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Abstract—In this paper an lterative Learning Control (ILC) In this paper we develop an ILC algorithm that can lead
algorithm is proposed for a certain class of Linear Paramete to improved tracking for systems that can be represented by
Varying (LPV) systems whose dynamics change between itera-yhe | inear Parameter Varying (LPV) class of systems [9], and

tions. Consistency of the algorithm in the presence of stoetstic theref h d . h functi f
disturbances is shown. The proposed algorithm is tested in ereiore whose dynamics change as a tunction of a mea-

simulation and the obtained tracking performance is compaed Surable scheduling parameter. Development and applicatio
with that obtained using a standard Linear Time Invariant of control techniques for LPV systems has been active in
ILC algorithm. Better. results are obtainfed using the propoed recent years (e.g. [10], [11]). ILC for LPV systems has been
method. The method is also applied to a linear, permanent ma®t ., nsigered in [12]. The variation of the system’s dynamiss d
synchronous motor system, which is shown to be an LPV system . . .
for a specific class of movements. Greatly improved trackings to the Chang'”_g sched_ullng.parameter is, however, as;utmed t
achieved. take place during the iteration, rather than from one itenat
to the next. The problem considered is, therefore, diffeten
that studied here.

The method developed in this paper is applied to a linear,
permanent magnet, synchronous motor system (LPMSM).

|. INTRODUCTION LPMSMs are very stiff and have no mechanical transmission

lterative Learning Control (ILC) is now well recognisecfomponents. They, therefore, do not suffer from backlagh an
as a methodology capable of producing very high trackiriy allow very high positioning accuracy to be ach|eved_. agpi
performance for systems carrying out repetitive tasks[pl], US€S _for this type_(_)f motor |ncll_Jde wafer stages, microscale
ILC adjusts the system’s input from one repetition/itevatio _robotlc decom_posmon, electromc_ assembly and manufactu
the next in order to compensate for the system’s dynamics dRél; @and machine tools. The precision required by all oféhes
disturbances, thus improving its output tracking perfanoea  @Pplications is continuously increasing. When the regliire
ILC has been successfully applied to numerous systems-caffjPvements are repetitive, ILC is an obvious choice to aghiev
ing out repetitive tasks (e.g. [3], [4], [5], [6]). One of tneain  this precision [13], [14], [15], [16], [17]. LPMSMs, howewxe
drawbacks of ILC, however, is that it requires the system&€ affected by a periodic, position-dependent force eppl
dynamics and disturbances to be repetition invariant. THiSturbance. When a movement starts from the same place this
assumption may not always be valid in practice i.e. Whemsturbance will be repetltlye. ILC can thus a_djust the ayss
the output sensor is affected by non-negligible measuremdPut to compensate for it [18]. However, if the movement
noise or if a robotic arm picks up different loads from ongtarts from a different position, the disturbance will chaand
repetition to the next. If the variations are of a stochastif€ learnt input will no longer produce optimal tracking.ig'h
nature, they should not be compensated for and ILC algosithipfoblem has been investigated in [19]. The method proposed
that are insensitive to these variations should be used (dRfre is to learn the input that gives optimal tracking for a
[7]). If, however, they are deterministic, it may be possibISpeC'f'C starting position. Th|s input will pompensate.fu’oes
to compensate for the changes. It is therefore of interélfe to the system’s dynamics and the ripple force disturdanc
to investigate ILC algorithms that are applicable when tHEcan thus be decomposed into these two components. When
system’s dynamics and disturbances change determirﬂ'&sticéhe movement is executed from a different starting position
between repetitions. the component compensating the system’s dynamics can be

