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Abstract

Mixed logit models can represent heterogeneity across individu-
als, in both observed and unobserved preferences, but require com-
putationally expensive calculations to compute probabilities. A few
methods for including error covariance heterogeneity in a closed form
models have been proposed, and this paper adds to that collection, in-
troducing a new form of a Network GEV model that sub-parameterizes
the allocation values for the assignment of alternatives (and sub-
nests) to nests. This change allows the incorporation of systematic
(non-random) error covariance heterogeneity across individuals, while
maintaining a closed form for the calculation of choice probabilities.
Also explored is a latent class model of nested models, which can sim-
ilarly express heterogeneity. The heterogeneous models are compared
to a similar model with homogeneous covariance in a realistic scenario,
and are shown to significantly outperform the homogeneous model,
and the level of improvement is especially large in certain market seg-
ments. The results also suggest that the two heterogeneous models
introduced herein may be functionally equivalent.

1 Introduction

A great deal of work had been put into creating discrete choice models that
represent heterogeneity across decision makers, but this effort has mainly
been focused on heterogeneous parameters incorporated into a mixed logit
framework. In some ways, mixed logit models are very good for expressing
such heterogeneity. The two basic formulations of such models, the random
parameters logit and the error components logit, while formally equivalent,
neatly express heterogeneity with respect to observed and unobserved at-
tributes, respectively. Ultimately, a mixed logit model can approximate
any random utility model arbitrarily closely (McFadden & Train, 2000),
but it is not always desirable to use such a model. Mixed logit models
can be difficult to specify correctly (Garrow, 2004), and when the mixing
distributions are continuous, lack a closed form expression for choice prob-
abilities, and thus require the use of simulation (Train, 2003). Simulation
is becoming easier with increasing computational power, but still requires
substantial extra computational and memory resources. For large models
or large data sets, simulation can be burdensome.
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The few functional forms for incorporating covariance heterogeneity into
logit models that have been explored include a nested logit model with
covariance heterogeneity, proposed by (Bhat, 1997a), and the Mixed Co-
variance GEV, explored by (Hess et al., 2005). This paper will introduce
a new method of incorporating covariance heterogeneity, called the Het-
erogeneous Covariance Network GEV (HeNGEV) model, and examine a
potential practical application of such a model, using a synthetically gen-
erated dataset.

1.1 COVNL Model

The possibility of directly expressing covariance heterogeneity across indi-
viduals was first explored by (Bhat, 1997a), who developed a nested logit
model with covariance heterogeneity (COVNL model). The COVNL model
expressed covariance heterogeneity as a deterministic function of some at-
tributes of the decision maker. In a single level nested model, this took
a relatively simple form, replacing the nested logit model’s usual logsum
parameter µ:

µt = F (α + γzt) (1)

where zn is a vector of attributes of the decision maker t, α and γ are scalar
and vector parameters respectively, and F is a transformational function
with the properties that F (−∞) = 0, F (+∞) = 1, and f(x) = ∂F(x)/∂x > 0.
This worked well for single level nesting structures, as restricting µ to the
range between 0 and 1 is sufficient for a nested logit model to remain a GEV
model consistent with utility maximization, per McFadden’s (McFadden,
1978) original requirements.

When extending this structure to multiple levels, such that nest n is inside
a higher level nest m, it becomes more complicated, as in addition to
restricting the µ values to the (0,1] interval, they must also be restricted
such that µn < µm. Bhat achieves this by defining the lower level logsum
parameter µnt as in (1), and the higher level logsum parameter as

µmt = F (α + γzt + G (δ + ηwt)) (2)

with G as a strictly positive function, and wt, δ, and η mirroring zt, α,
and γ. The positivity of G will ensure that the input value for F in (2)
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is greater than that in (1), ensuring the correct ordering of the logsum
parameter values, no matter the values of the parameters or the individual
attributes. Since the logsum parameter is deterministic for each person, the
COVNL does retain a simple closed form probability expression, making
its implementation not computationally burdensome.

(Koppelman & Sethi, 2005) incorporated the COVNL form into a broader
model structure they dubbed the Heterogeneous Generalized Nested Logit
(HGNL) model. This model brought the heterogeneity proposed by Bhat
into a Generalized Nested Logit structure, along with heteroscedasticity
of error variance across individuals, as proposed by (Swait & Adamowicz,
2001).

