
Uncertainty Feature Optimization for the Airline

Scheduling Problem

Niklaus Eggenberg, Matteo Salani ∗

January 5, 2009

Abstract

In this paper, we present an application to the Airline Schedul-
ing Problem (ASP) of the Uncertainty Feature Optimization (UFO)
framework which combines both a proactive scheduling algorithm and
a reactive recovery algorithm used for re-optimization when disruptions
occur.

We show that re-timing some flights of the original schedule allows
for more delay absorption. This means the solution is robust against
some delays. Additionally, in case of severe disruption requiring re-
optimization, the retiming increases the performance of the recovery
algorithm: the number of disrupted passengers, and thus associated
compensation costs, are reduced.

We provide computational results for the public data of an Euro-
pean airline provided for the ROADEF Challenge 20091.

1 Introduction

In the modern society, the demand for transportation, both for goods and
people, is constantly increasing for both volume and distance. In particu-
lar, being the fastest transportation mode for mid and long distances, air-
line transportation develops at an impressive rate. Due to the competition
between the airlines, many of them use operations research techniques to
optimize operations. This allows to keep prices low and thus attract cus-
tomers while still making profit. An additional problem airlines are faced
with is to deal with irregular events, called disruptions, making the schedule
infeasible; the problem is known as the disrupted schedule recovery prob-
lem. The aim of the recovery problem is to retrieve the initial schedule as
quickly as possible while minimizing the recovery costs incurred by recovery
decisions (typically delaying or canceling flights). The conflicting nature of
makespan and cost minimization is usually solved by practitioners by fixing

∗TRANSP-OR laboratory, École Polytechnique Fédérale de Lausanne, CH-1015 Lau-

sanne, Switzerland
1http://challenge.roadef.org/2009/index.en.htm

1

the makespan, which is called the recovery period, and then minimize the
recovery costs within the recovery period.

The major drawback of optimized operation plans is that they are very
sensitive to perturbations: small disruptions propagate through the whole
schedule, making even small disruptions to have a huge impact. The reason
is that in general, optimized plans are computed regardless of the noisy
environment within which the plan has to be carried out, and utilities (i.e.
aircrafts or crew) utilization rates are as high as possible: unused utilities
are less profitable and thus suboptimal.

The airline transportation is a particular case of a large variety of prob-
lems faced with the same problematic: rail transportation, public trans-
portation or container shipment are similar problems, in the sense that the
original planning often needs to be adjusted in real time. In fact, this is
the case for most of the scheduling problems, where the original a priori
schedule (or baseline schedule) is due to varying data, and real-time read-
justments must be performed a posteriori. For such problems, it is preferable
to compute a more stable solutions, i.e. less sensitive to small disruptions.

The focus of this study is to consider future disruptions implicitly at the
planing phase in order to ameliorate two crucial properties of the schedule,
namely:

1. the robustness: the ability of the schedule to remain feasible (for small
disruptions such as small delays);

2. the recoverability : the average performance of the recovery algorithm
when the schedule is disrupted.

In this paper we present an application of the Uncertainty Feature Op-
timization (UFO) framework of Eggenberg et al. (2008b) to the aircraft
routing problem, which is composed of two phases: the planing phase and
the recovery phase in case disruptions occur. At the planing phase, we solve
the Aircraft Scheduling Problem (ASP), which aims at finding a feasible
route for each aircraft in order to maximize some predictive revenue metric.
The input of the ASP is a set of flights with given desired departure time
and plane type for each flight. The objective is to find a set of routes, one for
each aircraft, covering all the fights and such that the fleet requirements are
satisfied. The departure times are to be as close as possible to the desired
departures and each route must comply with the maintenance requirements
of the plane covering the route.

On the day of operation, the problem of recovering the planed schedule
from a disrupted state is the Aircraft Recovery Problem (ARP). The input
of the ARP is the original schedule computed by the ASP and the current
disrupted state, i.e. the location of each aircraft according to the observed
delays so far and it’s availability and maintenance requirements. The aim
of the ARP is to recover the original schedule as quickly as possible while
minimizing the incurred recovery costs. The solution is thus a new schedule
for the recovery period, complying with all the technical constraints the
ASP is subject to. Note that maintenance constraints might be relaxed but
at the cost of negotiations with the air traffic authorities, at the risk of an
audit of the airline in case of recurrent extension requests.

