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Linear Parameter Varying Iterative Learning Control
with application to a Linear Motor System

Mark Butcher and Alireza Karimi

Abstract— In this paper an Iterative Learning Control (ILC)
algorithm is proposed for a certain class of Linear Parameter
Varying (LPV) systems whose dynamics change between itera-
tions. Consistency of the algorithm in the presence of stochastic
disturbances is shown. The proposed algorithm is tested in
simulation and the obtained tracking performance is compared
with that obtained using a standard Linear Time Invariant
ILC algorithm. Better results are obtained using the proposed
method. The method is also applied to a linear, permanent magnet
synchronous motor system, which is shown to be an LPV system
for a specific class of movements. Greatly improved trackingis
achieved.

Index Terms— Learning control systems, linear parameter-
varying system, linear motors, motion control

I. I NTRODUCTION

Iterative Learning Control (ILC) is now well recognised
as a methodology capable of producing very high tracking
performance for systems carrying out repetitive tasks [1],[2].
ILC adjusts the system’s input from one repetition/iteration to
the next in order to compensate for the system’s dynamics and
disturbances, thus improving its output tracking performance.
ILC has been successfully applied to numerous systems carry-
ing out repetitive tasks (e.g. [3], [4], [5], [6]). One of themain
drawbacks of ILC, however, is that it requires the system’s
dynamics and disturbances to be repetition invariant. This
assumption may not always be valid in practice i.e. when
the output sensor is affected by non-negligible measurement
noise or if a robotic arm picks up different loads from one
repetition to the next. If the variations are of a stochastic
nature, they should not be compensated for and ILC algorithms
that are insensitive to these variations should be used (e.g.
[7]). If, however, they are deterministic, it may be possible
to compensate for the changes. It is therefore of interest
to investigate ILC algorithms that are applicable when the
system’s dynamics and disturbances change deterministically
between repetitions.

To the authors’ knowledge, very little work has been done
on this problem. In [8] the problem of deterministically iter-
ation varying disturbances is considered. It is shown that,by
using the internal-model principle in the iteration domain, the
disturbances can be rejected as the iterations tend to infinity.
The problem with this approach is that it is necessary to know
the form of the disturbance variation in advance in order to
include its model in the ILC controller, as required by the
internal-model principle.
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In this paper we develop an ILC algorithm that can lead
to improved tracking for systems that can be represented by
the Linear Parameter Varying (LPV) class of systems [9], and
therefore whose dynamics change as a function of a mea-
surable scheduling parameter. Development and application
of control techniques for LPV systems has been active in
recent years (e.g. [10], [11]). ILC for LPV systems has been
considered in [12]. The variation of the system’s dynamics due
to the changing scheduling parameter is, however, assumed to
take place during the iteration, rather than from one iteration
to the next. The problem considered is, therefore, different to
that studied here.

The method developed in this paper is applied to a linear,
permanent magnet, synchronous motor system (LPMSM).
LPMSMs are very stiff and have no mechanical transmission
components. They, therefore, do not suffer from backlash and
so allow very high positioning accuracy to be achieved. Typical
uses for this type of motor include wafer stages, microscale
robotic decomposition, electronic assembly and manufactur-
ing, and machine tools. The precision required by all of these
applications is continuously increasing. When the required
movements are repetitive, ILC is an obvious choice to achieve
this precision [13], [14], [15], [16], [17]. LPMSMs, however,
are affected by a periodic, position-dependent force ripple
disturbance. When a movement starts from the same place this
disturbance will be repetitive. ILC can thus adjust the system’s
input to compensate for it [18]. However, if the movement
starts from a different position, the disturbance will change and
the learnt input will no longer produce optimal tracking. This
problem has been investigated in [19]. The method proposed
there is to learn the input that gives optimal tracking for a
specific starting position. This input will compensate for errors
due to the system’s dynamics and the ripple force disturbance.
It can thus be decomposed into these two components. When
the movement is executed from a different starting position
the component compensating the system’s dynamics can be
applied to the system, plus a phase-shifted version of the
component that compensates the periodic, position dependent
disturbance. The phase shift will be a function of the distance
between starting positions. This method has the benefit that
the input only needs to be learnt once, rather than for every
starting position. Its disadvantage is that the learning process
has to be done offline as a tuning procedure in order that the
same starting position is used at each iteration.