1.2 Mixed Covariance GEV

More recently, (Hess et al., 2005) examined a more general form of covari-
ance heterogeneity in the Mixed Covariance GEV model (MCGEV). In this
model, the logsum parameters µ assume a random distribution across indi-
viduals, instead of adopting the variable but deterministic form proposed
by (Bhat, 1997a). This change provides the benefit of greater generality
and flexibility, but at the cost of greatly increased conceptual complexity,
in order to maintain the decreasing values of the logsum parameters in
the network. Additionally, if the distribution of the logsum parameters is
continuous, the model loses the closed form for the probability calculations.

In the MCGEV model, the probability formulation for each alternative is
conditioned on the distribution of the logsum parameter,

Pt(i) =

∫

µ

Pt(i|µ)f(µ|Ω)dµ (3)

The attributes of the model thus depend on the specific form chosen for the
distribution of f(µ|Ω). In order to maintain the necessary conditions for
µ, the selected distribution must be bounded by 0 and 1. For multi-level
nesting structures, the parameters also need to obey the proper ordering,
as the µ for a nest for any individual must be less than the µ for higher
level nests for that same individual. This requirement is necessary to ensure
consistency with utility maximization. (Hess et al., 2005) address this issue
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by redefining µ to be a function of the predecessor, so that

µlower= µupper̂µlower. (4)

The hatted versions of µ for each nest then become the relevant parameters
in estimation, and (3) is changed to be conditioned on µ̂ instead of µ. By
using this product, imposing the condition that µ̂loweris constrained to be
inside the (0,1] interval will automatically ensure that µlower< µupper. This
replaces an inequality constraint relating the values of two parameters with
an inequality constraint regarding one parameter and a constant, which is
simpler to handle when estimating parameters. This becomes more com-
plicated for cross-nested structures, as the adjustment in (4) must be made
across all higher nests:

µlower= min
u∈uppers

{µu} µ̂lower.

2 Incorporating Heterogeneity Through Allo-
cations

Each of these methods for incorporating heterogeneity into a logit mod-
els comes with substantial drawbacks. The COVNL model restricts the
form of covariance to a strictly hierarchical form, as in a traditional nested
logit model. The Mixed Covariance GEV relaxes that constraint, but can
become difficult to operationalize, given the constraints required on the
logsum parameters. The model forms introduced in this section attack the
problem from a completely different angle.

2.1 Disaggregation of Allocation

As examined in the previous section, all known previous attempts to incor-
porate heterogeneity in error covariance have focused on sub-parameterizing
the logsum scaling parameter. This direction of thinking is intuitive, as it
is these parameters that induce covariance between error terms, and it is
convenient to start with the simplest logit model containing covariance,
which is the nested logit model.
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However, a more complex but flexible model, such as the Network GEV
model (NetGEV), introduced by (Daly & Bierlaire, 2006), provides alter-
native ways of generating error covariance heterogeneity. In particular,
the NetGEV model includes allocation parameters on network links, which
can be sub-parameterized instead of the logsum parameters, to achieve the
same goal.

The NetGEV model is defined by a finite, directed, connected, circuit-free
network. Such a network has a single source (root) node that represents
the complete model, a sink node for each elemental alternative in the choice
set, and some set of intermediate nesting nodes. Each node is associated
with a G function, with G function at elemental alternative node a being

Ga(y) = ya.

Each other node i has G function that is calculated based on the G values
of that node’s direct successors:

Gi(y) =




∑

j∈i↓

[(
αijG

j(y)
)1/µi

]



µi

, (5)

where i↓ is the set of successor nodes to i, αij is an allocation parameter
associated with the edge from i to j in the network, and µi is a scaling
parameter associated with node i. This model thus requires a logsum pa-
rameter on every node other than the elemental alternatives, as well as an
allocation parameter on each edge in the network. For the ultimate model
to be a valid GEV model, and consistent with random utility maximiza-
tion according to McFadden’s (McFadden, 1978) criteria, the allocation
parameters must be non-negative, and the logsum parameters must obey
sequential inequality constraints, so that the µ value for any node is smaller
than or equal to the µ values for all of its network predecessors.