The possible recovery decisions are delaying or canceling flights, swap-
ping planes and using repositioning flights (flights that were not initially

2

scheduled). Each of these operations potentially incurs some recovery costs,
usually modeled in terms of additional operational costs and some metric
for the passenger’s inconvenience. The passenger inconvenience typically
includes delay costs and, in the case a passenger cannot be re-routed to it’s
destination, the cost of a ticket on another airline.

The main difference between ASP and ARP is the cost structure: the
ASP is based on a predictive profit function and thus revenue loss has to be
minimized, whereas the ARP minimizes a deterministic recovery cost metric.
The loss of revenue for the ASP is measured according to the deviation with
the desired departure times, the lost connections due to retiming and the lost
capacities on the flights covered with another plane type than desired. For
the ARP, the recovery cost metric is mainly based on delay and cancellation
costs; when solving the ARP independently from the passenger or crew
recovery problem, the cost structure is often adapted in order to capture
implicitly the effects of a recovery decision in the ARP on the crew recovery
or passenger re-routing. For example, one can set the flight cancellation
or delay costs proportional to the potentially disrupted crew/passengers, or
add additional costs for a flight’s capacity reduction when swapping planes
with different capacities.

The originality of the algorithms we present is that we do not require
any explicit predictive modeling on possible disruptions for the scheduling
problem: our model uses the UFO framework, where some metrics, called
Uncertainty Features, have to be optimized; the uncertainty features cap-
ture implicitly the uncertainty the problem is due to. An additional budget
constraint ensures that the obtained solutions is not too far from the original
deterministic optimum, and the computational complexity is similar to the
original deterministic problem.

We apply the UFO framework to a real world problem and we present
computational results for different ASP models. We present a priori statis-
tics, i.e. some global properties evaluating qualitatively the solution’s ro-
bustness, and observed performances of our recovery algorithm. The in-
stances we use are the public instances of the ROADEF Challenge 2009.

The structure of the paper is as follows: section 2 is a survey of the most
relevant works in the field of airline scheduling. Section 3 describes the used
algorithms for both the airline scheduling and recovery problems. Section
4 describes in detail the used uncertainty features and the algorithmical
implications. Section 5 presents the results of the simulations and finally,
section 6 concludes this paper with some future research directions.

2 Literature Review

In this section, we synthesize the most relevant contributions in the field of
airline scheduling. The survey is divided in two parts: first we present the
works dealing with proactive airline scheduling, then we present the reactive
works on airline recovery problems.

For a detailed description on the airline scheduling process, see Rosen-
berger et al. (2003a); for general surveys on airline scheduling and recovery
problems, we refer to Clausen et al. (2005), who give an overview of the
literature on the different aspects of the airline scheduling problem. For
surveys on the recovery problems, see Kohl et al. (2004) who discuss dif-

3

ferent approaches to cope with irregular events for all aircrafts, crews and
passengers and Eggenberg et al. (2008a) who present the general constraint
specific networks to solve the ARP including maintenance constraints.

Airline Scheduling Barnhart et al. (1998) introduce the string based
fleeting and routing model, where a string is a sequence of connected flights
between two maintenances. The model aims at finding a succession of strings
for each aircraft in order to cover all flights and assign them to a fleet. The
problem is solved using a Column Generation algorithm, for which the pric-
ing problem of finding improving columns, i.e. new routes, is solved as a
resource-constrained shortest path problem in a time-line network. Solutions
for instances with up to 190 flights and rotations of 14.2 flights in average
are presented; the computation time varies from 2 to approximatively 36,000
seconds.

Klabjan et al. (2002) solve the crew scheduling problem with additional
plane-count constraints ensuring the feasibility of forced turns, which are
imposed turns when a crew member’s rotation has to change planes. The
plane schedule is adjusted such as all forced turns are satisfied; if no such
solution exists, an additional plane-count constraint is added to the crew
scheduling model and solved again. The authors show computational results
for instances with up to 450 legs; no concern about robustness is taken into
account.

