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Abstract

The accuracy of a multivariate calibration (MVC) model for relating con-
centrations of multicomponent mixtures to their spectral measurements, de-
pends on effective handling of errors in the measured data. For the case
when error variances vary along only one mode (either along mixtures or
along wavelengths), a method to estimate the error variances simultaneously
along with the spectral subspace was developed by Narasimhan and Shah
(Control Engineering Practice, 16, (2008), 146-155). This method was ex-
ploited by Bhatt et al. (Chemom. Intell. Lab. Syst., 85, (2007), 70-81)
to develop an iterative principal component regression (IPCR) MVC model,
which was shown to be more accurate than models developed using PCR. In
this work, the IPCR method is extended to deal with measurement errors
whose variances vary along both modes, by using a factored noise model. As
a first step, an iterative procedure is developed to estimate the error vari-
ance factors along with the spectral subspace, which is subsequently used in
developing the regression model. Using simulated and experimental data, it
is shown that the quality of the MVC model developed using the proposed
method is better than that obtained using PCR, and is as good as the model
obtained using Maximum Likelihood PCR, which requires knowledge of the
error variances. For dealing with large data sets, a sub-optimal approach is
also proposed for estimating the large number of error variances.
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1. Introduction

Multivariate calibration (MVC) methods are routinely used in analytical
chemistry for the development of a predictive model relating properties of
chemical mixtures such as concentrations to its spectroscopic measurements.
The MVC methods include multiple linear regression (MLR), principal com-
ponent regression (PCR), partial least-squares regression (PLS) etc. Among
these, PCR is one of the widely used methods to develop a MVC model. PCR
develops a MVC model using a two-step process. In the first step, principal
component analysis (PCA) is used to estimate a lower dimension subspace
from the spectroscopic data. The measured spectra are projected on to this
estimated subspace, and the weights (scores) for representing the projections
in terms of the basis for the estimated subspace are obtained. In the second
step, a multivariate linear regression model is developed between the concen-
trations of the calibration mixtures and their scores. The developed MVC
model can be used to predict the concentration of species for a new mixture
from its measured absorbance spectra.

If the error variances change along only one mode, that is, the error vari-
ances change with respect to mixtures or with respect to wavelengths, then it
is known that the optimal spectral subspace can be obtained by first trans-
forming the measured data using the inverse of the cholesky factor of the
error covariance matrix and applying PCA to these transformed measure-
ments [3]. It may be noted, that if the errors are uncorrelated, then the
error covariance matrix is diagonal and this transformation is identical to a
specific scaling of the measured data. Cochran and Horne [4] developed a
statistically weighted principal component analysis (SWPCA) method using
a scaling technique, when the error variances vary with respect to samples as
well as wavelengths. A simplified model of the error variances is assumed in
this approach by expressing the variance of measurement error of a sample
i at a specific wavelength j as a product of two factors. The first factor
is the contribution from mixture i which is same for the absorbances at all
wavelengths in this mixture, and the second factor is the contribution from
wavelength j which is same for the absorbance measurements at this wave-
length in all mixtures. This type of model for error variances is denoted as
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the factored noise model. In the SWPCA method, both the rows and the
columns of the noisy data matrix are scaled using a priori diagonal scaling
matrices, whose elements are the square root of the factors of the noise vari-
ances, before applying PCA. A further interesting feature of these methods
applied to scaled/transformed data is that they give rise to a specific pattern
of eigenvalues, which can be used to estimate the true rank of data matrix
and the true subspace.

For more general noise models, Wentzell et al. [5] developed a method
called maximum likelihood PCA (MLPCA), which incorporates information
of measurement error variances to obtain a better estimate of the true sub-
space. MLPCA can be viewed as an iterative method which transforms the
subspace identified by PCA iteratively to obtain the maximum likelihood
estimates of variables. In contrast to SWPCA, MLPCA can deal with er-
rors which have different variances (heteroscedastic errors) and which may
be correlated. Using MLPCA as the first step of PCR, Wentzell et al. [6]
developed a maximum likelihood PCR (MLPCR) calibration model, which
has better prediction accuracy as compared to the PCR model.

SWPCA and MLPCA (and consequently MLPCR) require complete in-
formation about the error variances to be specified a priori. Such information
can be obtained by performing replicate experiments for all measurements
and estimating the error variances from the sample variances. In many sit-
uations, replicate measurements may cost significant resources and time. If
the measurement error variances and covariances can be estimated from non-
replicated noisy data along with the true subspace, the cost and time required
for performing replicate measurements can be saved.

Narasimhan and Shah [1] developed a new method called iterative princi-
pal component analysis (IPCA) which can estimate simultaneously the error
covariance matrix and the true subspace from non-replicated measurements
for a particular noise model. In this method, it is assumed that the error
variances can vary along only one mode. IPCA employs an iterative proce-
dure combining PCA with maximum likelihood estimation (MLE) estimation
of the error variances. Similar to SWPCA, IPCA uses the error variances
to scale the measurements prior to applying PCA to estimate the true data
subspace. It can be regarded as a special case of SWPCA, in which the
error variance factors along one mode are set equal to unity and the factors
along the other mode are estimated. The dimension of the true data sub-
space is estimated by examining the singular values of the scaled data matrix.
Recently IPCA has been used to develop a MVC model for non-replicated
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measurements, which is known as iterative principal component regression
(IPCR) [2]. It was demonstrated that MVC models built using IPCR has
better prediction accuracy than PCR models.

Although, IPCR is a useful approach for developing accurate MVC models
when replicate measurements are not available, the noise model assumed in
IPCA is restrictive, since it assumes that error variances can vary along only
one mode. It would be worthwhile to generalize this approach to the case of
the factored noise model, which allows the error variances to vary along both
modes. In this case, it is necessary to estimate the error variance factors
of the factorial model simultaneously along with the true subspace from
non-replicated measurements. In this paper, a new approach referred to as
Iterative Weighted Principal Component Analysis (IWPCA) is proposed for
this purpose. Using IWPCA as the first step, a method known as iterative
Weighted Principal Component Regression (IWPCR) is also proposed for
developing a MVC model and its prediction accuracy is compared with other
MVC approaches.

