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Abstract

In this paper, a numerical simulation to analyze the influence of the surrounding water in a turbine runner has been carried out using
finite element method (FEM). First, the sensitivity of the FEM model on the element shape and mesh density has been analysed. Sec-
ondly, with the optimized FEM model, the modal behaviour with the runner vibrating in air and in water has been calculated. The added
mass effect by comparing the natural frequencies and mode shapes in both cases has been determined.

The numerical results obtained have been compared with experimental results available. The comparison shows a good agreement in
the natural frequency values and in the mode shapes. The added mass effect due to the fluid structure interaction has been discussed in
detail.

Finally, the added mass effect on the submerged runner is quantified using a non-dimensional parameter so that the results can be
extrapolated to runners with geometrical similarity.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

With the great improvement of technology and manu-
facturing level of hydraulic turbine, there is a trend to
increase the power concentration of the units. Therefore,
the head, fluid velocity and hydraulic force will be
increased considerably. Consequently, some severe vibra-
tion problems could be induced by design defects or off-
design operation, which could lead to serious accidents
and badly influence the security in production as well as
the stability in the operation of power plants. The vibratory
response of the turbines during operation depends largely
on the effective dynamic properties of the runners. There-
fore, the investigation on dynamic behaviour of turbine
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runner has been highly regarded and is quite important
to approach the solution of vibration problems for turbines
in operation. Since the runners are working submerged in
water, the dynamic behaviour could be strongly affected
by the presence of this heavy fluid. Therefore, the study
on turbine runner structures considering water effect has
a high practical interest.

An accurate understanding of the dynamic behaviour of
an elastic structure submerged in fluid has received exten-
sive attention since the middle of last century. Lindholm
et al. [1] experimentally investigated the vibration of canti-
lever plates in air and in water and the results have been the
benchmark for later investigations. Based on chord-wise
hydrodynamic strip theory, they also did theoretical pre-
dictions by modifying the simple beam theory and thin
plate theory to include an empirical correction factor to
take into account the added mass for variety of modes.
Meyerhoff [2] calculated the added mass of thin rectangular
plates in infinite fluid using dipole singularities. Gladwell
and Zimmermann [3] and Gladwell and Mason [4] derived
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the governing equations of an acoustic and structural sys-
tem based on energy and complementary energy formula-
tions. The equations were used in conjunction with the
finite element method (FEM). The finite element method
has also been applied to solve problems for totally or
partially submerged elastic plates [5–7]. Recently, Fu and
Price [8], based on a linear hydro elasticity theory, also
presented their results and discussed the effect of the free
surface. Kwak [9] and Liang et al. [10] calculated the
non-dimensional added virtual mass for some plates and
compared the results with experimental data. Liang et al.
[11] adopted an empirical added mass formulation and
the Rayleigh-Ritz method to determine the frequencies
and mode shapes of submerged cantilever plates. They
compared their numerical results with the available exper-
imental results and pertinent literature in air and in water.
The effect of the geometrical characteristics was also dis-
cussed. Ergin and Ugurlu [12] studied cantilever plates with
different geometry and submergence depth to show their
effect on the added mass. All the natural frequencies
obtained from the above mentioned theoretical investiga-
tions have errors varying from 5% to 15%, compared with
the experimental measurements. Difference between actual
boundary conditions used in experiment and the theoretical
ones used in calculation were blamed for this discrepancy.

Although plenty of work has been carried out on this
topic, most available investigations, both simulations and
experiments, are limited to simple geometrical structures.
For a structure with complex geometry, such as a hydraulic
turbine runner, most of the limited works we are aware of
were done in air; few of them addressed the vibration of the
structure submerged in water. Dubas and Schuch [13] used
ANSYS, with the model built by isoparametric shell ele-
ments, to calculate the natural frequency and mode shape
of a Francis runner without considering water effect. The
runner was simplified as an assembly of several flat plates
and banding rings, thus disagreement existed in their
results and some modes were lost. Tanaka [14] presented
a frequency reduction ratio of only one mode measured
on both prototype and model runner. He believed that
the natural frequency will be reduced in water due to the
added mass effect and introduced an empirical value 0.2
for the frequency reduction ratio. However, he did not
publish more detailed experiment or simulation to discuss
the added mass effect. Du and He et al. [15,16] developed
a method to consider the water effect on the turbine runner
by importing the added mass into the structural dynamic
theory. They did a simulation with the mesh including both
fluid and structure, and showed some mode shapes and
corresponding frequencies. In addition, they calculated
the frequency reduction ratio and indicated that the added
mass effect depends on the mode shapes of the runner.
However, only the fluid between adjacent blades was taken
into account, what resulted in some underestimation of the
added mass effect. In order to analyze the structural vibra-
tion in water using the dynamic characteristics obtained in
air, a method was developed by Xiao et al. [17]. In this
method, the analogy between the vibration in air and in
water was used. The difficulty induced by this method is
that the frequency reduction ratio must be gained in
advance by experiment. Besides, a Francis turbine runner
was numerically studied in air and some modes and fre-
quencies were presented. However, the frequencies in water
were estimated by adopting some empirical values instead
of being calculated directly. Cao and Chen [18] analyzed,
experimentally and theoretically, the vibration of a hydro
turbine working in water, but the study was focused only
on a single blade instead of the whole runner. Liang and
Wang [19] performed some numerical simulation on a
Francis turbine runner both in air and in a finite water
domain. Results were compared and the frequency reduc-
tion rations for different modes were obtained. However,
there was no corresponding experimental data to check
the accuracy of the simulation results.

