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their parameters “xed to the true values are generally better than the corre-
sponding versions with parameters estimated (G, L, and L,s). For high
signal-to-noise ratios like 2 = 20 and 2 = 0.5 with parameters estimated
more e ciently, the performance of oracle procedures is close to procedures
that estimate the parameters. In Table 4.4, for a few cases “tting the asym-
metric Laplace model is better than a Gaussian “t even on Gaussian data.
For instance, consider 2 = 0.5, 2 = 20, for which L is the best method
with respect to both losses. Often, “xing hyper-parameteq=1 and pto a
value gives a less e cient method, in terms of both losses for Gaussian and
asymmetric Laplace “ts, compareGp©*, Gp%°, Gp°, L), L)%, L3140 with the
other procedures. This suggests that tuning whenqg=1 is crucial.

In Table 4.4, standard errors for the misclassi“cation loss are larger than
for the trivial loss. The reason for having tiny standard errors for the trivial
loss is that this is a Bernoulli variable giving standard errors proportional to

(1S ), where 0< <1 is the probability of “nding the true clustering.

Figure 4.2 shows signi“cance tests related to Table 4.4, wheve= 0.1 and
q = 0.9. The top three panels correspond to signi“cance tests of = 0.5,
and the bottom panels to signi“cance tests of 2 = 2. The three vertical
panels refer to 2=1, 2=10, and 2 =20 from left to right, respectively.
Hence, for example, tests corresponding to? = 0.5 and 2 = 1 are found
in the top left panel, 2=0.5and 2= 10 in the top middle and top right
panel and so forth.

For small signal-to-noise ratio, for example? =2 and 2 =1, the bottom
left panel of Figure 4.2, contains gray bxes, since McNemares test statistic
cannot be calculated. When there is restricted clustering information, all
clustering methods fail to detect the true labelling and yield two-by-two
crosstabs with o -diagonal elements containing low frequencies, where the
distribution of McNemares test statigic cannot be found. An increase of the
signal-to-noise ratio 2/ 2 leads to signi“cant pairwise comparisons according
to the McNemar and Wilcoxon tests and gives yellow and orange yellow
boxes. See for example the bottom right, top middle, and the top right
panels.

The asymmetric Laplace methods are sometimes better than Gaussian “ts
but are not signi“cantly preferable to all Gaussian procedures. For example
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see 072] = 2,02 = 20 in Figure 4.2, the top right panel, where L* is the best
method and insignificantly different from G* in terms of misclassification loss.

Above we discussed situations with a large expected proportion of active
variables, ¢ = 0.9, and a small expected proportion of active variable-cluster
combinations, p = 0.1. It is possible to have the same amount of active
variable-cluster combinations for data but with a small proportion of active
variables, for example by taking ¢ = 0.1 and p = 0.9; hence, Tables 4.4
and 4.5 are comparable, because they have equal amounts of clustering in-

formation on average. The loss values for ¢ = 0.1 and p = 0.9, especially

2
n

than when ¢ = 0.9 and p = 0.1, confirming the effectiveness of our method

for extremely large signal-to-noise ratio (62 = 0.5 and o3 = 20), are larger
when a lot of variables but few variable-cluster combinations are active. Fit-
ting procedures that mistakenly assume ¢ = 1, (G, G*, L, and L*), give loss
values close to when ¢ is estimated from data (Gys and Lys). This happens
because fixing ¢ helps better estimation of the other model parameters and
consequently gives better clustering overall. Fixing ¢ = 1 may be help to-
ward a better clustering but when 0 < ¢ < 1 the model measures variable
importance, which is demanded in some applications, through B.°.
Augmenting the amount of clustering information, that is increasing pq
from 0.09 to 0.25 (p = ¢ = 0.5), gives smaller losses in Table 4.6 than with
Tables 4.4 and 4.5 for all cases when pg = 0.09. In Table 4.6, we observe
that L. is often less efficient than the corresponding Gaussian procedure,
Gys, which shows the impact of low-quality estimation of parameters for

the asymmetric Laplace method. Comparing L, with G}, so that the pa-

vs?
rameter estimation step is removed, both methods perform similarly. The
procedures with fixed ¢ and p are often less efficient than methods that esti-
mate p; compare Gg'm, Gg'05, and Gg'lo with G and G for Gaussian models,
or Ly 199 and LY with L and L, for the asymmetric Laplace model.
Finally, we note that all of our proposed approaches beat MCLUST im-
plemented on principal components, in terms of both loss functions, for data
generated according to the Gaussian effects model. This is not surprising,
because Chang (1983) showed that principal components of data are not
necessarily informative for clustering. The asymmetric Laplace fits are often

as efficient as the Gaussian fits, especially when model parameters are set



122 CHAPTER 4. SIMULATION RESULTS

to their simulated values (oracle procedures). This suggests, after fixing the
parameters to reasonable values, the distribution assumed for the true effects
is not so important. The difference between the performance of clustering
methods, is caused by the quality of parameter estimation using different dis-
tributional assumptions, which we will discuss briefly in Section 4.4. Fixing
q = 1 and regarding p as a tuning parameter is a good strategy when pq is

close to the true value, otherwise it yields a less efficient clustering procedure.
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Figure 4.1: Profile plot of simulated Gaussian data with o7 = 0.5 and o3 = 10. The
hyper-parameters are p = 0.1, = 0.9 for the top panel, p = 0.9,¢ = 0.1, for the middle
panel, and p = ¢ = 0.5 for the bottom panel. Active variables are represented by a hori-
zontal heat bar at the bottom of each profile plot, red if the variable is active. The active
variable-cluster combinations are shown by red solid blobs with probability of appearance
equal to p for activated variables. At the right side of each profile plot the simulated

grouping is represented.



CHAPTER 4. SIMULATION RESULTS

124

Loss Parameter Fitting Procedure
Q.M Q.W M Q* Q Q* Q Q0.0H Qo.om Qopo L* L L* L N\o.oH N\o.om N\O.Ho
vs P P P vs  p P P

n vs VS

(01) (04 (04) (04 (04) (0.3) (04  (04) (0.4) (05) (04) (05) (0.3) (03) (0.3)

1 100 98 98 98 98 99 98 98 98 97 98 97 99 99 997
05 (1.1) (15 (1.5 (1.6) (1.6) (1.6)  (1.6)  (1.6) (1.5) (1.5) (1.5) (1.6) (1.6)  (1.6) (1.6
— ‘ 10 86 38 40 47 47 54 50 51 38 40 38 57 57 52 53
S (1.3)  (12) (1.3) (L4) (14) (14)  (13)  (14) (1.2) (1.2) (12) (@15 (14 (1.4  (1.4)
M 20 80 19 20 24 24 25 24 24 18 19 19 32 26 24 24
(ﬂa\ (0.1) (0  (0.6) (0.5) (0.5) (0) (0) (0) (0) (0.6) (0) (0.6) (0) (0) (0)
i~ 1 100 100 97 98 98 100 100 100 100 96 100 96 100 100 100
.Tu 9 (0.4) (0.6) (0.6) (0.6) (0.6) (0.5 (0.5 (0.5  (0.6) (0.8) (0.6) (0.8) (0.5  (0.5)  (0.5)
10 98 96 96 96 96 97 97 97 96 94 96 94 97 98 98
06 (12 @11 1) (1) (09 (09 (0.9 (1.2) (1.1) (12) (1.1) (0.9  (0.9)  (0.9)
20 97 84 85 88 88 92 91 91 84 85 84 86 92 92 91
(58) (6.1) (7.7) (7.6) (76) (56) (57 (7  (6) (7.6) (6) (7.6) (55 (55  (55)
1 476 532 435 447 447 547 540 542 537 461 537 461 552 550 553
0.5 (4.4)  (1.5) (L7 (2) (2) (2.5) (2.1) (22) (15 (21) (1.5) (5.6) (2.9) (2.6) (2.7)
.m ) 10 161 22 26 34 34 48 39 42 22 29 22 98 55 46 49
P (36) (0.8 (1) (13 (13 (1) (1) (L1 (0.8) (1.2) (09) (44 (1) (11 (11)
= 20 116 8 9 15 15 12 12 12 8 11 8 54 13 12 13
'z 41) (46) (7.9) (7.3) (7.3) (4.6 (4.6) (4.6) (46) (83) (46) (81) (46 (4.6)  (4.6)
= 1 250 578 435 483 483 578 576 577 578 379 578 416 578 577 578
% 9 (35 (57) (5.8) (5.8 (58) (6.4)  (63) (65  (6) (64) (6) (8) (65  (6.6) (6.6
= 10 171 219 206 211 211 353 322 339 230 209 229 302 369 346 356
(32)  (3.1) (34) (34) (34) (41) (3.7) (3.9) (31 (387 (3.1) (6.6) (4.6) (4.2) (4.3)
20 141 94 99 108 108 153 135 142 93 101 94 183 170 148 153