Section 2 describes the theoretical development of IWPCA and IWPCR.
The predictive ability of the developed MVC model using IWPCR is eval-
uated on simulated as well as experimental data sets. In Section 3, a de-
scription of simulated data sets and experimental data sets is provided. The
quality of IWPCR calibration model is compared with PCR and MLPCR in
Section 4. The main contributions of this paper are summarized in Section
5.

2. Theory

In the development of a MVC model using PCR, the first step is to esti-
mate the true data subspace from the noisy measurements. Principal Com-
ponents Analysis (PCA) is a widely used technique for this purpose. There
are several variants of PCA depending on the assumptions made regarding
the errors in the measurements. Table 2 gives a summary of the various
methods and assumed structure of measurement error variances and their
availability. The method IWPCA listed in the last row of this table is the
one proposed in this paper.

The IWPCA method proposed in this paper is an approach for estimat-
ing the true data subspace from noisy measurements, while simultaneously
estimating error variances for a factorial noise model. The development of
this method combines ideas from the SWPCA method developed by Cochran
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Table 1: Summary of different PCA variants corresponding to different measurement error
variance models

Sr. Name of Error variance Comment
No. method structure

1 PCA σ2
ij=σ2 Measurement errors are independent

and identically distributed

2 SWPCA σ2
ij=xizj Each error variance is a product

of two factors xi and zj

xi=factor accounts for variable direction
zj=factor accounts for observation direction

3 MLPCA σ2
ij Errors may have different variances and maybe

uncorrelated or correlated.
Error variances and covariances are available a priori

4 IPCA σ2
ij=σ2

i or σ2
j Errors vary along either variable direction

or observation direction. Error variances are
estimated from the data

5 IWPCA σ2
ij=xizj Error variances vary along variable and observation directions

Error variances are estimated from the data

*σ2
ij= variance of error in measurement of variable i and observation j,
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and Horne [4] and the IPCA method developed by Narasimhan and Shah
(2007).

2.1. Problem formulation

Let y∗(j) : m × 1 represent the true values of m variables at sampling
instant j, which are linearly related by p independent equations:

Ay∗(j) = 0 (1)

where A: (p × m) is a constraint matrix. The rows of A form a basis for a
p-dimensional subspace of Rm, while the true data vectors span a (m − p)-
dimensional subspace of Rm, orthogonal to the row space of A. Measure-
ments y(j) of all the variables corrupted by the random noises (errors) are
available at each sampling instant j, and can be written as:

y(j) = y∗(j) + ǫ(j) (2)

For n such measurements, y(1),y(2)....,y(n), an (m×n) data matrix Y can
be defined as

Y = [y(1),y(2), . . . ,y(n)] = Y∗ + ǫ (3)

In the case of spectroscopic data, element yi(j) is the absorbance of a mixture
i at wavelength j, and element ǫi(j) is the random error in the absorbance
measurement yi(j). Generally, the number of mixtures used in developing
the calibration model is much less than the number of wavelengths at which
the absorbances are measured. Thus the rank of the measured data matrix
is m.

In general, the errors in different measurements may have different vari-
ances and may also be correlated. In this paper, we consider the factored
noise model for the random errors. This noise model assumes that the ran-
dom errors have an expected value of zero and a variance given by.

var(ǫi(j)) = σ2
ij = xizj (4)

where xi and zj are factors corresponding to contributions to the error vari-
ance from mixture i and wavelength j, respectively. The random errors are
also assumed to be mutually independent and are also independent of the
true values. The factored noise model allows the error variances to vary
with respect to both mixtures and wavelengths, but imposes a structure by
parameterizing them in terms of m + n factors.
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The objective in this work is to simultaneously estimate the (m − p)-
dimensional subspace of Rm in which the true data vectors lie, and the
error variance factors from the measured data. In order to motivate our
development, we first consider the case when the error variance factors are
known and it is required to estimate a basis for the true data subspace. For
this purpose the statistically weighted PCA method developed by Cochran
and Horne [4] can be used, which is described in the following subsection.

2.2. Statistically weighted principal component analysis

The Statistically Weighted PCA (SWPCA) method developed in [4] ap-
plies PCA to appropriately weighted measurements in order to estimate the
true data subspace. This method provides a consistent estimate of the true
data subspace if the random errors in measurements follow the factored noise
model. The method is described briefly in this section.

Let two non-singular diagonal matrices, B and D be defined as:

B = diag(b1, b2, .., bm)

D = diag(d1, d2, .., dn) (5)

Using the above matrices B and D, the weighted measurement matrix
Yw is defined as:

Yw = BYD (6)

If the measurement error variances follow the factored noise model defined
by 4, then by choosing the scaling matrices B = (X)−1/2 and D = (Z)−1/2,
Cochran and Horne [4] showed that the expected value of the covariance
matrix Yw (Mw) is given by

E(Mw) =

(

1

n

)

X−1/2Y∗Z−1Y∗X−1/2 + I (7)

It can be easily shown that E(Mw) and the first term on the right hand
side have the same eigenvectors. Since the true data lie in a m − p dimen-
sional subspace of Rm, the matrix in the first term of Eq. (7) has p zero
eigenvalues, while the identity matrix in the second term has all eigenval-
ues equal to unity. Thus, the least p eigenvalues of E(Mw) should be equal
to 1. This implies, that by examining the pattern of eigenvalues of Mw,
the rank of true data matrix (the dimension of subspace in which the true
data lies) can be determined. A basis for the true data subspace can be
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obtained from the eigenvectors corresponding to the eigenvalues which are
greater than unity. Cochran and Horne [4] assume that the factors of the
error variances are known. Since such information regarding error variances
are difficult to obtain or require repeated measurements to be made, it would
be advantageous if these factors can be estimated without the need for repli-
cate measurements. In the next section, a new method is proposed, which
simultaneously estimates the factors xi and zj and the true data space.

