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Abstract We study some relation between some geometrically defined classes of diffeo-
morphisms between manifolds and the Lq,p-cohomology of these manifolds. We apply these
results to the Lq,p-cohomology of a manifold with a cusp.
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1 Introduction

The Lq,p-cohomology is an invariant of Riemannian manifolds defined to be the quotient of
the space of p-integrable closed differential k-forms on the manifold modulo the exact forms
having a q-integrable primitive:

Hk
q,p(M) = {ω | ω is a k-form, |ω| ∈ L p(M) and dω = 0}/{dθ | |θ | ∈ Lq(M)}.

This invariant has been first defined for the special case p = q = 2 in the 1970s and has
been intensively studied since then, we refer to the book [16] for an overview of L2-coho-
mology. The Lq,p-cohomology has been introduced in the early 1980’s as an invariant of
the Lipschitz structure of manifolds, see [1]. During the next two decades, the main interest
was focused on the case p = q , i.e., on L p-cohomology, and the last chapter of the book by
Gromov [9] is devoted to this subject; see also [2,9,20–23] for more geometrical applications
of L p-cohomology.
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280 V. Gol’dshtein, M. Troyanov

Although the Lq,p-cohomology with q �= p has attracted less attention, it possesses a
richer structure. The subject is also motivated by its connections with Sobolev type inequal-
ities [6] and quasiconformal geometry [7]. See also [2,5,13,14] for other results on Lq,p-
cohomology.

When an invariant of a geometric object has been defined, it is important to investigate
its functorial properties, i.e., its behavior under various classes of mappings. It is one of our
goal in the present paper to describe a natural class of maps which induces morphisms at the
level of Lq,p-cohomology. Our answer is restricted to the case of diffeomorphisms and is
given in Theorem 6.1(C) below.

A diffeomorphisms will behave functorially for Lq,p-cohomology, if its distortion is
controlled in some specific way. To explain what is meant by the distortion, consider a dif-
feomorphism f : M → M̃ between two Riemannian manifolds. One then define for any k
the principal invariant of f as

σk( f, x) =
∑

i1<i2<···<ik

λi1(x)λi2(x) · · · λik (x),

where the λi ’s are the singular values of d fx , i.e., the eigenvalues of
√

(d fx )∗(d fx ). One then
say that f has bounded (s, t)-distortion in degree k, and we write f ∈ BDk

(s,t)(M, M̃), if

(σk( f, x))s · J−1
f (x) ∈ Lt (M)

where J f is the Jacobian of f .
The class B D1

n,∞ (where n is the dimension of M) is exactly the class of quasicon-
formal diffeomorphisms (also called mappings with bounded distortion), which has been
introduced by Y. Reshetnyak in the early 1960s and has been intensively studied since then.
The classes B D1

s,∞ has been studied by different authors and under various names, see
[3,15,17–19,24,26,28,30]. The class B Dn−1

s,∞ also appears in [26], where some obstructions
to their existence are given.

As a preliminary step to the study of functoriality in Lq,p-cohomology, we study dif-
feomorphisms f : M → M̃ that induce bounded operator between the Banach spaces of
p̃-integrable differential k-forms. The result is formulated in Proposition 4.1 : it states that
a diffeomorphism f ∈ BDk

( p̃,t)(M, M̃) induces a bounded operator f ∗ : L p̃(M̃,�k) →
L p(M,�k) if p ≤ p̃ < ∞ and t = p

p̃−p . Let us note that finer information is available in
the case k = 1, see [3,4,29,30].

To obtain a functoriality in Lq,p-cohomology, we need to control the distortion of the map
f both on k-forms and on (k− 1) forms. This is formulated in Theorem 6.1(C), which states
in particular that a diffeomorphism f ∈ BDn−k+1

(q̃ ′,r)
(M, M̃) ∩ BDk

( p̃,t)(M, M̃) induces a well

defined linear map f ∗ : Hk
q̃, p̃(M̃) → Hk

q,p(M) if p ≤ p̃, q ≤ q̃, t = p
p̃−p , u = q

q̃−q and

q̃ ′ = q̃
q̃−1 .

This is a quite technical result, and it would be nice to be able to give conditions under
which the map f ∗ is injective at the level of Lq,p-cohomology. But unfortunately, the results
we give in Sect. 5 strongly suggest that it will be hard or impossible to find conditions for
injectivity, except for the special cases of quasiconformal or bilipschitz maps. However we
have the following result [Theorem 6.1(B)], which allows us to prove some vanishing results
in Lq,p-cohomology without requiring the functoriality : If there exists a diffeomorphism

f ∈ BDn−k+1
(q̃ ′,r)

(M, M̃) ∩ BDk
( p̃,t)(M, M̃) with p ≤ p̃, q ≤ q̃ , t = p

p̃−p , r = q(q̃−1)
q−q̃ , and

q̃ ′ = q̃
q̃−1 , then Hk

q,p(M) = 0 implies Hk
q̃, p̃(M̃) = 0. We show in section 7 how this result

can be used to prove a vanishing results in Lq,p-cohomology.
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Distortion of mappings and Lq,p-cohomology 281

2 Preliminary notions

2.1 Lq,p-cohomology

We recall the definition of Lq,p-cohomology, see [6] for more details. Given an oriented
Riemannian manifold (M, g), we denote by L p(M,�k) the Banach space of differential
forms such that

‖θ‖p =
⎛

⎝
∫

M

|θ |pdx

⎞

⎠

1
p

<∞.