According to all the forementioned literatures, the inves-
tigations on turbine runner submerged in water were
mainly carried out theoretically and with some simplifica-
tion on the model, while few experimental results were
available as a reference to check the theoretical results.
Recently, Rodriguez et al. [20] have published a detailed
experimental investigation on a reduced scale model of a
Francis turbine. Because it was not feasible to measure
with the runner inside the machine casing, experiments
were carried out with the runner suspended in air and
inside a pool of water far away enough to the solid walls.

In an actual turbine, there are some fixed solid bound-
aries near the runner which can modify the added mass
effect. This effect can be enhanced if the gap is small and
the deflection against the solid wall is large enough. In a
Francis turbine, a very small gap is generally found
between the runner band and the casing where the seals
are located. Therefore, the boundary effect should be
important if the vibration modes produce large band defor-
mation in the radial direction. For other band modes with
lower deformation the effect should be less significant.

A numerical analysis to determine the influence of the fluid
added mass on the same runner used by Rodriguez et al. [20]
is presented in this paper. The simulation was carried out in
the same condition of the experiment so that the numerical
results could be compared. To perform the simulation, the
finite element method (FEM), considering fluid structure
interaction (FSI), is used. With one mesh showing good accu-
racy and convergence, simulations were carried out. The nat-
ural frequencies, mode shapes and frequency reduction
ratios, obtained by simulation, agree well with experiment
and the fluid added mass effect is discussed in detail.

2. Numerical model

2.1. Formulations of fluid structure interaction (FSI)

In theoretical considerations, to take into account the
fluid effect on the surrounded vibrating structure, the sys-
tem has to be treated as a fluid structure interaction prob-
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lem. In that case, the structural dynamics equation has to
be coupled with the fluid equations.

It is well known that the discretized structural dynamics
equation can be formulated as follows:

½Ms�f€ug þ ½Cs�f _ug þ ½Ks�fug ¼ fF sg ð1Þ

where [Ms] is the structural mass matrix; [Cs], the structural
damping matrix; [Ks], the structural stiffness matrix, {Fs},
the applied load vector, and {u}, the nodal displacement
vector.

In the case of water-structure coupling, the behaviour of
the water pressure can be described with the acoustic wave
equation, known as Helmholtz’s equation

r2P ¼ 1

c2

o2P
ot2

ð2Þ

where P is the fluid pressure; c, the sonic speed in the fluid
medium; t, time; $2, the Laplacian operator. Eq. (2) is de-
rived from the Navier–Stokes equation of motion and the
continuity equation by considering the following assump-
tions [21]:

• The fluid is slightly compressible (density changes due to
pressure variations).

• The fluid is non-viscous (no viscous dissipation).
• The flow is irrotational.
• There is no mean flow of the fluid.
• Changes of mean density and pressure in different areas

of the fluid domain remain small.

Since the viscous dissipation has been neglected, the
Helmholtz’s Eq. (2) is referred to as the lossless wave equa-
tion for propagation of pressure in fluids. In case of fluid
structure interaction problems, Eqs. (1) and (2) have to
be considered simultaneously.

Helmholtz’s Eq. (2) can be described in matrix notation
by introducing a matrix operator {L} as

1

c2

o2P
ot2
� fLgTðfLgP Þ ¼ 0 ð3Þ

After discretizing Eq. (3) using the Galerkin procedure [22]
to obtain the element matrices, it is multiplied by a virtual
change in pressure and integrated over the volume of the
domain with some manipulation [23] to give
Z

vol

1

c2
dP

o2P
ot2

dðvolÞ þ
Z

vol
ðfLgTdP ÞðfLgP ÞdðvolÞ

¼
Z

S
fngTdP ðfLgP ÞdðSÞ ð4Þ

where vol is the volume of domain; dP = dP (x,y,z, t), the
virtual change in pressure; S, the surface where the deriva-
tive of pressure normal to the surface is applied (a natural
boundary condition), and {n}, the unit normal to the inter-
face S.