To the authors’ knowledge, very little work has been dor@PPlied to the system, plus a phase-shifted version of the
on this problem. In [8] the problem of deterministicallyrite cOmponent that compensates the periodic, position depende
ation varying disturbances is considered. It is shown thyt, disturbance. The phase shift will be a function of the diséan
using the internal-model principle in the iteration domaire betvyeen starting positions. This method has the benefit that
disturbances can be rejected as the iterations tend totjnfinin€ input only needs to be learnt once, rather than for every
The problem with this approach is that it is necessary to kng#@rting position. Its disadvantage is that the learnirgcess
the form of the disturbance variation in advance in order S t0 be done offline as a tuning procedure in order that the

include its model in the ILC controller, as required by th§@Me starting position is used at each iteration. -
internal-model principle. In this paper it will be shown how, for a certain class of

movements whose amplitude is negligible compared to the
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The paper is organised as follows. In Section Il the LPYepresentation typically used in ILC, we define, for a system
ILC algorithm is presented. The algorithm is then tested imith a relative degree of, the vectors:
simulation in Section IIl. It is then applied to the LPMSM, as . o T
detailed in Section IV. Finally some conclusions are made in u(k) = [u(0, k), (L, k),...,u(N =m =1, k)

Section V. and y(k7a(k)) = [y(ma kva(k))ay(m+ 1,/€,0’(k)),
7y(N_17kaU(k))]Ta (3)
Il. LINEAR PARAMETER VARYING ILC with yq4, d; andn(k, o(k)) defined similarly toy(k, o (k)).
In this section the LPV ILC algorithm is described. First tht;l-hIS representation can then be used to write (1) as:
class of systems considered in this paper is outlined. Téwa id J—1
input for this class of systems is then given. A parametgosa A(o(k))y(k,o(k)) = N(o(k)Ay(k,o(k))
for the input to be estimated is then presented, based on j=0
the structure of the ideal input. Next a recursive algorithm J-1
similar to the standard recursive least squares but taking = Bu(k) + Ai(o(k))d; +n(k,o(k)), (4)
into account the iteration-varying aspect of LPV systerss, i j=0
developed to estimate the ideal input. Finally it is showat,th _
under a persistency of excitation condition on the schaduli a0,; 0 o 0
parameter, the learning algorithm converges probaluiéilyi where A — at,j @o,j e 0
to the ideal input. 7 : : : :
L AN-m—1,7 AN-—-m—2,j ag,j
A. System description [ b 0o ... 0
We consider the finite-time tracking problem of following a,,4 B— bt bm o 0 ' (5)
repetitive, finite duration desired trajectogy(t), defined for : : U
t=0,...,N —1. | Ovo1 b2 ... by

The output at time of the stable, LPV SISO discrete-time
system, resulting from linearising a nonlinear system abwa!
operating pointo (k) € R", is given by:

AssumptionsThe disturbance vectar(k, o (k)) is assumed
to be a zero-mean, random vector with unknown but bounded
covariance matriXR,(k, o (k)). Additionally, realisations of
Al (k), ¢ Vy(t, k, o (k) n(k,o(k)) are considered independent.

_ —1
= Blg Jult, k) +d(t, ko (k) +nt. koK), (1) | ater in the paper the following lemma will be needed:

where . .
Lemma 1:[p. 253 in [20]] Let X (k) be an independent

np . . 2
Ale (k). a=1) = (o(ENa—i . Bla—1) = boo—i random sequence W|t_h constant mean and variance s, (k)
(o(k).a7) Zaﬂ (e (®)g™, () J;o i defined fork > 1. Define another random sequence as:

j=0

K
u(t, k) is the input to the system and! is the backward-shift fix(K) = 1 ZX(k) for K > 1. (6)
time operatord(t, k, o (k)) andn(t, k,o(k)) are a determin- K=

istic and a stochastic disturbance, respectively, botlsiplys Then if

dependent orr. The operating poing (k) remains constant . K o2 (k)

throughout repetitiort. The dependence of the coefficients i > 2 <00 (7)
and the deterministic disturbance on the scheduling pasme k=1

is assumed polytopic: fix (K) £, fx askK — oo, (8)
— where 2 represents convergence in probability
ai(o (k) = Aj(o(k))ai,s The theorem also holds true for almost sure (a.s.) conver-
i? gence, making it a Strong Law.
JJ:_Ol The measured error is defined as:
0<Aj(e(k) <1, Ajlo(k) =1, ) e(k,o(k)) =ya —y(k,o(k)). ©)
j=0