Any element in L p(M,�k) defines a current, in particular we can define the subspace of
(weakly) closed forms Zk

p(M) = L p(M,�k)∩ ker d , it is a closed subspace of L p(M,�k).
We then introduce the space

�k−1
q,p (M) = {ω ∈ Lq(M,�k−1) | dω ∈ L p(M,�k)},

which is a Banach space for the norm ‖ω‖q,p = ‖ω‖Lq +‖dω‖L p . We also define the space
Bk

q,p(M) = d�k−1
q,p (M) ⊂ Zk

p(M) of exact forms in L p having a primitive in Lq :

Bk
q,p(M) = d

(
Lq(M,�k−1)

)
∩ L p(M,�k).

Definition 2.1 The reduced and unreduced Lq,p-cohomology of (M, g) (where 1 ≤ p, q ≤
∞) are defined as

Hk
q,p(M) = Zk

p(M)/Bk
q,p(M) and H

k
q,p(M) = Zk

p(M)/B
k
q,p(M),

where B
k
q,p(M) is the closure of Bk

q,p(M).

The reduced cohomology H
k
q,p(M) is naturally a Banach space. We also define the

torsion to be quotient T k
q,p(M) = B

k
q,p(M)/Bk

q,p(M). The torsion vanishes if and only

if the cohomology space Hk
q,p(M) is a Banach space (in this case H

k
q,p(M) = Hk

q,p(M)).

2.2 Linear map between Euclidean spaces

Recall that a Euclidean vector space (E, g) is a finite dimensional real vector space equipped
with a scalar product. Two linear mappings A, B ∈ L(E1; E2) between two Euclidean vector
spaces (E1, g1) of dimension n and m are said to be orthogonally equivalent if there exist
orthogonal transformations Q1 ∈ O(E1) and Q2 ∈ O(E2) such that B = Q−1

2 AQ1, i.e.,
the diagram

E1
A→ E2

Q1 ↑ ↑ Q2

E2
B→ E2

commutes. Given a linear mapping A : (E1, g1) → (E2, g2), its (right) Cauchy-Green
tensor c is the symmetric bilinear form on E1 defined by c(x, y) = g2(Ax, Ay). The adjoint
of A is the linear map A# : E2 → E1 satisfying

g2(x, Ay) = g1(A#x, y)
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for all x ∈ E1 and y ∈ E2. The Cauchy-Green tensor and the adjoint are related by

c(x, y) = g2(Ax, Ay) = g1(A# Ax, y).

Let us denote the eigenvalues of A# A by µ1, µ2, . . . , µn . Then µi ∈ [0,∞), for all i ,
and there exists orthonormal basis e1, e2, . . . , en of E1 and e′1, e′2, . . . , e′m of E2 such that
Aei = √µi e′i for all i . The matrix of A# A with respect to an orthonormal basis e1, e2, . . . , en

of E1 coincides with the matrix C of the Cauchy-Green tensor c in the same basis.

Definition 2.2 The numbers λi = √µi are called the principal distortion coefficients of A
or the singular values of A.

The principal distortion coefficients can be computed from the distortion polynomial
which is defined as follows:

Definition 2.3 Given an arbitrary basis e1, e2, . . . , en of E1, we associate to g1 and c, the
n× n matrices G = (g1(ei , e j )) and C = (c(ei , e j )). The distortion polynomial of A is the
polynomial

PA(t) = det(C− tG)

det G
.

The distortion polynomial PA(t) is independent of the choice of the basis {ei }, it coincides
with the characteristic polynomial of AA# and has nonnegative roots. In particular, the roots
of PA are the eigenvalues µi of AA# and the λi = √µi are the principal distortion coeffi-
cients of A. The distortion polynomial can thus be written in terms of the principal distortion
coefficients as

PA(t) =
∏

i

(t − λ2
i ).

The following notion is also useful:

Definition 2.4 The principal invariants of A are the elementary symmetric polynomials in
the λi ’s, They are thus defined by σ0(A) = 1 and

σk(A) =
∑

i1<i2<···<ik

λi1λi2 · · · λik

for k = 1, . . . , 2 . . . , n.

The following result is well known, see e.g., [25, p. 57].

Proposition 2.1 Two linear mappings A, B ∈ L(E1; E2) are orthogonally equivalent if and
only if they have the same principal invariants: σk(A) = σk(B) for k = 1, 2, . . . , n.

