Compiling Structural Types on the JVM

A Comparison of Reflective and Generative Techniques from Scala’s Perspective

_ Gilles Dubochet
gilles.dubochet@epfl.ch

Martin Odersky
martin.odersky@epfl.ch

Ecole Polytechnique Fédérale de Lausanne

ABSTRACT

This article describes Scala’s compilation technique of struc-
tural types for the JVM. The technique uses Java reflec-
tion and polymorphic inline caches. Performance measure-
ments of this technique are presented and analysed. Further
measurements compare Scala’s reflective technique with the
“generative” technique used by Whiteoak to compile struc-
tural types. The article ends with a comparison of reflective
and generative techniques for compiling structural types. It
concludes that generative techniques may, in specific cases,
exhibit higher performances than reflective approaches, but
that reflective techniques are easier to implement and have
fewer restrictions.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; D.3.2 [Programming Languages]: Object-Oriented
Languages; D.3.4 [Programming Languages]: Proces-
sors— Compilers

General Terms

Algorithms, Languages, Measurement, Performance

1. INTRODUCTION

vObj, which was presented in 2003, is a calculus for ob-
jects and classes with type members [5]. The Scala pro-
gramming language [4, 6], first described in 2004, is Oder-
sky’s concretisation of these same ideas. For the sake of this
article, we recall that ¥Obj includes both nominal and struc-
tural subtyping in a unified way. Malayeri and Aldrich later
proved that the unification of nominal and structural types
is sound using their Unity calculus [3]. A type is a nomi-
nal subtype of another one if there exists, somewhere in the
program, an explicit mention of this fact. In Java, such an
explicit mention takes the form of an extends clause. Struc-
tural subtyping, also known as duck typing, declares a type

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICOOOLPS 09 Genova, Italy

Copyright 2009 ACM 978-1-60558-541-3/09/07 ...$10.00.

to be subtype of another if their structures — their mem-
bers — allow it. At the simplest, a type is allowed to be
a subtype of another if it exposes at least the same mem-
bers. This relation is available in Scala through structural
types. They replace refinement types, a restricted form of
structural types (see section 2) that are easier to compile.
To illustrate Scala’s structural types, let us consider an ex-
ample.

Some objects have a close method that must be called af-
ter use. Without structural types, writing a generally appli-
cable autoclose method would require all closeable objects to
implement an interface containing the close method. Struc-
tural types solve the problem differently.

type Close = Any { def close: Unit }

def autoclose(t: Close)(run: Close => Unit): Unit = {
try { run(t) }
finally { t.close }

}

To be compatible with the “Close” structural type, an ob-
ject must be compatible with Any — all objects in Scala are
— and it must implement the close method. Such types
are called “structural” because it is the structure of their
members — name, type of the arguments and of the result
— that define whether an object is of a given type. The
autoclose method is implemented using the Close type. Its
arguments are: first, the object to be automatically closed,
such as a socket or file, and second, some code that uses the
object and must be run before the object can be closed.

autoclose(new FileInputStream("test.txt"))(file =>
var byte: Int = file.read
while(byte > -1) {
print(byte.toChar)
byte = file.read
}
)

The closeable object that is passed to autoclose is an in-
stance of FileInputStream. It conforms to the structural type
because it contains a close method. FileInputStream, which
is part of Java’s standard library, does not implement any
particular interface related to type Close. The second pa-
rameter for autoclose is a block of code that will read the
stream. After executing it, autoclose will close the file.
The method call t.close must be executed from the body
of autoclose. At that location of the program, the fact that
close is defined in the object t is known because of the struc-
tural type. A Scala method call is normally directly com-
piled to an equivalent JVM method call instruction. This

instruction requires that the JVM knows beforehand that
the receiver of the call can respond to it — for reasons of
performance. Because structural types are not part of the
JVM, it does not know that t can respond to close. This
shows that calls to methods which are statically defined as
members of a structural type (structural method calls) can-
not simply be compiled to a JVM method call. Instead, they
require a different compilation technique that bypasses the
constraints of the JVM. Two families of compilation tech-
niques can be used to this end: generative techniques and
reflective techniques.

Generative techniques create Java interfaces to stand in
for structural types on the JVM. The complexity of such
techniques lies in that all classes that are to be used as
structural types anywhere in the program must implement
the right interfaces. When this is done at compile time, it
prevents separate compilation. When that is done at run-
time, it requires to adapt dynamically objects to interfaces,
which is expensive and complex.

