdsay that it is
committed iff all of its transactions are committedh SCC is
finalized iff it is aborted or committed.

THEOREM 4: All SCCs of the transaction dependency graph
eventually finalize.

ProOF If one of the nodes in an SCC eventually abdnysAlgOp
4, all of the transactions of the SCC eventuallgrghi.e. finalize.

If none of the transactions in the SCC abort, teotem reduces
to the following theorenwm

THEOREM 5: If none of the transactions in an SCC of the
transaction dependency graph abort, the SCC eunfinalizes.
ProoE If none of the transactions of an SCC abort, thtrof
them eventually go to the terminated state. We gritnat all of
them eventually finalize.

Let G[V¢, E] be the dependency graph of transaction descriptors
Let G' be the condensation graph ofG, i.e.
G'=C(G)[VY® ECG | Let G" be the reverse of the
condensation graph, i.eG"” =]R((C(G)) Y@ ERECE)], By
THEOREM3, G’ is a DAG, thereforé&" is also a DAG. Letr be a
topological order ofi”” and fori = 1, JV‘C(G)| Ietv‘c(G) e V@

be theith element inz, i.e. n(i) = v, Fori = 1.. |V‘C(G)| let
SCC; denote the SCC df that corresponds 1) F(© e ye@,

We prove that fori = 1..|[VE@|, if none ofv¢ € SCC; abort,
SCC; is eventually finalized.

Proof is by induction on.

1. Basecasd =1
vf(G) is the first node im.

vi=2. Ve 71 (5 @) <71 (v59) g 10

By DEFINITION 15,
Vi =2..[VEO: (@, v @) g ERC@) £ g

By DEFINITION 14,
. c(G cG
Vi=2.[VE@|: i@, pf©) g EC@ EQ.12

By DEFINITION 13,

vi= 2.V

Ave,vf e VE: Eq.13
v € SCC, and vf € SCC; and (v, vf) € ES

That is equivalent to:

vi=2.|veO)|;

vvl, v e Ve

ve & SCCyor vl & SCC;or (vi,vf) & ES

= EqQ.14
vi=2.|veO)|;

vvl,ve € VG and vE € SCCy and vf € SCC;:

g, vf) & ES

This means that nodes $t€C,; have no dependency to

any node in other SCCs.

By the assumption of the theorem, none of the &retitns
in SCC; abort; therefore, all of them eventually go to
terminated state.

When cluster search is started from the last teataih
transaction inSCC,, all transactions in it are already
terminated. Besides, as there is no dependency
to any other SCC, this cluster search can onlylreades
in SCC,. Hence by AcOP5, the cluster search started from
the last terminated transaction commits all of tbeles in
SCC,. Hence, by BFINITION 2, all of them are eventually
finalized.

2. Inductive step:
If for i =1..j, all SCC; are eventually finalized, i.e.
aborted or committed, we prove th&dc;,; is eventually
finalized. Formally
If Eq. 15

vp = 1..|[ve©@|:
p<j+1

(SCC,, is eventually aborted) or
((SCCy is eventually committed))]
then
SCCiyq is eventually finalized.
By DEFINITION 15, forv](c(c yee:

(&) c6) 4 = c@)|.
v, e V@, p = 1. |vU@)|;

(5(5) ;C(G)) € EIR((C(G)) — EqQ. 16

— C — C
n (v, @) < RS
By DEFINITION 14,
(C(G) € V(C(G) p= 1.. |V(C(G)|:

o @) € F7O =

1+1 ' Vp
(c(c;) —1(..C6)
<”1(1+1) EQ.17
(C(G) € V(C(G),p =1.. |V(C(G)|:
C(G C(G .
[(]Jr(l),vp()) EE@ =p<j+ 1]
By induction hypothesis,
v, @ e ve@ p = 1..|vE@|;
c©6) . CG)
(Uj+1 \Vp) € EUO — Eo.18

(SCCP is eventually aborted) or
(SCC, is eventually committed)]

2.1. If there is avC(G) € V& that(€@ C(G)) € E¢@®

]+1 Y
andSCC, is eventually aborted:

From(v D C(G)) € E®® and DEFINITION 13:
i, vl eVE: EQ.
vg € SCCiyq and vf € SCC, and (v§,v() € EC 19

From the fact thatSSC, is eventually aborted,
vf € SCC, and DEFINITION 16, we have thatf is
eventually aborted. From the fact thdt is eventually
aborted,(vS,vf) € ES and AcOpr 1, we have thatf is
eventually aborted. From the fact thdt is eventually
aborted,vé € SCC;, and AlgOp 4, all of the nodes in
SCC;., are eventually aborted. So byefNITION 16,
SCC;,q is eventually finalized.