The principal invariants of A are related to the action of A ∈ L(E1; E2) on the exte-
rior (Grassmann) algebras: recall that if E is an Euclidean vector space, then the exterior
algebra �E is equipped with a canonical scalar product. If e1, e2, . . . , en is an orthonormal
basis of E1, then the

(n
k

)
multi-vectors {ei1 ∧ ei2 ∧ · · · ∧ eik }(i1 < i2 < · · · < ik) form an

orthonormal basis of �k E . To any linear map A ∈ L(E1; E2) we associate a linear map
�k A ∈ L(�k E1;�k E2), and we have

1(n
k

)σk ≤
∥∥∥�k A

∥∥∥ ≤ σk (2.1)
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Distortion of mappings and Lq,p-cohomology 283

Indeed, suppose that λ1 ≤ λ2 ≤ · · · ≤ λn are the principal distortion coefficients of A, then
we have

∥∥�k A
∥∥ = λn−k+1λn−k+2 · · · λn and σk =∑

i1<i2<···<ik
λi1λi2 · · · λik .

If E1 = E2 = R
n and A is a diagonal matrix with nonnegative entries, then we have

σk = Trace(�k A).

Using the fact that the principal distortion coefficients of A−1 are the inverse of the prin-
cipal distortion coefficients of A, we obtain the following

Lemma 2.2 If dim(E1) = dim(E2) = n and A is invertible, then for any 0 ≤ m ≤ n, we
have

σm(A−1) = σn−m(A)

JA
.

3 Diffeomorphism and Lq, p-cohomology

Let (M, g) and (M̃, g̃) be two smooth oriented n-dimensional Riemannian manifolds and
f : M → M̃ be a diffeomorphism such that the induced operator

f ∗ : L p̃(M̃,�k)→ L p(M,�k)

is bounded for some specified p, p̃ ∈ [0,∞). Then the condition f ∗d = d f ∗ implies that

f ∗ : Zk
p̃(M̃)→ Zk

p(M)

is a well defined bounded operator. In the framework of Lq,p-cohomology there are two
natural questions which then arise:

(i) Suppose that ω ∈ Bk
q̃, p̃(M̃). Under what conditions does this imply that f ∗ω ∈

Bk
q,p(M), i.e., that

f ∗(Bk
q̃, p̃(M̃)) ⊂ Bk

q,p(M) ?

(ii) Suppose that f ∗ω ∈ Bk
q,p(M). Under what conditions can we conclude that ω ∈

Bk
q̃, p̃(M̃), i.e., that

( f −1)∗(Bk
q,p(M)) ⊂ Bk

q̃, p̃(M̃) ?

A positive answer to the first question gives us a well defined linear map

f ∗ : Hk
q̃, p̃(M̃)→ Hk

q,p(M),

and a positive answer to both questions implies the injectivity of this linear map.
In this section we give an answer to these questions in terms of boundedness of the

operators f ∗, and f∗ = ( f −1)∗. We begin with the second question.

Theorem 3.1 Let f : M → M̃ be a diffeomorphism, 1 ≤ p ≤ p̃ <∞ and 1 ≤ q̃ ≤ q <∞.
Assume that both operators

f ∗ : L p̃(M̃,�k)→ L p(M,�k), and f∗ : Lq(M,�k−1)→ Lq̃(M̃,�k−1)

are bounded. Then for any ω ∈ Zk
p̃(M̃), we have f ∗ω ∈ Zk

p(M). Furthermore, if [ f ∗ω] = 0

in Hk
q,p(M) then [ω] = 0 in Hk

q̃, p̃(M̃) (thus Hk
q,p(M) = 0⇒ Hk

q̃, p̃(M̃) = 0).
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Remark We should not conclude that f ∗ :Hk
q̃, p̃(M̃)→ Hk

q,p(M) is an injective map, because
this map is a priory not even well defined.

Proof Choose ω ∈ Zk
p̃(M̃). Because f ∗ : L p̃(M̃,�k)→ L p(M,�k) is a bounded operator,

f ∗ω ∈ L p(M,�k), and since d( f ∗ω) = f ∗dω = 0 we have f ∗ω ∈ Zk
p(M). Suppose now

that
[

f ∗ω
] = 0 in Hk

q,p(M), then f ∗ω ∈ Bk
q,p(M), that is there exists θ ∈ Lq(M,�k−1) such

that dθ = f ∗ω. But by the second hypothesis the operator f∗ : Lq(M,�k)→ Lq̃(M̃,�k)

is bounded and therefore f∗θ ∈ Lq̃(M̃,�k). We then have

ω = f∗
(

f ∗ω
) = f∗dθ = d ( f∗θ) ∈ Bk

q̃, p̃(M̃)

Therefore [ω] = 0 in Hk
q̃, p̃(M̃). ��

The argument of the previous proof is illustrated in the following commutative diagrams:

Zk
p̃(M̃)

f ∗−→ Zk
p(M)

d↑ ↑ d

Lq̃(M̃,�k−1)
f∗←− Lq(M,�k−1)

ω
f ∗−→ f ∗ω

d ↑ ↑ d

f∗θ
f∗←− θ

The next result gives us sufficient conditions for a diffeomorphism to behave functorially
at the Lq,p-cohomology level.