Gil and Maman’s Whiteoak [1] is an extension to Java
with structural types that are compiled using a generative
technique. Whiteoak does not modify classes to implement
interfaces at compile time; instead, it uses ASM, a bytecode
generation framework, to create wrapper classes at runtime.
These wrappers implement the interfaces corresponding to
structural types and forward all method calls. Whenever a
structurally defined method is to be called on an object, a
wrapper for the structural type is generated and the method
is called on the wrapper instead of the object. The wrapper
then delegates the call to the original object. A different
wrapper class is needed for every structural type — because
its interface changes — and for every type of delegation ob-
ject — because the code of the forwarder methods is tailored
for one specific delegation. Whiteoak uses a global cache
strategy to reduce the number of wrappers that must be
generated.

Reflective techniques replace JVM method call instruc-
tions with Java reflective calls. Reflective calls do not re-
quire a priori knowledge of the type of the receiver: they
can be used to bypass the restrictions of JVM method calls.
The complexity of such techniques lies in that reflective calls
are much slower than regular interface calls. Optimisations
are required for this technique to be competitive.

The compilation technique of structural types in Scala
that is discussed in this article is based on a reflective tech-
nique. Its implementation is presented in section 2, which
describes caching strategies used to optimise performance of
reflective calls and discusses its limitations. Section 3 first
analyses the performance of Scala’s compilation technique
of structural types. A second part of this section compares
the performances of Scala’s reflective compilation technique
to that of Whiteoak’s generative technique. Section 4 sum-
marises the relative merits of both compilation techniques,
from the point of view of their performance, and from that
of their implementation.

2. IMPLEMENTATION IN SCALA

The process of compiling structural types is threefold:

1. The type system checks that structural types’ decla-
rations are valid, and that their uses conform to the
type discipline of the program.

2. When Scala types are “erased” to JVM types, struc-
tural types disappear. All structural method calls are

no longer valid in the erased type discipline. They are
replaced by a special “apply dynamic” method call.

3. Every “apply dynamic” call is compiled to Java reflec-
tion so as to behave as a proper call on a structural
value. The necessary caching infrastructure is added.

Type Checking.

In Scala, it is straightforward to support type checking of
structural types: structural types are a generalisation of re-
finement types, which have been part of the language from
the start. Like structural types, refinement types allow to
add constraints on the members of an existing type. How-
ever, they require the constraints to be on the type of a
member that is inherited: no new members may be defined
structurally. To support structural types, the Scala type
checker merely had to see a single test removed.

Erasure.

In order to understand why structural types have to be
“erased”, and why some method calls become invalid af-
terwards, it is necessary to discuss the role of erasure in
the Scala compiler. JVM bytecode is annotated with Java
types: the JVM will check these types and will reject the
program if they are not valid. A Scala program compiled
to JVM bytecode must be annotated with Java types that
are valid and will not be rejected by the JVM. Erased types
are Java types that define a type discipline on the program
that is equivalent to, although less precise than that of the
program typed with Scala types. If the process of erasure
maintains this equivalence, JVM instructions — most im-
portantly method calls — can be directly used to compile
Scala programs: a method call which is valid in Scala is also
valid in JVM bytecode. Erasure is described in detail in
section 3.6 of [4].

Before structural types were introduced, all of Scala’s type
constructs could be erased in some way. For example, a
mixin type such as “A with B” is erased to A — all objects of
this type must then inherit A and implement B so that they
can be cast to B when necessary. However, there is no Java
type to which a structural types can be erased. The simple
structural type “Object { def f: Int }”, if erased to Object,
will see the JVM reject a call to f because Object has no
such method. A solution is to generate for every structural
type in the program an interface that represents it — like
“interface FStruct { int f(); }” — and have all of the ob-
jects of this structural type implement the interface. That
is, in a simplified form, the “generative” technique used by
Whiteoak. Scala’s “reflective” technique does not require an
erasure model that maintains the type equivalence property.
Instead, the compiler will have to generate instructions that
allow calling methods on objects having an erased type that
does not contain the definition of the method.

“Apply dynamic” calls.

