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The aim of this paper is to discuss the integration of uncertainty analysis in a thermo-
economic optimization method for process system design. Most of time energy sys-
tems are designed under constant parameters, whereas some of them are uncertain in
real cases. The uncertainty may affect the design decisions, the objectives, although
these may be compensated by control variables in some circumstances.
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1 Introduction

The concepts exposed in this paragraph consider specifically the problem of process de-
sign under uncertainty. The formalism has been mainly developed for mathematical pro-
gramming formulation in [5], [6], [7] and [4].

As expressed in fig. 1, the main issue in energy system design is to determine the tech-
nologies allowing to provide one or several defined services from available ressources. To
achieve this, engineers have to deal with the context (cost, constraint,...) and the equip-
ment (availability, efficiency,...) in order to take the most appropriate solution, wich is
characterized by its investment and operating condition.
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Figure 1: Goals and issues
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Technologies are modeled as function of several variables. In a classical optimzation
problem formulation, they can be classified in several type:

e Decision variables X = {Duv, Dd, O}:

— Design variables Dv = [dvy, ..., dv,, ]

— Design decision Dd = [dd;. ..., dd,,]

— Operating variables O = [0y, ..., 0,_]

¢ Parameters, with some of them uncertain v = [uy, ..., up, | With n,, the number of
uncertain parameters

However, some elements of the context and the equipment are not clearly defined, due to
lack of data. They are all the more uncertain since most of the installation have to last
several years, predictive value being not accurate.

Then uncertainties on parameters will be considered in that paper. They might be due
to several factors like measurement’s imprecision, approximation of the model,... One
way do deal with several values for the same variables is to carry out data reconciliation
what allows to work with one value. Then the process can be designed taking only this
value into account, what would be a loss of information. Another way to model the
uncertainties is a probability density function with the assumption that the reconciliated
value is its mean. The question become then how to include it in an optimization process.

2 Method

2.1 DModel

The model considered here is a solid oxyd fuel cell (SOFC) coupled with a gas turbine as
shown in fig. 2.
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Figure 2: Model scheme
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Each uncertain parameter is modeled by a normal law for a priori symetric distribution
and a beta law for others. Indeed, there’s no reason why a specific cost should have been
estimated higher than lower. On the other hand, a compressor efficiency will decrease if
it is not used at its nominal point (whatever if it is at greater or lower capacity). So there
is more chance that it will be lower than what is predicted.

2.2 Classical multi-objective optimization

The problem is first solved using a conventional approach based on a multi-objective
optimization [8] considering the trade off between investment and efficiency. Details on
the considered process design si given in [1]. An evolutionary algorithm is appplied to
solve the optimization problem and the uncertain parameters are fixed at their mean value
Ui

2.3 Monte-Carlo simulation

The first way of assessing the influence of the uncertain parameters is to calculate the
performances of the points of the obtained Pareto curve using a Monte-Carlo simulation.
This calculates for each set of decision variables in the pareto curve a cloud of perfor-
mances that defines the influence of uncertainties of a given design. Fig. 3 shows the
Pareto curve obtained for the system design. Desired range for objectives function vary-
ing uncertain parameter are artificially represented.

Total cost of the system can then be computed by combining investment and operating
cost, allowing to deduce an optimal configuration from this analysis.
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Figure 3: Representation of possible range of each parameters

In fig. 4, a Monte-Carlo with a Hammersley sampling on the uncertain parameters
space has been performed at the point designed by an arrow in fig. 3. This shows that
following the set of u, the objective functions can be better/worse than the best/worst
solution of the pareto. This underline the strong influence of uncertainties.
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Figure 4: Monte-Carlo with Hammersley sampling around one point

Although the use of multi-objective optimization allows for handling uncertainties

and reach optimal design, this approach has some default:

e This is just a partial way to include uncertainties in design. Indeed, by optimizing

a system and then applying incertitude to the obtained solutions, the variations of
parameters are taken into account only retroactively. In other words, uncertainties
are applied to a certain choice of solutions (the points of the pareto curve), but
not in the process that generate these points. And therefore it is possible that best
solutions have been eliminated from the optimum set.

The use of evolutionary algorithm to solve the problem is already a time consum-
ming task. Computing he clouds around each point is even worst.

In order to reduce the computing time, the calculation of the multi-objective opti-
mization has been parallelized. This is easy when using an evolutionary algorithm
since the different points for the evaluation do not have any relation with the others.
Instead of applying a pure Monte-Carlo simulation, sampling methods as proposed
by Diwekar [3, 2] have been used.