Theorem 3.2 Let f : M → M̃ be a diffeomorphism and 1 ≤ p ≤ p̃ < ∞ and 1 ≤ q ≤
q̃ <∞. Assume that

f ∗ : L p̃(M̃,�k)→ L p(M,�k), and f ∗ : Lq̃(M̃,�k−1)→ Lq(M,�k−1)

are bounded operators. Then

(a) f ∗ : �k−1
q̃, p̃ (M̃)→ �k−1

q,p (M) is a bounded operator,

(b) f ∗ : Hk
q̃, p̃(M̃)→ Hk

q,p(M) is a well defined linear map,

(c) f ∗ : H
k
q̃, p̃(M̃)→ H

k
q,p(M) is a well defined bounded operator,

Proof (a) By definition ω ∈ �k−1
q̃, p̃ (M̃) if ω ∈ Lq̃(M̃,�k−1) and dω ∈ L p̃(M̃,�k). Because

both operators f ∗ : L p̃(M̃,�k) → L p(M,�k), f ∗ : Lq̃(M̃,�k−1) → Lq(M,�k−1)

are bounded and f ∗dω = d f ∗ω we obtain that f ∗ω ∈ �k−1
q,p (M). The operator f ∗ :

�k−1
q̃, p̃ (M̃)→ �k−1

q,p (M) is clearly bounded.

(b) The condition f ∗d = d f ∗ and the boundedness of the operators f ∗ : L p̃(M̃,�k)→
L p(M,�k) implies that f ∗

(
Zk

p̃(M̃)
)
⊂ Zk

p(M). Using the boundedness of the operator

f ∗ : �k
q̃, p̃(M̃)→ �k

q,p(M) and the condition f ∗d = d f ∗ we see that

f ∗
(

Bk
q̃, p̃(M̃)

)
= f ∗

(
d�k−1

q̃, p̃ (M̃)
)
= d f ∗

(
�k−1

q̃, p̃ (M̃)
)
⊂ d

(
�k−1

q,p (M)
)
= Bk

q,p(M).

The inclusions

f ∗
(

Zk
p̃(M̃)

)
⊂ Zk

p(M), f ∗
(

Bk
q̃, p̃(M̃)

)
⊂ Bk

q,p(M) (3.1)

imply that the linear map

f ∗ : Hk
q̃, p̃(M̃) = Zk

p̃(M̃)/Bk
q̃, p̃(M̃)→ Zk

p(M)/Bk
q,p(M) = Hk

q,p(M)

is well defined.
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Distortion of mappings and Lq,p-cohomology 285

(c) Using the inclusions (3.1) and the continuity of the operator f ∗ :�k
q̃, p̃(M̃)→�k

q,p(M),
we have

f ∗
(

Bk
q̃, p̃(M̃)

)
⊂ f ∗

(
Bk

q̃, p̃(M̃)
)
⊂ Bk

q,p(M). (3.2)

Therefore, the operator

f ∗ : H
k
q̃, p̃(M̃) = Zk

p̃(M̃)/Bk
q̃, p̃(M̃)→ Zk

p(M)/Bk
q,p(M) = H

k
q,p(M)

is well defined and bounded. ��
Using the two previous theorems, we have the following result:

Theorem 3.3 Let f : M → M̃ be a diffeomorphism and 1 ≤ p ≤ p̃ ≤ ∞ and 1 ≤ q̃ =
q ≤ ∞. Assume that the operator f ∗ : L p̃(M̃,�k) → L p(M,�k) is bounded and that
f ∗ : Lq(M̃,�k−1)→ Lq(M,�k−1) is an isomorphism of Banach spaces. Then the linear
map

f ∗ : Hk
q, p̃(M̃)→ Hk

q,p(M)

is well defined and injective.

The proof is immediate. ��
Corollary 3.4 Let f : M → M̃ satisfying the hypothesis of the previous theorem. If
T k

q,p(M) = 0 then T k
q̃, p̃(M̃) = 0.

Proof Since T k
q,p(M) = 0, we have Bk

q,p(M) = Bk
q,p(M). The hypothesis of Theorem 3.2

are satisfied, thus the inclusions (3.2) holds and we thus have

f ∗
(

Bk
q̃, p̃(M̃)

)
⊂ Bk

q,p(M) = Bk
q,p(M).

Choose now an arbitrary element ω ∈ Bk
q̃, p̃(M̃). We have f ∗ω ∈ Bk

q,p(M) by the previous

inclusion, this means that [ f ∗ω] = 0 ∈ Hk
q,p(M), but f ∗ : Hk

q̃, p̃(M̃)→ Hk
q,p(M) is injec-

tive by the previous theorem and therefore [ω] = 0 in Hk
q, p̃(M̃), that is ω ∈ Bk

q, p̃(M̃). Since

ω was arbitrary, we have shown that Bk
q, p̃(M̃) = Bk

q, p̃(M̃), i.e., T k
q, p̃(M̃) = 0. ��

Remark The hypothesis in Theorem 3.3 seems to be very restrictive, the results of Sect. 5
suggest that it will be difficult to find diffeomorphisms satisfying these hypothesis and which
aren’t bilipshitz or quasiconformal. See the discussion at the end of Sect. 5.