In this paper it will be shown how, for a certain class of
movements whose amplitude is negligible compared to the
period of the force ripple, the LPMSM can be modelled as
an LPV system with the position-dependent force ripple as
the scheduling parameter. The proposed LPV ILC algorithm
is therefore applicable to the LPMSM.
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The paper is organised as follows. In Section II the LPV
ILC algorithm is presented. The algorithm is then tested in
simulation in Section III. It is then applied to the LPMSM, as
detailed in Section IV. Finally some conclusions are made in
Section V.

II. L INEAR PARAMETER VARYING ILC

In this section the LPV ILC algorithm is described. First the
class of systems considered in this paper is outlined. The ideal
input for this class of systems is then given. A parameterisation
for the input to be estimated is then presented, based on
the structure of the ideal input. Next a recursive algorithm,
similar to the standard recursive least squares but taking
into account the iteration-varying aspect of LPV systems, is
developed to estimate the ideal input. Finally it is shown that,
under a persistency of excitation condition on the scheduling
parameter, the learning algorithm converges probabilistically
to the ideal input.

A. System description

We consider the finite-time tracking problem of following a
repetitive, finite duration desired trajectoryyd(t), defined for
t = 0, . . . , N − 1.

The output at timet of the stable, LPV SISO discrete-time
system, resulting from linearising a nonlinear system about the
operating pointσ(k) ∈ R

nσ , is given by:

A(σ(k), q−1)y(t, k, σ(k))

= B(q−1)u(t, k) + d(t, k, σ(k)) + n(t, k, σ(k)), (1)

where

A(σ(k), q−1) =

na
∑

j=0

aj(σ(k))q−j , B(q−1) =

nb
∑

j=0

bjq
−j ,

u(t, k) is the input to the system andq−1 is the backward-shift
time operator.d(t, k, σ(k)) andn(t, k, σ(k)) are a determin-
istic and a stochastic disturbance, respectively, both possibly
dependent onσ. The operating pointσ(k) remains constant
throughout repetitionk. The dependence of the coefficientsai

and the deterministic disturbance on the scheduling parameter
is assumed polytopic:

ai(σ(k)) =

J−1
∑

j=0

λj(σ(k))ai,j

and d(t, k, σ(k)) =

J−1
∑

j=0

λj(σ(k))dj(t),

0 ≤ λj(σ(k)) ≤ 1,

J−1
∑

j=0

λj(σ(k)) = 1, (2)

whereλj(σ(k)) : R
nσ → R. Additionally we designate the

values ofσ at the vertices of the polytopic space asσj .
As the signals are defined over the finite duration of the

repetition, it is possible to express the system’s input-ouput
relationship by a matrix representation. Using the lifted-system

representation typically used in ILC, we define, for a system
with a relative degree ofm, the vectors:

u(k) = [u(0, k), u(1, k), . . . , u(N − m − 1, k)]T

and y(k, σ(k)) = [y(m, k, σ(k)), y(m + 1, k, σ(k)),

. . . , y(N − 1, k, σ(k))]T , (3)

with yd, dj andn(k, σ(k)) defined similarly toy(k, σ(k)).
This representation can then be used to write (1) as:

A(σ(k))y(k, σ(k)) =

J−1
∑

j=0

λj(σ(k))Ajy(k, σ(k))

= Bu(k) +
J−1
∑

j=0

λj(σ(k))dj + n(k, σ(k)), (4)

where Aj =











a0,j 0 . . . 0
a1,j a0,j . . . 0

...
...

. . .
...

aN−m−1,j aN−m−2,j . . . a0,j











and B =











bm 0 . . . 0
bm+1 bm . . . 0

...
...

. . .
...

bN−1 bN−2 . . . bm











. (5)

Assumptions:The disturbance vectorn(k, σ(k)) is assumed
to be a zero-mean, random vector with unknown but bounded
covariance matrixRn(k, σ(k)). Additionally, realisations of
n(k, σ(k)) are considered independent.

Later in the paper the following lemma will be needed:

Lemma 1: [p. 253 in [20]] Let X(k) be an independent
random sequence with constant meanµX and varianceσ2

X(k)
defined fork ≥ 1. Define another random sequence as:

µ̂X(K) =
1

K

K
∑

k=1

X(k) for K ≥ 1. (6)

Then if

lim
K→∞

K
∑

k=1

σ2
X(k)

k2
< ∞, (7)

µ̂X(K)
P
−→ µX asK → ∞, (8)

where
P
−→ represents convergence in probability.