Method calls are represented in Scala’s abstract syntax
tree as Apply nodes. Normally, these nodes are compiled to
JVM method call instructions; that is possible because of
erasure, as we explained in the previous paragraph. During
erasure, when the compiler encounters in the abstract syn-
tax tree an Apply node that cannot be compiled to a JVM
method call because the receiver has a structural type, it
will replace the Apply with an ApplyDynamic. The observed
semantics of ApplyDynamic are that of Apply, but it is com-

piled so that the receiver of the call can have an erased type
that does not define the method, as will be explained below.

As a reminder, the dispatching semantics of method calls
in Scala, like in most popular object-oriented languages, is
dynamic on the receiver’s type but static on the parame-
ters’ types. Consider for example the method call “a.f{x}".
The actual instances used at run time for a and x may have
types that are compatible with, but different from the types
statically assigned to a and x. The implementation of f that
should be used is that defined in the class corresponding to
a’s dynamic type. If, for a given call site, the type of the re-
ceiver instance changes, the implementation of the method
must be modified. On the other hand, if f is overloaded, the
alternative that should be used is statically defined, based
on the static types of f’s parameters.

It may be noted that we present ApplyDynamic as a means
to compile structural types. However, we believe that it is a
more general solution that can be used for other types that
bypass the JVM’s type system.

Compilation of “Apply Dynamic” Calls

The technique that we present to compile ApplyDynamic nodes
to JVM bytecode is based on Java reflection. At first sight,
this transformation is trivial. Since reflective method lookup
and application are purely dynamic, the JVM’s type system
won’t be in the way. A method call of the form “a.f(b, c)”
— where a is of a structural type, while b and ¢ are of type
B and C respectively — can be replaced by the compiler with
the following expression.

a.getClass
.getMethod("f", Array(classOf[B], classOf[C]))
.invoke(a, Array(b, c)

In this implementation, the semantics of dispatching is
preserved, mostly thanks to the fact that Java reflection
supports it directly. The getMethod call is sent to a’s dynamic
class, routing the lookup to the right place. The static types
of the parameters, obtained with class0f operators, are sent
to getMethod in order to select from overloaded alternatives.

Caches.

This naive compilation technique cannot be considered be-
cause its performance is not acceptable in practice; a purely
reflective method call is about 7 times slower than a regu-
lar call (on JVM 1.6). However, about 4/5 of the compiled
expression’s complexity lies in the sole getMethod operation.
If the method is somehow already available and only invoke
and getClass are used, the reflective implementation is “op-
timal” and a method call may be only two times slower than
a regular call.

Caching brings the performance of structural method calls
closer to the optimal performance than the naive implemen-
tation. Of course, it never allows for an optimal performance
since there will always be cache misses — at least once for
the first call. We will discuss compilation techniques using
two different caching strategies, which approach the optimal
situation quite closely in realistic cases. In this discussion,
and in section 3 where the performance of caching is as-
sessed, we will use the following caching techniques.

Oc No caching. This is a slight variant of the naive, purely
reflective, compilation techniques above, with the ar-
ray of static parameter types precalculated.

1c Monomorphic inline caching is a technique where only a
single method is cached for every call site.

Nc Polymorphic inline caching is a technique that caches a
method for every receiver type at the call site.

Monomorphic caching.

A call site is monomorphic if the type of the method
call’s receiver stays the same throughout the execution of
the program. Many call sites are monomorphic in practice.
Monomorphic inline caching takes advantage of this prop-
erty and caches one method implementation per call site. If
the call site is in fact monomorphic, the same implementa-
tion can be reused every time at practically no cost. If the
site is not monomorphic, the cached implementation will be
discarded every time the receiver type changes, and a new
implementation will be obtained using getMethod.

For every dynamic call site of a class, the 1c implementa-
tion adds a static method called dynMethod — plus an iden-
tifier to make that name unique. dynMethod takes the class
of the receiver and returns a method implementation that
corresponds to the call site and to the receiver. A call site
of the form “a.f(b, c¢)” is replaced by the compiler with the
following expression.

dynMethod(a.getClass).invoke(a, Array(b, c))

We wish to generate a dynMethod that can, for monomor-
phic call sites, return immediately. Here is how dynMethod is
implemented for the above call site.

