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Analysis of the Swirling Flow
Downstream a Francis
Turbine Runner
An experimental and theoretical investigation of the flow at the outlet of a Francis
turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft
tube pressure recovery coefficient at a discharge near the best efficiency operating point.
Laser Doppler anemometry velocity measurements were performed for both axial and
circumferential velocity components at the runner outlet. A suitable analytical represen-
tation of the swirling flow has been developed taking the discharge coefficient as inde-
pendent variable. It is found that the investigated mean swirling flow can be accurately
represented as a superposition of three distinct vortices. An eigenvalue analysis of the
linearized equation for steady, axisymmetric, and inviscid swirling flow reveals that the
swirl reaches a critical state precisely (within 1.3%) at the discharge where the sudden
variation in draft tube pressure recovery is observed. This is very useful for turbine
design and optimization, where a suitable runner geometry should avoid such critical
swirl configuration within the normal operating range. �DOI: 10.1115/1.2137341�
1 Introduction
Swirling flow behavior in various technical applications has

long been an intensive subject of research. Usually swirl effects
are seen as either the desired result of design or unavoidable,
possibly unforseen, side effects �1�. However, the hydraulic tur-
bine draft tube on one hand benefits from the swirl at the runner
outlet in order to mitigate flow detachment in the cone, but on the
other hand suffers from the flow instabilities leading to pressure
fluctuations and ultimately to the draft tube surge.

The draft tube of a hydraulic turbine is the machine component
where the flow exiting the runner is decelerated, thereby convert-
ing the excess of kinetic energy into static pressure. In the case of
machine rehabilitation of an existing power plant, mostly only the
runner and the guide vanes are currently modified. For economical
and safety reasons, the spiral casing and the draft tube are seldom
redesigned, even if these components present some undesirable
behavior. However, the installation of an upgraded runner requires
a reliable prediction of the flow in a compact draft tube in order to
avoid the peculiar and undesirable efficiency curve from Fig. 1.
The efficiency drop as the discharge is increased above the best
efficiency point value is found to be related to a corresponding
sudden variation in the draft tube pressure recovery coefficient at
the same discharge. It is this phenomenon we address in this pa-
per.

The obvious practical importance of predicting the complex
flow downstream the turbine runner, in the draft tube, led to the
FLINDT research project of Flow Investigation in Draft Tubes
�2�. The main objective of this project was to investigate the flow
in hydraulic turbines draft tubes, for a better understanding of the
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physics of these flows and to build up an extensive experimental
data base describing a wide range of operating points which can
provide a firm basis for the assessment of the CFD engineering
practice in this component. The extensive experimental investiga-
tion of the draft tube flow has been complemented with three-
dimensional numerical flow simulations �3,4� aimed at elucidating
the swirling flow evolution up to the turbine outlet as well as the
phenomena that led to the peculiar sudden drop in the turbine
efficiency.

Other investigations have been mainly focused on the ability of
the CFD tools to accurately reproduce the complex three-
dimensional velocity and pressure field in draft tubes for Kaplan
turbines �5,6�. One important issue addressed in these studies was
the sensitivity of numerical results to the boundary conditions,
particularly the inlet ones.

The present paper focuses on the structure of the swirl produced
by the constant pitch turbine runner and further ingested by the
draft tube. The corresponding hydrodynamic field is a direct out-
come of the runner design and the operating point. Since changing
the runner design, while keeping the same draft tube, may lead to
an unexpected sudden efficiency drop for a certain discharge, it
would be preferable that some design criteria be put forward as far
as the runner outlet swirl is concerned. The present analysis
shapes such criteria by using relative simple mathematical and
numerical tools. Of course, the complex three-dimensional and
unsteady flow in the draft tube cannot be quantitatively predicted
only by analyzing the draft tube inlet swirl. However, if the runner
outlet swirl structure displays a sudden change with respect to
appropriate criteria, and this change occurs at a discharge close to
the experimental one where the sudden drop in turbine efficiency
is observed, these criteria should be taken into account when de-
signing or redesigning the runner.

In analyzing a swirling flow one benefits from a large body of

literature on this subject. In laboratory investigations swirl was
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generated by adjustable guidevanes, by fixed vanes similar to
those employed in combustors, or by tangential inflow through a
long slit �1�. The closest setup to the hydraulic turbine case seems
to be the adjustable radial guidevane apparatus, which has been
largely used for more than 50 years to investigate, both experi-
mentally and numerically, the so-called vortex breakdown �VB�
phenomenon �7–10�. The formulas employed in these studies to fit
both axial and circumferential velocity component radial variation
are of particular relevance for our study.

Several theoretical developments have been devoted to explain
the VB. However, a general consensus over the definition of this
phenomenon has not been reached yet. For example, Benjamin
�11� considers the VB to be a finite transition between two dy-
namically conjugate states of axisymmetric flow, analogous to the
hydraulic jump in open-channel flow. A similar definition was
later adopted by Keller �12�, who argued that various authors or
even schools have conflicting views on the correct interpretation
of the physics of VB. Leibovich �13� relates VB to a disturbance
characterized by the formation of an internal stagnation point on
the vortex axis, followed by reversed flow in a region of limited
axial extent. Goldshtik and Hussain �14� consider that VB occurs
due to solution nonuniqueness in some range of inflow parameters
when the entire steady flow experiences a jump to another meta-
stable steady state with the same boundary conditions. They stress
that VB is a loss-free process and, hence, analogies with shocks or
hydraulic jumps are misleading and must be abandoned. All theo-
ries for confined swirling flows consider axisymmetric geometries
with constant or variable cross section �e.g., slowly diverging
pipes�. It is difficult to imagine that a simplified theory could be
elaborated for a swirling flow in an actual draft tube with both
cross-section shape and area variation, as well as changes in the
flow direction. However, at least for the draft tube cone where
most of the pressure recovery occurs, swirling flow theories might
provide valuable results for design evaluation and optimization.