The theorem also holds true for almost sure (a.s.) conver-
gence, making it a Strong Law.

B. Ideal input

The measured error is defined as:

e(k, σ(k)) = yd − y(k, σ(k)). (9)

The ideal input vector, defined as the one that achieves zero
mean error, i.e.E{e(k, σ(k))} = 0 ∀σ, whereE{·} denotes
the mathematical expectation operator, is given by:

u0(k, σ(k)) =

J−1
∑

j=0

λj(σ(k))B−1 (Ajyd − dj) . (10)
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At the values ofσ that correspond to the vertices of the
polytopic dependence we have:

u0(k, σj) = B−1 (Ajyd − dj) . (11)

Using this (10) can be written as:

u0(k, σ(k)) =
J−1
∑

j=0

λj(σ(k))u0(σj). (12)

Remark: Expression (12) rationalises the class of LPV
systems considered here i.e. LPV systems with dependence
on the scheduling parameter solely in the denominator. Only
for this system class does the ideal input depend linearly onthe
ideal inputs at the vertices. This linear dependence means the
estimation of these inputs, as considered in the next subsection,
can be done via linear least squares and there will be a global
minimum. Furthermore, as will be seen in the application
section, real systems exist that belong to this system class.

C. Input parameterisation

We see from (12) that the ideal input is a function of
the scheduling parameterσ(k). The ILC algorithm should
therefore estimate an input that is also a function ofσ(k).
Motivated by the form of the ideal input, and under the
assumption that the functionsλj(σ(k)) are known, the input
is parameterised as:

u(k, σ(k)) =
J−1
∑

j=0

λj(σ(k))uj . (13)

The system output can be written as:

y(k, σ(k)) = A−1(σ(k)) [Bu(k) + d(k, σ(k))

+n(k, σ(k))]

= G(σ(k))u(k) + d̄(k, σ(k)) + n̄(k, σ(k)),
(14)

where G(σ(k)) = A−1(σ(k))B, d̄(k, σ(k)) =
A−1(σ(k))d(k, σ(k)) and n̄(k, σ(k)) =
A−1(σ(k))n(k, σ(k)). It should be mentioned that for
G(σ(k)), d̄(k, σ(k)) and n̄(k, σ(k)) to exist, A(σ(k))
should be nonsingular, which is always the case due to its
structure. If the parameterised input (13) is applied to the
system we have:

y(k, σ(k)) = G(σ(k))

J−1
∑

j=0

λj(σ(k))uj + d̄(k, σ(k))

+ n̄(k, σ(k))

=
[

λ0(σ(k))G(σ(k)), λ1(σ(k))G(σ(k)), . . . ,

λJ−1(σ(k))G(σ(k))
] [

uT
0 ,uT

1 , . . . ,uT
J−1

]T

+ d̄(k, σ(k)) + n̄(k, σ(k))

= G(σ(k))U + d̄(k, σ(k)) + n̄(k, σ(k)), (15)

whereG(σ(k)) ∈ R
(N−m)×J(N−m) andU ∈ R

J(N−m).
The ideal input (12) is achieved when:

U = U0 =
[

[u0(σ0)]
T , [u0(σ1)]

T , . . . , [u0(σJ−1)]
T
]T

.
(16)

D. The learning algorithm

The aim of the algorithm is to estimateU0 over the
iterations. The approach proposed here to find the estimate
is to minimise a quadratic cost function over all previous
iterations i.e. to find the estimate that minimises:

JK(U) =
1

2K

K
∑

k=1

eT (k, σ(k),U)e(k, σ(k),U), (17)

where K is the number of completed iterations. Via some
simple calculations, the estimate can be found as:

ÛK = P(K)

K
∑

k=1

GT (σ(k))[yd − d̄(k, σ(k)) − n̄(k, σ(k))],

(18)

where

P(K) =

[

K
∑

k=1

GT (σ(k))G(σ(k))

]−1

.