Rosenberger et al. (2003a) present a discrete event semi-Markov process
to model the stochastic behavior of the disruption occurrences. Only in-
dependent random events are considered, severe climatic perturbation that
could extend on several airports, for example, are not considered. The simu-
lation aims at comparing the efficiency of different recovery strategies such as
compensatory rest delays, short cycle cancellation, reserve crew or passenger
push-back, and present a performance measure to compare the approaches.
Results for a single example testing some crew recovery heuristics for dif-
ferent schedules are provided. Although no explicit research on robustness
nor recoverability is done in this paper, the authors show that schedules
obtained by including expected recovery costs perform better than optimal
deterministic schedules with no consideration of potential disruption.

Bian et al. (2004)) study the robust airline fleet schedules for KLM,
which is among the largest European airlines. The authors discuss the way
robustness should be measured and propose a metric to increase this robust-
ness, namely the number of aircrafts on ground. The presented results on
eleven schedules of KLM in the year 2002 show a significant correlation be-
tween the plane on ground metric and the arrival and departure punctuality
predictions. The analysis focuses only on identification of relevant metrics:
only observed events are analyzed, no simulation nor optimization is done.

Rosenberger et al. (2004) solve a robust fleet assignment problem where
maximizing short cycles and hub isolation aims at improving the short cy-
cle cancellation recovery strategy. The motivation is that in application,
operators often cancel an entire plane’s rotation (or cycle) in order to cope
with the rotation’s continuity problems when canceling single flights only.
Different fleet-assignment models are analytically compared on simulated
disruptions, in terms of criteria such as average delay, percentage of flights
delayed by less than 15 minutes, the percentage of canceled flights, or the

4

number of times aircraft rerouting has to be performed. The authors con-
clude that using sub-optimal solutions of the deterministic problem allow
for improving a schedule’s robustness.

Lan et al. (2006) propose a model solving the aircraft routing problem by
retiming flights in order to reduce the delay propagation and thus minimize
passenger disruptions. The propagation reduction is achieved by optimizing
the idle time slots, or slacks, using a stochastic model based on historical
data on flight’s delay; the obtained solutions reduce the average number of
disrupted passengers by about 11%. The authors present a second model
for missed connection reducing: flights are rescheduled within a fixed time
window in order to minimize the expected number of disrupted passengers.
In the reported results, the robust schedules allow for a reduction of about
40% of disrupted passengers and the total passenger delay is reduced by
20%.

Shebalov and Klabjan (2006) modify original crew schedules in order
to maximize the move-up crews, i.e. pairings that can be swapped in op-
erations. The model is used using a combination of Lagrangian relaxation
and Column Generation. The model maximizes the number of move-up im-
posing an upper bound for the loss of optimality of the deterministic cost
structure; the authors call it the robustness factor. The obtained solutions
are tested against randomly generated disruptions. Instances with up to 228
legs are solved; usual and robust schedules are compared in terms of oper-
ational costs obtained using a crew-recovery decision support system. The
main conclusion of the authors is that the trade-off between crew cost and
the robustness factor is crucial: a too large investment in terms of additional
crew costs to gain robustness quickly leads to increased operational costs.

Yen and Brige (2006) describe a stochastic integer programming algo-
rithm to solve the crew scheduling. Interestingly, the obtained solutions
exhibit a simple but constant property: the crew tend to stay on the same
plane as much as possible. The reason of this is probably due to the recourse
model the authors use: additional costs are incurred when crew change air-
crafts to model the recourse strategy. Additionally, the solutions show an in-
creased average connection time between two successive flights. The largest
reported solved instance has 11 aircrafts for 19 flights.

As part of the ARRIVAL project, Liebchen et al. (2007) explore the field
of robust and recoverable schedules in railway transportation. The authors
define the recoverable robustness as a solution that can be recovered by a
limited effort within a limited set of scenarios. Interestingly, the authors
define the recovery costs in terms of a set of recovery algorithms, and not a
unique recovery scheme. Unfortunately, this work is purely theoretical: the
proposed formulation is clearly computationally intractable in general, and
only some illustrative examples are presented.

Only few works on integrated models exist for the airline scheduling
problem. We refer to Clausen et al. (2005), who give a survey on integrated
approaches for both scheduling and recovery.