It is the sequential inequality constraint on the µ values that makes them
undesirable to sub-parameterize. Since each µ must be less than the mini-
mum of its predecessors, it is not easy to formulate a model that will allow
µ to vary across individuals. The allocation parameters, on the other hand,
do not have such a constraint.
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2.1.1 Relaxing Allocation Parameter Constraints

The normalization of the NetGEV model does requires some type of con-
straint on the allocation parameters. As described in (Newman, 2008), the
exact form of this constraint can help ensure an unbiased model, but it is
often be convenient to have these allocation parameters sum to one, such
that

∑
h∈i↑ αhi = 1 (where i↑ is the set of predecessors of i). Imposing this

restriction directly on estimated parameters is certainly possible. However,
this restriction can be relaxed by transforming the parameters using the
familiar logit structure:

αhi =
exp (φhi)∑

k∈i↑
[exp (φki)]

. (6)

Under this transformation, a new set of φ parameters replaces the α pa-
rameters throughout the network on a one-for-one basis. Instead of the
α parameters’ linear adding-up requirement among the set of parameters
associated with each node with more than one predecessor, the φ param-
eters may vary unbounded across R, so long as one φ in each such group
is fixed to some constant value (typically zero). This can be an advantage
in parameter estimation, as nonlinear optimization algorithms are gener-
ally easier to implement when there are no (or fewer) constraints on the
parameters.

2.1.2 Incorporating Data in the Allocation

Replacing the α parameters with a logit formulation not only simplifies the
process of estimating the allocation parameters, it also opens up the possi-
bility creating a much richer model. The logit structure for nest allocation
allows for the incorporation of data into the correlation structure of error
terms:

αthi =
exp (φ!

hi + φhiZt)∑

k∈i↑
[exp (φ!

ki + φkiZt)]
, (7)

where φ!
hi is the baseline parameter as in (6), Zt is a vector of data specific

to decision maker t, and φhi is a vector of parameters to the model which
are specific to the link from predecessor node j to successor node i. If we
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assume that the first value in Zt is 1 (defining a “link-specific” constant),
we can simplify (7) to1

αthi =
exp (φhiZt)∑

k∈i↑
[exp (φkiZt)]

. (8)

Thus the G function for nesting nodes becomes

Gi (y) =




∑

j∈i↓




exp (φijZt)∑

k∈j↑
[exp (φkjZt)]

Gj(y)





1/µi




µi

.

The φ parameters are all link specific parameters, analogous to alternative
specific parameters in an MNL model. As usual for “alternative” specific
constants and variables in logit models, one of the vectors φij must be
constrained to some arbitrary value, usually zeros. The remaining φ vec-
tors can vary unconstrained in both positive and negative regions of R.
This formulation also allows the addition of decision-maker attributes to
be introduced as data not only in determining the systematic (observed)
utility, but also in determining the correlation structure for random (un-
observed) utility. This heterogeneous covariance network GEV (HeNGEV)
model thus allows both the amount and the form of covariance to vary
across decision makers.

For example, consider an air itinerary and fare class choice model, built on
a network model. The network is bifurcated into two sub-structures, one
with itinerary nested inside fare class, and the other with fare class nested
inside itinerary. Each particular potential ticket choice is partly allocated
to both substructures. The allocation parameters could then vary based on
ticket purchase timing, with travelers who purchase well in advance tending
to choose based on one substructure, while travelers who purchase closer
to the date of travel shifting to the other structure.

1A similar mathematical form has been employed by (Sener et al., 2008) to model
spatial correlation. Despite the superficial similarity of Sener’s equation (4) and (8), they
actually represent different relationships. In Sener, the data z is the spatially-generated
relationships between alternatives, indexed over alternatives i and j, while in (8), the data
Z is attributes of the decision maker, indexed over all decision makers t; along with the
appropriate matching φ parameters in each model.
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Since the form of (8) is by construction strictly positive, the HeNGEV
model already meets one of the conditions of the NetGEV formulation, that
α is positive. As long as the non-increasing µ parameters condition also
holds, the HeNGEV model will be consistent with utility maximization.