Alternatively, via some standard manipulations, (18) can be
written in the recursive form as:

Ûk+1 = Ûk

+ P(k + 1)GT (σ(k + 1))e(k + 1, σ(k + 1), Ûk). (19)

The error signal:

e(k + 1, σ(k + 1), Ûk) = yd − G(σ(k + 1))Ûk

− d̄(k + 1, σ(k + 1)) − n̄(k + 1, σ(k + 1))

can be evaluated experimentally by applying the input
u(k, σ(k + 1)) from (13) based on̂Uk to the real system.
Therefore we see that the estimatêU can be evaluated
recursively using data measured from the real system.

E. Consistency of estimates

Next a condition for consistent estimates is given.

Theorem 1:Under the assumptions made in Subsection
II-A, the algorithm (19) is a consistent estimator, i.e.ÛK

converges almost surely toU0 asK → ∞, if:

lim
K→∞

1

K
P−1(K) (20)

is nonsingular.
Proof: The recursive algorithm (19) has the same asymp-

totic properties as the batch result (18) so the consistencyof
(18) can be considered. (18) can be rewritten as:

ÛK = KP(K)

1

K

K
∑

k=1

GT (σ(k))
[

G(σ(k))U0 − n̄(k, σ(k))
]

= U0 − KP(K)
1

K

K
∑

k=1

GT (σ(k))n̄(k, σ(k)).

In order for the estimates to be consistent it is necessary that:

lim
K→∞

1

K
P−1(K) (21)
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be nonsingular and

w(K) =
1

K

K
∑

k=1

GT (σ(k))n̄(k, σ(k)) → 0

a.s., asK → ∞. (22)

(21) is the condition in the theorem that should be satisfied.
To show that (22) is true we first write:

GT (σ(k))n̄(k, σ(k)) = GT (σ(k))A−1(σ(k))n(k, σ(k))

= x(k, σ(k)).

Sincen(k, σ(k)) is assumed to be zero mean and independent
between iterations, andA is nonsingular, this expression
means thatx(k, σ(k)) will also be zero mean and indepen-
dent between iterations. Additionallyx(k, σ(k))’s covariance
matrix is given by:

Rx(k, σ(k))

= GT (σ(k))A−1(σ(k))Rn(k, σ(k))A−T (σ(k))G(σ(k)).

SinceRn(k, σ(k)) is assumed bounded andA is nonsingular,
Rx(k, σ(k)) will be bounded.

The ith component ofw(K) in (22) therefore represents
the sample average of a sequence of zero-mean, independent
random variables with finite, though possibly different, vari-
ancesσ2

x(i, k, σ(k)). Lemma 1 implies that (22) is satisfied
if:

lim
K→∞

K
∑

k=1

σ2
x(i, k, σ(k))

k2
< ∞. (23)

Since
K

∑

k=1

σ2
x(i, k, σ(k))

k2
≤ σ2

x(i)

K
∑

k=1

1

k2

whereσ2
x(i, k, σ(k)) ≤ σ2

x(i) < ∞ ∀k, and

lim
K→∞

K
∑

k=1

1

k2
=

π

6
,

(23) is satisfied. The theorem is therefore proved.
Remark:The condition (20) in Theorem 1 is a persistency

of excitation condition that requires the scheduling parameter
trajectory to be sufficiently rich.

III. S IMULATION

The effectiveness of the proposed method is next shown via
simulation. The LPV system used in the simulation is defined
by the polynomials:

B(q−1) = (0.0048 + 0.0047q−1)q−1 (24)

and

A(σ(k), q−1) = 1 + a1 (σ(k)) q−1 + a2 (σ(k)) q−2 (25)

where

a1 (σ(k)) = −1.8953λ0(σ(k)) − 1.8903λ1(σ(k)) (26)

and

a2 (σ(k)) = 0.9048λ0(σ(k)) + 0.9098λ1(σ(k)). (27)

The functionsλj(σ(k)) are given by:

λ0(σ(k)) =
σ − σ(k)

σ − σ

, λ1(σ(k)) =
σ(k) − σ

σ − σ

,

where σ and σ are the respective minimum and maximum
values of the scheduling parameterσ(k), which is taken as a
uniformly distributed signal in the interval (0,1). We, therefore,
have thatσ = 0 andσ = 1.