Cordeau et al. (2001) present an approach combining two connection net-
works for both aircrafts and crews and solve them aggregated model using
the Benders decomposition algorithm. The authors derive a primal subprob-
lem involving only crew variables and then solve both primal problem and
subproblem by Column Generation. Moreover, only relevant cuts of some

5

linking constraints between primal and primal subproblem are generated
iteratively after each pricing call.

Mercier and Soumis (2007) present an algorithm based on the Benders
decomposition for solving simultaneously the crew pairing and the aircraft
routing problems. The combination of the two problems is done using some
linking constraints, imposing minimum connection times for crews depend-
ing on aircraft departure times.

Weide et al. (2008) extend the model of Mercier and Soumis (2007)
and develop a Column Generation framework similar to the one of Cordeau
et al. (2001). Indeed, the original combined formulation is divided into two
subproblems corresponding respectively to the original crew pairing and
aircraft routing problems. Each one of these subproblems is then solved at
the pricing phase using dual information of the master problem combining
the two formulations. The difference is that all possible connections for crews
are explicitly enumerated in the master formulation. This methodology
cannot be applied to recovery problems, since the connections cannot be
explicitly enumerated due to flight retiming.

Airline Recovery The field of recovery algorithms was developed in the
last 10 years mainly, as the more the airline network develops, the more
(proportionally) irregularities occur: for each 1% increase in airport traffic
it is estimated that there will be a corresponding 5% increase in delays
(Schaefer et al., 2005). As a further motivation for the need of efficient
recovery strategies, we refer to Shavell (2000), who studies the economical
impact of schedule disruptions on airline companies.

Teodorvić and Gubernić (1984) were the pioneers of the Aircraft Recov-
ery Problem (ARP). Given that one or more aircrafts are unavailable, the
objective is to minimize the total delay of the passengers by flight retim-
ing and aircraft swappings. The algorithm is based on a branch-and-bound
framework where the relaxation is a network flow with side constraints.
Teodorvić and Stojković (1990) is a direct extension of the previous work.
The authors consider both aircraft shortage and airport curfews and try to
minimize the number of canceled flights, with a secondary objective of min-
imizing the total passenger delay if the number of cancellations is equal. A
heuristic based on dynamic programming is proposed to solve the problem.
No experiments are reported.

In Argüello et al. (1997) and Argüello et al. (2001) the authors use a
time-band model to solve the ARP. In the first article the authors propose a
fast heuristic based on randomized neighborhood search. The second article
presents a heuristic based on an integral minimum cost flow on the time-
band network. Furthermore, the method proves to be effective for some
medium-sized instances with up to 162 flights serviced by 27 aircrafts.

An extension to the network model of Argüello et al. (1997) is presented
by Thengvall et al. (2000). The authors present a model in which they pe-
nalize in the objective function the deviation from the original schedule and
they allow human planners to specify preferences related to the recovery op-
erations. Computational results are presented for a daily schedule recovery
of two homogeneous fleets of 16 and 27 aircrafts. Disruption scenarios are
simulated grounding one, two or three planes.

In his thesis, Sojkovic (1998) introduces three approaches to solve the

6

Day of Operation Scheduling problem (DAYOPS). The first method consists
of regenerating a new flight schedule without changing any other part of
the schedule (crew and passengers). The Second approach allows for mod-
ifications of aircraft itineraries, crew rotations and the planned schedule.
Optimization is done separately for aircrafts, pilots and flight attendants.
The last approach is based on the Benders decomposition to separate the
initial integral multi-commodity flow formulation and solves the resulting
problems using the Dantzig-Wolfe formulation by branch-and-bound.

Yu et al. (2003) introduce a decision aid algorithm (CALEB) tested
on data of Continental Airlines. They test their algorithm on probably
the worst day ever for aviation, namely September 11th 2001. They show
impressive results on how fast the return to normal schedule is achieved when
such a severe disruption happens. The estimated savings for 9/11 is up to
$29, 289, 000, almost half of it coming from the avoided flight cancellations.

Kohl et al. (2004) give a survey of the previous work on airline scheduling
and schedule recovery approaches. They also develop a crew solver and de-
scribe a prototype of a multiple resource decision support system (Descartes
project), which includes independent algorithms to solve the aircraft recov-
ery, the crew recovery and the passenger recovery problems. The tests are
run on data where small irregularities in a database of 4000 events are gen-
erated randomly, at most 10% of the flights being delayed from 15 to 120
minutes.