4 Diffeomorphisms with controlled distortion

Let (M, g) and (M̃, g̃) be two smooth oriented Riemannian manifolds. In this section we
study classes of diffeomorphisms f :M → M̃ with bounded distortion of an integral type
that induce bounded operators f ∗ : L p̃(M̃,�k) → L p(M,�k) for 1 ≤ p ≤ p̃ ≤ ∞. To
define these classes we use the notation

σk( f, x) = σk(d fx )

for the kth principal invariant of the differential d fx . We also write σk( f ) when there is no
risk of confusion, observe that σn( f ) = J f , where J f is the Jacobian of f .
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Definition 4.1 A diffeomorphism f :M → M̃ is said to be of bounded (s, t)-distortion in
degree k, and we write f ∈ BDk

(s,t)(M, M̃), if

(σk( f ))s J−1
f ∈ Lt (M).

It is assumed that 1 ≤ s <∞ and 0 < t ≤ ∞.

It is convenient to introduce the quantity

Ks,t,k( f ) =
∥∥∥∥
(σk( f ))s

J f (x)

∥∥∥∥
Lt (M)

,

the mapping f belongs then to BDk
(s,t)(M, M̃), if and only if Ks,t,k( f ) <∞.

Proposition 4.1 Let f :M → M̃ be a diffeomorphism. Suppose p ≤ p̃ < ∞ and for any
ω ∈ L p̃(M̃,�k) we have

∥∥ f ∗ω
∥∥

L p(M,�k )
≤ (

K p̃,t,k( f )
)1/ p̃ ‖ω‖L p̃(M̃,�k )

where t = p
p̃−p . In particular if f ∈ BDk

( p̃,t)(M, M̃), then the operator

f ∗ : L p̃(M̃,�k)→ L p(M,�k)

is bounded.

Proof Without loss of generality we can suppose that J f (x) > 0. Using the fact that
|( f ∗ω)x | ≤ σk( f, x) · ∣∣ω f (x)

∣∣, we have

∥∥ f ∗ω
∥∥p

L p(M,�k )
=

∫

M

∣∣( f ∗ω)x
∣∣p

dx ≤
∫

M

(σk( f, x))p
∣∣ω f (x)

∣∣p
dx

≤
∫

M

{(
σk( f, x) J−1/ p̃

f (x)
)p ·

(∣∣ω f (x)

∣∣ J 1/ p̃
f (x)

)p}
dx .

Using Hölder’s inequality for s = p̃
p̃−p and s′ = p̃

p (so that 1
s + 1

s′ = 1), and the change of
variable formula, we obtain

∥∥ f ∗ω
∥∥p

L p(M,�k )
≤

⎛

⎝
∫

M

(
σ

p̃
k ( f, x)J−1

f (x)
) p

p̃−p
dx

⎞

⎠

p̃−p
p̃

·
⎛

⎝
∫

M

(∣∣ω f (x)

∣∣ p̃
J f (x)

)
dx

⎞

⎠

p
p̃

≤ (
K p̃,t,k( f )

) p
p̃

⎛

⎜⎝
∫

M̃

∣∣ωy
∣∣ p̃

dy

⎞

⎟⎠

p
p̃

,

that is
∥∥ f ∗ω

∥∥
L p(M,�k )

≤ (
K p̃,t,k( f )

)1/ p̃ ‖ω‖L p̃(M̃,�k )
.

��
Remark Every diffeomorphism belongs to the class B Dn

1,∞, i.e., B Dn
1,∞(M, M̃) =

Diff(M, M̃).The previous proposition states in particular the well known fact that the con-
dition for an n-form to be integrable is invariant under diffeomorphism and therefore inde-
pendent of the choice of a Riemannian metric.
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The next proposition describes the inverse of diffeomorphisms in B Dk
s,t .

Proposition 4.2 Let f :M → M̃ be a diffeomorphism, 0 ≤ m ≤ n. Let 1 ≤ α < ∞ and
0 < β ≤ ∞ with β(α − 1) > 1. Then the equivalence

f −1 ∈ BDm
(α,β)(M̃, M) ⇔ f ∈ BDn−m

(s,t) (M, M̃)

holds if and only if

s = α

α − 1− 1
β

and t = β(α − 1)− 1. (4.1)

Proof Without loss of generality we can suppose that J f > 0.
Assume first that β <∞, then the condition f −1 ∈ BDm

(α,β)(M̃, M) means that
∫

M̃

{
σα

m( f −1, y) J−1
f −1(y)

}β

dy <∞.

By Lemma 2.2, we have

σm( f −1, f (x)) = σn−m( f, x)

J f (x)
(4.2)

at y = f (x) and for any 0 ≤ m ≤ n. Using the relations (4.1), which can be rewritten as

αβ = st = t + β + 1,

together with the change of variable formula with the standard relations dy = J f (x)dx ,
J f −1( f (x)) = J−1

f (x), we can rewrite the latter integral as

∫

M

{(
σn−m( f, x)

J f (x)

)α

J f (x)

}β

J f (x) dx =
∫

M

(σn−m( f, x))αβ
(
J f (x)

)1+β−αβ
dx .