2.2. If for none ofv(c(G) € V& that(€@ C(G)) € EU®,

Vje1 s
SCC, is eventually aborted, i.e..
v @ e ve@, p = 1. |y 0.
(59, 05@) € %@ = EQ. 20

j+1

not(SCC,, is eventually aborted) .
By EQ. 18, we have:
vog @ e ve®,p = 1. |vE@|:
(USC(G) 17(C(G)) € EC© — Eo.21

j+1 0 Yp
(SCGC, is eventually comitted)
On the other hand, by EBiNniTion 13, for all
p=1.[ve@|,

Jvf, v eVE:
v € SCCjyq and vf € SCC, and(vi,vf) € EC | Eq.
= 22
c©) @)
(5.55) < 5]
that is equivalent to
vp = 1..|Ve@|:
[(3vf € SCCiyq, IVE € SCCy: (vi,vf) € EY)]
=
€@ €@
(vjﬂ \ Uy) € E¢@

Eq. 23

By EQ. 21:

vp = 1..|[ve©@|:

[(3v¢ € SCCjyq, 30 € SCCy: (vE,vf) € EY))
B

] (SCC, is eventually comitted)

By DEFINITION 16,

vp = 1..|Ve©@|:

[(3v¢ € SCCjyq, 3VF € SCCy: (vE,vf) € EF)]
=

(Vvf € SCCy: v eventually commits)
By ALGOP6:
vp = 1..|ve©@|:
[(3vE € SCCiy1, 3Vf € SCCy: (v, vf) € E€)]

)|
I

EQ. 24

EQ. 25

/ Vvl € SCCy: EQ.26
vvé e VS, (vE,vf) € EC:
v8 is eventually notified of
\ dependency resolution
Since vg € SCCj,4, obviouslyvi € V. v € SCC,
and vf € VS, therefore, vf and vf are proper

—_—

substitutions for respectivelyr® and v¢. After
substitution, we have
vp = 1..|Ve©@|:
[(Elv,f € SCCjyq,3Vf € SCC,, (vE,vf) € EG)]
= EQ. 27
l vi is eventually notified of J
dependency resolution

This means that if there is any dependency from a

transactiorvf insideSCC;,, to a transaction in any other
SCC,v¢ is eventually notified of dependency resolution.
By the assumption of the theorem,
transactions inSCC;,, abort; hence all of them are
eventually terminated. Consider when the
dependency resolution notification of the transadi
inside SCC;,, is received. At this time, transactions
inside SCC;,; have no dependency other than
dependencies to other transactions insid€;, ;. When
the transaction that receives the last notificapierforms
the cluster search, byL&Opr 5, all of the transactions in
SCCj,, are committed. Therefore byEBNITION 16,
SCCj,q is eventually finalizedm

6 Related Works

A CAA [17] is essentially a set of processes that stgether,
can send messages to and receive messages fromthachcan
access shared memory and finally commit atomictiyether.
The limitation of CAA is that the processes areticily

none of the

last

interdependent from the beginning. Dependenciesatré¢racked
dynamically. So, all of the processes of a CAA always
committed together, even if they do not communieateintime.

7 Performance Evaluations

To compare performance of our Scala implementatan
Transactors with Scala Actors and STM in provisidrisolation
and communication, experimentations are conductéd two
fundamental cases.

Each case is implemented with Scala Actors, Scdlyl,S
Scala Transactors and Locks. The code snippets hef
implementations of the two cases with each paradigm
presented in the following subsections.