2.2 Discrete Mixtures of Nested Logit Models

Another approach to expressing heterogeneity in covariance is through a
latent class type formulation. In the traditional use of this model form,
each decision maker is assumed to be a member of one of an unknown but
assumed number of classes. Class membership is unobserved, but modeled
in some way so that each decision maker t has a probability Qt(k) of belong-
ing to class k. Conditional on membership in a particular class, the choice
probabilities are calculated normally for the class’ kernel choice model. The
unconditional choice probabilities must then be calculated from the class
membership probabilities and the various class kernel models:

Pt(i) =
∑

k∈Classes

Pt(i|k)Qt(k).

Latent class discrete choice models in transportation research have gen-
erally employed multinomial logit models as the class kernel model, with
some or all of the MNL parameters allowed to vary across the classes, as
in (Bhat, 1997b) and (Greene & Hensher, 2003). However, there is no par-
ticular reason why the kernel models could not be nested logit or NetGEV
models, so as to mix together various covariance structures, as suggested by
(Walker & Ben-Akiva, 2002). In this scenario, the various β parameters to
the alternative utility functions should be assumed to be consistent across
the classes, with only the nesting structure varying across the classes. This
formulation would result in a mixture of covariance structures, controlled
by the parameters of the class membership probability function. When
that function contains as input data some attributes of the decision maker,
the resulting total model will have a heterogeneous covariance structure.
This discrete mixing is subtly different from that proposed by (Hess, 2005,
Ch. 7). His mixing was done by varying the logsum parameter directly,
while the mixing here envisions mixing entire nesting network structures
as a whole, without manipulating the logsum parameters therein directly.
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This latent class structure can be interpreted in two ways: as a latent but
real separation of individuals into distinct choice classes, or as a variable
(but deterministic) mixing of utility covariances within the population.
The first interpretation is analogous to the traditional latent class interpre-
tation, where the modeler cannot identify the specific structure to which
any given individual ascribes her choice, so he represents this modeling
uncertainty in a probabilistic mixing fashion. The second interpretation
involves the probabilistic mixing of choice structures within the choice pro-
cess modeled at the individual decision maker level, so that the individual
decision makers in the model have complex internal choice processes.

In cross-sectional data, this distinction is not important, but in panel data,
it can be relevant. Under the second interpretation, the relationship be-
tween the decision makers and discrete classes breaks down; individual
decision makers in this model do not belong to a distinct class, but rather
the probabilistic representation of the model of their choice process is it-
self being probabilistically determined. Under the first interpretation, they
would retain their class membership and the associated choice model struc-
ture over time. Thus, the probabilities for their choices would need to
be aggregated over all their choices before being averaged across possible
classes:

Pt(i1, i2, i3, ..., iNt) =
∑

k∈Classes

[
Qt(k)

Nt∏

n=0

Pt(in|k)

]
. (9)

In second interpretation, such intermediate accumulation of probabilities
across individuals for the panelization would not be appropriate. The op-
erational difference between these approaches, while interesting, is beyond
the scope of this paper and left for future research.

3 Application

The heterogeneous covariance models, by their nature, are most useful for
analyzing complex decisions. Choices where decision makers only have a
small handful of options don’t offer lots of opportunity for complex corre-
lation structures. In complex choices with large choice sets, the benefits of
this flexible model can become more apparent. One typical such decision
occurs in air travel booking, where travelers must choose between a variety
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of itineraries when selecting an airline ticket. To demonstrate the model,
we can examine a hypothetical choice scenario, and compare similar models
with homogeneous and heterogeneous covariance forms.

3.1 Data Generation

This scenario involves synthetically created data that would approximate
what might be observed for a flight itinerary choice between two medium
sized airports in the United States. There are a variety of itinerary options
(non-stop, single connect, and double connect flights on five different car-
riers). From each itinerary, various data attributes are provided, including
departure time, level of service (non-stop, single connect, double connect),
carrier, fare ratio (the comparative fare levels, on average, across the air-
lines serving this city pair), and distance ratio (the ratio of itinerary flight
distance to straight line distance). The data on the itineraries is shown in
Table 1.