Mauri et al. �15,3� developed and applied original techniques to
analyze the three-dimensional flow in the FLINDT draft tube.
They explain the draft tube efficiency drop from Fig. 1 by a global
instability triggered by the flow rate increase. The topological
structure of the velocity field changes abruptly with the emergence
of a saddle point and a focus in the skin friction lines pattern on
the elbow wall, leading to a global Werlé-Legendre separation that
blocks the right channel. However, there is an important question
to be answered: is this phenomenon the primary cause of the draft
tube efficiency drop or it is one of the consequences of a corre-
sponding abrupt change in the swirling flow ingested by the draft

Fig. 1 Efficiency break off obtained by increasing the dis-
charge and keeping the specific energy constant. Model test of
a Francis turbine with specific speed 0.56.
tube as the discharge increases? It is this question we address in
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this paper, by investigating the swirling flow on the draft tube
inlet section within the general framework of vortex breakdown
theories.

In Sec. 2 we briefly present the experimental setup and measur-
ing techniques used to investigate the flow in a Francis turbine
draft tube. In this paper we examine the flow on a section at the
runner outlet/draft tube inlet. Laser Doppler anemometry has been
employed to investigate the velocity components, with particular
attention paid to the data error control.

Section 3 is devoted to the analytical representation of velocity
components radial variation. A critical analysis of swirling flow
models available in literature is followed by the development of a
model particularly suited to hydraulic turbines. It is shown that a
three-vortex system accurately represents the experimental data,
and a least squares technique is employed for computing the
model parameters. Finally, the velocity profiles are parametrized
only by the discharge coefficient, thus allowing a swirl behavior
analysis as the operating point changes continuously.

The nonlinear Long-Squire equation is used in Sec. 4 as a math-
ematical model for the swirling flow at the draft tube inlet. The
finite element method is employed to solve the corresponding
boundary value problem for the stream function.

The solution behavior is examined in Sec. 5 using the linearized
operator spectrum analysis. It was found that the critical state of
the swirl configuration, defined by Benjamin �11�, is in good
agreement with the abrupt change experimentally observed in the
draft tube pressure recovery coefficient.

The paper conclusions are summarized in Sec. 6.

2 Experimental Investigation of the Velocity Field on
the Draft Tube Inlet

The FLINDT project �2� experimental investigations were car-
ried out on a Francis turbine scaled model of specific speed 0.56
�Fig. 2�. The turbine model has a spiral casing of double curvature
type with a stay ring of 10 stay vanes, a distributor made of 20
guide vanes, a 17-blade runner of a 0.4 m outlet diameter, and a
symmetric elbow draft tube with one pier. The global measure-
ments for flow rate, head, and efficiency were performed accord-
ing to the IEC 60193 International Standard �16�.

The experimental data used in this paper were obtained with a
two-component probe Laser Doppler Anemometer �LDA�, using
back-scattered light and transmission by optical fiber, with a laser
of 5 W argon-ion source. The main characteristics of the optical

Fig. 2 Sketch of the Francis turbine model and LDA setup for
the flow survey section at runner outlet-draft tube inlet
system are laser wave lengths 488/514.5 nm, probe diameter
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60 mm, beam spacing probe with beam expander 73.3 mm, focal
length 1000 mm, fringe spacing �5.3 nm, and measuring volume
�x=�y �0.2 mm, �z�6 mm.

Spherical silver-coated glass particles are introduced in the test
rig flow. These particles are hollowed in order to match the water
density and are able to follow flow fluctuations frequency up to
5 kHz �17�. The mean diameter of these particles is 10 �m.

In order to control the position of the measurement volume, a
ray tracing technique is used for calculating direct and inverse
light paths of laser beams through the different media �air, win-
dow, water�. An optical window with plane and parallel faces is
used as an interface. The measuring point geometrical location is
controlled within a 0.05 mm accuracy. Both axial and circumfer-
ential components of the velocity are measured. The uncertainties
of the velocity measurements are estimated to be 2% of the mea-
sured value �18�.

The global “efficiency” of the draft tube is quantified using the
static pressure recovery coefficient, defined as

� =
�p/� + gz�out − �p/� + gz�ref

Q2/2Aref
2 . �1�

Figure 3 presents isolines of the pressure recovery coefficient in
discharge coefficient-energy coefficient coordinates. The operat-
ing points further referenced in this paper, where full velocity
measurements are performed on the survey section from Fig. 2,
are also marked. The turbine efficiency break-off, Fig. 1, is found
to be produced by a corresponding drop in the draft tube pressure
recovery. This phenomenon occurs practically at the same dis-
charge value for a specific energy coefficient lower than 1.30.

Throughout this paper the velocity is made dimensionless by
the runner angular speed�runner outlet radius, and lengths are
made dimensionless with respect to the runner outlet radius Rref
�Fig. 2�.

In order to assess the Reynolds number influence on the veloc-
ity field at the runner outlet, the same operating point �discharge
coefficient, specific energy coefficient� has been investigated for
two runner rotational speed values, 500 and 1000 rpm, respec-
tively. The data for dimensionless axial and circumferential veloc-
ity components corresponding to the same operating point in Fig.
3 but at two runner rotational speeds are plotted in Fig. 4. Accord-
ing to the IEC 60193 Standard �16�, the characteristic Reynolds

2

Fig. 3 Pressure recovery isolines „thick lines… for the draft
tube investigated in the FLINDT project. The turbine operating
points „discharge coefficient-specific energy coefficient… are
shown with filled circles.
number Re of the turbine is defined as Re=UD /�=�nD /60�.
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The corresponding Reynolds number of the reduced scale model
is changed from 4.2�106 �at n=500 rpm� to 8.4�106 �at n
=1000 rpm� without any significant variation in the dimensionless
velocity profiles. Moreover, the axial and circumferential velocity
profiles measured at the same discharge coefficient value are not
sensitive to specific energy coefficient changes within the investi-
gated range 1.0–1.3, as one can observe Fig. 5. This led us to the
conclusion that the only relevant parameter for the investigation
further presented in this paper is the turbine discharge coefficient.