The equation for the interaction between the fluid and
the structure is derived from the continuity requirement
at the interface boundary. The normal displacement of
the structure must be identical to that of the fluid. There-
fore, the fluid momentum equation yields the following
relationships between the normal pressure gradient of the
fluid and the normal acceleration of the structure at the
fluid structure interface S [23]:

fng � frPg ¼ �q0fng �
o2U
ot2

ð5Þ

where U is the displacement vector of the structure at the
interface; q0, the mean fluid density. This equation can also
be used at other boundaries. In order to account for the
dissipation of energy, if any, present at the fluid boundary,
a dissipation term is added to the lossless boundary condi-
tion Eq. (5) to get [24,25]

fng � frPg ¼ �q0fng �
o2U
ot2
� b

c

� �
1

c
oP
ot

ð6Þ

where b ¼ r
q0c is the non-dimensional boundary absorption

coefficient; r, the characteristic impedance of the material
at the boundary.

After substituting matrix notion of Eq. (6) into Eq. (4),
the integral is given byZ

vol

1

c2
dP

o2P
ot2

dðvolÞ þ
Z

vol
ðfLgTdP ÞðfLgP ÞdðvolÞ

¼ �
Z

S
q0dPfngT o2

ot2
U

� �
dðSÞ �

Z
S

dP
b
c

oP
ot

dðSÞ ð7Þ

This equation contains the fluid pressure P and the struc-
tural displacement U as the dependent variables to solve.
The finite element shape functions for the spatial variation
of the pressure and displacement components are given by

P ¼ fNpgTfpg ð8Þ
U ¼ fNugTfug ð9Þ

where {Np} is the element shape function for pressure;
{Nu}, the element shape function for displacements, {p},
the nodal pressure vector, and {u} = {ux},{uy},{uz}, the
nodal displacement component vectors. Substituting Eqs.
(8) and (9) into Eq. (7), the finite element statement of
the Helmholtz’s Eq. (2) is given byZ

vol

1

c2
fdpgTfNpgfN pgTdðvolÞf€pg

þ
Z

vol
fdpgT½B�T½B�dðvolÞfpg

þ
Z

S
q0fdpgTfNpgfngTfN ugTdðSÞf€ug

þ
Z

S

b
c
fdpgTfN pgfNpgTdðSÞf _pg ¼ 0 ð10Þ

where [B] = {L}{Np}T, and {n} = normal at the fluid
boundary.

Invariable terms over the element are taken out of the
integration sign. {dp} is an arbitrarily introduced virtual
change in nodal pressure, which can be factored out in
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Eq. (10). Since {dp} is not equal to zero, Eq. (10) can be
written in matrix notation to get the discretized Helm-
holtz’s equation [26]

½Mf �f€pg þ ½Cf �f _pg þ ½Kf �fpg ¼ fF sf g ð11Þ

where ½Mf � ¼ 1
c2

R
volfNpgfNpgTdðvolÞ = the fluid equivalent

‘‘mass’’ matrix, ½Cf � ¼ b
c

R
SfN pgfNpgTdðSÞ = the fluid

equivalent ‘‘damping’’ matrix, ½Kf � ¼
R

vol½B�
T½B�dðvolÞ =

the fluid equivalent stiffness matrix, fF sfg ¼ �q0

R
SfNpg

fngTfN ugTdðSÞf€ug = the fluid ‘‘load’’ produced by struc-
ture displacement at the interface. Here a coupling matrix
is introduced that represents the effective surface area asso-
ciated with each node on the fluid structure interface

½R� ¼
Z

S
fNugfN pgTfngdðSÞ ð12Þ

Therefore, the fluid load at the interface in Eq. (11) can be
described as

fF sfg ¼ �q0½R�
Tf€ug ð13Þ

By considering the fluid pressure acting at the interface, the
Eq. (1) for structural dynamics can be written as follows:

½Ms�f€ug þ ½Cs�f _ug þ ½Ks�fug ¼ fF sg þ fF fsg ð14Þ

where {Ffs} = the fluid pressure load vector at the inter-
face, which can be obtained by integrating the pressure
over the area of the surface

fF fsg ¼
Z

S
fN ugPfngdðSÞ

¼
Z

S
fN ugfNpgTfngdðSÞfpg ¼ ½R�fpg ð15Þ

By substituting Eqs. (13) and (15) into Eqs. (11) and (14),
the complete finite element discretized equations for the
fluid structure interaction problem are written in assembled
form as [26]

½Ms� ½0�
½Mfs� ½Mf �

� � f€ug
f€pg

� �
þ
½Cs� ½0�
½0� ½Cf �

� � f _ug
f _pg

� �

þ
½Ks� ½Kfs�
½0� ½Kf �

� � fug
fpg

� �
¼
fF sg
f0g

� �
ð16Þ

where [Mfs] = q0[R]T is the equivalent coupling ‘‘mass’’ ma-
trix, and [Kfs] = �[R] is the equivalent coupling ‘‘stiffness’’
matrix.