Table 4.4: Losses for simulated data from the Gaussian effects model with parameters 1 = 0,02 = 1,p = 0.1, and
g = 0.9. The average of the misclassification and the trivial (x100) losses over 1000 Monte Carlo replications are

reported, with the standard error in parentheses above each average loss.
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9p)
m Loss Parameter Fitting Procedure
« * 0.01 0.0 0.10 * * 001 100 0.10
m Qm o3 M G G G, Gs G, G, b G, L L Ly, Ly L, L, > L,
= 02) (04 (05) (05 (05 (03 (04 _ (04) (03) (05 (04) (03) (03) (03)  (0.3)
> 1 100 99 97 98 98 99 99 9 99 98 99 99 99 99 99
Q = 0.5 (1) (15 (15 (1.6) (1.6) (14)  (1.5)  (L5) (15) (1.6) (1.6) (1.5) (1.4)  (1.4)  (1.5)
= = 10 88 61 61 59 59 73 70 69 61 60 56 62 74 71 70
ALn X (13)  (15) (1.5) (1.6) (1.6) (1.6)  (16)  (1.6) (1.5) (L5) (1.6) (1.6) (1.6)  (1.6)  (1.6)
= \%) 20 739 40 44 44 48 45 45 39 39 41 45 49 46 45
= — © (0 (06 (06 (06 (01  (0.1) (0) © (@7 (0 (05 (0 (0) (0)
A = 1 100 100 97 96 96 100 100 100 100 95 100 98 100 100 100
) = 9 (0.4) (0.5 (0.6) (0.7) (0.7) (04) (0.5 (0.5 (0.5 (0.6) (0.6) (0.7) (0.4)  (0.5)  (0.5)
N = 10 99 98 96 95 95 98 98 97 97 96 96 94 98 98 98
DEu = 07 (09 (09 (1) (1) (07 07 (07 (09 (09 (1) (1) (07 (07 (0.7
~ 20 9 92 91 90 90 95 95 95 92 91 8 8 9 95 95
M (5.9) (65) (7.8) (7.6) (7.6) (5.6) (6) (5.9) (6.4) (7.6) (6.6) (67) (655 (57 (5.7
. 1 473 505 423 441 441 545 528 532 512 461 515 514 551 543 548
O 0.5 (46) (3 (3 (29 (29 @) @) (32 (3 (33 (29 (43) (33) (34  (35)
.m =10 148 60 61 55 55 78 72 74 59 62 H1 T7H 82 77 78
< (34) (24) (23) (24) (24) (24  (24)  (24)  (24) (26) (23) (32) (25  (26) (2.7)
S 20 82 33 33 37 37 38 36 37 32 35 35 45 40 38 39
'z @) (44 (77) (7.5) (78) (44  (45)  (44) (44 (83) (44) (75) (45)  (45) (4.
= 1 249 583 457 475 475 583  H81 582 584 390 584 478 582 582 583
% 9 (34) (6.4) (6.2) (64) (6.4) (64)  (6.4)  (67) (65 (69) (65 (82) (65  (67)  (6.9)
= 10 156 237 222 198 198 324 303 322 243 236 201 302 346 325 341

(32) (42) (43) () (4 (45 (44 (A7 (42 @7 (A1) (5.9 (49 (48  (5.1)

20 119 129 129 120 120 164 156 164 129 134 118 159 178 165 174
Table 4.5: Losses and their respective standard errors in parentheses above each estimated loss, for data generated
under the Gaussian effects model with parameters ;. = 0,02 = 1,p = 0.9, and ¢ = 0.1. See the caption to Table 4.4

) for details.
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Loss Parameter Fitting Procedure

Q.M Q.w M Q* Q Qﬂm Q<m QM.S Qm.om pro L* L N\Hm N\<m N\M.S N\w.om N\W.Ho
(0.5) (0.8) (0.8) (0.7) (0.7) (0.5) (0.6) (0.6) (0.8) (0.8) (0.7) (0.5) (0.4) (0.5) (0.5)

1 98 93 94 96 96 98 97 96 94 93 94 97 98 97 97
0.5 (1.4) (.7 (07 (1) (1) (1.6) (1.5) (1.5)  (0.6) (0.9) (0.8) (1.5)  (1.6) (1.5) (1.5)
= =10 74 4 5 11 11 46 33 32 4 10 7 32 52 39 37
m (1.5)  (0.3) (0.3) (0.7) (0.7) (1.2) (1) (0.9) (0.3) (0.4) (0.5) (1.1) (1.3) (1.1) (1.1)
> 20 63 1 1 5) 5! 18 11 10 1 2 3 15 23 16 14
/ﬂ.m (0) (0) (0.7) (0.5) (0.5) (0) (0) (0) (0) (0.8)  (0) (0.5) (0) (0) (0)
i 1 100 100 95 97 97 100 100 100 100 94 100 97 100 100 100
ﬁ 2 (0.8)  (1.3) (1.3) (1.2) (1.2) (0.6) (0.7) (0.8) (1.3)  (1.1)  (1.3) (0.9 (0.6) (0.7) (0.7)
10 94 78 79 82 82 96 94 94 78 84 78 90 96 95 95
(1) (1.5)  (1.5)  (1.3) (1.3) (1.1) (1.3) (1.3) (1.5)  (1.3)  (1.4) (1.2) (1.1) (1.2) (1.3)
20 87 68 69 7T 717 84 78 78 68 77 75 84 87 82 80
(6.7) (86) (81) (83) (8.3) (6.6) (7.2) (7.4) (8.8) (86) (88) (7.5) (6.3) (7) (7)
1 357 312 277 299 299 520 484 482 357 359 355 487 538 510 512
~ 0.5 (2.2)  (0.6) (0.5) (1.2) (1.2) (1.7) (1.1) (1.3) (0.6) (0.8) (0.9) (4.2) (2.5) (1.7) (1.8)
S ~ 10 58 3 3 10 10 28 15 16 3 5 5 47 40 23 24
= (1.6) (0.2) (0.2) (0.9 (0.9  (0.8) 0.7) (0.7)  (0.2) (0.6) (0.6) (L9) (L5) (1.2) (1.2)
& 20 34 0 0 5 5 7 4 4 0 1 2 14 12 7 7
w (3.8) (4.4) (84) (7.6) (7.6) (4.4) (4.5) (4.5) (4.4) (85) (4.4) (7.9 (4.5) (4.5) (4.5)
< 1 223 589 390 478 478 588 586  H8G 590 341 590 454 H7T  H86 5T
m 2 (3) (29 (3.1 (33) (33 (6.7) (6.1) (6.3) (3) (3.8) (2.9 (81) (7) (6.6) (7)
= 10 100 74 81 8 &8 291 228 234 74 104 77 262 324 263 266
(2.8) (2.6) (27) (3.2) (3.2 (4) (3.2) (3.2) (2.6) (3.3) (2.8) (5.8) (4.4) (3.4) (3.4)

20 763 66 82 82 115 84 86 63 84 73 143 134 97 95

Table 4.6: Losses and their standard errors in parentheses above each loss, for data generated under the Gaussian

effects model with hyper-parameters = 0,0 = 1,p = 0.5, and ¢ = 0.5. See the caption to Table 4.4 for details.
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4.3 Asymmetric Laplace Effects Model

The asymmetric Laplace data are generated like the Gaussian data described
in Section 4.1, except that the true effects 6,. are generated from asymmetric
Laplace distribution with variance o5 = o3 + o7, where o, ! is the left-tail
rate and O’e_Rl is the right-tail rate of the exponential distributions compris-
ing the Laplace law. The ratio agR /o5 measures the skewness. When the
ratio equals one it yields the symmetric Laplace (the double exponential)
distribution and when o7 /oj = 10 it leads to a right-skewed distribution,
see Figure 2.5. Profile plots of data simulated from the asymmetric Laplace
model with oj /o7 = 10,05 = 10,07 = 0.5 are given in Figure 4.5. Most
peaks in the profile plots are positive, because the effects are simulated from
a skewed distribution (07 /oj = 10) with a higher probability of having
positive effects.