Eggenberg et al. (2008a) introduce constraint specific networks for the
general unit recovery problem, where a unit is either an aircraft, a crew
member (or team) or a passenger; each unit is associated with a network
encoding all feasible routes for the unit. The proposed recovery algorithm
is a Column Generation algorithm where the (multiple) pricing problem is
solved on the constraint specific networks as a resource constrained elemen-
tary shortest path problem. The advantage of the formulation is to include
all unit specific constraints in the unit’s network, and the global constraints
are handled at the master level, which is a classical set partitioning prob-
lem with additional unit utilization constraints. Reported results for the
Aircraft Recovery Problem (ARP) for instances with up to 760 flights are
solved. The advantage of the method applied to the ARP is that mainte-
nance planning during the recovery period is possible. The authors show
that efficient maintenance planing during the recovery phase may signifi-
cantly increase the solution’s quality.

The literature lacks papers dealing with integrated models combining
aircraft recovery and crew recovery or passenger re-routing problems. The
only relevant article we could find on integrated aircraft and passenger recov-
ery is Bratu and Barnhart (2006). The authors present an explicit approach,
leading to mixed integer models with an exponential number of constraints,
where planned and recovery passenger itineraries are explicitly modeled. To
control the exponential size of the model, only itineraries with up to two legs
are considered and flight retiming is constrained only within a restricted time
window around the original departure time. The main drawback of this ap-
proach is that routing decisions are taken after the passenger routing, which
implies that flight capacities are not correctly determined at passenger re-
covery stage. To overcome this issue, the authors introduce additional flow
variables to include aircraft types, increasing by another dimension the ex-

7

ponential behavior of the model.

We draw three main conclusions from the literature. The first is that
purely deterministic models perform poorly in reality, explaining the abun-
dance of works on recovery and robustness. The second is that the proposed
a priori methods using explicit uncertainty characterizations lead to prob-
lems that are solved only for small instances. Finally, the conclusions of
the works on a priori methods are that the outcome solution of a complex
model often exhibits a specific property, such as increased idle time, reduced
rotation lengths, an increased number of plane crossings or potential crew
swaps, etc. Interestingly, these are the properties the practitioners try to
ameliorate when creating the schedules.

This motivates the use of the UFO framework of Eggenberg et al. (2008b):
considering the uncertainty implicitly allows for keeping the computational
complexity similar to the deterministic problem, and choosing precisely the
properties practitioners are using is promising since these are also properties
obtained by complex a priori models.

3 Models and Algorithms

In this section we present the scheduling and the recovery algorithms used for
the ASP and the ARP. The global structure of both algorithms is a Column
Generation scheme based on the constraint specific networks presented in
Eggenberg et al. (2008a). As the two problems are similar, we use the same
notation for both of them. Note that despite the structural similarities of the
models, the ASP and ARP have different objectives, which is modeled by an
appropriated cost structure. Additionally, each constraint specific network
models the unit specific constraints with a set of resources, as described in
Eggenberg et al. (2008a).

We denote, in both the ASP and the ARP, F the set of flights to be
covered, P the set of available planes, S the set of final states, which de-
scribes the type of aircraft, the location, time and maximal allowed resource
consumption expected at the end of the scheduling or the recovery problem
for the ASP and the ARP respectively. T is the length of considered period,
which corresponds to the scheduling period for the ASP and the recovery
period for the ARP. A route r is defined by the covered flights in the route,
the reached final state and the plane the route is assigned to. Let Ω be the
set of all feasible routes r, xr the binary variable being 1 if route r is chosen
in the solution and 0 otherwise, and cr the cost of route r. We also define the
time-space intervals l = (a, t) as the time period [t, t + 1) at airport a ∈ A,
where t is the length of the time intervals to consider (typically 60 minutes).
We denote L the set of all time-space intervals (there are | A | ×

⌈

T
t

⌉

such
intervals in total). The departure and arrival capacities for an airport a

during period [t, t + 1) are given by q
Dep

l and qArr
l with l = (a, t).