Therefore, for a problem involving fluid structure inter-
action the fluid element generates all the matrices with sub-
script f in addition to the coupling matrices q0[R]T and [R].
The matrices with subscript s are generated by the compat-
ible structural element used in the model.

2.2. Reduced model for simulation and nodal

diameter (ND)

Structures such as turbine runners show rotational
periodicity in the sense that each sector of the structure
repeats itself around an axis. If a structure exhibits such
a cyclic symmetry, a reduced model including only one sec-
tor can be used to calculate the results for the whole
structure.

By using this principle, significant economics on com-
puter resource can be made. In addition, the symmetric
characteristic of the discrete FEM model can only be guar-
anteed by using the reduced model. And thus, some impor-
tant features on dynamic behaviour of such structures can
be perfectly expressed [13,27,28].

It is well known that the vibration modes of a cyclic
symmetric structure can be classified according to the num-
bers of its nodal circles (NC) and nodal diameters (ND).
Defined by the condition ND = 0, the modes are singlet.
These modes are independent of the angular coordinate h
and natural frequencies are distinct. The modes with
ND 5 0 are doublet; they have a pair of mode shapes with
the same natural frequency. Each member of such a pair
has either sinusoidal or cosinusoidal h-dependent mode
shape. The only difference between them is a spatial phase
shift of /

/ ¼ p=ð2mÞ ð17Þ
where m is the number of ND [29]. The 2ND and 3ND
modes of a circular structure are shown here to illustrate
the nodal diameters and the relationships between the pairs
of doublet modes.

For the modes of the structure studied in this analysis,
the nodal circle does not appear. Hence, according to the
number of ND, the modes in this paper can be defined as
fmn, where the subscript ‘‘m’’ indicates the number of ND
and the subscript ‘‘n’’ is a serial number (Fig. 1).

2.3. FEM model and mesh sensitivity analysis

The tested model runner was constructed following the
IEC (International Electrotechnical Commission) Stan-
dards for international test acceptance and used in a real
model test. It is a replica at a reduced scale of 1:10 of a
Francis turbine runner with a specific speed of 0.56. The
model runner has 17 blades and a diameter of 409 mm.
The shape of the runner with the main dimensions is shown
in Fig. 2. The material used is a bronze alloy whose prop-
erties are given by Table 1. Based on the cyclic symmetrical
characteristic of the structure, a sector including one blade
and covering an angle of 360/17 degrees was used to do
the simulation. The results were expanded to the whole
runner.

Before defining the final mesh configuration, the influ-
ence of the element shape and of the mesh density was
checked. Two types of elements, hexahedral and tetrahe-
dral, were considered. For each element type, four meshes
with increasing number of elements were built up. As it can
be observed in Table 2, each mesh has approximately the
double number of nodes and elements than the preceding
one. Moreover, the two sets of meshes with different ele-
ment type contain a similar number of nodes.



Fig. 1. Modes with 2 and 3 nodal diameters.

Fig. 2. Geometry of the whole model and one sector.

Table 1
Properties of the runner material

Properties Young’s modulus (GPa) Density (kg/m3) Poisson’s ratio

Value 110 8300 0.34

Table 2
Number of elements and nodes in one sector for the four meshes of each
element type

Mesh 1 Mesh 2 Mesh 3 Mesh 4

Element number (Tetra) 4166 6729 13310 25840
Node number (Tetra) 1498 2268 4211 8499
Element number (Hexa) 926 1502 2899 6133
Node number (Hexa) 1472 2298 4179 8529
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Comparing the natural frequency results obtained with
the different meshes it was observed that, for both tetrahe-
dral and hexahedral element, they converged towards a
constant value when the mesh density was increased. In
Fig. 3, values of natural frequencies normalized by the final
converged value are plotted. It can be noted that the results
with hexahedral element converge much faster than the
ones with tetrahedral element. In terms of accuracy, the
results obtained with the hexahedral element were also
found to be closer to the experimental ones. For these rea-
sons, the hexahedral mesh 4 with 6133 elements and 8529
nodes per sector, shown in Fig. 4 expanded to the whole
runner, was finally selected to carry out the numerical
simulations.



Fig. 3. Results of the mesh sensitivity analysis (Tetra – Dash line; Hexa – Solid line).

Fig. 4. Discretized finite element mesh with hexahedral element.