3 Analytical Representation of Axial and Circumfer-
ential Velocity Profiles

Several swirling flow models have been considered in the lit-
erature to study either the vortex stability or the vortex break-
down. We briefly review these models in order to develop a suit-
able representation for the swirl at the Francis runner outlet.
Historically, vortex flow have been first studied in unbounded
media and as a result the velocity circulation at very large distance
from the vortex axis was naturally chosen as a vortex parameter.
Since we are dealing with confined vortices, it is convenient to use
the angular velocity at the vortex axis, �. A second parameter is a
characteristic vortex radius R which measures the vortex core ra-
dial extent. These two parameters define the Rankine vortex cir-
cumferential velocity,

w�r� = ��R2

r
for r 	 R ,

�r for r 
 R
� , �2�

where r is the radial distance from the vortex axis. This simplified
model provides a continuous function for w�r�, but the derivative
is discontinuous. A rigorous theoretical foundation is provided for
the Burgers vortex �also known as the Lamb vortex�, which gives

Fig. 4 Reynolds number influence on the dimensionless ve-
locity profiles at operating point with discharge coefficient
0.368 and energy coefficient 1.18
the circumferential velocity profile as
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w�r� =
�R2

r
�1 − exp	−

r2

R2
� . �3�

Formula �3� is an exact solution for a viscous vortex produced by
radial inflow and axial outflow where the conditions at large radial
distance are irrotational. The relationship between Rankine vortex
�2� and Burgers vortex �3� models can be easily seen from Fig. 6.
If we take the limit for r�R in �3� we get �r, while for r�R we
obtain �R2 /r. In conclusion, the Rankine vortex represents the
asymptotic behavior of the Burgers vortex for large and small
radius with respect to the vortex core extent R.

Fig. 5 Specific energy coefficient influence on the dimension-
less velocity profiles at operating points with discharge coeffi-
cient 0.368

Fig. 6 Circumferential velocity profile for Rankine and Bur-

gers vortex models, respectively
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Both the above models consider a uniform axial velocity. It was
Batchelor �19� who pointed out that a radial variation in circum-
ferential velocity must be accompanied by a variation in the axial
velocity. He showed that in the case of a trailing vortex from one
side of a wing in an infinite body of fluid all streamlines originate
in a region where the pressure is uniform and the fluid velocity is
uniform with only an axial component U0. When a Rankine vor-
tex circumferential velocity �2� is induced by viscous effects in
the boundary layer of the wing, the axial velocity inside the vortex
core increases as

u = �U0 for r 	 R ,


U0
2 + 2�2�R2 − r2� for r 
 R ,

� �4�

Applying the same considerations for the Burgers vortex �3�, we
obtain

u2 = U0
2 +�

r



1

r2

�K2

�r
dr = U0

2 + 2�2R2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� ,

where K�rw is �2��−1 times the circulation around a symmetri-
cally placed circle and Ei1 is the exponential integral of order one.
On the axis the axial velocity is 
U0

2+2 ln�2��2R2, which is
smaller than the corresponding value for the Rankine vortex

U0

2+2�2R2.
Faller and Leibovich �8� have used the following axial velocity

functional form to fit their experimental data for a radial guide-
vane swirl generator,

u�r� = U0 + U1 exp	−
r2

R2
 , �5�

where U1 is the difference between the axial velocity on the axis
and the axial velocity far away from the axis, U0. Note that when
using �5� together with �3� the vortex core radius R is the same.
When R�r, Eq. �3� becomes u�r���r since limx→0�1
−exp�−x2�� /x2=1, and Eq. �5� becomes u�r��U0+U1=const.

It was specifically stated in �8� that no theoretical justification
for �5� is available. Indeed, in comparison with the axial velocity
profile obtained, according to Batchelor, within the constant total
head hypothesis

u�r�
U0

=
1 + 2	�R

U0

2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� , �6a�

the functional form �5� rewritten to have the same axial velocity

u�r�
U0

= 1 + �− 1 +
1 + 2 ln�2�	�R

U0

2�exp	−

r2

R2
 , �6b�

seems to be completely different. However, one can easily con-
clude from Fig. 7 that �6b� is a rather good approximation for
�6a�. Obviously, �6b� or the more general form �5� is more con-
venient for analytical manipulation.

A more rigorous justification for �5� is attempted by Alekseenko
et al. �20� who consider swirling flows with helical symmetry, i.e.,
the flow characteristics conserve their values along helical lines of
pitch 2�l. For axisymmetrical �columnar� helical vortices with a
circumferential velocity as in �3� they obtain the axial velocity
profile of the form

u�r� = Uaxis −
�R2

l
�1 − exp	−

r2

R2
� , �7�

where Uaxis�U0+U1. One can identify from �7� the characteristic
velocity U1=�R2 / l, and eventually use the length l= �2��−1

�pitch instead of U1 as a free parameter.
So far we have considered only an elementary vortex represen-

tation. However, the experimental data display a more complex
structure which should be modeled by a combination of simple
vortices. There are two possibilities to consider such combina-

tions. One idea put forward by Alekseenko et al. �20� is to con-
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sider nonoverlapping regions along the radius, with piecewise
continuous vorticity distribution. The resulting velocity profiles
�both axial and circumferential� are made continuous by a proper
choice of the integration constants. Another idea was put forward
by Mattner et al. �9� who considered a sum of elementary velocity
profiles for both axial and circumferential components. Essentially
this second approach becomes equivalent to the first one if the
vortices are well separated, i.e., the characteristic radii are well
distinct one from each other.