Cases

Bank Account Credit Transfer

To compare performance for isolation, the classicate of
transferring credit between bank accounts is erparted. To
transfer credit from an account to another, botlarizes should
be read and written in isolation.

Coarse-grained locking

In the coarse-grained locking, all of the transfeven if they are
not conflicting are serialized by the bank intrinkick.

this.synchronized {
account 1. wi t hdr aw(anount)
account 2. deposi t (anmount)

}

Fine-grained locking

In the fine-grained locking, instead of having ekdor the whole
bank, each account has a lock. It is notable theksl are always
acquired in the same order.

if (accNol <= accNo2) {
account 1. | ock. | ock
account 2. | ock. | ock

} else {
account 2. | ock. | ock
account 1. | ock. | ock

}

account 1. wi t hdraw(anount)
account 2. deposi t (ampunt)

account 1. | ock. unl ock
account 2. | ock. unl ock

Actors

Each account is modeled as an actor that handkesinaiv and
deposit requests. As messages are handled orterat by actors,
withdraw, deposit and balance requests are daselation.

/1 From Account actor:
def act() {
react {
case Wthdrawm anount) =>
b -= anpunt
sender ! Wt hdrawbDone
act
case Deposit(amunt) =>
b += anpunt
sender ! DepositDone
act
case Bal anceRequest =>
sender ! Bal ance(b)

act
case Term nat eRequest =
}
}

The transfer operation of the bank sends withdnagvdeposit
requests to account actors and wait for their ackedgments
before returning.

/'l Transfer operation from Bank cl ass
account s(accNol) ! Wt hdraw(anmount)
account s(accNo2) ! Deposit (anmpunt)
receive {

case Wthdrawbone =>

receive {
case DepositDone =>
}

}

This implementation provides an eventual guararfasally,
the sum of all of the account balances is the sam¢he sum
before the transfers. We also experimented with an
implementation that provides isolation for eachnsfar but it
turned out to be very inefficient. This implemerdatis more
efficient and hence, it is used in performance canspns.

Transactions and Transactors

The code for Transactions and Transactors is thees&redit
transfer is simply an atomic block. Basically, onkhe
“Transaction part” of Transactors in used for tase.

atomic {
account s(accNol). w t hdr am anount)
account s(accNol) . deposi t (anpunt)

Token Ring

To compare performance for communication, tokeng ris
simulated. In token ring LAN DLL protocol, stationare
organized in a ring topology with a control tokeeirty passed
sequentially from one station to the next. The itokeng
simulation essentially employs the communicatiorcma@ism of
each paradigm.

Locks and Conditions

The station waits on the intrinsic condition of tineoming port
while the token is not inside the port yet. Wheae sitation finds
the token inside the incoming port (maybe aftengeiotified by
the neighbor station), it takes the token from ith@oming port
and puts it inside the outgoing port. The nextigtamay have
been suspended after a wait on the outgoing portawake the
next station, the station notifies on the outggdogt after putting
the token in it.

i nPort.synchronized {
while (inPort.value == null)
inPort. wait
out Port. synchroni zed {
out Port.value = inPort.val ue
outPort. notify
inPort.value = null

}

Actors

The token ring is very straightforward with ActorBhe actor
reacts to receiving of the token by sending it ext station.

def act {
if (currentRound != roundCount)
react {
case Token =>
next Station ! Token
current Round += 1
act

}
}

Transactions

Port is defined as a transactional object. Insidextamic block,
the station reads the value of the incoming pbits ivalue is null,
i.e. there is no value inside ikonditionvait aborts the
transaction. The transaction is retried only atfterincoming port
object is updated. When a (retrying) transactioccsads in
reading the token from the incoming port, it updatalues of
incoming and outgoing ports to null and the tokespectively.

atomic {
conditionWait (inPort.value != null)
out Port.value = inPort.val ue

inPort.value = null

Transactors

Each station is modeled as a transactor which vesahe token
and sends it to the next station. Essentially, ¢inéy“Actor part”
of Transactors is employed for this case.

def act {
while (currentRound != roundCount) {
val token = receive
next Station ! token
current Round += 1
}
}

Experiments

The experiments are done on Dell Latitude E6408l@&Core™2
Duo CPU P8600 @2.40GHz.