Table 3
Natural frequencies of the runner in air (Hz)

f01 f11, f12 f21, f22 f31, f32 f41, f42 f51, f52

Sim. 425.87 635.53 370.80 485.61 568.18 635.46
Exp. 417.50 616.75 373.50 487.50 573.75 649.75

Note: 1. Sim. = simulation, Exp. = experiment.
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3. Evaluation of fluid added mass effect

Fluid added mass effect can be evaluated by comparing
the natural frequencies of the runner vibrating in air and in
water. Consequently, a detailed modal simulation was car-
ried out to determine the natural frequencies and mode
shapes. Since the perfect cyclic symmetry could not be
achieved practically, the natural frequencies of the doublet
modes obtained by experiment did not repeat at the same
value. Nevertheless, these two frequencies are quite similar
(maximum difference of 3%, [20]) and the mean values are
used for the comparison.

Since the air effect on the experiment was negligible, the
corresponding simulation was carried out in vacuum
instead of in air. However, in order to avoid the difficulty
of expression when comparing, the expression ‘‘in air’’
will be used instead of ‘‘in vacuum’’ in the following
discussion.
3.1. Simulation in air

Based on the refined FEM model, the modal character-
istics of the free vibration in air were calculated. In Table 3,
the natural frequencies obtained with the simulation and
experiment are listed. The comparison of the results,
including the mode shapes of band, is shown in Fig. 5.

The comparison of simulation with experiment shows a
good agreement. Simulation also gives the same mode
shapes with the same order. Details about the mode shapes
will be discussed later.



Fig. 5. Comparison between simulation (lower row, Hz) and experiment
(upper row, Hz).

Fig. 6. Fluid domain around the runner and the FEM mesh.

Table 4
Properties of the fluid

Properties Sonic speed (m/s) Density (kg/m3)

Value 1483 1000

Table 5
Natural frequencies of the runner submerged in water (Hz)

f01 f11, f12 f21, f22 f31, f32 f41, f42 f51, f52

Sim. 383.28 498.90 280.17 335.49 362.34 387.89
Exp. 370.50 481.50 279.50 331.25 359.00 400.00
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3.2. Simulation in water

To make the complete model for the simulation in
water, the mesh of the runner was surrounded by a cylin-
drical fluid domain considering the cyclic symmetric char-
acteristic of the runner. The fluid mesh was extended
from the structure mesh so that the same set of nodes
was shared between both domains on the interface. The
same type of hexahedral element was used to build up
the fluid mesh, which contained 29460 nodes and 24137
elements for each sector.

Since the experimental modal analysis of the runner in
water was carried out inside a reservoir with free surface
[20], the same boundary conditions had to be used in the
simulation. These conditions are described by Eq. (6) and
must be specified on the boundaries of the FEM model
accordingly:

• Interaction boundary (FSI boundary) on the fluid struc-

ture interface:

On the fluid structure interface, the displacement of the
structure must be identical to that of the fluid in normal
direction. Therefore, the equation of motion for fluid
particles must be fulfilled at the interface boundary by
normal displacements of the structure as described by
Eq. (5).

• Infinite boundary (absorb boundary) on the cylindrical

surface:

If the dimensions of the fluid are large or infinite, the
numerical model has to be cut off at some reasonable
distance from the structure. Moreover, the reflection
of pressure waves has to be prevented at the cutting
boundaries to stop excitation from infinity. One way
of doing this is to let the boundary absorb the pressure
wave, so that its energy vanishes. This condition can be
described by Eq. (6) considering b = 1.

• Rigid wall boundary (reflect boundary) on the bottom

surface:
On the rigid wall, the nodal displacement equals zero.
Moreover, the absorption coefficient also equals zero
to indicate that there is no energy loss at the boundary.
Therefore Eq. (6) can be simplified to the following form
to describe this condition:

fng � frPg ¼ 0 ð18Þ
• Free surface boundary (opening boundary) on the top

surface:

The free surface contacts the air where the reference
pressure is specified to zero.In Fig. 6, the draft of the
model and the FEM mesh are shown. In Table 4, the
properties of the water in normal temperature and pres-
sure used are listed.Like in air, the results in water have
rather accurate natural frequencies compared with
experimental ones, as described in Table 5. The mode
shapes are similar to those derived from simulation in
air, so here they are avoided to be repeated.

3.3. Accuracy checking

In order to check the accuracy of the simulation with the
experimental results, deviation between the simulation and
experiment were calculated with Eq. (19), listed in Table 6.

Dð%Þ ¼ ½ðU Sim: � U exp :Þ=U exp :� � 100 ð19Þ
where D(%) is the deviation in percent, USim. and Uexp. indi-
cate the results obtained by simulation and by experiment
sequentially.