In order to build a suitable vortex combination we should first
consider a base flow. Using the dimensionless velocity compo-
nents u and w, as well as the dimensionless runner tangential
velocity, which coincides with the dimensionless radius r accord-
ing to Sec. 2, the relative flow angle is

� = arctan
u

r − w
. �8�

Since the swirling flow examined in this paper is produced by a
constant pitch Francis turbine runner, the relative flow angle
should be consistent with an approximation corresponding to a
solid body rotation, w=�0r and u=U0. Indeed, the relative flow
angle computed from the experimental data for circumferential
and axial velocity can be reasonably fitted with �
=arctan�const/r�, as shown in Fig. 8. However, a solid body ro-
tation is a rather crude approximation of the actual velocity pro-
files. Figures 4 and 5 suggest that two Batchelor vortices, one
co-rotating and the other counter-rotating with respect to w=�0r,
and co-flowing/counter-flowing with respect to u=U0, respec-
tively, should be superimposed for consistency with experimental
data for circumferential and axial velocity profiles:

w�r� = �0r + �1
R1

2

r
�1 − exp	−

r2

R1
2
� + �2

R2
2

r
�1 − exp	−

r2

R2
2
� ,

�9a�

u�r� = U0 + U1 exp	−
r2

R1
2
 + U2 exp	−

r2

R2
2
 . �9b�

If R0 is the dimensionless survey section radius, then the discharge
coefficient can be obtained by integrating the axial velocity profile

Fig. 7 Axial velocity profiles computed with „6a…—solid lines
and „6b…—dashed lines, respectively, for several values of the
dimensionless parameter aÆ�R /U0
�9b�,
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� = U0R0
2 + U1R1

2�1 − exp	−
R0

2

R1
2
� + U2R2

2�1 − exp	−
R0

2

R2
2
� .

�10�

The functional forms �9� have an eight-parameter set �
��R1 ,R2 ,�0 ,�1 ,�2 ,U0 ,U1 ,U2� to be determined by fitting the
experimental data. For each operating point under consideration,
with a set of experimental data �rj ,uj ,wj�j=1, . . . ,N, the error
vector e���= �ek����, k=1,2 , . . . ,2N is defined as

ek��� = �u�rk,�� − uk for k = 1,2, . . . ,N ,

w�rk−N,�� − wk−N for k = N + 1, . . . ,2N .
� . �11�

The error vector includes both axial and circumferential velocity
data since the vortex core radii R1 and R2 correspond to both
velocity components. The parameter set is found by minimizing
�k=1

2N �ek����2, leading to a least squares estimate of �. Let �c be
the current estimate of �. A new estimate is given by �c+�c

*,
where �c

* is a solution to

�JT��c�J��c� + �cI��c
* = JT��c�e��c� . �12�

Here J��c� is the Jacobian �2N��8 matrix evaluated analytically
at �c. The iterative algorithm uses a “trust region” approach with
a step bound of �c. A solution of Eqs. �12� is first obtained for
�c=0. If ��c

*�2
�c this update is accepted. Otherwise, �c is set to
a positive value and another solution is obtained.

Swirl parameters found by fitting formulas �9� to experimental
data for 17 operating points are listed in Table 1. The last two
columns contain the values of the discharge coefficient � com-
puted with �10�, and the corresponding relative error with respect
to the measured value shown in the first column. This error is a
good indicator for the accuracy of the fit, as well as for the mea-
surements overall accuracy. We conclude that �9b� is a very good
representation for the axial velocity at the runner outlet and the
superposition of three vortices in �9a� accurately represents the
experimental data for the circumferential velocity over the whole
discharge range under investigation.

Figures 9–14 display the data as well as the curves fitted with
�9� for the first six points in Table 1. These operating points cover
the investigated discharge domain at a constant head correspond-
ing to the turbine best efficiency operating point. The quality of
the fit can be assessed by observing that most of the time the

Fig. 8 Relative flow angle computed from the experimental
data for axial and circumferential velocity components on the
survey section. The solid curve is a least squares fit consider-
ing a rigid body rotation for the circumferential velocity and a
constant axial velocity.
curves approach the experimental points within the measurement
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errors of 2%. The wall boundary layer is not correctly reproduced
since the swirling flow model �9� was specifically built for an
inviscid flow analysis.

A main goal of this paper is to find a suitable parametric rep-
resentation for the swirling flow at the Francis runner outlet. Fig-
ure 15 shows the variation of vortex characteristic angular veloci-
ties with respect to �. Linear least squares fits accurately represent
�0��� and �1���, while for �2��� a parabolic fit seems to be
quite satisfactory. Moreover, one should note that �0 is almost
constant over the investigated operating range. The variation of
vortex characteristic axial velocities with respect to � is shown in

Table 1 Swirl parameters from Eq

Operating point Sw

Discharge
coefficient

Energy
coefficient

Speed
�rpm� �0 �1 �2

0.340 1.18 1000 0.31765 −0.62888 2.2545 0.3
0.360 1.18 1000 0.26675 −0.79994 3.3512 0.3
0.368 1.18 1000 0.27113 −0.80310 3.4960 0.3
0.380 1.18 1000 0.27536 −0.81730 3.5187 0.3
0.390 1.18 1000 0.27419 −0.86579 3.2687 0.3
0.410 1.18 1000 0.28802 −0.96687 1.4590 0.3
0.368 1.00 1000 0.27710 −0.77440 3.3913 0.3
0.380 1.00 1000 0.26726 −0.83772 3.1082 0.3
0.370 1.11 1000 0.28119 −0.77668 3.5520 0.3
0.368 1.30 1000 0.29078 −0.79348 3.4239 0.3
0.380 1.30 1000 0.27618 −0.85846 3.2696 0.3
0.410 1.30 1000 0.27670 −0.96571 2.2165 0.3
0.370 1.11 500 0.27854 −0.77371 3.4491 0.3
0.340 1.18 500 0.29630 −0.67299 2.7487 0.3
0.368 1.18 500 0.27151 −0.78970 3.5902 0.3
0.380 1.18 500 0.27659 −0.79568 3.3111 0.3
0.410 1.18 500 0.28624 −0.93559 0.76010 0.3

Fig. 9 Axial and circumferential velocity profiles at discharge

�=0.340
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Fig. 16, together with the corresponding linear fits. Finally, Fig.
17 displays the dependence of the vortex core radii on �. A first
conclusion from Figs. 15–17 is that swirl parameters in �9� have a
smooth, generally linear, variation in � over the investigated
range. As a result, one obtains the velocity components as C


functionals w�r ,�� and u�r ,��, further employed in a parametric
study of the flow stability or other properties.