The desired outputyd(t) is defined by:

yd(t) = 1 − cos(0.01πt) t = 0, 1, . . . , 200. (28)

The disturbancesd(t, k, σ(k)) andn(t, k, σ(k)) are set to zero
to emphasise the proposed algorithm’s ability to compensate
the changing dynamics.

The proposed method is applied to the system, however,
in order to investigate the method’s robustness to uncertainty,
instead of using the matrixG(σ(k)) in the algorithm, the
constant matrixG(σ) is used, independently of the current
value ofσ(k).

In the implementation of the algorithm the matrix:

P(k + 1) =

[

k+1
∑

i=1

GT (σ(k))G(σ(k))

]−1

where

G(σ(k)) =
[

λ0(σ(k))G(σ), λ1(σ(k))G(σ)
]

is required at each iteration of the algorithm. In order for the
inverse to exist, it is necessary that this matrix be full rank.
For this to be the case a persistency of excitation condition
on the scheduling parameter trajectory should be satisfied.A
necessary, but not sufficient, condition for the matrix to be
full rank is that 2 different values ofσ(k) are visited.1 In
order to satisfy this the algorithm is not used to calculate the
system input until 2 different values ofσ(k) have been visited.
u(k, σ(k)) = yd is used fork = 1, 2.

The results obtained using the proposed method are com-
pared with those obtained using an ILC algorithm developed
under the assumption of the system being LTI. The algorithm
is given by:

u(k + 1) = u(k) +
1

k
G−1(σ)e(u(k)). (29)

This algorithm can be motivated either by stochastic approx-
imation theory [7] or as the equivalent recursive version of
the least squares solution when the 2-norm of the tracking
error is minimised over all iterations up to iterationk+1. The
latter is the same motivation as that used to develop the LPV
ILC algorithm so makes the comparison fair. The algorithm is
tested in simulation using the same signal forσ(k) andyd(t).

The RMS values‖e(k)‖2 achieved using the LPV and
LTI ILC algorithms are shown in Figure 1. It can be clearly
seen that the proposed method reduces the RMS value of the
error substantially over the iterations and the error converges
towards zero. There is, however, no obvious trend in the error

1This condition arises becauseG(σ(k)) ∈ R
(N−m)×2(N−m) is of

maximum rankN − m, and thus so isGT (σ(k))G(σ(k)). P
−1(k + 1)

must be of rank2(N − m). This is only possible after 2 different values of
σ(k) are visited.
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Fig. 1. RMS value ofe(k) obtained in simulation using the proposed
algorithm (blue) and the LTI algorithm (green)

Fig. 2. Linear motor (courtesy of ETEL)

achieved using the LTI algorithm. This lack of tracking im-
provement is because the LTI algorithm is not able to learn the
correct input as the system’s dynamics change continuously
between iterations.

IV. A PPLICATION

As mentioned previously, the proposed method is applied to
a linear, permanent magnet, synchronous motor. This LPMSM
forms the upper axis of an x-y positioning table, see Fig. 2.

A PID feedback controller is used to control the motor’s
position. It operates at a sampling frequency of 2kHz. An
analog position encoder using sinusoidal signals with periods
of 2µm, which are then interpolated with 8192 intervals/period
to obtain a resolution of 0.24nm, is used to measure the
motor’s position. However, the accuracy of this type of encoder
is limited to 20nm.

The input,u(k, σ(k +1)), computed by the ILC algorithm,
is used as the closed-loop system’s position reference signal.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

1

2

3

4

5

6

7

8

y d
(t

),
y
(t

)
(µ

m
)

t(s)

Fig. 3. Mean system response at 10 different positions to desired output
yd(t) (blue) applied as closed-loop reference

The desired output motion is a low-pass filtered step type
movement with an amplitude of 5µm in one direction fol-
lowed by a similar movement back to the starting position.
This movement is typical in the semiconductor industry. In
this paper we consider the problem of improving the tracking
performance of the LPMSM when it executes the movement
repetitively but from a different starting position each repeti-
tion. This scenario is clearly possible in an industrial setting.
If the system’s dynamics and disturbances were position-
independent, this problem could be solved with a standard
LTI ILC algorithm. This, however, is not the case for the
system considered as can be seen from Figures 3 and 4.
In these figures the mean system’s response is shown when
the movement is carried out at 10 different starting positions
spaced 1.6 mm apart. The movements are repeated 10 times
at each position in order to be able to differentiate between
the effect of stochastic disturbances on the system’s response
and that due to changing dynamics. It can be clearly seen
that significantly different responses are obtained which differ
by an amount greater than could be expected from stochastic
effects.