2.3. Iterative weighted principal component analysis

Given measurements of a process which can be described by Eqs. (1
and 2), Narasimhan and Shah [1] developed a method called iterative PCA
(IPCA) which can simultaneously estimate elements of error covariance ma-
trix and the true data subspace. This method assumes that the error vari-
ances can vary only along either the sample direction or variables direction.
Using, the estimated error variances, the measurements are scaled before ap-
plying PCA to estimate the true data subspace. The noise model assumed
in IPCA is restrictive. A more general noise model should allow for different
error variances for different measurements. However, this leads to a large
number of variances (m × n even for the case of uncorrelated errors) to be
estimated from the data, which may not be possible due to limitations in
computing power as well as on the total number of variances that can be
estimated. A compromise solution is to make use of the factored noise model
of Cochran and Horne [4]. Using this model, only (m+n) variances need to
be estimated, which may be possible from non-replicated measurements. In
this section, the mathematical details of the proposed method called itera-
tive weighted PCA (IWPCA) are described. The proposed method combines
concepts and ideas drawn from SWPCA and IPCA for simultaneously esti-
mating the true data subspace and error variance factors of the factored noise
model given by Eq. (4). Without loss of generality, instead of estimating a
basis for the true data subspace, we will estimate a basis for the row space
of the constraint matrix A, which is orthogonal to the true data subspace.

We start with the assumption that the dimension p for the row space
of constraints is known. An initial estimate of A, say Â0 is assumed to be
available. Such an initial estimate can be obtained by applying PCA to the
measurements and using the eigenvectors corresponding to the smallest p
eigenvalues. The constraint residuals at each instant j are computed using
the initial estimate Â0 as

r(j) = Â0y(j) = Â0y∗(j) + Â0ǫ(j) (8)
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In the next step, we attempt to estimate the factors of the error variances
from the constraint residuals. If the estimated model Â0 for the row space of
constraints is exact, then the weighted residuals r(j)/zj will be independently
and identically distributed multivariate normal variables given by

r(j)/z(j) ∼ N (0, Â0Σ(Â0)T ) (9)

where Σ is a m × m diagonal matrix whose diagonal elements are given
by (x1, x2, . . . xn). Since the errors are independent, the likelihood function
of r(1)/z(1), r(2)/z(2), ....r(n)/z(n) can be constructed which can be max-
imized to obtain an estimate of the factors xi and zj . This leads to the
following optimization function.

min
xi,zj

nlog|Â0Σ(Â0)T | +
n

∑

j=1

(r(j)/z(j))T (Â0Σ(Â0)T )−1(r(j)/z(j)) (10)

The above non-linear optimization function is used to obtain the estimates of
xi and zj factors. Positivity constraints can also be imposed on the estimated
factors to ensure that the variances are positive. The number of variance
factors that can be estimated using Eq. (10) depends on the rank of the
sample covariance matrix of constraints residuals. For the case when the
noise variances vary along only one mode, Narasimhan and Shah (2008)
showed that the maximum number of elements of the error covariance matrix
that can be estimated is p(p + 1)/2 where p is the rank of the constraint
residuals covariance matrix. The limitation arises from the fact that we are
estimating the error variances using the p(p+1)/2 variances and covariances
of the symmetric constraint residual covariance matrix. The same argument
can be used using the sample covariance of the weighted constraint residuals
even for the factored noise model. Thus, we can estimate the parameters of
the factored noise model if m + n is less than or equal to p(p + 1)/2.

The estimated error variance factors can be used for obtaining the weighted
data matrix, Yw, defined by Eq. (6), by assigning B = (X)−1/2 and D =
(Z)−1/2. PCA is applied to the weighted data matrix to get a new estimate
of the constraint matrix. Let the notation [Uw,Sw,Vw] = svd(Yw, m) be
used to denote the truncated singular value decomposition of Yw, where Uw

is an m×m matrix of left singular vectors, Sw is an m×m diagonal matrix
containing m non-zero singular values ordered from the largest to the small-
est, and Vw is an m × n matrix of right singular vectors. Using this, the
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matrix Yw can be written as

Yw = U1wS1wVT
1w + U2wS2wVT

2w (11)

where U1w, S1w, and V1w correspond to the first (m − p) largest singular
values, while U2w, S2w, and V2w correspond to the smallest p singular values
of the Yw. The columns of U1w and V1w form a basis for the (m−p) dimen-
sional estimated mixture and estimated spectral subspaces in the transformed
domain, respectively. The new estimated constraint matrix in the original
space is obtained as

Â = ÂwB (12)

The entire procedure is repeated until estimates of the constraint matrix and
variance factors converge. If the average of the last p eigenvalues calculated
using PCA does not change significantly from one iteration to the next, then
the iterative procedure is deemed to have converged. Following the argu-
ments made in SWPCA, if the estimated variance factors after convergence
of IWPCA are close to their true values, the last p eigenvalues of covariance
matrix should be equal to unity.

The iterative procedure for estimating xi and zj and the constraint matrix
(A) can be summarized as follows.

Step 1: Initialize iteration (k=1) and sum of eigenvalues λk = 0.

Step 2: Set initial guess Â0 to be the constraint matrix estimated using
PCA on the data matrix Y.

Step 3: Obtain the solution for x̂k
i and ẑk

j by minimizing the non-linear
optimization function in Eq. (10)

Step 4: Set X̂k = diag(x̂k
1, x̂

k
2, ..., x̂

k
m) and Ẑk = diag(ẑk

1 , ẑ
k
2 , ..., ẑ

k
n) and define

the weighting matrices B̂k = X̂k(−1/2) and D̂k = Ẑk(−1/2)

Step 5: Obtain the truncated svd of weighted data matrix Yk
w = BkYDk

as:
[Uk

w,Sk
w,Vk

w] = svd(Yk
w, m)

Estimate the constraint matrix, Âk = (Uk
2w)T B̂, where Uk

2w is the
sub-matrix of Uk

w corresponding to the last p columns.

Step 6: Let λk be the sum of the last p singular values. If relative change
in λ is less than specified tolerance then stop else continue.
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Step 7: Increment iteration counter k and use the estimated values of xi

and zj factors in the previous iteration as updated guesses for the next
iteration and return to step 3.

It should be noted that although the above description assumes that all
the factors for the error variances are estimated simultaneously, the same
procedure can be applied even if some of the factors (say the xi factors
or the zj factors) are known a priori and only the remaining have to be
estimated. In such cases, the optimization in step 3 is carried out only for
the unknown factors. It may be noted that when the factors along one of
the modes are assumed to be known or kept fixed at some known values
during the optimization in Step 3, then the above procedure is identical to
the application of the IPCA algorithm as described in Narasimhan and Shah
[1] and Bhatt et al. [2].