The ideal input vector, defined as the one that achieves zero
where \;(o(k)) : R" — R. Additionally we designate the mean error, i.eE{e(k,o(k))} = 0 Vo, where E{-} denotes
values ofo at the vertices of the polytopic space ag. the mathematical expectation operator, is given by:

As the signals are defined over the finite duration of the J-1
repetition, it is possible to express the system’s inpyitdu w(k,o(k) = Z A (o(k))B™? (Ajya —d;). (10)
relationship by a matrix representation. Using the lifsydtem =0



At the values ofo that correspond to the vertices of théD. The learning algorithm
polytopic dependence we have: The aim of the algorithm is to estimat®&/® over the

w(k,0;) =B (Ajya—d,). (11) Iterations. The approach proposed here to find the estimate
. . . is to minimise a quadratic cost function over all previous
Using this (10) can be written as: iterations i.e. to find the estimate that minimises:
_ K
1
D=2 Nle®Ee). (12 Jk(U)= 2 > el (ko(k). Ue(k,o (k). V),  (17)
j=0 k=1

Remark: Expression (12) rationalises the class of LPWhere K is the number of completed iterations. Via some
systems considered here i.e. LPV systems with dependentteple calculations, the estimate can be found as:
on the scheduling parameter solely in the denominator. Only
for thi_s system class do_es the i(_]lea_\l inputdepend linearthen (j,. — Z G (o (k)ya — d(k, o (k)) — ik, o (k))],
ideal inputs at the vertices. This linear dependence méamns t
estimation of these inputs, as considered in the next stibegc (18)
can be done via linear least squares and there will be a glo
minimum. Furthermore, as will be seen in the application K -1
section, real systems exist that belong to this system.class P(K) = Z GT (o (k)G(o(k))

C. Input parameterisation Alternatively, via some standard manipulations, (18) cen b
We see from (12) that the ideal input is a function ofritten in the recursive form as:

the scheduling parameter(k). The ILC algorithm should . .

therefore estimate an input that is also a functionodf:). w1 = Us X

Motivated by the form of the ideal input, and under the +P(k+1)G" (o(k+1))e(k+1,0(k+1),Uy). (19)

assumption that the functions (o (k)) are known, the input

) . ] The error signal:
is parameterised as:

ek +1Lo(k+1),Ux) = ya—G(a(k+1)U;
= ZA.j(ff(k))Uj- (13) —d(k+1,0(k+1)—nk+1,0(k+1))
can be evaluated experimentally by applying the input
u(k,o(k + 1)) from (13) based orlJ;, to the real system.

y(k,o(k)) = A~ (o (k) [Bu(k) + d(k, o (k)) Therefore we see that the estimaté can be evaluated
+n(k, o (k))] recursively using data measured from the real system.

= G(a(k)u(k) +d(k,o(k)) +0i(k,o(k)), . .
(14) E. Consistency of estimates

The system output can be written as:

where G(o(k) = A-'(o(k)B, d(kok) = Next a condition for consistent estimates is given.
A~ (o (k))d(k, o (k)) and  qi(k,o(k)) = : , . ,
A1 (o (k )){1( "o (k). It should be mentioned that for Theorem 1:Under the assumptions made in Subsection

G(o(k), d(k.o(k) and fi(k, o (k) to exist, A(o(k)) II-A, the algorithm (19) is a consistent estimator, ¥,

0
should be nonsmgular which is always the case due to ffgnverges almost surely 07 as K — oo, if

structure. If the parameterised input (13) is applied to the lim —P* (K) (20)
system we have: K—oo K