=
∫

M

{
(σn−m( f, x))s (

J f (x)
)−1

}t
dx .

This integral is finite if and only if f ∈ BDn−m
(s,t) (M, M̃).

Assume now that β = ∞, then we also have t = ∞. The condition f −1 ∈ BDm
(α,∞)

(M̃, M) means in that case that

σα
m( f −1) J−1

f −1 is uniformly bounded. (4.3)

Using the relation s = α
α−1 , Eq. (4.2) and J f −1 = J−1

f , we have

(
σm( f −1)

)α
J−1

f −1 =
(
σm( f −1)

)α
J f =

(
σm( f −1)J f

)α
J 1−α

f =
{
σ s

n−m( f ) J−1
f

}α−1

Thus (4.3) holds if and only if σ s
n−m( f ) J−1

f is bounded, i.e., f ∈ BDn−m
(s,t) (M, M̃). ��

Corollary 4.3 If q̃ ≤ q and the diffeomorphism f belongs to BDn−m
(s,t) (M, M̃) with

s = q̃

q̃ − 1
, t = q(q̃ − 1)

q − q̃
,
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288 V. Gol’dshtein, M. Troyanov

then the operator

f∗ : Lq(M,�m)→ Lq̃(M̃,�m)

is bounded.

Proof This follows immediately from Proposition 4.1 and the previous proposition with
α = q and β = q̃

q−q̃ . ��
Corollary 4.4 If the diffeomorphism f :M → M̃ satisfies f ∈ B Dk

(q,∞)(M, M̃)∩BDn−k
(q ′,∞)

(M, M̃) with q ′ = q
q−1 then f ∗ : Lq(M̃,�k)→ Lq(M,�k) is an isomorphism

Proof It follows at once from the Propositions 4.2 and 4.1. ��

5 Relation with quasiconformal and bilipschitz diffeomorphisms

Recall that an orientation preserving diffeomorphism1 f : (M, g) → (M̃, g̃), between two
oriented n-dimensional Riemannian manifolds is said to be quasiconformal if

|d f |n
J f
∈ L∞(M).

Lemma 5.1 For the diffeomorphism f : (M, g) → (M̃, g̃), the following properties are
equivalent

(i) f is quasiconformal;
(ii) f −1 is quasiconformal;

(iii) If λ1(x), λ2(x), . . . , λn(x) are the principal distortion coefficients of d fx , then

sup
x∈M

max{λ1(x), λ2(x), . . . , λn(x)}
min{λ1(x), λ2(x), . . . , λn(x)} <∞.

The proof of this lemma is standard and easy.
Let us denote by QC(M, M̃) the class of all quasiconformal diffeomorphisms, it is clear

that QC(M, M̃) = BD1
n,∞(M, M̃), but, more generally:

Proposition 5.2 We have

QC(M, M̃) = BDk
n
k ,∞(M, M̃)

for any 1 ≤ k ≤ n − 1.

Proof Suppose that f : (M, g)→ (M̃, g̃) is quasiconformal. Let us assume that λ1 ≤ λ2 ≤
· · · ≤ λn , then by condition (iii) of the previous lemma, there exists a constant C such that

σk( f, x) ≤ C · (λ1(x))k .

Since J f = λ1 · λ2 · · · λn , we have

(σk( f ))n/k

J f
≤ C · (λ

k
1)

n/k

J f
≤ C · (λ1)

n

(λ1 · λ2 · · · λn)
≤ C,

1 It is usual, and important, to consider not only diffeomorphisms, but more generally homeomorphisms
in W 1,n

loc when defining quasiconformal maps. In our present context, diffeomorphisms are sufficient, see,
however, the discussion in Sect. 8.
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i.e., f ∈ BDk
n
k ,∞(M, M̃). We have thus shown that QC(M, M̃) ⊂ BDk

n
k ,∞(M, M̃).

To prove the converse inclusion, we distinguish three cases: k = n
2 , 1 ≤ k < n

2 and
n
2 < k < n.

Let us first assume that k = n
2 , then we have

λn

λ1
≤ (λn−k+1 · · · λn)

(λ1 · · · λk)
≤ (λn−k+1 · · · λn)2

(λ1 · · · λk)(λn−k+1 · · · λn)
≤ (σk( f ))2

J f
,

which implies that BDn/2
2,∞(M, M̃) ⊂ QC(M, M̃).

Assume now that 1 ≤ k < n
2 , i.e., k + 1 ≤ n − k. Observe that

(λk+1 · · · λn−k) ≤ (λn−k)
n−2k ≤ (λn−k+1 · · · λn)(n−2k)/k,

therefore

J f = (λ1 · λ2 · · · λn)

= (λ1 · · · λk)(λk+1 · · · λn−k)(λn−k+1 · · · λn)

≤ (λ1 · · · λk)(λn−k+1 · · · λn)
n−2k

k +1

= (λ1 · · · λk)(λn−k+1 · · · λn)
n
k−1.