According to the qualitative picture of the three vortex system
presented in Table 2, Vortex 0 is a rigid body rotation with angular
speed �0 and we can associate with it a constant axial velocity
U0. Vortex 1, which has a vortex core extent about half the wall
radius, is counter-rotating and co-flowing with respect to vortex 0.
The strength of this vortex, both in �1 as well as in U1 is growing

„9… for 17 turbine operating points

parameters Discharge coefficient

U1 U2 R1 R2

Computed
Eq. �10� Error

7 0.01056 −0.31889 0.46643 0.13051 0.344 +1.1%
1 0.07324 −0.29672 0.36339 0.09304 0.363 +0.8%
1 0.08710 −0.27350 0.37291 0.08305 0.372 +1.0%
7 0.10618 −0.23545 0.38125 0.07188 0.381 +0.2%
6 0.12677 −0.19061 0.37819 0.06502 0.389 −0.2%
3 0.19121 −0.09215 0.39108 0.05012 0.409 −0.3%
4 0.08107 −0.24619 0.38128 0.08289 0.368 +0.1%
2 0.11387 −0.19284 0.35948 0.07312 0.380 +0.1%
1 0.08308 −0.25254 0.38947 0.07904 0.369 −0.1%
9 0.10086 −0.25499 0.39536 0.07939 0.371 +0.8%
1 0.12280 −0.19933 0.37413 0.06734 0.386 +1.5%
6 0.17829 −0.10984 0.37930 0.05021 0.407 −0.6%
5 0.09058 −0.21118 0.38535 0.07827 0.370 +0.1%
9 0.02987 −0.32612 0.41942 0.11679 0.345 +1.6%
7 0.09131 −0.22465 0.37450 0.07914 0.369 +0.2%
5 0.11063 −0.17502 0.38765 0.07002 0.379 −0.3%
3 0.19587 −0.06119 0.39588 0.05147 0.406 −0.9%

Fig. 10 Axial and circumferential velocity profiles at discharge
s.
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as the flow rate increases. Vortex 2 has a core at least four times
smaller than vortex 1, is co-rotating and counter-flowing with re-
spect to vortex 0, and its strength increases as the flow rate de-
creases. Note that as the flow rate increases �eventually beyond
the upper limit in our investigation� vortex 2 will vanish. These
two Batchelor vortices are mainly responsible for the swirling

Fig. 11 Axial and circumferential velocity profiles at discharge
�=0.368

Fig. 12 Axial and circumferential velocity profiles at discharge

�=0.380
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flow behavior. For � smaller than the design value a wake-like
axial velocity is developed �Fig. 9� while for larger � the axial
velocity has a jetlike profile �Fig. 14�.

4 Swirling Flow Mathematical Model and Numerical
Approach

Theoretical analysis of swirling flows can employ tools ranging
from simplified axisymmetric, inviscid steady �11� or unsteady

Fig. 13 Axial and circumferential velocity profiles at discharge
�=0.390

Fig. 14 Axial and circumferential velocity profiles at discharge

�=0.410

JANUARY 2006, Vol. 128 / 183

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Down
�21� flow models to full 3D laminar �10� or turbulent �22� numeri-
cal simulation. However, it is useful to first examine the swirling
flow at the draft tube inlet before performing an analysis of the
flow in the straight cone or even in the whole 3D geometry. Such
results may be quite useful if there is a correlation �even qualita-
tive� with the overall draft tube behavior over a certain range of
discharge variation.

If we restrict for now our analysis only for the runner outlet
section, several simplifications must be admitted, and the results
must be interpreted accordingly. We consider a steady mean flow
with axial and circumferential velocity profiles derived from ex-
perimental data in Sec. 3. An inviscid incompressible fluid is con-
sidered, since our swirling flow representation does not account
for the boundary layer near the wall.

The cylindrical flow assumption may not seem appropriate for
the flow in the draft tube cone shown in Fig. 2, since it is known
that the diverging pipe geometry precipitates the formation of
breakdown by creating an adverse pressure gradient along the
vortex axis. Shtern and Hussain �23� show that the nonparallel
character of jets strongly affects their stability. Flow deceleration
significantly enhances the shear-layer instability for both swirl-
free and swirling jets. Buntine and Saffman �24� study a diverging
flow using the steady axisymmetric Euler flow model. They show

Fig. 15 Characteristic angular velocities �0, �1, and �2 ver-
sus discharge coefficient �

Fig. 16 Characteristic axial velocities U0, U1, and U2 versus

discharge coefficient �
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that solutions fail to exist or, alternatively, that flow ceases to be
unidirectional, so that the breakdown can be inferred, when a
parameter measuring the relative magnitude of rotation and axial
flow exceeds critical values depending upon geometry and inlet
profiles. However, for slightly diverging duct of angles less than
2°, Tsai �25� shows that the flow can be considered locally parallel
for the flow stability analysis. This parallel flow assumption is not
quite restrictive even for the 8.5° cone angle considered in this
study. The diffusion process takes place only close to the wall,
leading to a thin 3D boundary layer, as it can be seen from the
measured velocity distribution �Figs. 4 and 5�. Therefore, by ne-
glecting the retarding influence of the wall, we can assume that
the bulk flow is parallel. As far as the mean flow is concerned, the
radial velocity is one order of magnitude smaller than the axial
velocity since v /u
 tan 8.5° �0.15.