J-1 is nonsingular.
y(k,o(k)) = G(o(k)) Z N (o (k)u; +d(k,o(k)) Proof: The recursive algorithm (19) has the same asymp-
=0 totic properties as the batch result (18) so the consistefcy
+1ii(k, o(k)) (18) can be considered. (18) can be rewritten as:
)G

= ol (B)G(a(k), M (o (k) G(a (k). ..., Uk = KP(K)
N1 (o (k)G (o (k)] [uf uf,... b )"
+d(k,o(k)) + ik, o(k))

— (o (k)U +d(k, o (k) + Bk, a(k), (15)

K
3G (k) [G(o (k) V° — Ak, o (k)]
k=1

=U"-KP(K)= > GT(c(k))i(k,ok)).
whereG (o (k)) € RIN=m)xJ(N=m) gnd U € RIN=m), ( K ; o (k)ak, o (k)
The ideal input (12) is achieved when: . In order for the estimates to be consistent it is necessaity th
U=10"= [[u(e0)]", [’ ()], ..., [ (es1)]"]

: R G
(16) lim —-P "(K) (21)

K—oo



be nonsingular and The functions\; (o (k)) are given by:
K o —o(k) olk)—a
1 k)= ——~2 )= —~2 =
w(K) = 2= 36" (@ (k)n(k o (k) — 0 oloh)=5—g " Mle =0
k=1 wherea and @ are the respective minimum and maximum
a.s., ask' —oo. (22) ya|yes of the scheduling parametefk), which is taken as a
(21) is the condition in the theorem that should be satisfiedniformly distributed signal in the interval (0,1). We, teéore,

To show that (22) is true we first write: have thate = 0 ando = 1.
. ’ . The desired outpug,(t) is defined by:
G (o(k)n(k,o(k)) =G (o(k))A™ (o(k))n(k,o(k))
_ (k. o(k) ya(t) =1 —cos(0.01xt)  t=0,1,...,200.  (28)

Sincen(k, o (k)) is assumed to be zero mean and independe;me dls;urpanct?]é(t, k, a(k)zjar:dn(_tt,hk, ff(kl)))_l_?retset to zero ‘
between iterations, and\ is nonsingular, this expressionO empnasise the proposed aigorithm's ability fo compensa
the changing dynamics.

means that(k, o (k)) will also be zero mean and indepen- Th 4 method i lied to th " h
dent between iterations. Additionalk(k, o (k))’s covariance . € proposed method 1S app "? 0 the system, Nowever,
in order to investigate the method’s robustness to unceytai

matrix is given by: instead of using the matrixa(o(k)) in the algorithm, the
Ry (k, o (k)) constant matrixG(g) is used, independently of the current

AT 1 _T Value OfO'(k)
=G (0 (k)A™ (o (k))Ra(k, o (k) A7 (0 (k))G(o (k). In the implementation of the algorithm the matrix:
SinceRy, (k, o(k)) is assumed bounded aidis nonsingular, b1

Rx(k, o (k)) will be bounded. P(k+1) = T(o(k L
The ith component ofw(K) in (22) therefore represents ( ) ;g (o(k))G (o (R))
the sample average of a sequence of zero-mean, indepen(\;vehnetre

random variables with finite, though possibly differentriva

—1

anceso?2(i, k,o(k)). Lemma 1 implies that (22) is satisfied G(o(k)) = [Mo(o(k)G(a), M (o (k))G(a)]
: . K o2 (i, k, o (k) is required at each iteration of the algorithm. In order foe t
Am ) = < oo (23) inverse to exist, it is necessary that this matrix be fullkcan
k=1 For this to be the case a persistency of excitation condition
Since on the scheduling parameter trajectory should be satisfied.
u o2(ik,o(k)) _ _o,. W] necessary, but not sufficient, condition for the matrix to be
Z T2 <7, (1) Z %2 full rank is that 2 different values o& (k) are visitedt In
k=1 k=1 order to satisfy this the algorithm is not used to calculate t
wherec? (i, k,o(k)) < 72(i) < oo Vk, and system input until 2 different values ef(k) have been visited.
e u(k,o(k)) = ya is used fork = 1, 2.
lim 1l_r The results obtained using the proposed method are com-
K—oo = k26 pared with those obtained using an ILC algorithm developed
under the assumption of the system being LTI. The algorithm