Table 6
Deviations of simulation compared with experiment (%)

f01 f11, f12 f21, f22 f31, f32 f41, f42 f51, f52

Natural frequency
(in air)

2.00 3.04 �0.72 �0.39 �0.97 �2.20

Natural frequency
(in water)

3.45 3.61 0.24 1.28 0.93 �3.03

Table 7
Frequency reduction ratio of the runner

f01 f11, f12 f21, f22 f31, f32 f41, f42 f51, f52

Sim. 0.10 0.21 0.24 0.31 0.36 0.39
Exp. 0.11 0.22 0.25 0.32 0.37 0.38
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It can be clearly noticed that almost all deviations
remain in a range of ±3.5%. Moreover the mode shapes
in air and in water are similar, which also represent
good consistency between simulation and experiment
(Fig. 5). Accordingly, the simulation can be accepted to
be accurate enough to detect well the fluid added mass
effect on such a turbine runner by calculating the modal
characteristics.
4. Discussion on the results

4.1. Fluid added mass effect by frequency comparison

Due to the effect of the added mass induced by the sur-
rounding water, a significant decrease of the natural fre-
quencies can be observed by comparing the results in air
and in water. In Fig. 7, the comparison of the simulation
with the experimental results is shown.

The fluid added mass effect can be estimated by calculat-
ing the frequency reduction ratio d of each mode, defined
as Eq. (20):

d ¼ ðfa � fwÞ=fa ð20Þ

where fw and fa are the natural frequencies in water and in
air respectively. The reduction ratios here, calculated by
frequency values given in previous paragraphs, are also
Fig. 7. Natural frequencie
quite close to the experimental ones, which can be seen in
Table 7. And the reduction ratio has been plotted in Fig. 8.

It can be clearly noticed that the natural frequencies are
considerably reduced by the presence of fluid. The fre-
quency reduction ratio does not remain constant for all
modes, but varies significantly in a range of 0.10–0.39
depending on the corresponding mode shape.

From Table 7 and Fig. 8, it can also be seen that the
reduction ratio for the mode f01 is the minimum one
(0.10) and goes up with increasing ND. Due to the different
effect of the added mass in each mode, the order of some
modes does shift in water. The 0 ND mode has a lower
frequency than the 3 NDs mode in water while in air its fre-
quency is higher than the 4 NDs mode. However, the order
of the modes with one or more NDs remains unchanged in
air and in water.

4.2. Determination of fluid added mass effect

The fluid added mass effect can be physically explained
based on energy theory. According to the conservation of
energy, the total energy of the vibration system remains
constant in different mediums, therefore

ðEtotalÞair ¼ ðEtotalÞwater ð21Þ
Here Etotal indicates the total energy of the vibrating sys-
tem, involving the potential energy and the kinetic energy.
The maximum potential energy equals the maximum
kinetic energy.
s in air and in water.



Fig. 8. Comparison of frequency reduction ratios obtained by simulation and experiment.
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Moreover, when comparing the response in air with the
one in water, only small changes in the mode shapes can be
observed. This has been carefully investigated and well ver-
ified by some previous publications [11,30–32]. This has
been also confirmed by the results found in this investiga-
tion when comparing the normalized maximum displace-
ment of the different parts of the runner (Table 11).

Since the mode shapes in air and in water are verified to
be the same, the maximum potential energy is not changed
when evaluated in air and in water. Consequently, the max-
imum kinetic energy of the vibrating system remains invari-
ant. When vibrating in water, the structure will lose some
kinetic energy to increase the kinetic energy of the attached
water, by applying work against the force of the water.
Thus, the velocity of structural vibration will decrease
and so does the frequency.

With this assumption, the frequencies in water can be
related to the frequencies in air, using the following equa-
tions [11,32]. The squares of circular frequencies of struc-
ture in air (xa) and in water (xw) can be expressed as

x2
a ¼ ðP s=K�s Þair ð22Þ

x2
w ¼ ðP S=ðK�S þ K�F ÞÞwater ð23Þ

here the subscript ‘‘a’’ indicates parameters in air while ‘‘w’’
indicates those in water; subscript ‘‘S’’ indicates structure
while ‘‘F’’ indicates fluid. PS is the maximum potential en-
ergy of the structure and K�S is its reference kinetic energy,
which also remains unchanged in air and in water. K�F is
the equivalent reference kinetic of added water. Hereby