Finally, consider the following set of binary coefficients:
bf

r 1 if route r covers flight f ∈ F, 0 otherwise;
bs

r 1 if route r reaches the final state s ∈ S, 0 otherwise;
b

p
r 1 if route r is assigned to plane p ∈ P, 0 otherwise;

b
Dep,l
r 1 if there is a flight in route r departing within time-space interval l ∈ L, 0 otherwise;

bArr,l
r 1 if there is a flight in route r arriving within time-space interval l ∈ L, 0 otherwise.

8

Finally, we add binary slack variables yf, ∀f ∈ F for flight cancellation:
yf is 1 if flight f is canceled, and the associated flight cancellation cost is
cf. With this notation, the Master Problem (MP) of both the ASP and the
ARP is the following integer linear program:

min zMP =
∑

r∈Ω

crxr +
∑

f∈F

cfyf (1)

∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (2)

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (3)

∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P (4)

∑

r∈Ω

bDep,l
r xr ≤ q

Dep

l ∀l ∈ L (5)

∑

r∈Ω

bArr,l
r xr ≤ qArr

l ∀l ∈ L (6)

xr ∈ {0, 1} ∀r ∈ Ω (7)

yf ∈ {0, 1} ∀f ∈ F (8)

The objective (1) is to minimize total costs. Note that for the ASP, all
the flights have to be covered and thus, cf = ∞. Constraints (2) ensure
each flight is either covered by a route r ∈ Ω or canceled. Constraints (3)
ensure each final state is reached by a plane and constraints (4) ensure each
aircraft is assigned to at most one route. Finally, constraints (5) and (6)
ensure the departure and arrival capacities of the airports are satisfied, and
constraints (7) and (8) ensure integrality of the variables. The constraints
(2)-(8) are the global constraints described in Eggenberg et al. (2008a).

In the Column Generation process, the pricing problem aims at finding
new feasible columns improving the current (partial) solution. The pric-
ing is solved as a Resource-Constrained Elementary Shortest Path Problem
(RCESPP) on the constraint specific networks.

The main difference between the ASP and the ARP algorithms is the
specification of the constraint specific networks and it’s cost structure. For
the ASP, all flights are potentially feasible for an aircraft, unless the aircraft
is technically not able to cover it. The cost of a plane’s route is the loss
of potential revenue of covering the flights of the route with the plane the
route is assigned to, including thus the potential losses of revenue due to
flight retiming or capacity reductions. In the ARP, the cost of a route is
the cumulation of delay costs; the feasible flights are usually restricted to
flights originally assigned to aircrafts of the same fleet. The same holds for
the final states.

3.1 Uncertainty Feature Optimization

The problem (1)-(8) is a deterministic model to solve the ASP. As discussed
in Eggenberg et al. (2008b) and references therein, using deterministic mod-
els for problems due to imperfect information leads to unstable solutions,
i.e. sensitive to data variations. The ASP is clearly prone to noisy data;

9

the nature of the noise is, however, difficult to calibrate due to the many
factors influencing an airline’s schedule: meteorological changes, economical
factors such as the price of fuel, human factors such as crew illness, crew
strikes, political manifestations, etc. Characterize an explicit model of the
uncertainty, usually called an uncertainty set, is thus a hard problem itself.
Additionally, models exploiting an explicit uncertainty set are increasing
the computation effort of the deterministic problem by several orders. As
the ASP is already an NP-hard problem in its deterministic form, it is ex-
tremely hard to solve general ASP problems with such methods. Finally,
as shown in Eggenberg et al. (2008b), solutions computed with a model in-
volving an explicit uncertainty set are sensitive to errors in the uncertainty
characterization.

The UFO framework overcomes these drawbacks by using an implicit
modeling of the uncertainty. The advantages are that no uncertainty set
characterization is required, saving the modeling effort and protecting against
potential errors, and the complexity of the resulting problem is of same order
than the original problem.

As a further motivation for UFO, see Fischetti and Monaci (2008) who
successfully apply light robustness, which is similar to UFO, to the train
timetabling problem. The authors show impressive computational time sav-
ings, in addition to competitive solutions in terms of robustness when com-
pared to the robust approach of Bertsimas and Sim (2004).