(23) is satisfied. The theorem is therefore proved. )
Remark:The condition (20) in Theorem 1 is a persistencﬂf

of excitation condition that requires the scheduling paeten o L

trajectory to be sufficiently rich. u(k+1) = u(k) + kG (z)e(u(k)). (29)

given by:

This algorithm can be motivated either by stochastic approx

[Il. SIMULATION imation theory [7] or as the equivalent recursive version of

The effectiveness of the proposed method is next shown Wi least squares solution when the 2-norm of the tracking
simulation. The LPV system used in the simulation is define&fror is minimised over all iterations up to iteratiér- 1. The

by the polynomials: latter is the same motivation as that used to develop the LPV
1 T ILC algorithm so makes the comparison fair. The algorithm is
B(q~") = (0.0048 +0.0047¢"")q (24)  tested in simulation using the same signalddi) andya(t).
and The RMS values|e(k)||2 achieved using the LPV and

. . L LTI ILC algorithms are shown in Figure 1. It can be clearly
Alo(k),q ) =1+ai (k)¢ +az(o(k))q (25)  seen that the proposed method reduces the RMS value of the
where error substantially over the iterations and the error caye®
towards zero. There is, however, no obvious trend in thererro
ay (o(k)) = —1.8953\p(o (k)) — 1.8903\1 (o (k))  (26)
1This condition arises becau@(o-(k)% € RW=—m)x2(N—m) jg of
and maximum rankN — m, and thus so iG7 (o (k))G (o (k). P~1(k + 1)
must be of rank(N — m). This is only possible after 2 different values of

az (o(k)) = 0.9048\o(o (k)) + 0.9098\ (o (k).  (27) o(k) are visited.
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Fig. 1. RMS value ofe(k) obtained in simulation using the proposedFig. 3. Mean system response at 10 different positions tireteoutput
algorithm (blue) and the LTI algorithm (green) ya(t) (blue) applied as closed-loop reference

The desired output motion is a low-pass filtered step type
movement with an amplitude of bm in one direction fol-
lowed by a similar movement back to the starting position.
This movement is typical in the semiconductor industry. In
this paper we consider the problem of improving the tracking
performance of the LPMSM when it executes the movement
repetitively but from a different starting position eaclpeé-
tion. This scenario is clearly possible in an industriatisgt
If the system’s dynamics and disturbances were position-
independent, this problem could be solved with a standard
LTI ILC algorithm. This, however, is not the case for the
system considered as can be seen from Figures 3 and 4.
In these figures the mean system'’s response is shown when
the movement is carried out at 10 different starting posgtio
spaced 1.6 mm apart. The movements are repeated 10 times
at each position in order to be able to differentiate between
the effect of stochastic disturbances on the system’s resspo
and that due to changing dynamics. It can be clearly seen
that significantly different responses are obtained whitfierd

achieved using the LTI algorithm. _Th|s_lack of tracking imy y an amount greater than could be expected from stochastic
provement is because the LTI algorithm is not able to leagn t

- . : ects.
correct input as the system’s dynamics change contmuousfyf/
between iterations.

Fig. 2. Linear motor (courtesy of ETEL)

A. System Modelling

IV. APPLICATION Experimentally, a position dependence of the system’s re-
_ _ _ ~ sponse has been shown. In order to understand where this
As mentioned previously, the proposed method is applied¢gmes from a model of the system will now be developed.
a linear, permanent magnet, synchronous motor. This LPMSjje positiony (¢, k) of the translator of the LPMSM, at time

forms the upper axis of an x-y positioning table, see Fig. 24 and repetitionk, obeys the following equation:
A PID feedback controller is used to control the motor’s
d*y(t, k) dy(t, k)

position. It operates at a sampling frequency of 2kHz. An & J9\» %) _ Fn(t k) — a=222 — f, (y(t, k) (30)

analog position encoder using sinusoidal signals withogksri dt? dt

of 2um, which are then interpolated with 8192 intervals/periogthere f,,, (¢, k) is the force applied to the motow is the

to obtain a resolution of 0.24nm, is used to measure thiscous friction coefficient and,.(y(t, k)) is the force ripple.