[static]
def dynMethod(forReceiver: JClass[_]): JMethod = {
if (dynMethod$Class != forReceiver) {
dynMethod$Method =

forReceiver.getMethod ("f",
Array(classOf[B], classOf[C])
)
dynMethod$Class = forReceiver
}
dynMethod$Method
}

The static variables dynMethod$Class and dynMethod$Method
contain, respectively, the class of the previous receiver and
the looked-up method for that class. Whenever the previous
receiver class differs from the current one, dynMethod$Class
and dynMethod$Method are recalculated, at considerable ex-
pense of time. Otherwise, dynMethod$Method is returned, at
the expense of a test and a variable dereference. The lat-
ter case is almost equivalent to immediately returning, and
gives to the call site a performance close to the optimal.

Polymorphic caching.

A call site is polymorphic if the method call’s receiver type
changes over the lifetime of the program. Polymorphism has
many dimensions: its degree — bimorphic, trimorphic, etc.
— describes how many different receiver types can be ob-
served at that call site throughout the program’s execution;
its intensity describes how frequently the call’s receiver type
changes. A call site may have a high degree of polymor-
phism but may remain quasi-monomorphic for most of the
program’s execution, for example if polymorphism at that
point is linked to initialisation. It is, for obvious reasons, on
highly intensive polymorphic call sites that it is the hardest

to obtain a performance close to that of the optimal compi-
lation. In what follows, and in section 3, we discuss worst
case polymorphic call sites; reality will usually lie somewhere
between the worst case and a monomorphic site.

The technique that we use for polymorphic inline caching
is based on that proposed in [2], using JVM objects instead
of low-level memory blocks.

The technique generates a dynMethod method for every call
site, and the call site itself refers to that method. Instead
of caching a single pair made of the receiver’s type and the
method’s implementation, dynMethod caches a list thereof.
When looking-up the implementation of the method at a
call site, and if the receiver type was never encountered be-
fore, dynMethod will use getMethod, as in the naive implemen-
tation. The receiver class and method implementation pair
will be appended to the front of the list. A method’s im-
plementation already in the list will be reverted from the
list.

The list used to store method implementations is a sim-
ple linked list. Searching it has a complexity of O(n) (n
being the length of the list), adding to it has a complexity
of O(1). The latter task is a lot less common than the for-
mer; using a linked list may not be optimal when compared
with a binary search tree, for example. We did not attempt
to evaluate the performance of a cache backed by a binary
tree. It must be noted that, contrary to most faster data
structures, some implementations of linked lists can be used
as caches in a multithreaded environment without synchro-
nisation. In a parallel environment, a conflict leads at worst
to one implementation obtained by getMethod being lost; it
will have to be recalculated the next time it is used.

Exception handling.

When an exception is thrown in a method that is called
reflectively, invoke wraps it in an InvocationTargetException.
That changes the semantics of method calls. The prob-
lem is trivially circumvented by catching the reflective ex-
ception from the ApplyDynamic call site, and then rethrow-
ing the original exception, which can be obtained from the
InvocationTargetException.

Boxing of native values.

Java reflection only works with objects, not native values
like int, float, or boolean. If a method requires a argument
of type int, for example, reflectively calling invoke on it
will require a boxed integer (instance of java.lang.Integer).
Similarly, if a method returns a boolean, for example, the re-
sult of the reflective call will be a boxed boolean (instance of
java.lang.Boolean). The compilation of ApplyDynamic must
take that into account.

The Scala language has a purely object-oriented unified
type system with no distinction between native values and
objects. Any is a type that is compatible with both native
values and objects. A type variable (with an implicit Any
upper bound) can be instantiated to either an object type
or a native value type. Therefore, both Any and type vari-
ables must be erased to a type that the JVM recognises as
compatible with all instances. 0Object is the closest approx-
imation of such a type. However, using Object requires all
native values to be boxed when they are referred to with a
type that exceeds Java’s Object in generality. Early versions
of Scala used a custom boxing scheme that was incompat-
ible with Java reflection. The compilation of ApplyDynamic

required constant unboxing of Scala boxed values and re-
boxing to Java ones, and vice-versa. The performance lost
because of that was very noticeable. Changing Scala to use
the same boxing technique as Java solved that problem.

Native bytecode operations.

Another difficulty caused by Scala’s unification of types is
that operations like integer addition (+) on native values, for
which the JVM uses bytecode instructions, are represented
in Scala as methods. The normal compilation process has
the bytecode generator recognise these “fake” method calls,
and rewrite them to the corresponding instructions. Let us
consider a program where a native value is referred to as a
structural type, as in the example below.

def g(x: Any{ def + (i: Int): Int }) = x + 2

From Scala’s perspective, “x + 27 is considered as “x.+(2)”.
Since + is a structurally defined method, it must be com-
piled as an ApplyDynamic. The getMethod call will lookup
a + method on x’s class and will fail — x is boxed to a
java.lang.Integer, which does not have a + method.