=#=Fine-grained Locking =M= Coarse-grained Locking == ST == Transactors == Actors

2000
w
E 7000
T
E
F 6000
—
=
5
g 5000
5 — " —y— =
& 4000
c
Z
: 3000
)
H
£ o000
E4

ey e g e e B 1
2 1000 ﬁiﬁ;‘:‘:ﬁ:‘:‘i
=
o Ut et i T 1
a 500000 1000000 1500000 2000000 2500000 2000000
Transfer Count

Figure 6. Bank Credit Transfer

Figure 6 depicts performance evaluations for tleglittransfer
case where the number of transferers is 20 anchtineber of
accounts is 100. For each paradigm, throughputasvs against
number of transfers where throughput is transfeantoper
milliseconds. The plot shows that aside from logkilSTM
outperforms the other paradigms for isolation. Besj it shows
that performance of Transactors is close to STMdolation.

—4—Actors —B—Locking —k—Transactor —@—5TM

250

150

100

Token Passing Gount J Time{ms)

50

Throughput

0 L i - i el i
o 200000 400000 500000 500000 1000000 1200000 1400000

Token Passing Count

Figure7. Token Ring

Figure 7 depicts performance evaluations for tHeertoring
case where number of stations is 20. Throughputuisber of
token passings per milliseconds. The throughpeach paradigm
is shown against number of token passings. This gflows that
Actors have almost the same performance as locKog
communication. It also shows that Transactors perfeery close
to Actors for communication.

The experiments suggest that Transactors mergerpafce
benefits of STM and Actors.

More information about comparison of paradigms dan
found in[20].

References

[15] Cormen, Thomas H.; Leiserson, Charles E., RivesmaRl L..
Introduction to Algorithms. MIT Press and McGrawHHliSection
22.5, pp.552-557, ex. 22.1-3, p. 530, pp.549-552.

[16] Donnelly, K. and Fluet, M. 2006. Transactional egerSIGPLAN
Not. 41, 9 (Sep. 2006), 124-135. DOI=
http://doi.acm.org/10.1145/1160074.1159821

[17] Gallina, B., Guelfi, N., and Romanovsky, A. 2007od@inated
Atomic Actions for Dependable Distributed Systerttse Current
State in Concepts, Semantics and Verification Means
In Proceedings of the the 18th IEEE international Symposium on
Software Reliability (November 05 - 09, 2007). ISSRE. IEEE
Computer Society, Washington, DC, 29-38. DOI=
http://dx.doi.org/10.1109/ISSRE.2007.5

[18] Harary, Frank; Norman, Robert Z.; Cartwright, Danw{1965),
Structural Models: An Introduction to the Theory Bfirected
Graphs, John Wiley & Sons, p. 63.

[19] Herlihy, M., Luchangco, V., Moir, M., and Scherat. N. 2003.
Software transactional memory for dynamic-sized datuctures. In
Proceedings of the Twenty-Second Annual SymposinRrinciples
of Distributed Computing (Boston, Massachusettdy 8 - 16,
2003). PODC '03. ACM, New York, NY, 92-101. DOI=
http://doi.acm.org/10.1145/872035.872048

[20] Lesani, M., Odersky, M. and Guerraoui, R. ConcurRiogramming
Paradigms, A Comparison in Scala. LAMP-REPORT-2002;
School of Computer and Communication Sciences, EPFL

[21] Scholliers, C., Van Cutsem, T., and De Meuter, 308 Ambient
transactors. In Proceedings of the 6th internatiéiarkshop on
Middleware For Pervasive and Ad-Hoc Computing (leuv
Belgium, December 01 - 05, 2008). MPAC '08. ACM wN¥ork,
NY, 49-53. DOI=http://doi.acm.org/10.1145/1462789.1462798

[22] Ziarek, L., Schatz, P., and Jagannathan, S. 200%dubr
Checkpointing for Atomicity. Electron. Notes The@omput. Sci.
174, 9 (Jun. 2007), 85-115.