Table 4.7 is comparable with Table 4.4, Table 4.8 with Table 4.4, and
Table 4.9 with Table 4.6. Comparing the mentioned tables we observe that
it is harder to find the true clustering when effects are distributed according to
a symmetric Laplace distribution (oj, /o5, = 1) with the same variance. It is
even more difficult when the effects are asymmetric (o7, /o5, = 10), because
the true effects are more concentrated about zero. However, asymmetric
Laplace fits are similar to Gaussian fits on asymmetric Laplace data, even
if effects are highly asymmetric (o7, /05, = 10). The asymmetric Laplace
fit Ls suffers from poor parameter estimation, yielding greater loss values
than its corresponding Gaussian fit Gys. In such cases, knowing the true
parameters gives better performance; compare L* with L and L}, with Ly
in Table 4.7. In Figures 4.6 and 4.7, similar regions are yellow, orange and
white, confirming that asymmetric effects do not change the behaviour of
our clustering procedures. In Table 4.9 we see that the estimated losses
decrease for pg = 0.25 compared with cases that have fewer active variable-
cluster combinations (Tables 4.7 and 4.8 having pg = 0.09). Asymmetric
effects have little effect on clustering performance, especially when there is
moderately strong clustering information, for example in Table 4.9 compare
0. /05 =1 with o5 /oj =10 when o = 20.

We conclude that data generated with the asymmetric Laplace effects
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model mostly follow a similar pattern as for the Gaussian effects models
discussed in Section 4.2. This confirms that a wrong assumption about the
mixing distribution does not change the result of clustering. In another
words, having a mixture model is more important than the exact distribution
of the effects, confirming the results of Bhowmick et al. (2006).
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Figure 4.5: Profile plot of data generated from the asymmetric Laplace effects
model with o) = 0.5, 0 = 07 + 05 =10 and o /o5 = 10. The hyper-
parameters are p = 0.1 and ¢ = 0.9 (the top panel) p = 0.9 and ¢ = 0.1
(the middle panel) and p = ¢ = 0.5 (bottom panel). For more details see
Figure 4.1.
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M me / QWh o5 M G G G, Gy Qm 01 Qm 05 Qm 0L L LI, Ly hw 01 hw 05 hm 10
02) (05) (05) (05 (05) (04 (04 _ (04) (05 (05) (0.5 (04 (03) (04 (0.4
nNu 1 100 98 98 98 98 98 98 98 98 98 98 98 99 98 99
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= = (1.2)  (15) (1.5) (L5) (15) (1.6)  (16)  (16) (1.5) (L5) (1.5) (1.6) (1.6)  (1.6)  (1.6)
W > 20 82 33 35 33 39 41 40 41 32 34 32 57 42 40 41
= = (02) (0.5) (05) (05) (04) (05)  (0.5)  (0.4) (05) (05) (0.5) (0.4) (0.4)  (04)  (0.3)
5 1 100 98 98 98 98 98 98 98 98 97 98 98 98 99 99
< Tm 10 0.9) (15) (1.5) (L5) (1.4) (L4)  (L4)  (L4) (1.5) (L5) (1.5) (1.3) (1.4) (1.4  (1.4)
o 10 90 66 68 66 72 73 71 72 66 70 67 80 73 72 72
E (L1) (1.6) (1.6) (1.6) (1.6) (1.6)  (1.6)  (1.6) (1.6) (1.6) (1.6) (1.5) (1.6)  (1.6)  (1.6)
o 20 8 49 52 49 56 56 54 56 47 50 47 66 56 54 55
< (58) (6.7) (75) (6.7) (73) (62)  (6.3)  (6.1) (6.6) (7.5) (6.6) (7.5)  (6) (6.1) (6)
me 1471 497 412 497 430 504 493 504 499 443 499 459 516 513 522
. 1 (4.5)  (25) (26) (25) (27) (3.1 (3) 3) (25 (27 (25 (780 (33) (33)  (3.3)
3 10 181 47 52 47 59 72 66 69 47 51 47 208 77 70 74
< (3.8) (14) (1.5) (14) (L9 (L7) (L7 (L7 (14 (L7 (14) (72) (2 (1.8) (1.9
S 20 136 19 21 19 28 27 26 27 19 22 19 138 29 27 28
7 G767 (72 (67 () (63 63 (62 (67 (75 (67 (76 (6 D)
= 1 461 480 406 480 422 484 474 481 472 420 472 441 513 514 525
% 10 (4.7 (34) (35 (34) (34) (39 (37 (39 (34 (43) (34) (790 (48)  (48) (4.9
= 10 207 79 8 79 90 106 98 106 77 94 77 218 125 118 122
(39) (21) (22) (21) (23) (25  (23)  (24) (1.9 (26) (1.9 (7.3) (2.9  (28)  (28)
20 155 38 42 38 46 50 46 51 35 43 35 154 55 5 52

Table 4.7: Losses and their standard errors in parentheses above each value, for data generated using the asymmetric

Laplace effects model with y =0,0 =1, QM =0.5,p=0.1, and ¢ = 0.9.
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Loss  Parameter Fitting Procedure
Q.wm\Q.wn Q.W M G* G G* Q<m QM.OH Qw.om QM.HO L* L L* N}\m N\W.OH N\W.om N\M.Ho

Vs

(0.1)  (0.4) (0.4) (0.4) (0.4) (0.4) (0.4) (04)  (0.4) (0.5) (0.3) (0.1) (0.4)  (0.4)  (0.3)
1 100 98 98 98 99 98 99 98 99 98 99 100 99 98 99

1 0.9) (1.4) (1.3) (1.5) (1.4) (1.3)  (1.3)  (1.3) (1.3) (1.3) (1.4) (1.3) (1.2) (12) (1.3
10 91 76 77 70 76 80 79 80 ™ 77T 74 80 81 81 80

m (1.1)  (1.6) (1.6) (1.6) (1.6) (1.5)  (1.5)  (1.5) (1.6) (1.6) (1.6) (1.5) (1.5) (1.5) (1.5
X 20 86 58 59 56 59 65 62 62 58 58 56 61 66 63 63
= 02) (04) (05) (04) (05) (05)  (05)  (0.4) (0.4) (05) (04) (02) (0.4) (04  (0.3)
S 1 99 98 98 98 98 98 98 98 98 98 98 100 98 98 99
.Tu 10 0.8) (1.2) (12) (1.3) (1.2) (L1)  (1.2)  (L2) (1.2) (1.2) (12) (0.9) (L.1) (12) (1.2

10 92 81 82 77 84 84 83 83 82 8 83 90 85 84 84

1) (15)  (14) (1.5) (1.5)  (1.4) (1.4 (14)  (15) (1.4) (1.5) (1.3) (1.4)  (14)  (1.4)
20 88 69 70 63 70 73 71 71 68 70 68 7T 73 72 72

(5.6) (63) (72) (63) (68 (6.1 (61  (59) (63) (71) (62) (62 (5.9 (6) (5.8)

1 477 514 440 514 474 507 503 518 512 467 517 523 515 516 529

1 (5.5)  (5) (47) (49) (41) (5.4)  (54)  (5.7) (49 (5 (41) (63) (5.6) (5.6)  (5.9)

.m 10 222 117 117 107 97 144 138 147 117 120 92 151 150 146 152
= 4) (32 (3 (31) (29 (38 (37 (38 (32 (32 (28 (41) (A1) (3.9 (4)
& 20 139 59 58 56 56 75 70 73 59 59 52 73 80 73 75
'z (5.6) (64) (7.2) (64) (7))  (63) (64 (62 (65) (7.3) (67) (.9 (61) (61 (5.8

