This paper describes the results of initial experiments to apply computational algorithms to explore a large parameter space containing many variables in the search for an optimal solution for the sustainable design of an urban development using a potentially complicated fitness function. This initial work concentrates on varying the placement of buildings to optimise solar irradiation availability. For this we propose a hybrid of the covariance matrix adaptation evolution strategy (CMA-ES) and hybrid differential evolution (HDE) algorithms coupled with an efficient backwards ray tracing technique. In this paper we concentrate on the formulation of the new hybrid algorithm and its testing using standard benchmarks as well as a solar optimisation problem. The new algorithm outperforms both the standalone CMA-ES and HDE algorithms in benchmark tests and an alternative multi-objective optimisation tool in the case of the solar optimisation problem.