Instead, the ApplyDynamic transformation detects any fake
method — using a list of such methods — and generates
a call to a static utility method that implements the fake
method’s behaviour. Of course, a fake method like + may
actually be dispatched to an instance that does, in fact, im-
plement it. Therefore, the call to the utility method for
the addition must be guarded by a dynamic type check: if
the call’s receiver is of type java.lang.Integer, the utility
method should be used; if not, the call must be dispatched
like a normal ApplyDynamic.

Type parameters.

To call a method, invoke must know the static types of
the method’s parameters, which are passed as an array of
classes. These types are used to maintain correct dispatch
semantics and to select the right method if its name is over-
loaded. When invoke is used to implement an ApplyDynamic,
the compiler must know the signature of the structurally de-
fined method that is being called. In general that is easy, as
in the example below.

def g(x: { def f(a: Int, b: List[Int]): Int }) =
x.f(4, List(1,2,3))

The declaration of the structural type of x contains the
static types of both parameters of f. These types can be
used to generated the reflective call to invoke.

There is no problem either if the parameter types of the
structurally defined method are type variables, as long as
the variables are declared as part of the method definition.

def g(x: { def f[T](a: T): Int }) =
x.f[Int](4)

When g is called, its argument p will be an object that
contains a method with the signature “x[T](t: T)”. Erasure
changes type variables to their erased upper bound, which is
Object in T’s case. Erasure will make sure that f’s parameter
is boxed when it is a native value. This is the expected
behaviour in such a situation: invoke is called with Object
as the static type for the a parameter.

A problem arises if the parameter types of the structurally
defined method are type variables that are declared outside
of the scope of the structural type.

def g[T](x: { def f(a: T): Boolean }, t: T) =
x.f(x.t)

g[Int](new { def f(a: Int) = true }, 4)

g[Any] (new { def f(a: Any) = true }, 4)

The type variable T is instantiated to a concrete type every
time g is called. The static type of f’s parameters therefore
changes for every call to g. On the other hand, the trans-
formation of ApplyDynamic for x.f is done only once, in the
body of g, no matter what type T will eventually be assigned
to. The value of type variables are not available at runtime
so that ApplyDynamic cannot be compiled in a way that re-
constructs the static types of the method’s parameters at
runtime.

A similar issue arises if the parameter types of the struc-
turally defined method are type variables that are declared
as type members of the structural type.

def g(x: { type T ; def t: T ; def f(a: T): Boolean }) =
x.f(x.t)

g(new { type T Int; def t = 4; def f(a:T) = true })

g(new { type T = Any; def t = 4; def f(a:T) true })

Like before, the ApplyDynamic for x.f cannot be compiled
because it depends on the static type of T. In this situation,
T changes every time the parameter x of g implements the
structural type using another value for type T.

If Scala were to support runtime types of some form, these
problems could be overcome. For the time being, however,
Scala rejects problematic type variables for structurally de-
fined method’s parameters.

3. PERFORMANCE

All the tests of this section have been run using a Java
HotSpot 1.6.0_07 64-bit Server VM on an iMac computer
(2.33 GHz Core 2 Duo with 4MB L2, 2GB Memory) run-
ning Mac OS X 10.5.6. All times are averages over multiple
executions, and their variances have been checked to be in-
significant — typically in the order of 1/100 of the average.
For tests involving pseudo-random values, values change be-
tween executions.

In Scala

Only a fraction of method calls will be structural in real-life
scenarios. The first performance benchmark that we discuss
is a functional implementation of merge sort, which uses
structural types. Such code is representative of the perfor-
mance of code that heavily depends on structural types.

Functional merge sort.

To implement a functional merge sort algorithm for a list,
a comparison operator between elements of the list is needed.
On solution is for all objects that are to be merge sorted to
implement the Comparable trait in Scala’s library. But if
merge sorting is to happen on objects that are not ready
for it — that is, have not implemented Comparable — struc-
tural types can be used instead. This is the signature of the
mergeSort method when using an interface:

type ComparablelList =
List[Comparable[Any]]
def mergeSort(elems: ComparablelList): ComparablelList

When using structural types, the signature of the method
remains identical; only the type is declared differently:

type ComparableList =
List[{ def compareTo(that: Any): Int }]

The implementations of both methods are identical. It
requires O(nlogn) merges on average. Each merge is com-
posed of three calls for dereferencing list heads or tails, one
comparison (a call on a structurally defined method), and
one concatenation (which instantiates an object).