< 1 477 499 420 499 444 478 476 494 489 451 489 535 H03 510 527
% 10 67 (5.3) (5.1) (54) (46) (55) (5.5 (58 (5.3) (5.7) (48) (85) (5.9) (6) (6.3)

= 10 245 148 147 142 129 168 165 175 145 158 126 344 180 177 188

(4.4) (4 (3.8 (4) (34 (4 (3.9) (42) (3.9 (43) (3.4) (7.6) (44)  (45)  (4.6)
woawmﬂm@mﬁﬂm @ﬂ @m @ﬂ m%wwﬂ@@wgggw Hom

Table 4.8: Losses and their standard errors in parentheses above each value, for data generated using the asymmetric

Laplace effects model with u =0,0 =1, QM =0.5,p=0.9, and ¢ = 0.1.
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Loss  Parameter Fitting Procedure
Q.wm\Q.wn Q.W M G* G G* Q<m QM.OH Qw.om QM.HO L* L L* N}\m N\W.OH N\W.om N\M.Ho

Vs

04 (07 (07 (©7) (0.6) (07 (07 (07 07 (07 (07 (06 (06 (07 (00
1 98 95 94 95 96 96 95 95 95 94 95 96 96 96 96

1 3 (1) Ly (1) (L2 (e @15 @5 1 1) (1) (16 (1.6 (1.5 (L5
0 79 11 14 13 18 40 34 33 11 12 12 49 42 35 35

(14)  (05) (05 (0.8) (0.8) (L) (1) (1) (05 (05) (06) (15 (1.2) (1) (1)

woﬂw w w ﬂ ﬂ H@ Hw 5 w w m wﬂ Hm Hw :

. . . . . 07 (08 (08 (07 (07 (07 (06 (06) (07 (06
1 98 95 94 94 96 94 94 94 95 95 94 96 96 96 96

10 (1.3)  (1.3) (1.4) (1.3) (1.4) (1.6)  (1.6)  (1.6) (1.3) (1.3) (1.3) (1.6) (1.6) (1.6) (1.6
10 80 20 26 21 28 48 40 40 20 22 21 59 50 44 42

(14) (0.7) (0.8) (1) (0.9 (1.3 (1.2) (1.1) (7)) (0.8 (0.8 (1.6) (1.3)  (12)  (L.1)
20 72 5 7 12 9 20 16 16 6 6 8 44 22 16 15

Trivial(x100)
=
N
=
3
=
&
=
3
=
2

73) (74 (75) (36) (33) (86) (74 (72) (7.3) (7.3
1399 392 301 392 330 435 418 439 400 343 401 494 464 455 472

- 1 (33) (0.7 (07) (0.7) (L.2) (L.3) (1) (1) 0.7 (0.9 (0.9 (89 (1.3 (1.1) (1)
3 10 96 5 5 5) 12 18 13 13 5 6 7 200 19 14 14
= (2.3)  (0.5) (0.5) (0.5) (1) (0.4) (0.5) (0.5)  (0.5) (0.5) (0.6) (83)  (0.4) (0.5) (0.5)
o= 20 59 1 2 2 6 4 4 3 2 2 3 160 5 4 4
'z (65) (85) (7.2) (86) (7.4 (7.2 (7.2) (73)  (85) (82) (85) (7.7) (7.1 (7.3) (7.1)
< 1392 381 284 381 311 394 374 396 357 338 350 463 452 457 480
m 10 @) (08) (09 (08 (14 (L3) (1.2) (12)  (09) (1.3) (1) (85 (23) (2:6) (2.8)
= 10 96 8 11 8 17 23 18 19 8 12 10 205 32 30 30

(2.3)  (0.5) (0.5) (0.5) (0.9  (0.6) (0.6) (0.6)  (0.5) (0.4) (0.7) (8.3) (1) (1) (1)

20 62 2 3 3 6 7 6 6 2 3 4 171 9 7 7

Table 4.9: Losses and their standard errors in parentheses above each value, for data generated using the asymmetric

Laplace effects model with y =0,0 =1, QM =0.5,p = 0.5, and ¢ = 0.5.
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4.4 Parameter Estimation

The simulation studies of Sections 4.2 and 4.3 show that the efficiency of our
proposed approach depends on the model parameters. This section studies
the quality of estimation of the parameters using maximum likelihood. We
considered our proposed procedures with model parameters fixed to the true

values and called them oracle methods, G} , LI ,G*, and L*. However, in

Vs? vs?
practice the parameters must be estimated from data. Poor estimation of
them often yields poor classification and clustering. In this section we discuss
the quality of estimation of parameters using maximum likelihood assuming,
initially, that each type is a separate cluster. We considered the Gaussian
fit when all parameters are estimated, denoted by G.g; the parameter ¢ is
fixed to one and all other parameters are estimated, represented by G’ fixing
q to one and p to 0.01,0.05, and 0.1 are denoted by Gg'm, G2'05, and Gg'lo,
respectively. For the asymmetric Laplace fits, similar versions are consid-
ered, denoted by Ly, L, L)', L)% and L)', In all figures, the true values
of parameters are shown by a horizontal line and boxplots are used to rep-
resent the distribution of the estimated hyper-parameters. White boxplots
correspond to data simulated from the Gaussian effects model, yellow and
green refer to data generated from symmetric (UgR /o5 = 1) and asymmetric
Laplace models (o7, /o7 = 10), respectively.

This section is organised as follows. First, the estimation of parameters
p and o2 is discussed. Then, the quality of estimation of parameter related
to proportion of active variables, ¢, and active variable-cluster combinations
for active variables, p, is discussed. The variance for experimental error 02 is
studied afterwards. Finally, we study estimation performance for the effects
variance, o;. For data generated from the asymmetric Laplace model there
are two variance parameters, one corresponding to the left tail, agL, and
another to the right tail, agR, of the asymmetric Laplace distribution. We
discuss the case u = 0, 0> = 1 and O’% = 0.5 with other hyper-parameters

varied as in Sections 4.2 and 4.3.
In all the simulations mentioned in Section 4.2 and 4.3, the parameter p is
set to zero. The parameter i is the location parameter of the data when the

true effects, 0,., are removed. It may be simply estimated by taking the mean
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or median of data. Hence, for negligible effects, like small values of o3, or pq,
estimation of p is easy. Otherwise, the quality of its estimation depends on
other estimated parameters, as confirmed in Figure 4.9. For data generated
from the Gaussian effects model, when o3 and pg are small, estimation of
[ is more precise; in Figure 4.9 compare the top left with the top right
panel. Generating effects from the asymmetric Laplace distribution does not
change the precision of estimation; compare the top panels of Figure 4.9 with
its bottom panels. Clearly estimation of p using the asymmetric Laplace fit
is more difficult than with the Gaussian fit; compare the boxplots of G\
with Lys, G with L, Gg.m with Lg'm, Gg'05 with L2'05, and Gg'lo with Lg'lo.
However, the difference between methods L, L)', L)% and L)% and their

corresponding Gaussian procedures is negligible.

Estimation of 02 should be easier than that of yu, since it is simply a
between-replicates variance that does not depend on other parameters. How-
ever, o is hard to estimate using the asymmetric Laplace method, see Figure
4.10. All methods estimate o2 equally well, no matter which model generates
the data. Comparing the top left and the top right panels of Figure 4.10, we

conclude that estimation of o2 does not depend on the other parameters.

The parameter ¢ is hard to estimate in all models. In order to get a
better estimate of ¢, the total number of variables V', which in our case is
50, and the number of types T, which is 10, should be large. The quality
of estimation depends also on the signal-to-noise ratio oj /o7 for a fixed o?.
The smaller the signal-to-noise ratio, the more difficult to estimate is q.
According to our simulation results, using 10 types and 50 variables may
not give precise estimates of ¢, even when the signal-to-noise ratio is high,
see Figure 4.11. For small o3/ 0727, the hyper-parameter ¢ is computationally
unidentifiable. So, we just consider the largest possible signal-to-noise ratio
in our simulations, namely o7 = 0.5 and o3 = 20 inspired by the metabolite
data.