2.3.1. Handling of large data sets

In spectroscopic data, the absorbances of mixtures are usually measured
over a large number of wavelengths, and this can require the estimation of a
large number of variance factors. It may sometimes be difficult to estimate
such a large number of variables using the nonlinear optimization approach
in Step 3. In our experience with different data sets, we have found that it
is possible to estimate about 50 error variances simultaneously. For larger
data sets where it is required to estimate more error variances, a two-step
sub-optimal approach is proposed to estimate the variance factors in Step
3. In the first step, it is assumed that error variances vary along one mode
(generally, along the sample direction) and the above algorithm is applied
to the data matrix to estimate these error variances. The estimated error
variances are designated as one of the factors (say xi). In the second step,
the factors along the other mode (wavelength direction) (zj) are estimated by
keeping the factors xi fixed. If the optimization along the second mode is still
large dimensional, then it can be further broken down into smaller optimiza-
tion problems by sub-dividing the data matrix into the several sub-matrices
along the mode whose variance factors are being estimated, and estimating
the subset of variance factors using the same procedure as described above.
Once all the variance factors are estimated, they can be collated and the
SWPCA method used to estimate a unique true lower dimensional subspace.
Although, this approach is sub-optimal it allows us to handle any large data
matrix that may arise in practical applications.
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2.4. Development of Multivariate calibration model

After an estimate of the true data subspace is obtained using IWPCA,
the measured absorbance spectra have to be projected on to this subspace.
Unlike PCA, since the variances of errors in different absorbances are not
identical, orthogonal projections are not optimal. The maximum likelihood
estimate of the absorbance matrix is given by

ŶMLE = Ẑ0.5Û1wŜ1wV̂T
1wX̂0.5 (13)

where Ẑ and X̂ are diagonal matrices containing the estimated variance fac-
tors along the mixture and spectral directions, respectively, while the matrix
Û1wŜ1wV̂T

1w is the first term as defined in 11 obtained at convergence of
IWPCA.

The regression matrix relating the estimated absorbance spectra to the
mixture concentrations can be obtained by first determining an orthogonal
basis for the absorbance subspace and the corresponding scores for repre-
senting the estimated spectra in terms of this basis using the svd of ŶMLE

as follows.
svd(ŶMLE, s) = ÛŜV̂T = T̂MLEV̂T (14)

where s = m − p is the number of species in the mixtures (rank of ŶMLE),
T̂MLE is the m × s scores matrix and V̂ is the n × s orthonormal basis for
the estimated absorbance subspace.

The linear regression model between concentrations and the scores is given
by

C = T̂MLEβ + F (15)

where C is an m × s measured concentration matrix which consists of s
species in the m calibration mixtures and β is the regression matrix and F

is an m × s matrix of errors. The least squares solution of Eq. (15) for the
regression matrix is given by

β = (T̂T
MLET̂MLE)−1T̂T

MLEC (16)

Since the above approach uses the error variance factors as well as the mix-
ture/absorbance subspace estimated using IWPCA, the MVC approach is
denoted as IWPCR to maintain consistency with other PCA based calibra-
tion methods.

Using the regression model, the concentrations of a new mixture can
be predicted from its measured absorbance spectrum. Let ynew : 1 × n be
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the measured absorbance spectrum of a new mixture. The scores of a new
spectrum are obtained using the maximum likelihood projection as

tnew = ynewẐ−1V̂(V̂T Ẑ−1V̂)−1 (17)

and the unknown concentrations in the new mixture are predicted as

cnew = tnewβ (18)

3. Data sets used in evaluating MVC models

The MVC models developed using IWPCR method is evaluated using
three simulated data sets and two experimental data sets consisting of mix-
tures of three species. A comparative evaluation of IWPCR method is per-
formed by applying PCR and MLPCR methods to the same data sets. Due
to space restriction, the PCR and MLPCR methods are not described here
and the reader is referred to the papers by [6] and [2] for the details of these
methods.

3.1. Simulated data sets

Simulated data sets for the mixture of three species are generated follow-
ing a similar procedure as described in [6]. First, the noise free data sets are
generated as follows:

1. The spectral profiles of the three species are taken to be Gaussian
distributions with a peak absorbance at 460 nm, 500 nm, and 540
nm, respectively, and a standard deviation of 20 nm. Pure component
spectral vectors are generated between 400 nm and 600 nm at intervals
of 5 nm to obtain a 3 × 41 pure component spectra matrix.

2. Concentrations of the above three species for 20 mixtures are generated
by choosing random numbers between 0 and 1 from a uniform distri-
bution for each species. In this manner, a 20 × 3 concentration matrix
is obtained

3. The noise free data (true data) absorbance matrix of dimension 20×40
is obtained by multiplying the concentration matrix and pure compo-
nent spectra matrix.

The noisy data sets are generated by adding random noise (errors) to the
true absorbance data. Three different error covariance structures are used to
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obtain three different data sets. In data set 1, the error variances in different
absorbance measurements are assumed to follow the factorial noise model.
The variance factors in the mixture direction (xi) are assigned as 5% of the
maximum absorbances for the corresponding mixtures. The variance factors
in the wavelength direction (zj) is generated by using a ”double-sigmoidal”
wavelength-dependent function with a value near to one near the centre of
the spectral region and values of rmax at the limits. First a baseline factor
(z0) is selected as 5% of the maximum among all peaks of the pure component
spectra. The variance factor corresponding to a wavelength λ is obtained as

zj(λ) =

[

1 + (rmax − 1)

(

1

1 + ea(λ−λ1)
+

1

1 + ea(λ2−λ)

)]

z0 (19)

The value of rmax was chosen as 50. The parameters λ1 and λ2 are the left
and right inflection points, respectively, of the double sigmoid function while
a is the slope of the sigmoidal curves given by:

a =
4.394

∆λ
(20)

where ∆λ is the 10%-90% rise range of the sigmoid. The values of λ1, λ2,
and ∆λ are chosen as 430, 560, and 26, respectively.

The error standard deviation matrix of dimension 20 × 41 are generated
by multiplying 20×1 vector of xi factors and 1 ×41 vector of zj factors and
taking square root of each element. A random number is generated from a
N (0, 1) distribution and then multiplied with each σij to obtain the errors.
The noisy absorbance measurements are obtained by adding the errors to the
true absorbances.