fw

fa
¼ xw

xa
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1þ k
p ð24Þ

k ¼ K�F
K�S

ð25Þ
Reference kinetic energy can be described with modal mass
and mode shapes

K� ¼ M
Z

V
W 2ðx; y; zÞdV ð26Þ

where M is the modal mass, and W(x,y,z) is a function of
the displacements in a three-dimensional rectangular coor-
dinate system, which indicate the mode shape, V is the vol-
ume of the structure. To evaluate the effect of the present
fluid, an equivalent virtual added mass can be introduced.
Then, the added mass can be theoretically assumed to be
evenly attached to the plasmids of the structure. Substitut-
ing Eq. (26) into Eq. (25) and taking into account the sim-
ilarity of mode shapes in air and in water, the following
equations can be derived:

k ¼ Ma

M
ð27Þ

where M is the modal mass and Ma is the equivalent added
mass. It is believed that the added mass factor k only de-
pends on the material density of the structure qS, on the
density of fluid qF, and on the mode shapes [11,33]. By
using a subscript ‘‘i’’ to indicate the different mode, the
non-dimensional added mass factor for each mode can be
expressed as:

ci ¼
Ma;i

Mi

qS

qF
ð28Þ

here ci is the non-dimensional added mass factor, which
remains constant for a specified mode (i), classified by the
features of the mode shape (ND, etc.). The non-dimen-
sional added mass depends only on the geometrical charac-
teristics of the structure, which is determined by the design
of the runner. In other words, the relationships between



Table 8
Results of modal analysis on a Francis turbine runner

Mode fa fw d k ci

f01 425.87 383.28 0.10 0.23 1.95
f11, f12 635.53 498.90 0.21 0.62 5.17
f21, f22 370.80 280.17 0.24 0.75 6.24
f31, f32 485.61 335.49 0.31 1.10 9.09
f41, f42 568.18 362.34 0.36 1.46 12.11
f51, f52 635.46 387.89 0.39 1.68 13.98

Table 9
Behaviour of the band

Number of
ND

Band behaviour Deformation

0 Torsion, around the axis of rotation No
0 Elevation, in axial direction No
1 Swing, in both radial and axial

directions, like a pendulum
Yes

2, 3, 4, 5, etc. Bending, with deformation in radial
direction

Yes
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natural frequencies in air and in water, obtained by the
method employed in this simulation, can also be valid
for any other Francis turbine runners with geometrical
similarity. This can be practically used to estimate the
natural frequencies of other geometrically similar turbine
runners constructed with different materials and
dimensions.

All the results of this simulation, including natural fre-
quencies in air (fa) and in water (fw), frequency reduction
ratios (d), added mass ratios (k) and the non-dimensional
added mass factors (ci), are listed in Table 8.
4.3. Features of mode shapes

The fluid added mass effects on the structure are deter-
mined by the mode shapes of structure vibrating in water.
Therefore, to understand the fluid added mass effects, the
essential point is to capture the features of the mode
shapes.

Features of mode shapes are determined by the features
of the structure. Owing to the geometrical characteristics of
Francis turbine runners, the vibration modes of these com-
plex structures imply complex movements. All parts are
deformed simultaneously and influence each other.

Since the crown generally has small displacements, the
mode shapes can be described by the behaviour of the band
and the blades. To order the mode shapes of the whole run-
ner, the number of nodal diameter (ND) in the band is used
Table 10
Features of mode shapes in air

fa (Hz) fw (Hz) ND Descriptions of mode shape

425.87 383.28 0 Singlet torsion mode
All blades have the same deformation. 1 NL a

635.53 498.90 1 Doublet swing mode with repeated frequencie
Blades can approximately be separated into tw
counter phase between the two groups. 1 NL a
the blades inside each group

370.80 280.17 2 Doublet bending mode with repeated frequenc
Blade behaviour is similar to 1 ND mode. Th
blades inside each group but counter phase be
ND) present approximate repeatability

485.61 335.49 3 Doublet bending mode with repeated frequenc
Blades behaviour is similar to 2 NDs mode, b

568.18 362.34 4 Doublet bending mode with repeated frequenc
Blades behaviour is similar to 2 NDs mode, b

635.46 387.89 5 Doublet bending with repeated frequencies, /
Blades behaviour is similar to 2 NDs mode, b
as the criterion. Here in this investigation, only the modes
with number of ND varying from 0 to 5 are studied.

For the modes with 0ND, the band behaves without
deformation because all the nodes of the band have the
same displacement in the same direction. The displacement
is in either the radial or the axial direction, performing tor-
sion or elevation motion respectively. For the modes with
1ND, the band swings and there is displacement in both
radial and axial directions. For the modes with 2 or more
NDs, the band has bending with deformation in the radial
direction. In Table 9, the specific characteristics of the band
behaviour for each mode with a certain number of ND are
summarized.

For Francis turbine runners, the torsion and bending
mode generally correspond to lower frequencies, while
swing and elevation mode occurs at higher frequencies.