An Uncertainty Feature (UF) is a structural property of a solution that
is known to perform well for a general type of noise: for example, an in-
creased idle time is known to allow for more delay absorption; increasing
idle time thus improves the robustness of a solution against delays of any
form; additionally, no specification of the delays is required.

More formally, for a general optimization problem with decision variables
x, an UF is a function µ mapping x into a scalar µ(x). The UF captures
implicitly the uncertainty the optimization problem is prone to: solutions x

with high values of µ(x) are expected to perform better in reality, although
their original objective value is sub-optimal in the deterministic scenario.

The UFO framework is based on a multi-objective formulation derived
from the initial deterministic problem, aiming at optimizing the initial ob-
jective and the considered UFs simultaneously. In the linear case, a cost-
minimization problem min cTx is transformed into a multi-objective opti-
mization problem of the form:

min zUFO = [min cTx,max µ(x)]

and is due to the same constraints than the initial problem. In the UFO
framework, the deterministic objective min cTx is relaxed and the following
budget constraint is added:

cTx ≤ (1 + ρ)c∗,

where c∗ is the optimal value of the deterministic problem. The budget
ratio ρ ≥ 0 is a parameter bounding the maximal loss of optimality with
respect to the deterministic optimum. The solution space is growing for
increasing values of ρ. The idea of the budget ratio is to relax the focus
on the deterministic objective min cTx in order to increase the UF’s value,
which is the implicit measure of robustness or recoverability we use.

10

3.2 Robust and Recoverable Schedules

In the classical deterministic ASP formulation (1)-(8), the objective is to
minimize the profit losses given the desired departure times for flights that
maximize some predictive revenue model. We assume here that the cost of
a modified departure is linear, i.e. that each time unit (typically a minute)
between desired and real flight departure incurs a constant loss of profit.

The initial objective of the ASP is thus to find a feasible solution for the
plane routing as close as possible to the input schedule; the cost cr of route
r ∈ Ω is thus the total number of minutes the flights of route r deviate from
their desired departure times. Additionally, recall that we require all flights
to be covered, i.e.

∑
f∈F cfyf is only a penalty measure to ensure all the

flights are covered; the objective is thus only to minimize
∑

r∈Ω crxr.
Consider an UF µ(x) where x is the vector of all variables xr ∈ Ω.

Without the flight cancellation penalty, the objective (1) of the ASP problem
is reformulated in the UFO framework as:

min zMOP = [min
∑

r∈Ω

crxr,max µ(x)]

Applying the budget constraint relaxation we obtain the following for-
mulation:

max zUFO =µ(x) −
∑

f∈F

cfyf (9)

∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F (10)

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S (11)

∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P (12)

∑

r∈Ω

bDep,l
r xr ≤ c

Dep

l ∀l ∈ L (13)

∑

r∈Ω

bArr,l
r xr ≤ cArrl ∀l ∈ L (14)

∑

r∈Ω

crxr ≤ (1 + ρ)z∗MP (15)

xr ∈ {0, 1} ∀r ∈ Ω (16)

yf ∈ {0, 1} ∀f ∈ F (17)

Note that since we are in a maximization problem, the flight cancellation
penalty is introduced with a negative sign.

The budget ratio ρ is the allowed deviation from the deterministic opti-
mum z∗MP; for the ASP problem, z∗MP corresponds to the minimal deviation
from the desired schedule, which is reached when all flights are scheduled as
desired and has value z∗MP = 0. In this particular case, however, the budget
ratio becomes irrelevant, as (1 + ρ)0 = 0 = z∗MP.

In order to overcome this, we introduce the budget as a constant C

fixing the total allowed deviation (in minutes) from the planed schedule.

11

The budget constraint (15) thus becomes:
∑

r∈Ω

crxr ≤ C (18)

The budget C is thus an upper bound on the total deviation, which
is also an upper bound on the loss of revenue, as we suppose the loss of
revenue to be linear in the number of minutes between desired and obtained
departure times. Increasing C allocates more budget, increasing the solution
space within which the UF has to be maximized, which is consistent with
the UFO framework.

It is important to note that deviation from the desired schedule in the
master formulation is an aggregated measure. It is however possible to in-
clude disaggregated bounds for each flight’s maximal deviation thanks to
the constraint specific networks: when generating the networks, feasibility
tests are made independently for each flight. Setting bounds on maximal
deviation enables to control a single flight’s deviation without any addi-
tional constraint in the master problem nor any modification of the pricing
problem.