In data set 2, the standard deviation of the error in each mixture is
assumed to be wavelength-dependent as given by the function

σ(λ) =

[

1 + (rmax − 1)

(

1

1 + ea(λ−λ1)
+

1

1 + ea(λ2−λ)

)]

σ0 (21)

with a is given by Eq. (20) and rmax, λ1, λ2, and ∆λ chosen equal to 10, 450,
570, and 24. The value of σ0 is taken as 5% of the maximum true absorbance
among all mixtures.

In data set 3, the standard deviation of error in the absorbance of a mix-
ture at a particular wavelength is taken to be equal to 5 % of corresponding
true absorbance. It may be noted that the errors variances in this case do
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not follow the factored noise model. It is assumed that the concentration
measurements are error free in all three data sets.

Data sets 1-3 assume that the concentration measurements do not contain
any error. However, this is not a case with real data sets. Hence, data set
4 analyzes the effect of errors in concentration measurements. Errors in
absorbance measurements follows the noise model in data set 2 with rmax=3
and σ0 as 3% of the maximum absorbance in the true data. The standard
deviation of error in the concentration measurement is taken to be equal to
5% of the corresponding true concentration. A similar data set with standard
deviation of errors equal to 20% of the true concentrations is also generated.
Random errors from the gaussian distribution with these standard deviations
are then added to the true concentrations to obtain the noisy concentration
measurements.

3.2. Experimental data set

Two experimental data sets are also used to test the performance of the
proposed method. The first experimental data set (data set 5) contains the
absorbances of mixture of three metal ions (Co(II), Cr(III), and Ni(II)) pre-
pared in 4 % HNO3 solution. This data set was obtained through carefully
designed experiments by Wentzell et al. [5]. The data set contains ab-
sorbance measurements for 26 mixtures between the range of 350 nm and
650 nm at intervals of 2 nm. Five replicate measurements of its absorbance
spectra have been made for each mixture. The noise levels near the ends of
the wavelength range were increased by using a band-pass filter. The stan-
dard deviations of errors at different wavelengths can be estimated directly
using the five replicates for each mixture. The spectra and standard devi-
ations estimated from the replicate experiments for this data set are shown
in Fig. 1. It can be observed from Fig. 1b that the standard deviation of
errors varies with respect to both wavelength and mixtures, but may not
necessarily follow the factored noise model.

The second experimental data (data set 6) contains the absorbances of
three-component mixtures containing toluene, chlorobenzene, and heptane.
The data contains absorbance measurements for 31 mixtures between the
range of 400-2500 nm at intervals of 2 nm from an augmented three-level,
three-factor factorial design [5]. The concentrations varies between 20 and 70
wt % for toluene and chlorobenzene and between 2 and 10 wt % for heptane.
Fig. 2 shows a typical spectrum over the full range and standard deviations
obtained from replicate scans. Fig. 2 shows that the certain regions of the
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spectrum above 1600 nm have high signal-to-noise ratio and specially above
2000 nm. Hence, the absorbance measurements between the range 400-2000
nm is used in this paper for the development of calibration model.

3.2.1. Computational Aspects

All the simulations on the simulated and experimental data sets are per-
formed in Matlab 7. The computations are performed on a Mac desktop with
1.86 GHz Dual-core intel processor and 1 GB of memory.

4. Results and discussion

4.1. Comparison methodology

The predictive ability of the MVC models is an important aspect when
different MVC models are compared for the same data set. Here, the devel-
oped MVC models are compared with two methods. First, the conventional
cross-validation method leave-one-score-out method is used to compare MVC
models. A rigorous statistical test, called the randomization test, is then ap-
plied to compare the models [8]. Both these methods are briefly described
below.

Leave-one-score-out method

The leave-one-score-out methodology of cross-validation is used to vali-
date the predictive ability of the calibration model constructed [5]. In this
method, the true data subspace is estimated using all the mixtures but the
development of the calibration model is carried out by excluding the scores of
one of the mixtures. The developed calibration model is used to predict the
concentrations of the mixtures whose scores were excluded. This procedure
is repeated such that each mixture is excluded once. The root-mean-square
error (RMSE) between predicted and actual concentrations is calculated by

RMSE =

√

√

√

√

m
∑

i=1

(cpred
i − cref

i )2

m
(22)

where cpred
i and cref

i are the predicted and reference concentrations of the
species in the excluded mixture, respectively, and m is the number of mix-
tures in the calibration set. The total root-mean-square error (RMSET) is
calculated in a similar manner over the concentrations of all the components
present in the mixture. The RMSE and RMSET values give an indication of
the predictive ability of the calibration model.
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Randomization test

A randomization test is a data-driven approach based on random assign-
ment. A detailed description of the method is given in Edgington [10] and
van der Voet, H. [9]. Here, the test often called, randomization t-test, is
briefly described for a comparison between models Q and R. Let eQ(k) and
eR(k) be the m-dimensional vectors of the predictive errors and the mean
squared error of prediction (MSEP) for kth species (k=1, 2, 3) defined as
follows:

eQ(k) = c
pred
Q (k) − cref(k), MSEPQ(k) =

Pm
1

e
2

Q
(k)

m
,

eR(k) = c
pred
R (k) − cref(k), MSEPR(k) =

Pm
1

e
2

R
(k)

m
. (23)

The difference of predictive errors for kth species, d(k) (of dimension m× 1)
and the mean of difference, d̄(k), are computed as follows:

d(k) = eQ(k)2 − eR(k)k

d̄(k) =
m

∑

1

d(k)/m = MSEPQ(k) − MSEPR(k). (24)

A comparison between models Q and R is made using the a test statistic as
follows [10] :

T =

3
∑

k=1

d̄(k) (25)

Here, the randomization t-test for one-sided alternative hypothesis MSEPQ(k)
>MSEPR(k) (for k = 1, 2, 3) is considered and the algorithm for the test is
given in van der Voet, H. [9].