A. System Modelling

Experimentally, a position dependence of the system’s re-
sponse has been shown. In order to understand where this
comes from a model of the system will now be developed.
The positiony(t, k) of the translator of the LPMSM, at time
t and repetitionk, obeys the following equation:

d2y(t, k)

dt2
= fm(t, k) − α

dy(t, k)

dt
− fr(y(t, k)) (30)

where fm(t, k) is the force applied to the motor,α is the
viscous friction coefficient andfr(y(t, k)) is the force ripple.
Since the system has a current loop whose dynamics are much
faster than the position dynamics, the force applied to the
motor can be considered proportional to the applied currenti.e.
fm(t, k) = kmi(t, k). The force ripple term contains both the
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Fig. 4. Zoom of mean system response at different positions with error bars
showing 1 standard deviation

cogging force and reluctance force, and is primarily a periodic
function of the system’s positiony(t, k) that can be modelled
by:

fr(y(t, k)) =

nr−1
∑

i=0

Fr,i sin

(

2πy(t, k)

Tr,i

+ φr,i

)

, (31)

where the periodsTr,i are influenced by different factors such
as the average pitch of the magnets and the size of the bearings.
We see that this force has a nonlinear dependence on the
system’s position making the system, itself, nonlinear.

The developed ILC algorithm is for the LPV system class.
The system represented by (30) does not have the form
of an LPV system. Nonetheless for the specific class of
movements considered in this work, whose amplitude is neg-
ligible compared to the force ripple’s principal period, certain
manipulations can be made in order to obtain an LPV model.
Under this assumption on the movement amplitude, the force
ripple can be assumed to vary linearly in a small zone about
a certain operating point corresponding to a specific starting
position ȳ(k). Using this idea we can obtain an LPV model,
whose dynamics change as a function of the starting position,
by linearising the force ripple term about this operating point,
giving:

d2

dt2
δy(t, k) = δfm(t, k) − α

d

dt
δy(t, k) − σ(ȳ(k))δy(t, k),

(32)

where δy(t, k) is a small position deviation about̄y(k),
δfm(t, k) is a small force deviation about the force required
to maintain the system at the operating point and

σ(ȳ(k)) =
dfr(y(t, k))

dy(t, k)

∣

∣

∣

y(t,k)=ȳ(k)

=

nr−1
∑

i=0

(

2πFr,i

Tr,i

)

cos

(

2πȳ(k)

Tr,i

+ φr,i

)

. (33)

This model can be seen to represent an LPV system with
σ(ȳ(k)) as the scheduling parameter. For simplicity of no-

tation from now onδy(t, k) and δfm(t, k) will be replaced
by y(t, k) and fm(t, k), respectively, though it should be
remembered that they represent small deviations about the
operating point values.

Taking the Laplace transform of (32), for a fixedσ(ȳ(k)),
gives:

Y (s, σ(ȳ(k)))

Fm(s, k)
= P (s, σ(ȳ(k))) =

1

s2 + αs + σ(ȳ(k))
.

(34)
In practice, the ILC algorithm is applied to the reference

signalr(t) of the system operating in closed-loop with a PID
feedback controller:

K(s) = Kp

(

1 +
1

Tis
+ Tds

)

. (35)

The closed-loop transfer function between the reference signal
and the system output is:

Y (s, σ(ȳ(k)))

R(s)
=

K(s)P (s, σ(ȳ(k)))

1 + K(s)P (s, σ(ȳ(k)))
. (36)

The ILC algorithm is applied in discrete-time. It is therefore
necessary to discretise the transfer function (36). This discreti-
sation is done using Euler’s second method i.e. by substituting
s by (1−z−1)/h, whereh is the sampling period. Additionally
the discrete-time system has a two sampling period input delay.
We therefore have the discrete-time closed-loop LPV system
transfer function given by:

G(z−1, σ(ȳ(k))) =
B(z−1)

A(σ(ȳ(k)), z−1)

=
z−2

(

b2 + b3z
−1 + b4z

−2
)

a0 (σ(ȳ(k))) + a1 (σ(ȳ(k))) z−1 + a2z−2 + a3z−3
,

(37)

where

a0 (σ(ȳ(k))) = a0
0λ0(σ(ȳ(k))) + a1

0λ1(σ(ȳ(k)))

a1 (σ(ȳ(k))) = a0
1λ0(σ(ȳ(k))) + a1

1λ1(σ(ȳ(k)))

and

λ0(σ(ȳ(k)) =
σ − σ(ȳ(k))

σ − σ

, λ1(σ(ȳ(k)) =
σ(ȳ(k)) − σ

σ − σ

.