Within these assumptions, the mathematical model to be con-
sidered here corresponds to the theory of finite transitions between
frictionless cylindrical flows originally developed by Benjamin
�11�. The equation of continuity for axisymmetric incompressible
flows is automatically satisfied by introducing the streamfunction
��z ,r� such that the axial and radial velocity components can be
written as

u =
1

r

��

�r
and v = −

1

r

��

�z
. �13�

When applied to a circuit around a particular stream-surface �
=const Kelvin’s theorem shows rw to be a constant. Thus in gen-
eral rw�K���, where K is a function of � alone. Also, on a
streamsurface the total specific energy H= p /�+ �u2+v2+w2� /2 is
constant by Bernoulli’s theorem, thus H is a function of � alone.
The momentum equation for the steady, axisymmetric swirling
flow becomes

1

r2	 �2�

�z2 +
�2�

�r2 −
1

r

��

�r

 = H���� −

K���K����
r2 , �14�

which is known in literature as the Long-Squire or Bragg-
Hawthorne equation. Goldshtik and Hussain �14� noted that, in
fact, Eq. �14� was derived much earlier by Meissel �in 1873�. The
prime denotes differentiation with respect to �. By introducing the
new variable y=r2 /2 Eq. �14� can be rewritten as

�2�

�y2 +
1

2y

�2�

�z2 = H���� −
K���K����

2y
. �15�

If we substitute Y1=R1
2 /2 and Y2=R2

2 /2 the axial velocity profile

Fig. 17 Vortex core radii R1 and R2 versus discharge coeffi-
cient �
�9b� can be written as
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u�y� = U0 + U1 exp�− y/Y1� + U2 exp�− y/Y2� . �16�

Since from �13� u=�� /�y, the streamfunction for the above ve-
locity profile is

��y� = U0y + U1Y1�1 − exp�− y/Y1�� + U2Y2�1 − exp�− y/Y2�� ,

�17�

where without loss of generality we have considered �=0 on the
symmetry axis.

The discharge coefficient � from Eq. �10� can be rewritten as

� = 2U0Y0 + 2U1Y1�1 − exp�− Y0/Y1�� + 2U2Y2�1 − exp�− Y0/Y2�� ,

�18�

where Y0=R0
2 /2. As a result, at the wall we have �wall���Y0�

=� /2.
For a mean flow with negligible radial velocity, the right-hand

side in Eq. �15� is simply du /dy,

H���� −
K���K����

2y
ª � ——→

Eq. 17

y → −
U1

Y1
exp	−

y

Y1



−
U2

Y2
exp	−

y

Y2

 .

The map �→y has to be computed numerically, for example
using the Newton iterative method,

y�m+1� = y�m� +
� − ��y�m��

u�y�m��
, with initial guess y�0� = Y0

�

�/2
,

where m denotes the iteration index. Note that due to the nonlin-
earity of this map, the solution of Eq. �15� with boundary condi-
tions ��0�=0 and ��Y0�=� /2 may be nonunique. To investigate
this feature let us consider the streamfunction in �15� of the form

��z,r� = ��y� + ��̃�y�exp�i�z� , �19�

where ��y� is the base flow given by �17�, �̃�y� is a perturbation
of the base flow �Fig. 18�, and � is the axial wave number of this
perturbation.

Introducing �19� in Eq. �15� one obtains the linearized equation

d2�̃

dy2 − 	H���� −
K�2��� + K���K����

2y

�̃ =

�2

2y
�̃ . �20a�

Of course, in order to preserve the flow rate the perturbation must
satisfy homogeneous boundary conditions

�̃�0� = �̃�Y0� = 0. �20b�

Equations �20� define a generalized eigenvalue problem. The ei-
genvalues �2 can be computed numerically once the problem is
discretized. The expression inside square brackets on the left-hand
side can be easily evaluated once an analytical swirl representa-
tion is available:

C�y� � H���� −
K�2��� + K���K����

2y
=

1

u

d2u

dy2 −
K

2y2u2

dK

dy
.

Table 2 Swirli

Vortex 0

Circumferential
velocity

rigid body rotation

Axial velocity constant
Vortex core
radius

—

�21�
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If we consider a grid y0=0,y1 , . . . ,y1 , . . . ,yN ,yN+1=Y0 and a

piecewise linear approximation of the solution �̃�y��� j�̃ jNj�y�,
the finite element discretization of problem �20� can be written in
matrix form as

A�̃ = �2B�̃ , �22a�

where �̃ is the nodal values vector, and

Aij = −� dNi�y�
dy

dNj�y�
dy

dy −� Ni�y�C�y�Nj�y�dy ,

�22b�

Bij =� Ni�y�Nj�y�
2y

dy

are N�N tridiagonal symmetric matrices. Obviously the matrix
entries in �22b� are evaluated only for the N interior nodes, due to
the homogeneous Dirichlet conditions �20b�. The GVCSP proce-
dure from the International Math and Statistics Libraries �IMSL�
�26� is used here to compute all of the eigenvalues and eigenvec-
tors of the generalized real symmetric eigenvalue problem �22a�,
with B symmetric and positive definite.

Let us summarize now the swirling flow model according to the
synoptic Fig. 18. Once the analytical representation for axial and
circumferential velocity components has been established, the
mean flow streamfunction can be computed. A streamtube �

=const may be subject to axisymmetric perturbations ��̃, which
are the eigenfunctions of problem �20�. Such a perturbation can be

flow structure

Vortex 1 Vortex 2

counter-rotating co-rotating

co-flowing counter-flowing
�0.4R0 �0.1R0

Fig. 18 Synoptic view of the model for swirling flow down-
ng
stream of a Francis turbine runner
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sustained or not depending on the sign of the corresponding ei-
genvalue �2, according to the analysis to be presented in the next
section.