In Figure 4.11, we just consider procedures Gys and L,s because they are
the only methods that estimate ¢q. For p = 0.9 and ¢ = 0.1, the Gaussian
procedure, Gy, can estimate g well in all models; see the right panel of
Figure 4.11. However, estimating ¢ using the Gaussian fit is biased for data

generated from the asymmetric Laplace model; see the green boxplots. It
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appears that the Gaussian fits are not reliable for p = 0.1 and ¢ = 0.9 and
considerably under-estimate q; see the left panel of Figure 4.11. However,
there is a probability (1—p)¢ that an activated variable has no active variable-
cluster combination and becomes essentially inactive. This is considerable
when p or C' is small; see for example the top panels of Figures 4.1 and 4.5,
where a lot of variables are activated, but they receive no red blobs in the
simulated profiles, meaning no true effects appear for that variable. The
probability that a potentially active variable becomes practically active is
1 — (1 —p)Y; assuming on average that we have 6 clusters and p = 0.1, this
probability of active variables is 0.42, which agrees with Figure 4.11.

Estimation of the proportion of active variable-cluster combinations for
active variables, p, is also difficult. So, we study the effectiveness of estima-
tion when it is easier to estimate p, namely when O'g = 0.5 and o7 = 20.
The hyper-parameters p and ¢ are inter-related, as having p = 0 means ¢
cannot be estimated and vice versa. Like ¢, estimation of p is biased even for
a Gaussian model fitted on Gaussian data, see the white boxplots in the top
right panel of Figure 4.12. This is the effect of biased estimation of ¢ which
affects p too. Under-estimation of ¢ leads to over-estimation of p, such that
pq remains close to the simulated value. This is visible in the bottom panels
of Figure 4.12.

Estimation of the experimental error variance o2

"
because there are a lot of inactive variable-cluster combinations. We gain

is not very difficult,

information for estimation of a%, 0?2, and p for inactive variable-clusters, and

2 and p for active combinations. Hence, we gather direct in-

for o7 + 03, o
formation for estimation of ag for inactive variable-clusters which are many,
and indirect information for active ones, which are few. Relatively precise
estimation of O’% is confirmed in Figure 4.13. Comparing the two, we con-
clude that estimation of ag is not sensitive to changes in the other parame-
ters. However, tuning both p and ¢, introduces estimation bias, see methods
Gg'm,Gg'OS,Gg'm,Lg'Ol,Lg'%, and Lg'm. A method that estimates p and ¢
poorly, like G5, and procedures that estimate p accurately, like GG, are simi-
lar in estimation of a%. Generating data from the asymmetric Laplace model
(bottom panels), does not change the scenario.

Estimation of the variance of the true effects o7 is rather difficult, since in-
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formation about this parameter is available only when active variable-cluster
combinations appear, which are rare. It is even more difficult to estimate
the left and right tails, because the Laplace model performs inefficiently in
estimation of other parameters, like p and ¢, that are closely related to o3.
According to Figure 4.14 the Gaussian methods G, and G estimate o more
efficiently than their corresponding Laplace procedures L.s and L. However,
asymmetric Laplace estimates using data generated from the Gaussian ef-
fects model have a downward bias, because large true effects, in absolute
value, are accounted to come from a heavier tail distribution (Laplace) with
smaller variance. The Gaussian fits G and G,s have better performance in
the top right panel compared with the top left panel, because pqg = 0.25 in
the top right panel but pg = 0.09 in the top left panel, the first gives more
information for estimation about hyper-parameter o3.

Generally, one could say fixing ¢ = 1 does not disturb the estimation
(compare G with Gy, and L with L), and may help toward more efficient
estimation of p and 2. On the contrary, fixing p and ¢ together may intro-
duce bias; compare for example methods Gg'm, G2'05, Gg'lo, Lg'm, Lg'%, and
Lg'lo with G and L. For data generated from the asymmetric Laplace model
(bottom panels of Figure 4.14) with of /o7 = 10, asymmetric effects are

recognised but estimated with a large uncertainty.
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Figure 4.9: Boxplots of ji for data generated with 4 = 0,0% = 1 and O’% =
0.5. Top panels with white boxplots correspond to data generated from
the Gaussian effects model with o7 = 1,p = 0.1,¢ = 0.9 (top left), and
o3 =10,p = q = 0.5 (top right) panel. Yellow and green boxplots correspond
to data generated from the symmetric and the asymmetric Laplace model,
respectively. The parameter p is estimated using the asymmetric Laplace
model when data are generated with of = 1,07 /o =1 (bottom left) and
oj = 1,05 /o5 = 10 (bottom right), both with p = 0.1 and ¢ = 0.9. The
true value of p is zero, represented by the horizontal solid line.
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Figure 4.10: Boxplots of 62 for data with = 0,02 = 1 and O'% = 0.5. White
boxplots refer to methods implemented on data sampled from the Gaussian
effects model with 03 = 1,p = 0.1,¢ = 0.9 (top left), and of = 20,p =
g = 0.5, (top right). Yellow boxplots correspond to procedures applied on
asymmetric Laplace data with o /o7 = 1 (bottom left), and green ones
refer to o7 /oj = 10 (bottom right), both with p = 0.1, ¢ = 0.9 and o7 = 1.
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Figure 4.12: Boxplots of p for data generated with u = 0,0 = 1,02 =

n

0.5,02 = 20. In the left panels, p and ¢ are set to 0.9 and 0.1, and in the right

panels to 0.1 and 0.9, respectively. The horizontal lines in the top panels are

the simulated values of p and in the bottom panels are the simulated values

of pq. The white boxplots refer to methods implemented on data generated

from the Gaussian effects model, yellow to the symmetric Laplace, and green

to the asymmetric Laplace with oj /o7 = 10.
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Figure 4.15: Profile plot of simulated data with parameters p = 0,02 =
1, ag = 0.5 0 = 10. Experimental error, 7,., and measurement error, €,

are sampled from Student’s ¢ distribution with 5 degrees of freedom.

4.5 Heavy-tailed errors

In order to study the efficiency of the clustering procedures in the presence of
outliers we apply our clustering methods on data having Gaussian effects but
with experimental errors, 7,., and measurement errors, €,.-, coming from a
Student’s t distribution with 5 degrees of freedom, t5. The t5 distribution is
scaled to have variance ag for the experimental error layer, and 0% = 1 for
measurement error. We consider only p = ¢ = 0.5. Hence, the simulation
results in Table 4.10 and Figure 4.16 are comparable with these in Table 4.6
and Figure 4.4. The profile plot of data with errors generated from Student’s
t5 distribution is given in Figure 4.15.

The effectiveness of clustering procedures for t5 data, shown in Table 4.10,
follows similar pattern as for the Gaussian case in Table 4.6. However, clus-
tering procedures with high signal-to-noise ratios o3/ ag implemented on the
heavy-tailed data yields greater losses in terms of both misclassification and
trivial losses comparing with the data generated from the Gaussian model.
This is due to outliers; however, the losses are not very different. We con-
clude that our clustering procedures are not very sensitive to heavy-tailed

errors. From Figure 4.16, we deduce that our proposed methods are still
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significantly preferable to MCLUST applied on principal components.
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Loss Parameter Fitting Procedure
Q.w Q.w M G* G Qﬂm Q<m QM.S Qm.om pro L* L N\Hm N\<m N\M.S N\w.om N\W.Ho

n
04 (07 (08 (07 (09 (05 (05 (05 (07 (09 (©7 (@O (05 05 (05

1 9 94 92 94 91 98 98 97 9 90 95 &9 98 98 97

0.5 (1.4) (1.1) (14) (13) (14  (1.6) (1.5) (1.5) (1.1 (1.6) (1.3) (1) (1.6) (1.6) (1.5)

= =10 715 25 21 28 49 36 33 15 41 20 89 52 42 39

= (1.5 (09 (1O (1) (1.2) (1.3) (1) (1) (0.9) (L3) (1.1) (1) (1.4) (1.2) (1.1)
% 20 66 8 13 14 17 20 12 10 8 20 13 &9 24 17 15
/ﬂ.m (1) (0 (07) (0) (06) () (0) (0.1) 0 (08 (0.1) (1) (0) (0) (0)