The advantage of the HeNGEV model described here is that it can incor-
porate attributes of the decision maker (or of the choice itself) into the
correlation structure. To examine the usefulness of such enhanced tools,
the data set also includes data on the annual income level of each decision
maker, as well as the number of days in advance that the ticket was pur-
chased. These attributes were generated for 100,000 simulated travelers.

The structure of this model, based on one by (Coldren & Koppelman, 2005),
is depicted in Figure 1. The network depicted has numerous nodes and
arcs. If the associated parameters were each estimated independently, the
parameter estimation process would become overwhelmed, and the result-
ing model would be virtually meaningless as a descriptive or predictive
tool. Instead, the nodes are grouped into four sections (upper and lower
nests on each side) with common logsum parameters, and the allocations
between the sides were grouped together so that all alternatives would have
common allocation parameters.

Since the data in this example is synthetic, the true model underlying the
observations is known. In particular, the distribution of the covariance
structure in the population is known and defined to be heterogeneous.
This distribution is shown in Figure 2. A large share of the population is
grouped near the right side, having a covariance structure nearly entirely
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Table 1: Flight Itinerary Choices in Synthetic Data

Itinerary Number Airline Departure Time Distance Ratio Fare Ratio Level of Service

1 BB 12:55 100 104 Non-stop

2 BB 21:05 100 104 Non-stop

3 AA 13:19 111 100 Single Connect

4 AA 16:47 111 100 Single Connect

5 AA 16:47 111 100 Single Connect

6 AA 8:20 111 100 Single Connect

7 AA 16:15 111 100 Single Connect

8 CC 18:20 127 55 Single Connect

9 CC 9:15 127 55 Single Connect

10 BB 16:45 132 104 Single Connect

11 BB 14:50 132 104 Single Connect

12 BB 7:20 132 104 Single Connect

13 BB 12:30 111 104 Single Connect

14 BB 17:05 111 104 Single Connect

15 BB 18:50 111 104 Single Connect

16 BB 7:45 111 104 Single Connect

17 DD 9:15 127 46 Single Connect

18 DD 18:20 127 46 Single Connect

19 CC 8:00 130 55 Single Connect

20 BB 9:00 132 104 Single Connect

21 AA 10:05 132 100 Double Connect

22 AA 16:15 132 100 Double Connect

23 AA 14:40 132 100 Double Connect

24 BB 11:00 153 104 Double Connect

25 DD 7:15 130 46 Double Connect

26 DD 14:40 130 46 Double Connect

27 EE 7:30 121 49 Double Connect

28 EE 7:30 121 49 Double Connect
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Figure 1: Flight Itinerary Choice Model for Synthetic Data

Adapted from (Coldren & Koppelman, 2005)

defined by the L submodel, while a much smaller share of the population
is represented on the B submodel side. This reflects the common scenario
in air travel, where there are a few (generally high-revenue and business-
related) travelers, who make decisions in a different way than most other
travelers, and would thus exhibit different error covariance structures.

3.2 Estimated Models

The estimated parameters for the HeNGEV model are shown in Table 2.
Most of the parameters in this model closely match the known true pa-
rameters, although three, with bolded t-statistics, show a statistically sig-
nificant difference from the true values. That these three parameters are
not correctly finding their true values might be explained in part by the
high correlation in their estimators, highlighted in Table 3. Such high
correlations would tend to inflate the errors on the parameter’s estimates
(which should make the differences seem less significant, not more) so that
these parameters having statistically significant errors is mildly troubling.
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Table 2: HeNGEV Model

True
Value

Estimated
Parame-

ter

Std.
Error of
Estimate

t Statistic
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.1065 0.01796 -2.42
10:00-12:59 0.1 0.09257 0.09851 -0.08
13:00-15:59 0.05 0.02468 0.02453 -1.03
16:00-18:59 0.1 0.07013 0.01867 -1.60

19:00 or later -0.3 -0.2975 0.09828 0.03
Level of Service

Nonstop 0 0 n/a n/a
Single Connect -2.3 -2.286 0.1019 0.14
Double Connect -5.8 -5.864 0.1354 -0.47

Flight Characteristics
Distance Ratio -0.01 -0.007141 0.001107 2.58

Fare Ratio -0.004 -0.003359 0.0005518 1.16
Nesting Parameters

B Time of Day (Upper) Nest 0.8 0.7994 0.01509 -0.04
B Carrier (Lower) Nest 0.2 0.1439 0.02585 -2.17
L Carrier (Upper) Nest 0.7 0.6746 0.01973 -1.29