Figure 1 charts the time required to order 2000 times
a list of 1000 pseudo-random elements. For monomorphic
measurements, the list contains only instances of a single
class. That means that the structurally-defined comparison
method can always be called on the same implementation.
For bimorphic measurements, the list contains instance of
two classes at even, respectively odd positions. That forces
the implementation of the method to be changed whenever
the receiver object of the comparison method changes. For
both monomorphic and bimorphic lists, the performance of
different caching techniques is measured. S is the refer-
ence situation where a Comparable interface is used instead of
structural types, and where regular interface calls are used
instead of ApplyDynamic calls.

Oc 1c Nc S Oc 1c Nc S
monomorphic bimorphic

Figure 1: Execution time, in seconds, of the merge
sort algorithm.

As expected, there is a performance penalty for using
structural types when compared to using a Comparable in-
terface; in this case the time is around 25% more for Nc
caching. If we assume that un-cached structural method
calls are about 10 times slower than regular interface calls,
our data indicates that calling the comparison method repre-
sents about 1/8 of the test’s execution time in the reference
case.

In the monomorphic case, Nc and 1c exhibit similar per-
formances, while Oc’s performance is, predictably, more than
twice as slow as regular interface calls. In the bimorphic
case, the advantage of Nc becomes evident. That is not sur-
prising as lc must, in average, revert to a full method lookup
equivalent to Oc, for half of the calls. The difference in per-
formance between the mono— and polymorphic cases for Oc
may be attributed to side effects of just-in-time compilation.

Single method call.

The test repeatedly calls a structurally defined method
in a tight loop. The degree of polymorphism at the call
site varies from one to four — from mono (morphic) to

quadri (morphic). Figure 2 charts the time required to call
a method 10 million times. Bi- and quadrimorphic cases are
worst-cases, where the class implemented by the receiver
changes for every method call. To obtain polymorphism
at the call site, the call’s receiver is looked-up in an ar-
ray, changing the index into the array, modulo the degree of
polymorphism, for every iteration of the loop. Profiling this
operation did not reveal the relative cost of this operation.

ar I— —
|l [l o
Oc 1c Nc 0c 1c Nc S 0Oc 1c Nc
monomorphlc bimorphic quadnmorphlc

Figure 2: Execution time, in seconds, in relation to
polymorphism degree of call site.

As was previously mentioned, the uncached implementa-
tion (Oc) of ApplyDynamic, when compared with a regular
interface call (S), is 7 times slower. When polymorphic in-
line caching is used (Nc), the slowdown is reduced to between
2.0 and 2.3 times, depending on the degree of polymorphism.
The situation for monomorphic inline caching (1c) is equally
favourable for a monomorphic call site, but the performance
is as bad as Oc for polymorphic sites. The performances of
the three caching strategies for different degrees of polymor-
phism are perfectly coherent with their implementations. If
we assume that the time of a method call in Nc is entirely
composed of the execution of the invoke method, comparing
Nc and Oc shows that the time of a full reflective method
call is distributed between 30% in the invoke call and 70%
in the getMethod call.

Figure 3 represents the same data as figure 2, but the JVM
is run in such a way that it does not use just-in-time com-
pilation, only interpreting the bytecode. Whilst this data is
not representative of real performance, it may be considered
as an upper bound for the slowdown caused by structural
types, and shows how effective JVM 1.6’s just-in-time com-
pilation is at optimising them. In the interpreted case, a
regular method call is 7.6 times faster than for the Nc im-
plementation, whilst when just-in-time compilation is used,
the difference is of only 2.1 times.

Megamorphic call sites.

Some call sites have a degree of polymorphism much higher
than that used in the previous test. Such sites are rare —
Holzle et al. [2] report that no call site in their real-life bench-
marks have a degree of polymorphism of more than 10 —
but they can seriously harm the performance of polymorphic
inline caching. Figure 4 graphs the time (y-axis) required to
call a method 10 million times with respect to the degree of

50 |
40 F
30

20}

jiIEEEEEEn

OclchSOclchSOClchS

monomorphic bimorphic quadrimorphic
Figure 3: Execution time — with JVM just-in-time
compilation disabled (interpreted) — in relation to

the polymorphism degree of call site.

polymorphism of the call site (x-axis).