Similarly, the behaviour of blades can be distinguished
with nodal lines (NL), or at least with lines of small
displacement. Nodal lines on blades can appear parallel
to the chord of the blade (from leading edge to trailing
edge), or, parallel to the span (from crown to band). Both
nodal lines may appear together in some high frequency
modes.

Here in the available results of this investigation, the
extracted modes are limited to the frequency range of the
experiment. The corresponding mode shapes in air and in
water present the same features, as are described in Table
10.
ppears around the middle of the blade parallel to the chord
s, / = p/2
o groups. Deformation appears in phase on blades inside each group but

ppears on the blade parallel to the chord and shifts from crown to band on

ies, / = p/4
e blades are separated into 4 groups. Deformation appears in phase on
tween every two adjacent groups. The blades spaced by the angle of (2p/

ies, / = p/6
ut separated into 6 groups
ies, / = p/8
ut separated into 8 groups
= p/10
ut separated into 10 groups



Table 11
Displacement normalized by the maximum displacement in each mode

f01 f11, f12 f21, f22 f31, f32 f41, f42 f51, f52

Band in air 0.95 0.23 0.85 0.57 0.42 0.33
Blade in air 1.00 1.00 1.00 1.00 1.00 1.00
Crown in air 0.86 0.16 0.11 0.03 0.01 0.00
Band in water 0.91 0.21 0.80 0.53 0.39 0.30
Blade in water 1.00 1.00 1.00 1.00 1.00 1.00
Crown in water 0.82 0.15 0.09 0.04 0.01 0.00
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In Table 11, the maximum displacement of each part,
normalized by the maximum value of the whole runner,
is shown. In all modes obtained by this analysis, the
maximum displacement appears on the blades. The thin
Fig. 9. Displacement of band and blades seen from t

Fig. 10. Displacement of band and blades seen from t
trailing edges of blades have much larger displacement
than the leading edges. In addition, there is also a high
displacement in the band, although it is a little lower
than in the blades. Displacement on the crown is negli-
gible compared with that on blades and band. In
addition, by comparing the normalized maximum dis-
placement on each part in air and in water, it can also
be observed that the mode shapes remain almost
unchanged.

In order to visualize the mode shapes more clearly, the
displacement of the band and blades seen from the bottom
is presented in Figs. 9 and 10. The main features about
some mode shapes of band and blades, discussed in Table
10, can be observed here.
he bottom for f01 (torsion); C– crown, B – band.

he bottom for f21 (bending); C – crown, B – band.
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In this mode (f01), the behaviour of band is a circumfer-
ential torsion. It can be seen that all blades have the same
deformation with one NL in each blade near the middle
position. In addition, it can be observed that the displace-
ment in the crown is lower than in the band and in the
opposite direction.

In this mode (f21), the band deforms like an ellipse. The
blades can be classified into four groups according to the
deformation pattern. The deformation of each blade is
approximately repeated every 180� (about 8 blades); such
as blade (1) and blade (9), blade (2) and blade (10), etc.
One NL appears on most blades. The crown remains
undeformed.

5. Conclusions

The added mass effects of the water on a Francis turbine
runner using numerical modal analysis were determined
with FEM method considering the structure and the sur-
rounding fluid domain. To get a high quality model, sensi-
tivity analyses on the element shape and mesh density were
carried out. From these analyses an optimized model with
6133 elements and 8529 nodes for every structural cyclic
sector was obtained. And hexahedral elements were used
overcoming the difficulties due to the complex geometry
of the structure.

To check the accuracy of the simulation, natural fre-
quencies and mode shapes were calculated and compared
with the corresponding experimental results. Simulation
shows an excellent agreement with experiment. Mode
shapes are similar to experimental ones and the maximum
deviation in the natural frequencies is around ±3.5%.

The added mass effect of the surrounding water has been
evaluated by comparing the frequencies in air and in water.
Natural frequencies are considerably reduced by the pres-
ence of water. The reduction ratio varies in a range of
0.10 � 0.39, depending on the mode shapes.

The added mass effect is physically explained based on
the energy theory. A non-dimensional added mass factor
is derived, which can be practically extrapolated to esti-
mate the natural frequencies of geometrically similar run-
ners with different materials and dimensions.

To describe the mode shapes precisely, some classifica-
tions have been developed based on the number of nodal
diameters in the band and on the nodal lines in the blades.
The features of mode shapes on each part of the runner
were studied and compared carefully. It can be shown that
between air and water, although frequencies decrease sig-
nificantly, the mode shapes undergo only small changes.
Blade and band present high displacement amplitude, while
in the crown it is negligible. The maximum displacement
amplitude appears on the trailing edge of blades in all
obtained modes.

Moreover, the method used in this investigation has
been proved to be to be valid, which can be used to numer-
ically study the dynamic behaviour of any other hydraulic
turbine runner.
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