It has, therefore, been shown that the LPMSM can be
represented by an LPV model for the class of movements
considered and thus the developed algorithm is applicable.

B. System Identification

The developed ILC algorithm uses the matrixG(σ(k)),
as seen in (19). This matrix is formed from the system
matrix G(σ(k)) and the functionsλi(σ(ȳ(k))). A model of
G(z−1, σ(ȳ(k))) needs to be identified in order to construct
the matrix G(σ(k)). This identification will be considered
first, followed by the identification ofλi(σ(ȳ(k))).

The LPV model ofG(z−1, σ(ȳ(k))) could be found by
first identifying LTI models, each with the same structure
(order and delay) as (37) at different positions. These models’
parameters could then be used to find the parameters of the
overall LPV model (37). This method is, however, very time
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Fig. 5. Measured force ripple (‘incr’ are the LPMSM’s unit offorce)

consuming and calls into question the practical usefulnessof
the ILC method. As was seen in the simulation, the proposed
algorithm is robust to a certain amount of system uncertainty.
A single LTI modelG(q) is therefore identified to be used in
the place of the LPV model in (19).

In order to excite the system correctly for the identification
of the LTI model, a PRBS signal is chosen as the system’s
reference signal. It uses a shift register of 10 bits and a divider
of 7 giving a signal length of 7161 points. These values are
chosen to sufficiently excite the system at low frequencies,
and are calculated from an estimate of the system’s settling
time obtained via a step response test on the real system.
The amplitude of the signal is selected large enough to give
a good signal-to-noise ratio and reduce the effects of static
friction, but small enough to remain in the zone of linearisation
and avoid saturation. Two experiments are carried out at an
arbitrarily chosen position, one set for parameter estimation
and the other for validation. An Output Error model, with the
same order and number of input delays as (37), is found to
give a good fit to the validation data in simulation.

Next the identification of the functionsλi(σ(ȳ(k))) is
undertaken. These functions are based on the scheduling
parameterσ(ȳ(k)). σ(ȳ(k)) cannot be measured directly, only
ȳ(k). In order to calculateσ(ȳ(k)) it is necessary to estimate
the values ofFr,i, Tr,i and φr,i for i = 0, . . . , nr − 1. This
can be done using measurements from the motor. The force
applied by the feedback controller is measured whilst the
motor moves at constant velocity. Since the acceleration is
approximately equal to zero and the friction force is assumed
constant, any variation in the applied force is to compensate
the force ripple. By doing several experiments in the positive
and negative directions, removing the offset due to the constant
friction force and taking the average we can obtain an estimate
of the force ripple, see Fig. 5. The spectrum of the measured
force ripple is calculated in order to estimate the periodsTr,i.
Significant peaks occur at spatial frequencies corresponding to
periods of 2 mm, 3.7 mm, 8 mm, 13 mm and 21 mm. These
values are thus used forTr,i for i = 0, . . . , 4, respectively.
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Fig. 6. Measured force ripple (blue) and model estimate (green)

With these values the parametric model of the force ripple is:

f̂r(y(t, k)) =

4
∑

i=0

Fr,i sin

(

2πy(t, k)

Tr,i

+ φr,i

)

=























sin
(

2πy(t,k)
Tr,0

)

cos
(

2πy(t,k)
Tr,0

)

sin
(

2πy(t,k)
Tr,1

)

...

cos
(

2πy(t,k)
Tr,4

)























T















f1
r,0

f2
r,0

f1
r,1
...

f2
r,4















.

f1
r,0, f

2
r,0, . . . are estimated by a least squares procedure using

data from a 13 mm section of the total measured data.
This length is chosen as it corresponds to the period of the
largest component in the force ripple spectrum. The values
of Fr,1, φr,1, . . . are then calculated from these estimates.
This procedure givesFr,0 = 92.03 incr, φr,0 = 0.74 rad,
Fr,1 = 179.07 incr, φr,1 = 1.20 rad, Fr,2 = −253.36 incr,
φr,2 = 0.67 rad, Fr,3 = −754.19 incr, φr,3 = 0.62 rad,
Fr,4 = 435.79 incr and φr,4 = 0.86 rad. A comparison of
the output of the model formed with these parameters and the
force estimated from the measurements is shown in Figure
6. We see that the model fits the measurement estimates
reasonably well.