¥ 1 100 100 95 100 97 100 100 100 100 92 100 89 100 100 100

E 9 (0.7) (1.3) (1.1) (13) (1.1) (0.7) (0.8) 09 (13 (@O (@13 Q) (0.7) (0.8) (0.8)
10 95 79 8 80 85 94 92 92 79 88 80 8§89 95 93 92

(1.1 (1.4) (12) (13) (12 (12 (1.3) (1.3) (14) (1) (13) (1) (1.2) (1.3) (1.3)

20 g7 72 8 77 81 82 77 76 71 8 76 89 &4 80 78

(6.5 (7.6) (47) (7.6) (4.6) (6.5) (6.8) 6.9 (7.9 (5.7) (7.9 (4.3) (6.4) (6.9) (7.1)

1 360 239 144 233 135 463 410 414 257 163 252 132 486 448 447

0.5 (2.3)  (0.8) (1.1) (12) (14) (1.7) (1.3) (1.2)  (0.8) (1.6) (1.2) (43) (2.5) 2) 2)

m 10 60 8 13 13 18 27 17 16 8 26 12 132 38 26 25

= (1.5) (0.7) (0.7) (0.8) (1) (1) (0.7) (0.8) (0.6) (1) (0.8) (43) (L7 (1.3) (1.1)
& 20 3 5 6 8§ 1 8 6 6 5 1 7 13 13 9 9
'z (3.9 (46) (55 (45) (6) (4.5) (4.8) 4.8) (53) (6.1) (55) (43) (4.5) (4.9) (5)

< 1 232 579 216 582 249 495 461 470 555 204 551 132 528 515 521

m 9 (27 (26) (34 (27 3 (6.2) (5) (5) (26) (4 (27 (43) (6.6) (5.7) (5.7)

= 10 98¢ 70 99 78 90 238 169 172 70 121 76 132 265 197 194

(2.6) (25 (31 (28 (3 (3.7) (2.9) (3) (2.5)  (3.6) (2.8 (4.3) (4.2 (3.4) (3.2)

20 7262 8 74 &4 97 73 74 62 106 73 132 113 87 83

Table 4.10: Losses and their standard errors in parentheses above each value. The true effects, 0,., are generated

from the Gaussian distribution with mean 0 and variance Qw. Experimental error, 7,., and measurement error, €.,

2

»and 0® = 1, respectively. The other

are sampled from the Student’s ¢ with 5 degrees of freedom with variances o

parameters are set to = 0,p = 0.5, and ¢ = 0.5.
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4.6 Correlated Observations

In Sections 4.2, 4.3 and 4.5 we studied the performance of clustering pro-
cedures for data generated from the Gaussian effects model, asymmetric
Laplace effects model and also when errors are generated from Student’s
t distribution. In the previous studies we considered independent variables,
replicated observations, and the existence of an experimental error hierarchy.
In this section we break all these assumptions and sample data from a model
that MCLUST is designed to handle. We activate two variables and apply
MCLUST twice, once on bivariate data, M*, and once on data projected
using principal components after adding noise variables, M. Projecting data
loses clustering information (Chang, 1983), so the amount of information
lost by projection can be seen by comparing M with M*. All of our proposed
approaches are applied on noisy data and unreplicated observations, that is
R. = 1. Data are generated as follows. Unlike previous sections that ran-
domly sampled the number of clusters, here the number of clusters is fixed
to 3, generated on two variables. The first cluster is centred at A x (=1, —1),
the second at (0,0), and the third at A x (1,1). The scalar parameter A
is a measure of difficulty of clustering, chosen to be 3 or 6 for moderately
or completely separable clusters. The observations inside clusters are gen-
erated independently with the above mentioned means, unit variance, and
correlations equal (0,0, 0), (—0.9,0,0.9), and (—0.9, —0.9, —0.9). Digits inside
parenthesis refer to correlation of the first, the second, and the third clus-
ter respectively, see Figure 4.17. Overall 40 observations are generated and
distributed in three non-empty clusters according to a uniform multinomial-
Dirichlet law. This produces the data to which the MCLUST method is
applied, denoted by M*. Then 48 variables are sampled independently from
a standard Gaussian distribution, yielding noisy datasets that other proce-
dures are applied to. In order to see the effect of adding noise variables, an

independent simulation is implemented with 98 noise variables.

According to Table 4.11, the MCLUST method implemented on projected
data is the worst strategy in all cases using both loss functions except when
A =3 and p = (—0.9,-0.9, —0.9) when method L is the worst technique,

caused by inefficient estimation of parameters. When all correlations equal
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zero, the performance of our proposed methods is very close to M* and
sometimes better. The loss values are smaller when the three clusters are
generated with equal and strongly negative correlation (—0.9,—0.9,—0.9).
The reason is that when all correlations are strongly negative, the clusters
are more separated, that is, if one calculates the average Mahalanobis dis-
tance between centre of clusters, it is highest when the correlations are all
equal —0.9. When data are completely separable, A = 6, often our proposed
methods are preferable to M and M*. However, comparing our approaches
with M* is unfair because M™* uses the true active variables which in practice
are unknown.

Figure 4.18 shows bar charts for different values of p and A. The active
variables are chosen to be the ones having positive log Bl? of the Gaussian
variable selection model (Gyg). Figure 4.18 proposes that the distribution of
the estimated number of active variables is right-skewed having a mode equal
2. When A = 3, then in about 70% of cases the right number of variables,
2, is reported and changing the correlation structure does not affect the
result much. When A = 6 in about 90% of cases two clustering variables
are reported. Therefore we conclude B!? is a measure for finding important
clustering variables, but tends to over-estimate the number of active variables
too.

The simulation results of this section show that our clustering procedures
are as efficient as MCLUST, even after adding a lot of noise variables, con-
firming that our approaches are able to extract useful clustering information
which is dense in few variables. We conclude that without knowing the ac-
tive variables they perform almost as well as MCLUST applied to the true
useful variables. Furthermore adding 98 noise variables instead of 48 gives
a similar performance; compare Tables 4.11 with 4.12. In addition in both
tables, methods G):°', G, L)', and L)* perform relatively well, because
the tuned value of p is close to the true value. It is hard to estimate the
model parameters, especially p, which plays a crucial role in clustering, when
a very large number of noise variables are added, so our approach may give
poor results in such situations. Therefore fixing ¢ = 1 and tuning p may be

effective.
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Figure 4.17: Data represented on the two activated variables with three clusters. The

numbers of observations in

each cluster are distributed with respect to the uniform multinomial-Dirichlet distribution. Subjects are sampled

from the bivariate Gaussian distribution with unit variance, means equal to A x (—1,—1) for the first cluster, (0, 0)
for the second cluster and A x (1, 1) for the third. Correlations are chosen to be (0,0,0) (left panels) (—0.9,0,0.9)
(middle panels) and (—0.9, —0.9,—0.9) (right panels). Each value in the triples corresponds to correlation of one of

the three clusters. The scalar parameter A equals 3 (top panels) for moderately separable, and equals 6 (bottom

panels) for completely separable clusters.
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Loss Parameter Fitting Procedure