5 Analysis of the Swirling Flow
An important property of the swirling flows downstream a con-

stant pitch hydraulic turbine runner is that the relative flow angle
depends only on the blade exit angle provided that the flow re-
mains attached. This is certainly the case for a turbine runner
operating in the neighborhood of the best efficiency point, there-
fore we can expect that the relative flow angle remains practically
independent for the operating points of interest in this study.
Moreover, due to negligible retarding forces, the global moment
of momentum of the flow at the runner outlet should remain con-
stant in the cone. Therefore, the relative flow angle �8� should
depend only on the streamtube, i.e., on the normalized stream-
function � / �� /2� �Fig. 19�. In other words, the relative flow angle
on the survey section at runner outlet is practically constant on a
streamtube originating at the same radius on the blade trailing
edge, being determined by the blade exit angle irrespective of the
discharge. This shows the direct correlation between the runner
blade design and the kinematics of the swirl on the draft tube
inlet. Moreover, the significant changes in the circumferential and
axial velocity profiles can be associated only with the stream-
tube’s cross-section variation downstream the blade trailing edge,
as the discharge is modified.

The above considerations on the relative flow angle �8� help us
understand the striking feature that the flow rotates in some radius
range in the opposite direction to that at smaller and larger radii.
Since the relative flow angle remains constant on a streamtube, an
increase in the dimensionless axial velocity u must be accompa-
nied by an increase in the dimensionless relative circumferential
velocity r-w. In consequence, as the axial flow accelerates, i.e., a
jetlike axial velocity profile is developed when the discharge in-
creases, the corresponding absolute circumferential velocity w be-
comes negative in order to increase r-w, thus keeping u / �r-w�
practically constant in Eq. �8�.

A global quantitative description of the swirling flow is pro-
vided by the swirl number S defined as the axial flux of swirl
momentum divided by the axial flux of axial momentum ��27�,

Fig. 19 Relative flow angle on streamtubes
p. 2�,
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S =

�
0

R0

�u�rw�rdr

R0�
0

R0

��u2 + p − pR0
�rdr

, �23a�

where pR0
is the pressure at the wall. The pressure term in �23a�

can be evaluated using the equation of radial equilibrium,

�p

�r
=

�w2

r
⇒ p − pR0

= −�
r

R0 �w2

r
dr . �23b�

The swirl number computed for the swirling flow given by �9�,
with parameters from Figs. 15–17, is plotted versus the discharge
coefficient in Fig. 20. One can see that for the investigated range
of � the swirl number decreases as the discharge increases, but
nevertheless the variation is smooth.

More interesting and useful conclusions can be drawn from the
analysis of eigenvalues �2 and the corresponding eigenvectors in
�20�. If �2
0, then � is imaginary and the exponential factor in
�19� will be exp�±���z�. As we move downstream the current sec-
tion, z�0, the only physically acceptable solution corresponds to

exp�−���z�, showing an exponential damping of �̃. A swirl con-
figuration for which all eigenvalues are negative is unable to sus-
tain axisymmetric small-disturbance standing waves and it was
termed supercritical by Benjamin �11�. On the other hand, if at
least one eigenvalue �2 is positive, then the perturbation will take
the form of a standing wave exp�±i�z�, and the corresponding
flow is termed subcritical. All physical interpretations attempted
for the distinction between supercritical and subcritical states were
mainly focused at the vortex breakdown phenomena. Benjamin’s
original interpretation was that for a given distribution of H���
and K��� one possible state of flow is subcritical and the conju-
gate state is supercritical. A deduction of this theory is that, com-
pared with their conjugates, supercritical flows possess a defi-
ciency of total momentum defined as the integral of axial
momentum flux plus pressure over a cross section. This property
would imply that supercritical flows are liable to undergo sponta-
neous transitions to subcritical state. Later, this theory came under
quite heavy criticism, mostly because of its lack of explaining the
axial flow reversal associated with the vortex breakdown. For ex-
ample, Hall �28� particularly disagrees with the hydraulic jump
analogy. Leibovich �29� considers that the most serious weakness
of Benjamin’s theory is that there is no clear way to relate it to
experiments which, at high Reynolds numbers, always have un-

Fig. 20 The swirlnumber S from „23a… versus the discharge
coefficient �
steady, non-axisymmetric wakes. A decade ago Keller �12�
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pointed that various authors or even schools have conflicting
views on the correct interpretation of the physics of vortex break-
down. Moreover, in his opinion, Benjamin’s theory already con-
tained most ideas for a successful theory of axisymmetric vortex
breakdown but it was missing the definition of the total head
circulation in regions with flow reversal, i.e., beyond the upstream
interval of streamfunction values. The stagnation model emerged,
where the total head is uniform and circulation vanishes in the
domain of flow reversal, and was lately employed by Rusak et al.
�30� to examine axisymmetric vortex breakdown in a finite length
pipe. They present a comprehensive study of the Burgers vortex
behavior, using both steady and unsteady axisymmetric inviscid
flow models. Using essentially the same linearized eigenvalue
problem, they determined the critical swirl level above which the
base solution will evolve downstream to a solution that is a global
�not local� minimizer of a certain functional. The flow in the pipe
is computed explicitly, thus supporting the conclusions. However,
no attempt has been made to directly correlate the computational
results with any experimental data.

The approach we take in this paper is to examine the transition
of the swirling flow downstream a Francis turbine runner from
subcritical to supercritical as the discharge coefficient increases
and to correlate the critical state with the experimentally observed
sudden drop in the draft tube pressure recovery coefficient. A
similar approach was advocated by Goldshtik and Hussain �14�
who consider that vortex breakdown necessarily occurs when so-
lution nonuniqueness is achieved by a continuous change in flow
parameters. Moreover, we consider that valuable insight might be

gained also by examining the eigenmodes �̃ corresponding to
positive eigenvalues.