Using this model, the scheduling parameterσ(ȳ(k)) can
now be calculated from (33). The maximum and minimum
values ofσ(ȳ(k)), σ and σ are also needed. As the depen-
dence of the derivative ofσ(ȳ(k)) is nonlinear with respect
to ȳ(k), it is not possible to evaluate these values analytically.
They are, therefore, estimated by griddingσ(ȳ(k)) over the
range considered.

C. Application of proposed algorithm to the real system

With the required model identified, the proposed algorithm
is applied to the LPMSM. The desired motion’s length is such
that N − m = 24. Similarly to the simulation, in order for
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the matrix P(k + 1) to exist, the algorithm is not used to
calculate the system input until 2 different values ofȳ(k) have
been visited. Nonetheless the matrixP−1(k + 1) is still ill-
conditioned. This is because the identified modelG(q) used
to produce the matrixG has an unstable zero atq = −7.
TheG used to generateP−1(k + 1) thus usesG(q) with this
zero stabilised by replacing it with a zero atq = −1/7. This
stabilisation process is motivated by the fact that it givesa
system with a frequency response that has the same magnitude
as the identifiedG(q), though the phase is different.

The movement’s starting positions are chosen as a sawtooth
waveform that periodically visits 13 equally spaced positions
in the 13 mm range considered.

As in the simulation section, the results obtained using the
proposed method are compared with those obtained using an
LTI ILC algorithm.

The RMS values‖e(k)‖2 achieved using the LPV and LTI
ILC algorithms are shown in Figures 7 and 8. It can be
seen that the proposed LPV algorithm considerably reduces
the RMS value of the tracking error. The LPV algorithm
gives slightly better converged tracking than that achieved
with the LTI algorithm; the mean and maximum RMS error
values over the last 26 iterations (i.e. the last two periodsof
starting positions) are 0.0234µm and 0.0515µm, respectively,
for the LPV algorithm and 0.0254µm and 0.0703µm,
respectively, for the LTI algorithm. The improvement achieved
with the proposed LPV method is not, however, as great as
that obtained in the simulation. This is probably because the
force ripple affecting the LPMSM used in the experiments is
not sufficient to make the system strongly LPV and therefore
the system does not truly benefit from the LPV algorithm.

V. CONCLUSIONS

An ILC algorithm has been proposed for systems that can
be represented by the discrete-time, LPV class of systems.
Consistency of the algorithm in the presence of nonstationary
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algorithm (blue) and the LTI algorithm (green)

stochastic disturbances has been shown when the scheduling
parameter trajectory is sufficiently exciting.

The algorithm was tested in simulation and shown to give
improved tracking performance over a standard LTI ILC
algorithm.

The algorithm has also been applied to a linear, permanent
magnet, synchronous motor. Its use lead to a considerable
tracking improvement.

Monotonic convergence of a norm of the error signal is of
practical interest, and much attention has been given to this
issue in LTI ILC. Unfortunately, it seems unlikely that this
property can be incorporated into LPV ILC algorithms as the
system’s dynamics change from one iteration to the next and
so, depending on how they change, it is always possible that
the error will increase slightly, though the overall trend should
be to decrease.

Experimentally the algorithm has been shown to be robust
to a certain amount of model uncertainty. Nevertheless, a
theoretical result quantifying the acceptable uncertainty should
be the subject of future work.

Furthermore, the proposed method is restricted to LPV
systems with a dependence on the scheduling parameter only
in the denominator of the system’s transfer function. It is clear
that a more general algorithm that works for systems with
scheduling parameter dependence in the numerator as well
would be of interest. A different approach to that presentedin
this paper would be necessary, nonetheless, as the ideal input
could not be represented as a linear combination of the ideal
inputs at the polytopic vertices.
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