motor’s position. However, the accuracy of this type of efero Since the system has a current loop whose dynamics are much

is limited to 20nm. faster than the position dynamics, the force applied to the
The input,u(k, o(k+ 1)), computed by the ILC algorithm, motor can be considered proportional to the applied cuirent

is used as the closed-loop system’s position referencelsignf,, (¢, k) = k,,i(t, k). The force ripple term contains both the



tation from now ondy(t, k) and d f.,(t, k) will be replaced
by y(t,k) and f,,(¢, k), respectively, though it should be
remembered that they represent small deviations about the
operating point values.

Taking the Laplace transform of (32), for a fixedy(k)),
gives:

Y(s,o(y(k))) _ 1
(34)
In practice, the ILC algorithm is applied to the reference
signalr(t) of the system operating in closed-loop with a PID
feedback controller:

ya(t), y(t) (um)

1
‘ ‘ ‘ ‘ ‘ ‘ K(s) =K, <1 + —+ Tds) . (35)
0.008 0.01 0.012 0.014 0.016 0.018 T S
t(s) The closed-loop transfer function between the referergreasi
and the system output is:
Fig. 4. Zoom of mean system response at different positiats evror bars _ _
showing 1 standard deviation Y(s,a(y(k))) _ K(s)P(s,a(y(k))) _ (36)
Ris) T+ KE)PEouH)

The ILC algorithm is applied in discrete-time. It is thenefo
necessary to discretise the transfer function (36). Thasrdti-
by: sation is done using Euler’s second method i.e. by suhisiitut
' s by (1—z71)/h, whereh is the sampling period. Additionally
2my(t, k) the discrete-time system has a two sampling period inpatydel
Z By isi < T + ‘bm') J (31) We therefore have the discrete-time closed-loop LPV system
! transfer function given by:
where the penodg“m» are influenced by different factors such
as the average pitch of the magnets and the size of the bearingG L o(g(k) = B(z™h)
We see that this force has a nonlinear dependence on the ’ A(o(y(k)),z—1)

cogging force and reluctance force, and is primarily a kcio
function of the system’s position(t, k) that can be modelled

system’s position making the system, itself, nonlinear. 272 (b2 + b3z 4 b4zf2)
The developed ILC algorithm is for the LPV system class. — a0 (@ (G(k)) + a1 ((G(k))) 2L + azz 2 + azz 3’
The system represented by (30) does not have the form (37)

of an LPV system. Nonetheless for the specific class of
movements considered in this work, whose amplitude is ne here

Iigibl_e compared to the force. ripple’s principgl periodrteén ao (a(j(k))) = aSo (o (G(k))) + ap M (o (G(K)))
manipulations can be made in order to obtain an LPV model. o (§(k))) = a0 (e (G(k))) + et (oG (k)
Under this assumption on the movement amplitude, the force  “* 7V — A1l LAgy

ripple can be assumed to vary linearly in a small zone abauid

a certain operating point corresponding to a specific sigrti T —o(yk o(G(k)) — o
position (k). Using this idea we can obtain an LPV model}o(o(4(k)) = #7 M(o(y(k)) = %-
whose dynamics change as a function of the starting position - -

by linearising the force ripple term about this operatingnpgo

giving:

2

L0yt k) = (b, k) — a8y (1, k) — o (k)3 (r, b), o
(32) B. System Identification

The developed ILC algorithm uses the matdXo (k)),
gs seen in (19). This matrix is formed from the system
matrix G(o (k)) and the functions\;(o(g(k))). A model of
G(z71,0(j(k))) needs to be identified in order to construct
o(G(k)) = dfr(y(tvk))’ the matrix G(o(k)). This identification will be considered

dy(t, k) Ty(t.k)=g(k) first, followed by the identification of; (o (7 (k))).