Let us examine first the main result of this paper, inferred from
Fig. 21. For ��0.365, and correspondingly smaller swirl num-
bers, all eigenvalues from �20� are negative, thus the flow is su-
percritical and cannot sustain axisymmetric standing waves. How-
ever, for �
0.365 the largest eigenvalue becomes positive,
followed by the next eigenvalues as � decreases, and the flow is
subcritical with standing waves described by the corresponding

eigenvectors �̃. The critical state occurs according to our compu-
tations at �=0.365. This discharge value is quite close �only 1.3%
smaller� to the value of �=0.37 where the sudden drop in draft
tube pressure recovery coefficient is observed. It seems reasonable
to assume that the critical state is directly related to this experi-
mentally observed phenomenon, since by trying several draft tube
geometries while keeping the same runner �and the swirling flow�
the same behavior has been observed practically at the same dis-

Fig. 21 The first four eigenvalues and the pressure recovery
coefficient function of the discharge coefficient
charge. While reaching the critical swirl configuration seems to be

Journal of Fluids Engineering

loaded 06 Jul 2009 to 128.178.4.3. Redistribution subject to ASME
the cause, the actual physical mechanism by which the pressure
recovery suffers an abrupt change cannot be inferred from the
present analysis. Experimental �2� as well as numerical �3,4� in-
vestigations offer a comprehensive analysis of the Francis turbine
draft tube flow.

Several eigenmodes �̃�r� corresponding to the largest eigen-
value for subcritical flows are shown in Fig. 22. Since the eigen-
modes are defined up to a multiplicative constant, it makes no
sense to have marks on the vertical axis. One can easily see that as
the discharge coefficient decreases the support of the eigenmode
shrinks toward the axis neighborhood. It means that the induced
velocity perturbations, for example their real part

ũ =
d�̃

dy
cos��z� and ṽ =

��̃


2y
sin��z� ,

are confined closer to the axis as � decreases. Moreover, the rela-
tive amplitude of the perturbation increases since � gets larger
�leading to larger ṽ� and also the slope at the origin increases
�leading to larger ũ� on the axis. Although no vortex breakdown
bubble is observed in the draft tube cone, the above velocity per-
turbations can be related to the axial velocity deficit reduction
further downstream. This mechanism of reducing the “wakelike”
axial velocity nonuniformity might be responsible for the im-
provement in the draft tube overall performance as the discharge
gets smaller than the critical value. For even smaller discharge,
more eigenmodes are successively present. For example, Fig. 23
presents the first two eigenmodes at �=0.348, corresponding to
the two positive eigenvalues. While the first eigenmode is con-
fined near the axis, the second one is not, but its behavior will
follow the same pattern when further decreasing the discharge.

6 Conclusions
The present work started from the idea that the swirling flow

configuration at the outlet of a Francis turbine runner has a major
influence on the overall behavior of the flow downstream in the
draft tube.

We have investigated experimentally the velocity axial and cir-
cumferential components at the runner outlet for 17 operating
points within the turbine normal operating range. Then, a suitable
analytical representation of the velocity profiles is developed, with
the turbine discharge as an independent parameter. It is shown that
the swirling flow in the survey section can be accurately repre-
sented using a superposition of three distinct vortices: a rigid body
rotation motion, a counter-rotating and co-flowing Batchelor vor-
tex with large core radius, and a co-rotating and counter-flowing

Fig. 22 Eigenmodes corresponding to the largest „positive…
eigenvalue for subcritical swirling flows
Batchelor vortex with small vortex core. The eight parameters of
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this three-vortex system are determined by fitting the experimental
data and are shown to vary smoothly �generally linear� with the
discharge coefficient.

The flow at the runner outlet is then analyzed using the math-
ematical model for a steady, axisymmetric, and inviscid swirling
flow. Following Benjamin’s theory of finite transitions between
frictionless cylindrical flows, we have performed an eigenvalue
analysis of the linearized problem. It is shown that the swirl
reaches a critical state at discharge �=0.365. For larger discharge
the flow ingested by the draft tube is supercritical, while at lower
discharge it is subcritical. The critical state occurs quite close to
the discharge �=0.370 where a sudden variation in the draft tube
pressure recovery, as well as in the overall turbine efficiency, is
experimentally observed. For the particular turbine under investi-
gation this discharge value happens to correspond to the best ef-
ficiency point, leading to a negative impact on the turbine regula-
tion.

A qualitative correlation between the swirling flow at the draft
tube inlet and the complex flow behavior further downstream may
be inferred in conjunction with the Werlé-Legendre separation in
the bend, discovered by Mauri et al. �15�. For subcritical swirling
flow the sustained axisymmetric waves weaken the integrity of the
vortex core, thus preventing the interaction with secondary flows
in the draft tube bend. As the swirling flow reaches the critical
state, and becomes supercritical as the discharge increases, the
vortex core is no longer affected by axisymmetric perturbations,
thus being able to trigger a global Werlé-Legendre separation that
blocks the right channel of the draft tube and accelerates the flow
in the other channel. The static pressure recovery is strongly af-
fected, leading to an important loss in the overall machine effi-
ciency.

Our analysis leads to the conclusion that when designing or
optimizing turbine runners one should avoid reaching a critical
state for the swirl at the runner outlet within the normal operating
range.
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Nomenclature
Aref � reference section area

H � Bernoulli’s total head
K � circulation function
Q � turbine discharge

R0 � survey section radius
Rref � reference section radius

R1 ,R2 � vortex core radii
S � swirl number

U0 ,U1 ,U2 � vortex characteristic axial velocities
p � pressure
r � radial coordinate

u , ũ � axial velocity and its perturbation
v , ṽ � radial velocity and its perturbation

w � circumferential velocity
y � auxiliary variable
z � axial coordinate, aligned with the vertical ma-

chine axis
�0 ,�1 ,�2 � vortex characteristic angular velocities

� � relative flow angle
� � draft tube wall pressure recovery coefficient
� � wave number
� � streamfunction
� � Q /�RrefAref discharge coefficient
� � density
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