L Time of Day (Lower) Nest 0.3 0.3075 0.006947 1.08
Allocation Parameters

Phi Constant L Side 1 1.066 0.389 0.17
Phi Income (000) L Side -0.03 -0.02912 0.005029 0.17

Phi Advance Purchase L Side 0.2 0.1772 0.02686 -0.85
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Table 3: Parameter Estimator Correlation, HeNGEV Model
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Figure 2: Distribution of Allocation Weights in Unimodal Synthetic Data

Nevertheless, this model performs better than others on this dataset.

The NetGEV model without a heterogeneous covariance (shown in Table 4)
performs relatively well, but definitely worse than the HeNGEV model. The
NetGEV model has a log likelihood at convergence that is 240 smaller than
the HeNGEV model, a highly significant deterioration given that only two
degrees of freedom are lost. The performance of the individual parameter
estimates in the NetGEV and HeNGEV models are compared in Table
5. For each parameter in the model, the HeNGEV estimate is closer to
the known true value than the NetGEV estimate, generally by about half.
Further, the standard errors of the estimates are all smaller for the HeNGEV
model, also by about half.

A latent class model was also estimated for the same dataset, with two
classes representing the two correlation structures. The class membership
model also utilized a multinomial logit structure, with class membership
based on the same input variables as the allocation data in the HeNGEV
model. The resulting parameter estimates and model fit were identical to
those estimated using the HeNGEV model.

For a more complete picture, regular nested logit models were estimated
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Table 4: NetGEV Model

True
Value

Estimated
Parame-

ter

Std.
Error of
Estimate

t Statistic
vs. True

Departure Time
Before 08:00 0 0 n/a n/a
08:00-09:59 0.15 0.06687 0.03759 -2.21
10:00-12:59 0.1 0.03704 0.1177 -0.53
13:00-15:59 0.05 -0.03495 0.07088 -1.20
16:00-18:59 0.1 0.02141 0.05334 -1.47

19:00 or later -0.3 -0.3445 0.1120 -0.40
Level of Service

Nonstop 0 0 n/a n/a
Single Connect -2.3 -2.331 0.1407 -0.22
Double Connect -5.8 -5.956 0.2530 -0.62

Flight Characteristics
Distance Ratio -0.01 -0.004372 0.002449 2.30

Fare Ratio -0.004 -0.002202 0.001068 1.68
Nesting Parameters

B Time of Day (Upper) Nest 0.8 0.8307 0.1022 0.30
B Carrier (Lower) Nest 0.2 0.07244 0.04395 -2.90
L Carrier (Upper) Nest 0.7 0.6519 0.08702 -0.55

L Time of Day (Lower) Nest 0.3 0.3078 0.01321 0.59
Allocation Parameters

Phi Constant L Side 1 0.5928 0.4722 -0.86
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Table 5: Comparison of HeNGEV and NetGEV Models

HeNGEV Model NetGEV Model
Actual

Error of
Estimate

Standard
Error of
Estimate

Actual
Error of
Estimate

Standard
Error of
Estimate

Departure Time
Before 08:00 n/a n/a n/a n/a
08:00-09:59 -0.0435 0.01796 -0.08313 0.03759
10:00-12:59 -0.00743 0.09851 -0.06296 0.1177
13:00-15:59 -0.02532 0.02453 -0.08495 0.07088
16:00-18:59 -0.02987 0.01867 -0.07859 0.05334

19:00 or later 0.0025 0.09828 -0.0445 0.1120
Level of Service

Nonstop n/a n/a n/a n/a
Single Connect 0.014 0.1019 -0.031 0.1407
Double Connect -0.064 0.1354 -0.156 0.2530

Flight Characteristics
Distance Ratio 0.002859 0.001107 0.005628 0.002449

Fare Ratio 0.000641 0.0005518 0.001798 0.001068
Nesting Parameters

B Time of Day (Upper) Nest -0.0006 0.01509 0.0307 0.1022
B Carrier (Lower) Nest -0.0561 0.02585 -0.12756 0.04395
L Carrier (Upper) Nest -0.0254 0.01973 -0.0481 0.08702