In Nc, the length of the cache n is eventually equal to the
degree of polymorphism of the call site. Searching the cache
has a complexity of O(n) so that the worst-case performance
of Nc will decrease linearly with the degree of polymorphism.
On the other hand, the performance of Oc is expected not
to change with the degree of polymorphism. The results
do show a slowdown for the latter case, possibly because
of variations in the effectiveness of just-in-time compilation.
However, this slowdown remains lower to that of Nc¢ so that
the performance of the two implementations become equal
when the call sites have a degree of polymorphism equal to
about 180. At that point, the performance of Oc and Nc are
equivalent because Scala’s implementation of Nc¢ automati-
cally reverts to Oc when reaching that threshold.

8,

20 40 60 80 100 120 140 160 180 200 220 240 260

Figure 4: Execution time, in seconds, in relation to
the degree of polymorphism of the call site. Upper
line is for Oc, lower line is for Nc.

Interpretation.

The results reported above show that the Nc implementa-
tion, using polymorphic inline caching, is either significantly
superior or roughly equivalent to the other implementations
in all situations. Even for monomorphic call sites, the 1lc

implementation that is designed with such call sites in mind
is not significantly better than Nc.

Scala and Whiteoak

Gil and Maman have compared [1] the performance of struc-
tural method calls in Whiteoak with the performance of reg-
ular interface calls. Their results show that in the best case
— when the fast “primary cache” can be used — their imple-
mentation allows for constant-time structural method calls
that are about as fast as interface calls. However, a start-up
cost of about 200us is incurred before the first structural
call is executed. They also report that the worst case sce-
nario is about 7 times slower than the best case. Sufficiently
small performance-critical areas are covered by the primary
cache and will be close to the best-case performance. For
most real-life applications, however, that would rarely be
the case.

400 1
///
300 A -
o/’
200
100 1
= = = = = =2 = =2 = =2
¥ 4 a4 o 9 ¥ 8 © K 9
[« — [\l on <t w \O ©~
=~~~ Cold Scala Scala
Cold WO —»— WO

Figure 5: Execution time, in microseconds, in rela-
tion to the number of calls.

Figure 5 shows the results obtained in our own tests, com-
paring the performance of Whiteoak’s best case with that of
Scala’s Nc implementation for a monomorphic call site. Re-
sults for polymorphic call sites do not differ significantly.
The observed times are linear in the number of calls: they
confirm the constant call times reported by Gil and Maman.
To understand better the initial start-up cost of Whiteoak,
the tests are run twice, without restarting the JVM, for dif-
ferent call sites. The reported “cold” times are for the first
structural call site, and include the infrastructure’s initial
start up overhead. The “hot” times are for the second call
site, and only include the overhead incurred at a given call
site, if any. A best-fitting linear regression (y = ax + b) is
calculated for every data set. The value at which the regres-
sion line intercepts the y-axis (b) is an approximation of the
overhead; the slope of the line (a) is an approximation of
the time for a single structural call.

Overhead Call time

Cold Scala 36us 38ns
Scala 3-6us 38ns

Cold Whiteoak 180us 11ns
Whiteoak 2us 15ns

A comparison of hot Scala with hot Whiteoak shows that
both have relatively low overheads when calling a site for
the first time — equal to about 80,000-160,000 method calls
for Scala, 130,000 for Whiteoak. The call time for Scala is
about 2.5 times slower than that of Whiteoak, which is in
line with the result reported above. The initial start-up
overhead of Scala’s implementation is one order of magni-
tude greater than the overhead at a subsequent call site.
This overhead’s origin is likely to come from the infrastruc-
ture for polymorphic inline caching, as this is the only code
that is shared amongst call sites. The initial start-up over-
head for Whiteoak’s implementation is 5 times greater than
that of Scala, and can probably be explained in part by the
time necessary to initialise ASM, the bytecode manipulation
framework required by Whiteoak. Scala’s call times are 3.4
times slower than cold Whiteoak’s call times, which is a re-
sult at odds with those comparing Scala’s times with regular
interface calls. A possible explanation is that just-in-time
compilation differs between this test and those obtained on
Scala alone.

