Action Filename Description Size Access License Resource Version
Show more files...


We explore the problem of resource allocation in a system made up of autonomous agents that can either carry out tasks individually or, when necessary, cooperate by forming physical connections with each other. We consider a group transport scenario that involves transporting broken robots to a repair zone. Some broken robots can be transported by an individual 'rescue' robot, whereas other broken robots are heavier and therefore require the rescue robots to self-assemble into a larger and stronger composite entity. We present a distributed controller that solves this task while efficiently allocating resources. We conduct a series of real-world experiments to show that our system can i) transport separate broken robots in parallel, ii) trigger self-assembly into composite entities when necessary to overcome the physical limitations of individual agents, iii) efficiently allocate resources and iv) resolve deadlock situations.