L Time of Day (Lower) Nest 0.0075 0.006947 0.0078 0.01321
Allocation Parameters

Phi Constant L Side 0.066 0.389 -0.4072 0.4722
Phi Income (000) L Side 0.00088 0.005029

Phi Advance Purchase L Side -0.0228 0.02686
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Figure 3: Log Likelihoods and Relationships Between Models Estimated
Using Unimodal Dataset

using each of the two sub-models, as well as a multinomial logit model that
ignored the error covariance entirely. As shown in Figure 3, the results
of these models were (by definition) inferior to even the NetGEV model,
although the L-only nested submodel performed nearly as well as the homo-
geneous NetGEV model. Not surprisingly, the MNL model with similarly
defined utility functions performs relatively poorly, with log likelihood ben-
efits in the thousands for a change to either nested structure. Of course,
while all of the differences shown in Figure 3 are statistically significant,
some differences are more significant than others.

The L-only structure has a better fit for the data than the B-only model.
This is consistent with the construction of this dataset, which is heavily
weighted with decision makers exhibiting error correlation structures that
are nearly the same as the L-only model. This heavy weight towards the
L model is also reflected in the very small improvement (6.77) in log like-
lihood when moving from the L-only model to the NetGEV model, which
incorporates both L and B submodels. While this change is still statisti-
cally significant (χ2=13.54, with 3 degrees of freedom, p=0.0036) it is tiny
compared to the changes observed between other models. In this instance,
with most travelers exhibiting similar L choice patterns, it appears that
upgrading to the NetGEV model alone does not provide much benefit. Far
more improvement in the log likelihood is made when the heterogeneous
covariance is introduced, which allows the small portion of the population
that exhibits “B” choice patterns to follow that model, without adversely
affecting the predictions for the larger L population.
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Table 6: HeNGEV and NetGEV Market-Level Predictions

Predictions Differences
Itinerary Total Observed HeNGEV NetGEV HeNGEV NetGEV

1 45067 44806.47 44824.55 -260.53 -242.45

2 26746 26769.61 26753.7 23.61 7.70

3 2633 2649.82 2650.9 16.82 17.90

4 1346 1439.44 1432.45 93.44 86.45

5 1415 1439.44 1432.45 24.44 17.45

6 3521 3328.98 3355.5 -192.02 -165.50

7 1452 1439.44 1432.45 -12.56 -19.55

8 3328 3273.62 3293.55 -54.38 -34.45

9 2374 2485.81 2466.85 111.81 92.85

16 1047 1055.51 1053.15 8.51 6.15

17 3983 4014.62 4001.65 31.62 18.65

18 3412 3506.99 3506 94.99 94.00

19 2221 2257.96 2264.9 36.96 43.90

20 819 834.07 831.55 15.07 12.55

Others 1455 1532.29 1531.95 77.29 76.95

When applied for prediction, the predictions of the HeNGEV model and
the NetGEV model across the entire market are roughly similar, as can be
seen in Table 6. The two models over- or under-predict in roughly the same
amounts for each itinerary. However, when the predictions are segmented
by income as in Table 7, the HeNGEV model can be seen to outperform
the NetGEV model in all income segments, especially in the extremes of
the income range. The errors for the whole market, on the right side of
Figure 4, are roughly similar for both models. However, within the extreme
high and low income segments (especially in the high income segment), as
shown in Figure 5, the errors in prediction for the HeNGEV model are
generally much smaller than those of the NetGEV model. The overall
market predictions for the NetGEV model end up close to the HeNGEV
predictions because the particularly large errors appearing in the extreme
income segments have offsetting signs.