nr—1 27 F, 2y (k) . Th_e LP.V.modeI ofG(z*l,a(gj(k:))). could be found by
= Z (T—) COS( T +¢m>- (33) first identifying LTI models, each with the same structure

=0 o e (order and delay) as (37) at different positions. These risbde
This model can be seen to represent an LPV system wijihrameters could then be used to find the parameters of the
o(y(k)) as the scheduling parameter. For simplicity of nosverall LPV model (37). This method is, however, very time

—
R

It has, therefore, been shown that the LPMSM can be
represented by an LPV model for the class of movements
considered and thus the developed algorithm is applicable.

where oy(t, k) is a small position deviation aboug(k),
dfm(t, k) is a small force deviation about the force require
to maintain the system at the operating point and
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consuming and calls into question the practical usefuloéssWith these values the parametric model of the force ripple is
the ILC method. As was seen in the simulation, the proposed

4

algorithm is robust to a certain amount of system uncestaint Fr(y(t, k) = ZFmsin (M + ¢T_’Z.)
A single LTI modelG(q) is therefore identified to be used in i=0 Tr
the place of the LPV model in (19). T (omyR)) 17T

In order to excite the system correctly for the identificatio ° ( Tr0 ) '
of the LTI model, a PRBS signal is chosen as the system’s cos 2”;—“0’“) 5
reference signal. It uses a shift register of 10 bits and i€liv § Qﬁyz’t,k) 0
of 7 giving a signal length of 7161 points. These values are I B ot

chosen to sufficiently excite the system at low frequencies, :
and are calculated from an estimate of the system’s settling ) 27;y(t7k) 4
time obtained via a step response test on the real system. L COb( )

The amplitude of the signal is selected large enough to gi

2 H .
. ) . 1 0s fr0, - @re estimated by a least squares procedure using
?.990"' slgnal-tfl)—nmse rr]atlo and. rgduhce the efff?cts QfCSt ata from a 13 mm section of the total measured data.
riction, but small enough to remain in the zone of lineaiea ;¢ length is chosen as it corresponds to the period of the

and_ aV(.)'d saturation. .TWO experiments are carried ogt at %?gest component in the force ripple spectrum. The values
arbitrarily chosen position, one set for parameter estonat f Foy s are then calculated from these estimates
7,1y Wr,ly .- .

0

and the other for validation. An Output Error model, with the'-hiS procedure gives,, — 92.03 incr, ¢, — 0.74 rad
same order and number of input delays as (37), is foundﬁgl — 179.07 incr (b‘:"o: 1 2().rad F,’2 :0—253 .36 incr’
give a good fit to the validation data in simulation. " ' . : ' ' ’

' o= ) 5 . ¢r2 = 0.67 rad, F.3 = —754.19 incr, ¢, 3 = 0.62 rad,
Next the identification of the functions;(o(y(k))) is F.4 = 435.79 incr and ¢4 = 0.86 rad. A comparison of

undertaken. These functions are based on the schedulifg oytput of the model formed with these parameters and the
parameter (y(k)). o (y(k)) cannot be measured directly, onlytorce estimated from the measurements is shown in Figure

y(k). In order to calculater(y(k)) it is necessary to estimateg \we see that the model fits the measurement estimates
the values off, ;, T,.; and ¢, ; for i = 0,...,n, — 1. This reasonably well.
can be done using measurements from the motor. The force‘Using this model, the scheduling paramete(y(k)) can

applied by the feedback controller is measured whilst the,\ pe calculated from (33). The maximum and minimum
motor moves at constant velocity. Since the acceleration\}gmes ofo(5(k)), & and o are also needed. As the depen-
approximately equal to zero and the friction force is assliM@ence of the derivative of (5(k)) is nonlinear with respect

constant, any variation in the applied force is to compensaf, ;1) it is not possible to evaluate these values analytically.

