000139047 001__ 139047
000139047 005__ 20190316234559.0
000139047 022__ $$a0022-4049
000139047 02470 $$2ISI$$a000313388700004
000139047 0247_ $$2doi$$a10.1016/j.jpaa.2012.08.009
000139047 037__ $$aARTICLE
000139047 245__ $$aComplete intersections in rational homotopy theory
000139047 269__ $$a2013
000139047 260__ $$aAmsterdam$$bElsevier$$c2013
000139047 300__ $$a28
000139047 336__ $$aJournal Articles
000139047 520__ $$aWe investigate various homotopy invariant formulations of commutative algebra in the context of rational homotopy theory. The main subject is the complete intersection condition, where we show that a growth condition implies a structure theorem and that modules have multiply periodic resolutions.
000139047 6531_ $$aAlgebraic Topology
000139047 6531_ $$aCommutative Algebra
000139047 700__ $$aGreenlees, J. P. C.
000139047 700__ $$0240499$$aHess, K.$$g105396
000139047 700__ $$aShamir, S.
000139047 773__ $$j217$$q636-663$$tJournal of Pure and Applied Algebra
000139047 8564_ $$s535602$$uhttps://infoscience.epfl.ch/record/139047/files/0906.3247v1.pdf$$yn/a$$zn/a
000139047 909C0 $$0252139$$pUPHESS$$xU10968
000139047 909CO $$ooai:infoscience.tind.io:139047$$pSV$$particle$$qGLOBAL_SET
000139047 917Z8 $$x105396
000139047 937__ $$aGR-HE-ARTICLE-2009-003
000139047 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000139047 980__ $$aARTICLE