Complex model are strongly surjective, i.e. for different set of input variables,
the model may return the same values of the objectives function. Then the prob-
ability to get a set of uncertain parameters is not the same than the one to get the
corresponding solution. This is an advantage, because it means that variables can
compensate each other, and then that if one uncertain parameter doesn’t correspond
to its desired value, others can be reevaluated to reach the predicted design.

2.4 Random Multi-Objective

Another way of solving the problem is to use a random optimization strategy. In this case,
uncertain parameters are selected randomly and used as input in the black box model.
Then, objectives functions are calculated and sent to the optimizer using evolutionary
algorithm.Fig. 5 shows the comparison between a classical MOO as described in chapter
2.2 and the one with random parameters.
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Figure 5: Comparison of “classical” (in black) and random (in grey) MOO

Two pareto curves are compared. The reference one is the one obtained by conven-
tional optimization, the second one is the one calculated by the optimizer with random
uncertain parameters values.

It appears that the “random” optimization gives better results (best point : 66%, 5.5 -
103$) than the normal one (best point : 57.5%, 3.6 - 107$), however both have been
carried out with 10000 iterations at all. It is then clear that the “random‘ optimization has
aless definded pareto curves dues to random nature of the parameters and would probably
require more iteration before convergence. It shows the sensitivity of the model to these
parameters, what explain the difference in the two curves of fig. 5

In the process engineering design them major outcome is the specification of the in-
vestment in terms of equipments and sizes. Fig. 6 shows decision variables differ if we
consider the conventional optimization strategy or if we include uncertain parameters.
What means that process design differ from one results to the other.
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Figure 6: Pression upstream the turbine

The study of other decision variables shows that the operating set points are also
different from one approach to the other. Then, the influence of the uncertain parameters
could be compensated by adaptating the operating conditions of the real value of the
parameter (e.g. fuel cell temperature). This means that multi-period approach will be
needed in order to decide the best investment to be made (sufficient lage unit) to allow the
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operating set points reaching the optimal performances.

3 Conclusion and further work

Since this is an application case, uncertain parameters in an SOFC have been selected and
modeled. In real case, the more influent have to be determined and a satistic study has to
be carried out in order to describe it the best way possible.

The challenges and issues about Monte-Carlo simulation have been exposed. The limi-
tations of this method is mainly related to computing time and data storage. Moreover
this approach allows only to include uncertainty in design procedure retroactively (after
optimization). However, it shows clearly the influence of uncertain parameters on objec-
tives functions. Then, random choice of the uncertain parameters has been included in an
evolutionary algorithm. It demonstrated that both methods leads to different design and
operating conditions.

A multi-period approach will then be applied in the optimization. This means that each
set of uncertain parameters will represent a period, and its corresponding design. The
maximum value for decision variables comparing all design will be kept, allowing to in-
clude every possible configuration in optimization.

References

[1] N. Autissier, F. Palazzi, F. Maréchal, J. Van herle, and D. Favrat. Thermo-economic
Optimization of a Solid Oxide Fuel Cell, Gas Turbine Hybrid System. Fuel Cell
Science and Technology.

[2] U. M. Diwekar and J. R. Kalagnanam. Efficient sampling technique for optimization
under uncertainty. AIChE Journal, 43(2):440-447, 1997. Cited By (since 1996): 67.

[3] Y. Fuand U. M. Diwekar. An efficient sampling approach to multiobjective optimiza-
tion. Annals of Operations Research, 132(1-4):109-134, 2004.

[4] 1. E. Grossmann and K. P. Halemane. Decomposition strategy for designing flexible
chemical-plants. Aiche Journal, 28(4):686-694, 1982.

[5] I. E. Grossmann and R.-W.H Sargent. Optimum design of chemical plants with uncer-
tain parameters. Aiche Journal, 24(6):1021-1028, 1978.

[6] I. E. Grossmann and David A. Straub. Recent developments in the evaluation and
optimization of flexible chemical processes. In COPE9], page 41. Elsevier, 1991.

[7] K. P. Halemane and I. E. Grossmann. Optimal process design under uncertainty.
Aiche Journal, 29(3):425-433, 1983.

[8] Geoftrey B. Leyland. Multi-Objective Optimisation Applied to Industrial Energy
Problems. Phd, Ecole Polytechnique Federale de Lausanne, 2002.