D 0 M* M Q Q < Qo.oH Qo.om Qopo L L < N\0.0H N\o.om N\O.Ho
(1.3)  (0.7) (1.3) (1.4) %8 %b %b 1) (1.4 %5 %wv %wv
(0,0,0) 94 Tr 71 78 74 74 88 72 81 7 76
3 1 (06) (1.2) (1.3) (1.2) (1.2) (1.2)  (0.9) (1.2) (1.1) (1.2) (1.2)
— (—0.9,0,0.9) 88 96 84 79 83 81 81 91 81 86 84 83
S (14)  (1.5) (1.4) (1.4)  (1.4) (1.3) (1.3)  (1.5) (1.5)  (1.5) (1.4) (1.4)
X (—0.9,-0.9,—0.9) 25 38 30 26 26 22 22 61 31 30 26 26
/ﬂ.m (0.8) (1.3) (0.3) (0.3)  (0.2) (0.2) (0.5)  (0.4) (0.2)  (0.2) (0.2) (0.5)
s Ao“ 0, 8 7 22 1 1 0 1 2 1 1 0 1 2
E 6 (15)  (15) (0.5) (0.9)  (0.4) (0.5) (0.6)  (0.6) (0.8)  (0.4) (0.5) 0.7)
(—0.9,0,0.9) 30 35 3 8 2 2 4 4 7 2 3 5
(H 12y (04 @) (0.2) (0.4) (0.6) (0.5 (1) (0.1) (0.4) (0.7)
(-0.9,-0.9,-0.9) 12 18 2 12 0 2 4 37 12 0 2 4
(4.3) (5.6) (1.7) (1.4) (1.6) (1.4) (14) (3.2 (1.7) (1.7 (1.5) (1.4)
(0,0,0) 90 209 46 39 49 41 41 89 42 53 46 43
3 (2.8) (5 (1.7) (1.5)  (1.5) (1.3) (1.4)  (34) (1.6)  (1.6) (1.5) (1.4)
.m (—0.9,0,0.9) 87 178 53 47 52 47 48 106 50 57 50 50
= (2.7) (2.9 (1.1) (0.9 (0.7 (0.6) (0.8) (33) (12) (0.8) (0.7) (0.8)
< (-0.9,-0.9,-0.9) 41 51 13 11 9 8 9 67 15 11 9 10
w (1.2) (2.1)  (0.1) (0.1)  (0.1) (0.1) (0.2)  (0.1)  (0) (0.1) (0.2) (0.2)
ks (0,0,0) 8 26 0 0 0 0 1 0 0 0 0 1
2 6 (1.9)  (23) (0.2) (0.5  (0.1) (0.2) (0.3)  (0.4) (0.5) (0.1)  (0.3)  (0.3)
= (—0.9,0,0.9) 27 36 1 4 0 1 2 2 3 0 1 2

(2.1) (25 (02) (0.6) (0.1)  (02)  (0.4) (0.3) (0.7) (0 0.2)  (0.4)
Alo.wvlo.wvlo.wvwomﬂ H u H m H m o H w

)

Table 4.11: Losses and their respective standard errors in parentheses above each value. Two variables are activated
and three clusters are built, centred at A x (—1,—1), (0,0), and A x (1,1). The number of observations in each
cluster is distributed respect to the uniform multinomial-Dirichlet law and sampled from the bivariate Gaussian with
mentioned means, unit variances and the correlations p. Each value of p corresponds to correlation of each cluster.
The MCLUST is applied to the bivariate data, denoted by M*. Then, 48 noise variables are added, independently

sampled from a standard Gaussian distribution, and the other procedures are implemented on the noisy data.



159

CORRELATED OBSERVATIONS

4.6.

"6T'% pue 9'F somsS1,] 0} suorjded oY} 998 S[TRJOP SIOU

10 “TT'F o[qe], 0} Surpuodsaliod So[qRIIBA 9SIOU R PUR SO[(RIIBA DAI}OR OM] [[HIM S)S9Y QOUROHIUSIS G OINSI

OA.MI_ na.mn_
mo,mn_ mo“n_
«o.MA_ S.Mn_
90 8¥0 o 4 M S
hl hl
E.mw E.Mw
ma.m@ mo.mG
ac.mw Ho.mw
9 9
) 5}
W W
N W
odun_ mo.mn_ «o.mn_ m>|_ 1 oﬂm@ mn_.mMv «o.“mu w>0 o W «S_ o.“.MA_ mo.mn_ S,no_l_ m>l_ 1 o.“.nmu mo.no S,MO m>w o W ._2 odun_ mo.mn_ «o.mn_ m>|_ 1 oﬂm@ mn_.mMv «o.“mu w>0 Bl W «S_
a«.un_ 660 €0 oa.nA_ a«.un_
S0 Mn_ 990 680 mo.nn_ SO0 Mn_
:_.“l_ HO.MA_ :_.“l_
hl bl hl
oﬁmo oﬁ,mo E . oﬁmo
mo.mw mo,mo . mo.mw
«o.mw S.“® . «o.mw
"9 9 . . 29
5 ) 5
W W W
W W W

d. d. d.

d, d, d, d. d. d. d, d, d,
orol s00l ol T T 0102 009 002 O D W ool w00l ol T T 6109 009 1002 O D W orol s00l ol T T 0102 6002 1002 O D W

d d d

d. d. d.



9p)
&
M Loss Parameter Fitting Procedure
<8 * 0.01 0.05 0.10 0.01 0.05 0.10
2 A p M* M G G, GO G GO0 L Ly LOOY L9 L9
(1.3)  (0.5) (1.3) (1.5)  (1.3) (1.4) (1.3) (1.1 (14) (1.3 (1.3) (1.3)
nNu (0,0,0) 7T 98 78 69 76 75 78 86 72 78 76 7
ﬂ 3 (1) (05) (1.2) (1.3) (1.2) (1.2) (12) (0.9 (1.2) (1.2 (1.2) (1.2)
- — (—0.9,0,0.9) 89 97 84 79 81 81 84 90 81 83 82 83
m m (1.3)  (1.6) (1.5) (1.4)  (1.4) (1.4) (14)  (1.6) (1.4) (1.4 (1.4) (1.5)
= % (—-0.9,-0.9,-0.9) 23 46 32 28 25 24 29 56 29 28 28 31
= /ﬂ.m (0.9) (1.4) (0.3) (0.2) (0.2) (0.4) (0.7)  (0.4) (0.2) (0.3) (0.4) (0.6)
= (0,0,0) 8 24 1 0 0 2 6 2 1 1 1 4
~f % 6 (1.4)  (1.5)  (0.5) (0.9)  (0.4) (0.5) (0.8)  (0.5) (0.8)  (0.4) (0.5) (0.7)
= (—0.9,0,0.9) 29 36 2 9 2 3 7 3 8 2 3 6
E (1  (12) (0.4) (1.1) (0.3) (0.5) (0.8) (0.5) (1) (0.3) (0.4) (0.7)
Ao, (—-0.9,-0.9,—-0.9) 10 18 2 13 1 2 7 2 12 1 2 5)
M (4.3) (5.4) (1.6) (1.4) (1.5 (1.4) (1.5) (2.9 (1.5) (1.6) (1.5) (1.7)
3 (0,0,0) 91 236 47 38 46 43 46 76 41 50 46 47
3 (2.8) (5.1) (1.9) (1.4)  (1.5) (1.5) (1.5)  (2.8) (1.6) (1.6) (1.6) (1.6)
m (—0.9,0,0.9) 86 205 H7 49 52 51 54 84 52 56 54 56
p= 25 4 11 (09 (0.7 (0.7) (0.8) (3)  (1.3) (0.8) (0.8) (1.2)
& (—-0.9,-0.9,-0.9) 34 78 14 12 9 9 11 50 15 11 11 14
'z 13) (2) (1) (0 (0.1) (0.1) (0.4)  (0.1) (0.1)  (0.1) (0.1) (0.2)
= (0,0,0) 9 26 0 0 0 0 2 0 0 0 0 1
m 6 (1.9)  (2.1) (0.1) (0.5)  (0.1) (0.2) (0.4)  (0.3) (0.5)  (0.1) (0.2) (0.3)
= (—0.9,0,0.9) 25 33 1 4 0 1 2 1 4 0 1 2
(1.9)  (2.3) (0.2) (0.6) (0.1) (0.2) (0.4)  (0.2) (0.6)  (0.1) (0.2) (0.3)
AIQ.P —0.9, Io.wv 16 26 1 6 0 1 2 1 6 0 1 2

Table 4.12: Losses and their respective standard errors mentioned in parentheses above each value

are activated, and 98 noise variables are added. For more details see the caption to Table 4.11.
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4.7 Summary

From the simulations discussed in this chapter, we conclude that

e Our Gaussian and asymmetric Laplace procedures are more efficient

than MCLUST applied on two principal components.

e They are similar to MCLUST implemented on the true active variables

and sometimes better, even after adding a lot of noise.

e The proposed methods are relatively robust to outliers (Table 4.10) and
the assumption of independence of variables (Tables 4.11 and 4.12).
However, their performance is affected by poor parameter estimation,

as often happens for the asymmetric Laplace effects model.

e For fixed model parameters, the Gaussian and asymmetric Laplace clus-
tering are similar, confirming that the mixing distribution is not very

important.

e Estimating the proportion of active variables, ¢, is hard (Figure 4.11),
but it does not affect the clustering performance, because fixing ¢ helps
a more precise estimation of the remaining parameters. One may fix
q = 1, then estimate or tune p to a reasonable value and get convincing

results. However, the resulting clustering is sensitive to a wrong choice

of p (Tables 4.6 and 4.9).

e Situations with the number of noise variables more than 100 are not
considered in simulations because it is hard to estimate the model pa-
rameters; we do not propose our clustering methods in such cases,

unless crucial parameters, such as p, are appropriately tuned.

e Finding important clustering variables using the Bayes factor B.° is
an effective method and is robust with respect to the independence
assumption of variables, but may over estimate the number of active

variables.
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Chapter 5

Conclusion and Discussion

This research shows usefulness of a random effects parametric linear model
for clustering high-dimensional observations using a Bayesian approach. The
contribution of this work to clustering is the proposed model. However, the
linear models especially the fixed effects models are old and well-studied mod-
els (Rao, 2001; Graybill, 1976), reabsorbed attention in the recent decades
and found to be useful in analysing high-dimensional data (Efron et al., 2004).