4.2. Comparison of performance on simulated data sets

The predictive ability of the calibration model developed by PCR, IW-
PCR, and MLPCR is evaluated on simulated data sets in this section. The
simulated data sets are of dimension 20 × 41. In order to apply IWPCA, the
total number of error variance factors required to estimate for all data sets
are equal to 20 + 41 = 61. The maximum number of error variances that can
be estimated is equal to (17 × 18)/2 = 153 for these data sets, and hence,
it is theoretically possible to estimate all the factors by apply IWPCA to
these data set. However, an attempt to estimate the error variance factors in
both directions simultaneously failed due to numerical convergence problems
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in the optimization step. Thus, the sub-optimal method described in Sec-
tion 2.3.1 has been employed to estimate all the error variance factors. First,
IPCA is applied to estimate the factors along the sample direction (i.e. xi).
In the next step, IWPCA is applied to estimate the factors along the wave-
length direction by keeping the variance factors along the sample direction
to be fixed at the estimates obtained using IPCA. Once the variance factors
in the sample and wavelength directions are estimated, the true absorbance
subspace is estimated using SWPCA method. A lower bound of 0.003 on the
estimated error variance factors was also imposed in the sub-optimal method
to obtain convergence for all simulated data sets. Following the estimation of
the absorbance subspace, the MVC model is obtained using IWPCR method
as described earlier.

The results for the first three simulated data sets are presented in Table 1
in terms of RMSE values obtained by different MVC models. Although, the
performance of the methods was assessed for different choices for the number
of latent factors, only the results for three latent factors are reported. It
was observed that the RMSET values for the PCR, IWPCR, and MLPCR
methods showed a significant reduction when the dimension of the true data
subspace is correctly chosen as three, after which they remained more or
less constant. This is consistent with the fact that the number of species in
the mixtures is three and therefore the correct dimension of the true data
subspace is also three. The results in Table 1 show that IWPCR and MLPCR
perform better than PCR. The performance of MLPCR is only marginally
better than that of IWPCR. The randomization t-test is applied to test
MVC models for data set 1. The results obtained by the randomization t-
test is summarized in Table 2. The randomization t-test reveals that the
difference between PCR and IWPCR is significant, however the difference
between IWPCR and MLPCR is indicative. The difference between PCR
and MLPCR is also significant. Hence, the randomization t-test on data set
1 reaffirms the inferences made based on RMSE values. It should be noted
that MLPCR requires knowledge of all the error variances, while IWPCR
estimates the error variances from the same data set. Figure 3 shows a
comparison of the standard deviations estimated using IWPCR method with
the true variances used to simulate one of the mixtures in data set 1 (mixture
4), when number of factors is chosen as three. It is observed from Figure 3
that the estimated standard deviations are quite good. The results clearly
indicate the ability of the IWPCA method to simultaneously estimate the
error variances as well as the true absorbance subspace accurately.
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X
X

X
X

X
X

X
X

X
X

XX

Data set
Methods

Species PCR IWPCR MLPCR

Data set 1 A 0.049 0.022 0.015
B 0.052 0.015 0.013
C 0.050 0.024 0.023
Total 0.050 0.021 0.018

Data set 2 A 0.114 0.049 0.044
B 0.163 0.026 0.024
C 0.156 0.034 0.030
Total 0.146 0.037 0.034

Data set 3 A 0.010 0.012 0.006
B 0.014 0.012 0.011
C 0.011 0.007 0.006
Total 0.012 0.010 0.008

Table 2: RMSE value comparison of different MVC models for simulated data sets at the
number of factors equal to three.

Comparisons with IWPCR
Significance values obtained

by randomization t-test

Prediction method Data set 1 Data set 2 Data set 3
PCR 0.005 0.005 0.30
MLPCR 0.98 0.19 1

Comparison between PCR and MLPCR
MLPCR 0.005 0.005 0.005

Table 3: Application of the randomized test on the simulated data for the number of
factors equal to 3. All tests are one-sided with 199 trials.
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The results of applying the different MVC method for data set 2 are shown
in the second row of Table 1. Although data set 2 does not follow the factorial
noise model as in IWPCR, the predictive ability of the MVC model developed
by IWPCR is better than PCR and as good as MLPCR. The results of
randomization t-test applied on data set 2 is presented in Table 2. The
randomization t-test shows that the predictive ability IWPCR and MLPCR
are better than PCR. There is also some indication that MLPCR performs
marginally better than IWPCR. The standard deviations estimated using
IWPCR are compared with the true standard deviations for sample number
4 in Figure 4. It is observed from the figure that the estimated standard
deviations are comparable to the actual values.

The results of applying the three MVC methods for data set 3 are shown
in the last row Table 1. In this case, RMSE values indicates that the
performance of all three methods are almost the same. The randomization
t-test shows that the performance of IWPCR is same as PCR and MLPCR,
although there is evidence to conclude that MLPCR performs better than
PCR. It was found that the signal-to-noise ratio (ratio of standard deviation
of true spectra to the standard deviation of errors) for this data set ranged
from 16 to 23 for all the mixture spectra. Due to this high signal-to-noise
ratio PCR performs as good as IWPCR. The comparison of the estimated
standard deviations using IWPCR and the true standard deviations for one
of the mixtures is shown in Figure 5. Since the noise does not follow the
factored model assumption, the estimates of standard deviations are not as
good as for data sets 1 and 2. Nevertheless, the estimates do follow the trend
of the true noise variances.

In real data sets, the concentrations are measured with uncertainty and
hence, data set 4 is simulated with errors in the concentrations also included.
The level of errors in the concentration measurements is taken equal to 0,
5 and 20%. The results of applying the three MVC methods for data set 4
at the three-level of uncertainty are summarized in Tables 3 and 4 for the
number of factors equal to three. Data set 4 with 0% errors in the concen-
trations is identical to data set 2. The results in Tables 3 (RMSE) and 4
(randomization t-test) shows that the performance of IWPCR and MLPCR
is better than PCR and the difference between MLPCR and IWPCR is only
indicative. Similar kind of results are obtained when the errors in the concen-
trations are increased to 5%. However, the performance of MLPCR is better
than PCR and IWPCR when the errors in the concentrations are increased
to 20% (see Tables 3 and 4). The RMSE values and randomization t-test
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X
X

X
X

X
X

X
X

X
X

XX

Data set
Methods

Species PCR IWPCR MLPCR

Data set 4a A 0.093 0.041 0.039
(without error B 0.158 0.044 0.036
in concentration) C 0.140 0.055 0.050

Total 0.133 0.047 0.042

Data set 4b A 0.112 0.050 0.051
(with 5% B 0.138 0.061 0.042
proportional error C 0.130 0.061 0.042
in concentration) Total 0.127 0.054 0.045

Data set 4c A 0.119 0.140 0.132
(with 20 % B 0.160 0.150 0.108
proportional error C 0.154 0.140 0.105
in concentration) Total 0.145 0.144 0.116

Table 4: RMSE value comparison of different MVC models for simulated data sets with
errors in concentrations at the number of factors equal to three.

show that the performance of PCR is as good as IWPCR. Since MLPCR
uses knowledge of error covariances, the performance of MLPCR is better
than PCR and IWPCR.