Interpretation.

The results that are reported above show Whiteoak’s im-
plementation of structural types to be superior to Scala’s
implementation. They indicate that Scala is in between 2.5
and 3.5 times slower than Whiteoak when considering the
performance in tight loops, a situation where Whiteoak ex-
cels. Therefore, Whiteoak’s implementation is preferable if
structural method calls are to be used in a hot spot of a
performance-critical algorithms. On the other hand, these
results very much depend on Whiteoak using its small pri-
mary cache. Since Whiteoak’s cache is shared amongst all
call sites — contrary to Scala’s caches which are specific to
each call site — the performance of Whiteoak’s implemen-
tation will diminish when a program’s execution cost is not
contained in a tight loop. Gil and Maman report the per-
formance of Whiteoak in a situation that “mostly hits the
secondary cache” to be 7 times smaller than the best-case
performance. Because of that, in such a situation, Scala’s
technique using reflection and polymorphic inline caching
will likely be faster.

4. SUMMARY

There is a performance penalty associated with the use
of structural types on the JVM, but a reflective compila-
tion technique that uses efficient caching brings this cost
to acceptable levels for all but the most critical programs.
Generative compilation techniques such as that of Whiteoak
have, in principle, the potential for even higher performance.
On tight loops, a situation that is important in the con-
text of time-critical algorithms, generative techniques are
clearly superior. On the other hand, reflective implemen-
tations may be equally good and possibly better when the
cost of using structural types is distributed throughout the
program. From a performance’s point of view, choosing one
technique or the other is a question of balance: generative
compilation optimises tight hot-spots of structural method

calls whilst reflective compilation may lead to higher overall
performance.

From the point of view of the implementation, reflective
techniques are simpler. They only require changing the com-
pilation scheme for structural method calls and a small run-
time library that implements polymorphic inline caching.
Generative techniques, on the other hand, require changing
the compiler to generate interfaces for each structural type,
changing the compilation scheme for structural method calls
— to adapt the receiver to the structural type using a wrap-
per — and require an infrastructure to generate wrapper
classes dynamically and to cache them. A dependency on a
code generation library is added to all programs. Further-
more, loading generated classes at runtime requires access
to the program’s class loader, which may not be available
when running on environments such as application servers.

There is only one language restriction that is related to
reflective compilation: the limitations on type variables in
Scala’s structural types. Arguably, this restriction has more
to do with erasure than with the implementation of struc-
tural types; if the effects of erasure were hidden by dynamic
types, this restriction may be lifted. Gil and Maman’s article
does not detail the restrictions that the generative technique
imposes upon structural types, although Whiteoak does not
allow “generic structural types”, a restriction that is simi-
lar to that imposed on Scala’s type variables. We can as-
sume that Whiteoak would have similar difficulties with type
variables in structural types as Scala has. Other important
features, such as structural arrays, are not available with
Whiteoak’s generative technique. Whether generative com-
pilations techniques could be used to compile Scala’s struc-
tural types, which are part of a much more complex type
system and language than those of Java, remains an open
question.

Reflective compilation techniques are probably not notice-
ably slower than generative ones in real applications. How-
ever, reflective techniques are simpler to implement, have
fewer dependencies and have been shown not to restrict the
language. In this context, it is worth noting that a recent
overhaul of Whiteoak’s source (version 2.1) did not retain
the generative compilation infrastructure, leaving it to be
implemented later, and uses a simple un-cached reflective
implementation.

5. REFERENCES

[1] J. Gil and I. Maman. Whiteoak: introducing structural

typing into java. In Proceedings of the 23rd OOPSLA

conference, pages 73-90, 2008.

U. Holzle, C. Chambers, and D. Ungar. Optimizing

dynamically-typed object-oriented languages with

polymorphic inline caches. In ECOOP 91, number 512

in LNCS, pages 21-38, 1991.

D. Malayeri and J. Aldrich. Integrating nominal and

structural subtyping. In ECOOP 2008, number 5142 in

LNCS, pages 260-284, July 2008.

[4] M. Odersky. The Scala Language Specification,
November 2007.

[5] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A
nominal theory of objects with dependent types. In
ECOOP 2003, number 2743 in LNCS, pages 201-224,
2003.

[6] M. Odersky, L. Spoon, and B. Venners. Programming
in Scala. Artima Press, 2008.

2

[3