the force ripple. By doing several experiments in the pesiti They are, therefore, estimated by griddiagy(k)) over the
and negative directions, removing the offset due to thetamis range considered. '

friction force and taking the average we can obtain an eséima

of the force ripple, see Fig. 5. The spectrum of the measured o )

force ripple is calculated in order to estimate the perigds - Application of proposed algorithm to the real system
Significant peaks occur at spatial frequencies correspgrtdi With the required model identified, the proposed algorithm
periods of 2 mm, 3.7 mm, 8 mm, 13 mm and 21 mm. These applied to the LPMSM. The desired motion’s length is such
values are thus used fdf,.; for i = 0,...,4, respectively. that N —m = 24. Similarly to the simulation, in order for
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Fig. 7. RMS value ofe(k) obtained experimentally using the proposed-ig. 8. RMS value ofe(k) obtained experimentally using the proposed
algorithm (blue) and the LTI algorithm (green) algorithm (blue) and the LTI algorithm (green)

the matrix P(k + 1) to exist, the algorithm is not used tostochastic disturbances has been shown when the scheduling
calculate the system input until 2 different valuegj¢f) have parameter trajectory is sufficiently exciting.

been visited. Nonetheless the matix ! (k + 1) is still ill- The algorithm was tested in simulation and shown to give
conditioned. This is because the identified mo@éy) used improved tracking performance over a standard LTI ILC
to produce the matridG has an unstable zero at= —7. algorithm.

The G used to generatB~!(k + 1) thus use<7(q) with this The algorithm has also been applied to a linear, permanent
zero stabilised by replacing it with a zero@at= —1/7. This magnet, synchronous motor. Its use lead to a considerable
stabilisation process is motivated by the fact that it gimestracking improvement.

system with a frequency response that has the same magnituddonotonic convergence of a norm of the error signal is of
as the identified(q), though the phase is different. practical interest, and much attention has been given t thi

The movement’s starting positions are chosen as a sawtoistdue in LTI ILC. Unfortunately, it seems unlikely that this
waveform that periodically visits 13 equally spaced posisi property can be incorporated into LPV ILC algorithms as the
in the 13 mm range considered. system’s dynamics change from one iteration to the next and

As in the simulation section, the results obtained using ti$@, depending on how they change, it is always possible that
proposed method are compared with those obtained usingt@ error will increase slightly, though the overall trefbsld
LTI ILC algorithm. be to decrease.

The RMS valueg|e(k)||» achieved using the LPV and LTI Experimentally the algorithm has been shown to be robust
ILC algorithms are shown in Figures 7 and 8. It can b® a certain amount of model uncertainty. Nevertheless, a
seen that the proposed LPV algorithm considerably redudBgoretical result quantifying the acceptable unceryashbuld
the RMS value of the tracking error. The LPV algorithnbe the subject of future work.
gives slightly better converged tracking than that achieve Furthermore, the proposed method is restricted to LPV
with the LTI algorithm; the mean and maximum RMS errogystems with a dependence on the scheduling parameter only
values over the last 26 iterations (i.e. the last two perioids in the denominator of the system’s transfer function. Itiésc
starting positions) are 0.0234n and 0.051%:m, respectively, that a more general algorithm that works for systems with
for the LPV algorithm and 0.0254:m and 0.0703um, scheduling parameter dependence in the numerator as well
respectively, for the LTI algorithm. The improvement aciei¢ Would be of interest. A different approach to that preseired
with the proposed LPV method is not, however, as great s paper would be necessary, nonetheless, as the idedl inp
that obtained in the simulation. This is probably because thould not be represented as a linear combination of the ideal
force ripple affecting the LPMSM used in the experiments i8puts at the polytopic vertices.
not sufficient to make the system strongly LPV and therefore

the system does not truly benefit from the LPV algorithm. REFERENCES
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