Because σk ≥ λn−k+1 · · · λn , we have from the previous inequality

(σk( f ))n/k

J f
≥ (λn−k+1 · · · λn)

n
k

J f
≥ (λn−k+1 · · · λn)

(λ1 · · · λk)
.

Since

λn−k+1

λk
,

λn−k+2

λk−1
, . . . ,

λn−1

λ2
≥ 1,

we finally have

λn

λ1
≤ (λn · · · λn−k+1)

(λ1 · · · λk)
≤ (σk( f ))n/k

J f
,

from which it follows that BDk
n
k ,∞(M, M̃) ⊂ QC(M, M̃).

If k > n
2 , then n − k < n

2 and we have from the previous argument and Proposition 4.2

f −1 ∈ BDn−k
n

n−k ,∞(M̃, M) ⊂ QC(M̃, M),

and we deduce from Lemma 5.1 that f ∈ QC(M, M̃). ��
The next result relates our class of maps to bilipschitz ones.

Proposition 5.3 If f ∈ B Dk
(q,∞)(M, M̃) ∩ BDn−k

(q ′,∞)
(M, M̃) with q ′ = q

q−1 , then f is
quasiconformal. Furthermore if q �= n

k , then f is bilipschitz.

Proof Using the same notations and convention as in the previous proof, we have

λn

λ1
≤ (λn · · · λn−k+1)

(λ1 · · · λk)
= (λn−k+1 · · · λn)(λk+1 · · · λn)

(λ1 · · · λk)(λk+1 · · · λn)

≤ σk( f ) · σn−k( f )

J f
=

(
(σk( f ))q

J f

) 1
q

(
(σn−k( f ))q ′

J f

) 1
q′

,
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290 V. Gol’dshtein, M. Troyanov

because 1
q + 1

q ′ = 1. It follows from this computation that any map f in B Dk
(q,∞)(M, M̃)∩

BDn−k
(q ′,∞)

(M, M̃) is quasiconformal.
We now prove that f is bilipschitz if q �= n

k : Because f is quasiconformal, there exists a
constant c such that λn ≤ c · λ1. Since λk

1 ≤ σk( f ) and J f ≤ λk
n , we have

|d f |qk−n = λ
qk−n
n ≤ (cλ1)

kq

λn
n
≤ ckq · (σk( f ))q

J f
,

this implies that any quasiconformal map in B Dk
(q,∞)(M, M̃) is Lipschitz if qk > n. If

qk < n, then q ′(n − k) < n and the same argument shows that any quasiconformal map in
B Dn−k

(q ′,∞)
(M, M̃) is Lipschitz. Thus any f ∈ B Dk

(q,∞)(M, M̃)∩BDn−k
(q ′,∞)

(M, M̃) with q �=
n
k is Lipschitz. But Proposition 4.2 implies that f −1 ∈ B Dk

(q,∞)(M̃, M)∩BDn−k
(q ′,∞)

(M̃, M),

hence f −1 is also a lipshitz map if q �= n
k . ��

An open question. The previous result and the Corollary 4.4 suggest the following ques-
tion: Suppose a diffeomorphism f :M → M̃ induces an isomorphism f ∗ : Lq(M̃,�k) →
Lq(M,�k). Can we conclude that f is quasiconformal for q = n

k and bilipshitz otherwise?
If k = 1, the answer to the above question is positive, see [3,4,29,30].
For a more complete discussion of quasiconformal maps in the context of differential

forms, we refer to [7] .

6 Lq, p-cohomology and BD-diffeomorphisms

Combining the results of the two previous sections, we obtain the following theorem.

Theorem 6.1 Suppose p ≤ p̃ < ∞, and let f :M → M̃ be a diffeomorphism of the class
BDk

( p̃,t)(M, M̃) where t = p
p̃−p . Then the following holds:

(A) f ∗ : L p̃(M̃,�k)→ L p(M,�k) is a bounded operator and f ∗(Zk
p̃(M̃)) ⊂ Zk

p(M).

(B) If q ≥ q̃ > 1 and f ∈ BDn−k+1
(q̃ ′,r)

(M, M̃)∩BDk
( p̃,t)(M, M̃) with q̃ ′ = q̃

q̃−1 , r = q(q̃−1)
q−q̃ ,

then [ f ∗ω] = 0 in Hk
q,p(M) implies [ω] = 0 in Hk

q̃, p̃(M̃) (thus Hk
q,p(M) = 0 ⇒

Hk
q̃, p̃(M̃) = 0).

(C) If q ≤ q̃ and f ∈ BDk−1
(q̃,u)

(M, M̃) ∩ BDk
( p̃,t)(M, M̃) where u = q

q̃−q and t = p
p̃−p ,

then

(a) f ∗ :�k−1
q̃, p̃ (M̃)→ �k−1

q,p (M) is a bounded operator,

(b) f ∗ : Hk
q̃, p̃(M̃)→ Hk

q,p(M) is a well defined linear map,

(c) f ∗ : Hk
q̃, p̃(M̃)→ H

k
q,p(M) is a bounded operator.