Our proposed model can be generalised in various ways, but this may
disturb the analytical tractability of the marginal posterior and consequently

the implementation of a fast clustering approach may not be easily feasible.

Statistical inference using random effects models (Searle et al., 1992) and
mixed effects models (McCulloch and Searle, 2001) also is well-developed,
widely discussed and their theory is well-established. It is known that the
maximum likelihood estimators, especially the variance components, are sen-
sitive to the assumed mixing distribution (Heckman and Singer, 1984), so
Laird (1978) proposed parameter estimation using nonparametric maximum
likelihood. In our simulations we found that even if a right distribution is
assumed for the mixing components, it is sometimes difficult to get the max-
imum likelihood estimates for certain mixing distributions. Therefore one
direction of continuing this research could be the estimation of the param-
eters using nonparametric maximum likelihood. However, if the parameters
are estimated in a distribution-free manner it is not straightforward to es-

tablish a fast clustering method that incorporates variable selection with no
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assumption on the distribution of mixing components. This may be regarded
as another direction for future developments.

The parameters of our suggested models are estimated using maximum
likelihood. However, the estimation may become difficult when a few clus-
tering variables exists in data or distributional assumptions are wrong. In
order to help the optimisation routine, one may tune a few of the parameters
and estimate the others. Our experience with different datasets shows once
reasonable parameters are chosen, the clustering result is convincing.

One way of generalising the variable selection model (2.14) is selecting
a group of variables by including another Bernoulli variable. However, we
believe it will be more difficult to estimate the model parameters for such
models.

Another way of generalising model (2.14) is by selecting variables using
the cluster variance as well as the cluster mean, that is assuming a mixture
distribution for the measurement error variance or the experimental error
variance. In high dimensions often a small subset of variables are useful for
clustering and variables that are useless according to the first moment (mean)
are rarely useful according the second moment (variance). Furthermore, low
sample sizes often do not allow a reliable estimation of covariance matrix even
for the effective variables. We believe for high-dimensional data incorporating
variance complicates the model and slows down the clustering procedure, but
does not improve the clustering result considerably.

The proposed linear model is useful for clustering continuous data and
can be generalised for clustering categorised data through the generalised
linear models. However, it is not trivial to obtain closed form joint poste-
rior densities for generalised linear models. Therefore, fast clustering is not
straightforward and needs more research.

Sometimes genes are transcribed or metabolites are analysed during a spe-
cific period, hence time-dependent and high-dimensional data are produced.
It would be interesting to investigate if a similar approach can be applied to
cluster time series data and choose relevant variables simultaneously.

Stochastic optimisation methods such as Markov chain Monte Carlo are
not discussed in this thesis because according to our experience for low sample

sizes, dendrograms provide a good approximation to the posterior mode, but
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creating an efficient Markov chain to explore the space effectively is not
easy. Even if so, stochastic search provides no visual guide to other possible
groupings.

Simulations shows that if model parameters are reliably estimated, the
parametric distribution of the mixing components has a little effect on clus-
tering result but there is no theoretical argument explaining why this hap-
pens. Similar results is reported in Bhowmick et al. (2006) in classification.
Therefore research on robust model parameters estimation in clustering is de-
manded. More theoretical studies are also required about sensitivity of the
clustering result to a different parametric choice of the mixing distribution.

Clustering is an old data analysis technique but there are few theoretical
discussions on it (Hartigan, 1985), maybe because it is hard to study the
data grouping as a mathematical object. Model-based clustering by mix-
ture modelling was started few decades ago (McLachlan and Basford, 1988),
but statisticians have recently regarded the data grouping as a statistical
parameter to be estimated.

We do not have a well-established asymptotic theory for a clustering
method. Even if we have such a theory for a particular clustering procedure,
often such a theory is useless for high-dimensional-low-sample-size situations
due to overfitting; an example is the study of Bickel and Levina (2004) in
classification. The asymptotic result must be adjusted for the cases that
dimension increases with sample size and this might be regarded as another
direction of the future theoretical research in model-based clustering.

Penalisation using the L; norm, the lasso of Tibshirani (1996), is found to
be useful for high-dimensional regression and classification (Park and Hastie,
2007). High-dimensional clustering using the L; penalisation is proposed
by Wang and Zhu (2008), but they loose the tree representation of cluster-
ing. Their method is not automatic and appropriate choice of the penalising
constant is troublesome.

The clustering algorithm provided by this thesis is slow if the number
of clustering subjects exceeds 500 subjects, which is rare in metabolomic
and gene studies. The algorithm becomes slow when the number of sub-
jects increases because the dissimilarity measure, the marginal posterior, is

calculated using the original data. In order to provide a computationally
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efficient method one should apply a Lance-Williams type formula (Maechler
et al., 2005) for a model-based dissimilarity measure. That is evaluating the
dissimilarity measure for the next step of hierarchical clustering using the
previous dissimilarity values, preferably a linear combination of the previous
values with fixed coefficients. Bayesian models that provide such efficient
clustering algorithms have not been discussed.

Ensemble methods such as boosting and bagging have been proposed to
aggregate individually weak classifiers in order to obtain a more precise clas-
sifier. However, it is not clear how one can implement ensemble methods
in clustering because usually there is no information available about mis-
classified observations after grouping. Research on application of ensemble
methods in clustering has been recently started (Domeniconi and Al-Razgan,
2009).

The clustering algorithm proposed in this thesis uses a linear model with
disappearing random effect components. Linear random effect models have
already been suggested for Bayesian clustering (Heard et al., 2006). How-
ever appearance of the random effects in our model is controlled by Bernoulli
variables at two levels, the variable-cluster level, and the variable level. The
Bernoulli variables can be used to quantify the importance of the variable-
cluster and variables after fitting the model. As a consequence of our pro-
posed models, the marginal posterior density is analytically tractable and is
a convex combination of two densities, a density that guides the clustering
and another which down-weights the effect of useless variables. This is why
our clustering method is resistant to noise.

We are not the first to propose introducing Bernoulli variables to imple-
ment Bayesian variable selection in clustering. Kim et al. (2006) and Tadesse
et al. (2005) also suggested this method, but the marginal posterior of their
models is intractable. Consequently their model parameters cannot be es-
timated using data. Furthermore, their approach requires reversible jump
Markov chain Monte Carlo and hence is slow to fit. The dendrogram repre-
sentation, which usually practitioners are interested in, is not straightforward
either.

The provided methodology in this thesis is automatic, simple, fast, and

can sort variables according to their contribution in forming clusters. Our
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clustering algorithm has two main advantages. The first is giving an impor-
tance measure for variables which can be re-expressed in probability terms.
The second is producing dendrograms with probabilistic interpretation. The
only competitive clustering method that is fast and gives the variable impor-
tances, is the COSA of Friedman and Meulman (2004). However the COSA
is not automatic and lacks a probabilistic interpretation for its dendrogram
and its variable importances.

The clustering prior used in this thesis prefers small number of clusters
and is exchangeable. Booth et al. (2008) argue that the prior proposed
in McCullagh and Yang (2006) enjoys a sort of consistency in addition to
exchangeability and it is feasible to tune a parameter of their prior such that
a small number of clusters is preferred a priori. It would be interesting to

study which prior works better in practice.
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