20



Table 7: HeNGEV and NetGEV Predictions Segmented by Income

Observed Choices HeNGEV Model NetGEV Model

It
in

er
ar

y

Bottom
Fifth
of In-
come

Lower
Mid-
dle
In-

come

Middle
Fifth
of In-
come

Upper
Mid-
dle
In-

come

Top
Fifth
of In-
come

Bottom
Fifth
of In-
come

Lower
Mid-
dle
In-

come

Middle
Fifth
of In-
come

Upper
Mid-
dle
In-

come

Top
Fifth
of In-
come

Bottom
Fifth
of In-
come

Lower
Mid-
dle
In-

come

Middle
Fifth
of In-
come

Upper
Mid-
dle
In-

come

Top
Fifth
of In-
come

1 8884 8958 9010 9139 9076 11.5 -27.3 -53.6 -152.0 -39.2 80.9 6.9 -45.1 -174.1 -111.1
2 5246 5211 5264 5423 5602 -128.2 33.0 72.5 23.3 23.0 104.7 139.7 86.7 -72.3 -251.3
3 572 565 533 500 463 -6.4 -18.5 -0.4 16.0 26.1 -41.8 -34.8 -2.8 30.2 67.2
4 275 285 280 277 229 48.0 19.2 10.5 -2.9 18.6 11.5 1.5 6.5 9.5 57.5
5 292 332 261 285 245 31.0 -27.8 29.5 -10.9 2.6 -5.5 -45.5 25.5 1.5 41.5
6 703 730 722 686 680 -37.0 -64.1 -56.2 -20.3 -14.4 -31.9 -58.9 -50.9 -14.9 -8.9
7 307 318 292 260 275 16.0 -13.8 -1.5 14.2 -27.4 -20.5 -31.5 -5.5 26.5 11.5
8 693 730 681 622 602 16.7 -49.7 -22.2 11.2 -10.4 -34.3 -71.3 -22.3 36.7 56.7
9 503 495 497 460 419 26.1 17.1 2.5 24.7 41.5 -9.6 -1.6 -3.6 33.4 74.4

16 181 181 228 226 231 -11.2 10.9 -20.0 1.3 27.5 29.6 29.6 -17.4 -15.4 -20.4
17 842 803 822 761 755 -6.8 14.9 -16.7 29.3 10.9 -41.7 -2.7 -21.7 39.3 45.3
18 740 675 715 625 657 27.2 57.0 -8.7 50.7 -31.1 -38.8 26.2 -13.8 76.2 44.2
19 477 462 416 442 424 11.6 6.8 38.3 -4.9 -14.9 -24.0 -9.0 37.0 11.0 29.0
20 148 134 164 159 214 -7.3 20.7 0.9 18.0 -17.2 18.3 32.3 2.3 7.3 -47.7

Others 137 121 115 135 128 9 21.6 25.1 2.2 4.3 3 19.1 25.1 5.1 12.1
Total Absolute Deviation: 407.87 407.16 361.95 399.51 321.93 530.55 519.19 369.91 564.37 884.23

Figure 4: Observations and Market-Level Prediction Errors
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Figure 5: Prediction Errors, Segmented by Income

4 Conclusions

Overall, the HeNGEV models show a better fit for the synthetic data than
the matching homogeneous NetGEV models. Individual parameter esti-
mates were generally improved by adopting the heterogeneous model, often
by half or more of the error in the estimate. This result is not especially
surprising in this dataset, as it was constructed using a heterogeneous syn-
thetic choice process. Nevertheless, the ability to recover the choice param-
eters, and to recover them more accurately than in a homogeneous model,
demonstrates that the heterogeneous structure can be used successfully
where appropriate.

Better fitting models are obviously an positive attribute of the HeNGEV
structure, but they are not the only benefit. When used to predict choices of
subsections of the population, the responsiveness of the correlation struc-
ture to data allows the HeNGEV to be a superior predictive tool. Such
benefits could be especially appealing in revenue management systems,
which seek specifically to segment markets in order to capture these types
of differences in pricing and availability decisions.
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The identical results achieved for the HeNGEV and latent class models
strongly suggests an equivalence between these two model forms. This may
be a particular result of the covariance structure selected for this synthetic
data experiment, although the topology of the network chosen (with all the
allocation parameters at the bottom of the network, on edges connecting to
the elemental alternatives) is reasonably general, as any NetGEV model can
be transformed to have this bottom-only allocation (Newman, 2008). Addi-
tionally, the synthetic data was a cross-sectional dataset, and not panel data
with identifiable repeated choices by a single decision maker. Nevertheless,
the author conjectures that the network GEV model and the discrete mix-
ture of nested logit model are indeed generally equivalent, although the full
exploration of this is left for the future.
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