4.3. Performance comparison on experimental data

In this section, the results obtained by applying PCR, MLPCR, and IW-
PCR to the experimental data sets 5 and 6 are presented. Data set 5 con-
tains absorbance spectra of 26 distinct mixtures with five replicates for each
mixture. Using these replicates, the standard deviations for each measured
spectrum has been estimated by Wentzell et al. [5]. The main focus of this
work is to handle the data set when replicates of spectra are not available.
Therefore, non-replicated measurement data consisting of 26 mixtures, have
been used for evaluating all three methods. This data set is constructed by
randomly picking one mixture spectra from each of the five replicates of the
original data set. The resulting random sets are matrices of dimension 26 ×
151. The maximum number of error variances that can be estimated is equal
to (23 × 24)/2 = 276. Since this data set is large, the sub-optimal method
described in Section 2.3.1 for IWPCR has been used to estimate the error
variances. In this sub-optimal method, first IPCA was applied to estimate
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Comparisons with IWPCR
Significance values obtained

by randomization t-test

Prediction method Data set 4a Data Set 4b Data set 4c
% errors in concentrations 0 % 5 % 20 %
PCR 0.005 0.005 0.48
MLPCR 0.98 0.92 1

Comparison between PCR and MLPCR
MLPCR 0.005 0.005 0.015

Table 5: Application of the randomized test on the simulated data with the concentration
uncertainty for the number of factors equal to 3. All tests are one-sided with 199 trials.

the variance factors in the mixture direction. Then, the data set of 26 ×
151 was divided into three sub-matrices of dimensions 26 × 50, 26 × 50,
and 26 × 51. In the next step for each sub-matrix, IWPCA was applied
to estimate the variance factors along the wavelength direction keeping the
estimates of variance factors in the mixture direction to be fixed at the es-
timates already obtained. This procedure was repeated for all sub-matrices
to estimate all the variance factors along the wavelength direction. A lower
bound of 0.0001 on the estimated error variance factors was also imposed in
the sub-optimal method to obtain convergence for the experimental data set.
Then, the calibration model was developed as described in Section 2.4.

The results obtained by applying all three methods are presented in Ta-
bles 5 and 6. Two random sets were used to evaluate these three methods.
Since there are three species in the data set, the dimension of the true data
subspace should be three. However, the real data can be affected by the fac-
tors such as the nonlinearity and offsets and thus the results are given for up
to six factors. The RMSE values and randomization t-test show that IWPCR
performs better than PCR when the dimension of the true subspace is taken
to be three (or more). It shows that incorporation of error variance informa-
tion into the PCA based model definitely improves the predictive ability of
the model. Secondly, the RMSE values show that IWPCR gave marginally
better results as compared to MLPCR at three latent factors, although no
knowledge of error variances is assumed in IWPCR. The randomization t-test
indicates that the difference between MLPCR and IWPCR is only indicative
when the number of factors are chosen equal to three. However, MLPCR
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Number of Species PCR IWPCR MLPCR
latent factors

set 1 set 2 set 1 set 2 set 1 set 2
1 Co 11.52 12.06 13.09 13.18 11.2 11.3

Cr 3.79 3.73 3.68 3.45 3.18 3.14
Ni 21.28 20.96 19.84 20.96 24.84 25.01
Total 14.14 14.13 13.88 14.43 15.86 15.95

2 Co 7.55 9.31 3.50 6.55 7.47 7.56
Cr 3.84 3.45 0.25 2.91 3.25 3.21
Ni 18.95 15.01 26.68 21.95 17.77 17.92
Total 11.98 10.39 15.60 13.33 11.28 11.38

3 Co 7.82 8.40 0.37 0.39 0.37 0.38
Cr 3.30 3.47 0.11 0.10 0.11 0.10
Ni 14.18 15.29 0.35 0.51 0.41 0.52
Total 9.54 10.27 0.30 0.38 0.33 0.38

4 Co 7.22 6.27 0.39 0.35 0.39 0.38
Cr 3.38 2.33 0.12 0.09 0.11 0.09
Ni 14.14 9.62 0.36 0.47 0.36 0.44
Total 9.37 6.76 0.31 0.34 0.31 0.34

5 Co 5.85 6.32 0.39 0.35 0.37 0.32
Cr 1.73 2.44 0.12 0.09 0.11 0.08
Ni 7.14 10.07 0.39 0.50 0.36 0.43
Total 5.42 7.01 0.33 0.35 0.30 0.31

6 Co 5.22 6.64 0.42 0.43 0.32 0.31
Cr 1.27 2.16 0.13 0.11 0.09 0.08
Ni 4.69 7.22 0.38 0.43 0.38 0.44
Total 4.12 5.80 0.34 0.42 0.29 0.31

Table 6: Comparison of different MVC model for experimental data set 5 in RMSE

performs better than IWPCR for the choice of four or higher number of fac-
tors. It also indicates that these results show that the factorial error variance
model is adequate despite the fact that the experimentally estimated error
variances do not necessarily obey this model. These results also show that
the sub-optimal approach used for the large data sets is able to give reason-
able good estimates of the error variance factors, which in turns leads to an
accurate MVC model. The estimated values of standard deviations using the
sub-optimal approach and using replicate measurements for the sample num-
ber 4 are shown in Figure 6. Figure 6 shows that the sub-optimal method
gives good estimates of standard deviations of errors.