Proof The statement (A) follows immediately from Proposition 4.1 and the fact that d f ∗ω =
f ∗dω, whereas the assertion (B) follows from Propositions 4.1, 4.2 and Theorem 3.1. Finally,
the property (C) follows from Proposition 4.1 and Theorem 3.2. ��

Part (C) of the Theorem gives us sufficient conditions on a map f to have a functorial
behavior in Lq,p-cohomology.
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7 An example: manifold with a cusp

In this section, we show how Theorem 6.1 can be used to produce a vanishing result in Lq,p-
cohomology. We consider the Riemannian manifold (M̃, g) such that M is diffeomorphic to
R

n and g̃ is a Riemannian metric such that in polar coordinates, we have

g̃ = dr2 + e−2r · h
for large enough r , where h denotes the standard metric on the sphere S

n−1. Let us also
consider the identity map f : R

n → M̃ , where R
n is given its standard Euclidean metric,

which writes in polar coordinates as

ds2 = dr2 + r2 · h.

Proposition 7.1 If s > n−1
m−1 , then the above map f :Rn → M̃ belongs to the class

BDm
s,t (R

n, M̃) for any 0 < t ≤ ∞.

Proof For r large enough, we have the following principal distortion coefficients for f :

λ1 = 1, λ2 = λ3 = · · · = λn = e−r

r
.

In particular J f = ( e−r

r )n−1 and

σm( f ) =
(

e−r

r

)m

+
(

n − 1

m − 1

) (
e−r

r

)m−1

≤ C1

(
e−r

r

)m−1

.

and thus

(σm( f ))s

J f
≤ C2

(
e−r

r

)s(m−1)−(n−1)

outside a compact set in R
n . Therefore,

∫
Rn (

(σm ( f ))s

J f
)t dx <∞ if and only if

∞∫

1

(
e−r

r

)t (s(m−1)−(n−1))

· rn−1dr <∞

which is the case when s ≥ n−1
m−1 . This implies that f ∈ BDm

s,t (R
n, M̃) for any 0 < t <∞.

It is also clear that f ∈ BDm
s,∞(Rn, M̃), since (σm ( f ))s

J f
is bounded when s ≥ n−1

m−1 . ��

Corollary 7.2 If q̃ <
n − 1

k − 1
< p̃, then Hk

q̃, p̃(M̃) = 0.

Proof We will use Theorem 6.1(B) with the previous Proposition. We have f ∈ BDk
( p̃,t)

(Rn, M̃) for any t > 0, since we have p̃ > n−1
k−1 by hypothesis. We also have f ∈

BDn−k+1
(q̃ ′,r)

(Rn, M̃) if q̃ ′ > n−1
n−k . But this inequality is equivalent to

q̃ = q̃ ′

q̃ ′ − 1
<

n − 1

k − 1
,

and this also holds by hypothesis. We thus have f ∈ BDn−k+1
(q̃ ′,r)

(Rn, M̃) ∩ BDk
( p̃,t)(R

n, M̃)

for any q̃ < n−1
k−1 < p̃.
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Let us now set p = n
k and q = n

k−1 , and observe that p ≤ n−1
k−1 , hence p ≤ p̃ and

q ≥ n−1
k−1 , hence q ≥ q̃.

In [27], it is proved that Hk
q,p(R

n) = 0 if p = n
k and q = n

k−1 . Therefore by Theorem 6.1

we have Hk
q̃, p̃(M̃) = 0 for any q̃ <

n − 1

k − 1
< p̃. ��

8 Non-smooth mappings

We have formulated our results for diffeomorphisms, but it is clear that Definition 4.1 makes
sense for wider classes of maps such as Sobolev maps in W 1,1

loc or maps which are approxi-

mately differentiable almost everywhere, we can thus consider the class of W 1,1
loc homeomor-

phisms with bounded mean distortion. It is then natural and important to wonder whether
our results still hold in this wider context.

Unfortunately, there is no elementary answer to this question. A careful look at our argu-
ments show that we have used the following properties of diffeomorphisms:

(i) The change of variables formula in integrals:
∫

M u( f (x)) J f (x)dx = ∫
M̃ u(y) dy in

Proposition 4.1).
(ii) The change of variables formula for the inverse map which is implicitly used in

Corollary 4.3.
(iii) The naturality of the exterior differential d f ∗ω = f ∗dω is used everywhere.

The change of variables formula in integrals holds for a homeomorphism f in W 1,1
loc pro-

vided we assume the Luzin (N ) condition to hold. This condition states that a subset of
zero measure in M is mapped by f onto a set of zero measure in M̃ . The map change of
variables formula for the inverse map f −1 holds if the Luzin (N−1) condition holds, that is
the inverse image of subset of zero measure also has zero measure. The Luzin condition is
widely studied in the literature (see, for example, [10–12,29]). Concerning the naturality of
the exterior differential, we refer to [8].

Let us finally mention that for the special case of locally quasiconformal maps, all these
properties hold. The relation between the theory of quasiconformal mappings and Lqp-coho-
mology is studied in [7].
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