Data set 6 contains absorbance data corresponding to visible and short-
wavelength NIR range with 31 samples at 1050 wavelengths (400-2500 nm).
However, as mentioned in Section 3.2, the data set above 2000 nm is discarded
and hence, the truncated data is of dimension (31 × 800). For estimating the
variance factors along the wavelength direction in the IWPCA method, the
sub-optimal method is applied by dividing the data set into sub-matrices of
dimensions 31 ×25. The variance factors along wavelength direction are first
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Comparisons with IWPCR
Significance values obtained

by randomization t-test
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
hh

Prediction method
# Factors

3 4 5 6

PCR 0.005 0.005 0.005 0.005
MLPCR 0.035 0.99 0.87 1

Comparison between PCR and MLPCR
MLPCR 0.005 0.005 0.005 0.005

Table 7: Application of the randomized test on the experimental data set 5 (set 1) for the
number of factors equal 3 to 6. All tests are one-sided with 199 trials.

estimated followed by estimating the variance factors along mixture direction.
The results obtained by applying all three methods for RMSE values and the
randomization t-test are given in Tables 7 and 8. The RMSE values in
Table 7 indicate that PCR performs poorly for all the number of factors. In
case of IWPCR, it performs poorly for the number of factors equal to three.
However, when the number of factors are chosen equal to four or five, there
is a marginal difference between the RMSE values obtained by IWPCR and
MLPCR. The poor performance of IWPCR for the number of factors equal
to three could either be due the presence of a baseline spectra or due to the
error variances not following the factored noise model. In spite of marginal
difference in RMSE values of MLPCR and IWPCR, the randomization t-
test in Table 8 shows that MLPCR performs better than IWPCR. In case
of PCR, it performs as good as IWPCR for the number of factors equal to
three but performs poorly when number of factors equal to four or five.

In all the simulated and experimental data sets, the true rank of the mea-
sured absorbance matrix (dimension of the absorbance subspace) may not be
known a priori and may have to be estimated. Typically, PCA methods es-
timate the true rank by examining the singular values. An approach is to
look for a sharp change in the singular values by using a SCREE plot [7].
However, for many practical data sets the SCREE plot may not reveal sharp
changes. On the other hand, if the noise follows the model used to develop
IPCA or IWPCA, then it was shown that the lowest rejected singular values
should all be close to unity, while the other singular values corresponding to
the chosen rank of the subspace (number of factors chosen) should be greater
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Number of latent factors Species PCR IWPCR MLPCR
3 Toluene 5.00 6.34 0.12

Chlorobenzene 6.27 10.4 0.13
Heptane 2.94 2.79 0.09
Total 4.93 7.36 0.11

4 Toluene 2.66 0.25 0.13
Chlorobenzene 6.29 0.12 0.10
Heptane 2.46 0.08 0.07
Total 4.19 0.17 0.10

5 Toluene 2.77 0.19 0.13
Chlorobenzene 6.51 0.11 0.11
Heptane 2.50 0.07 0.07
Total 4.33 0.14 0.10

Table 8: RMSE value comparison of different MVC model for experimental data set 6

Comparisons with IWPCR
Significance values obtained

by randomization t-test
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
hh

Prediction method
# Factors

3 4 5

PCR 1 0.005 0.005
MLPCR 1 1 1

Comparison between PCR
and MLPCR

MLPCR 0.005 0.005 0.005

Table 9: Application of the randomized test on the experimental data set 6 for the number
of factors equal 3 to 5. All tests are one-sided with 199 trials.
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than unity. Figure 7 shows the plot of logarithm of singular values obtained
at convergence of the IWPCA method for different number of factors chosen
for the experimental data set. Figure 7 shows that the theoretical result
may not be precisely satisfied (since the errors may not satisfy the assump-
tion of factored noise model). However, if we closely examine the singular
values for different factors in Figure 7, it is observed that if 3 or 4 factors
are chosen, the corresponding 3 or 4 singular values are greater than unity
while the remaining singular values are reasonably close to unity. But in
the case of 5 and 6 factors, more than 5 and 6 singular values are greater
than unity. Furthermore, the singular values also show a sharp decrease after
the first four singular values. From these observations, the true rank for the
experimental data set may be estimated as three or four. Another practical
measure for determining the dimension of the true data subspace is to look
for a sharp decrease in the RMSET values of the MVC models developed
as the number of factors chosen is increased. It is observed from the results
presented in all tables, that in the case of IWPCR and MLPCR for all data
sets the RMSE and RMSET values decrease significantly when the number
of factors is chosen as three after which the change is insignificant. Thus, it
is easy to conclude that the true rank of the absorbance matrix is three for
these two methods. However, using PCR such a sharp change is not observed
for data set 2 and the experimental data set, and it is not easy to accurately
estimate the true rank of the absorbance matrix. These results further con-
firm that the use of either estimated or known error variances to scale the
data is necessary and useful to estimate the correct number of independent
species and to develop accurate MVC models.

5. Conclusion

The focus of this work was to develop multivariate calibration models for
non-replicated measurements. A new method called IWPCA was developed
for simultaneously estimating a true subspace (model) and error covariance
matrix from the data matrix for the factorial noise model. The MVC method
called IWPCR developed using the proposed approach was found to provide
more accurate estimates than PCR models on both simulated and experimen-
tal data sets. IWPCR also gives as good performance as MLPCR without
the requirement of replicate measurements and a priori information on error
variances when the data set follows factorial noise model. A sub-optimal
approach for applying IWPCR to large data sets is also proposed which al-
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lows large number of error variance factors to be estimated. These attractive
features of the IWPCR method makes it a practically useful method for
developing accurate MVC models and in other applications where PCA is
used.
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Figure 1: Experimental data set 5: (a) spectra for metal ion mixtures (b) standard devi-
ations of measurement errors.
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Figure 2: Experimental data set 6: (a) spectra for mixtures (b) standard deviation of
measurement error.
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Figure 3: Standard deviations (std) of errors estimated using IWPCA for data set 1 and
the number of factors equal to three
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Figure 4: Standard deviations (std) of errors estimated using IWPCA for data set 2 and
the number of factors equal to three
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Figure 5: Standard deviations (std) of errors estimated using IWPCA for data set 3 and
the number of factors equal to three
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Figure 6: Standard deviations (std) of errors estimated using the sub-optimal approach
for experimental data set 5 ( set 1) and the number of factors equal to three
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Figure 7: Comparison of logarithm of singular values for experimental data set 5 (set 1)
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