The formulation obtained by replacing (15) by (18) in (9)-(17) can be
solved by the Column Generation algorithm of section 3 provided that the
uncertainty feature µ(x) is linear. In this case, the pricing problem remains
an RCESPP problem on the constraint specific networks. The difference
comes from the additional budget constraint: the formulation of the re-
duced cost of a column still contains the column’s total deviation, but no
longer as the cost of the column. It is thus multiplied by the dual multiplier
of the budget constraint in the reduced cost formulation. For the RCESPP
algorithm, we have to add a resource corresponding to the UF; the domi-
nation criteria are the same, except that the domination must also hold for
the UF value of the column.

4 Uncertainty Features for the Airline Scheduling

Problem

The UFs we use in this work are capturing what practitioners do in reality,
namely increasing idle time, which allows for delay absorption, and increase
the number of plane crossings, which allows more plane swappings for the
ARP. We expect that solutions with higher values for these properties will
ameliorate both robustness and recoverability.

We consider idle time to be each additional time slot between two activ-
ities of a same plane, being either flights or maintenances. The time before
the first activity starts and the time after the last activity ends is not con-
sidered as idle; plane turnaround and transit times between two flights are
not considered as idle time either.

A plane crossing corresponds to a time period during which two planes
are at the same location. When n planes are located at the same airport
and the same time period, we count n − 1 plane crossings.

In terms of modeling, computing the idle time of a single route is an easy
problem, the corresponding uncertainty feature being:

µIT(x) =
∑

r∈Ω

δrxr,

12

where δr is the total idle time in route r.
Using µIT leads to a linear UFO formulation, and the structure of the

pricing problem is not changed: it remains an RCESPP where the total idle
time corresponds to the cost δr of the column.

The UF µIT accounts for the total idle time. An alternative is to max-
imize the minimal idle time in order to get smaller but more uniformly
distributed buffer time windows. This UF is however no longer linear. Al-
though linearization is possible, such a formulation destroys the Column
Generation structure; using

ζ = − min
r∈Ω

δminr xr,

where δminr is the minimal idle time in route r, we end up with a formulation
of the type:

max − ζ
∑

r∈Ω

bf
rxr + yf = 1 ∀f ∈ F

∑

r∈Ω

bs
rxr = 1 ∀s ∈ S

∑

r∈Ω

bp
rxr ≤ 1 ∀p ∈ P

∑

r∈Ω

bDep,l
r xr ≤ q

Dep

l ∀l ∈ L

∑

r∈Ω

bArr,l
r xr ≤ qArr

l ∀l ∈ L

ζ ≥ δminr xr ∀r ∈ Ω

xr ∈ {0, 1} ∀r ∈ Ω

yf ∈ {0, 1} ∀f ∈ F

In the previous formulation, we have both exponential number of vari-
ables and constraints, namely at least | Ω |, which is not affordable for
Column Generation.

It is however possible to maximize the sum of the minimal idle times of
each route with the following UF:

µMIT(x) =
∑

r∈Ω

δminr xr.

The resulting UFO formulation is exactly the same than for µIT. For
the pricing however, although the structure remains an RCESPP, one must
take care during the label extension and the domination criteria. Unlike
the total idle time for which one simply adds idle time (if any) during the
label extension, the minimal idle time is not homogeneously increasing or
decreasing. The main problem is for the partial reduced cost comparison:
in order to compare labels, the partial reduced cost must contain the par-
tial minimal idle time; during extension, it might however change in a non
homogeneous way. The solution is to recompute the minimal idle time up
to the end of the last activity of a partial route at each label extensions.

13

The third model we use is meant to maximize the number of plane cross-
ings, allowing for more plane swapping possibilities for the recovery algo-
rithm. The major difficulty of such an UF is that it is no longer single-route
dependent: a plane crossing cannot be identified in a solution looking at
a unique column. This raises a challenging modeling problem, namely to
identify the number of plane crossings with a polynomial number of linear
constraints.

The solution we use is the concept of meeting points: we create a con-
straint for each airport for a discretized number of time intervals. We de-
note such a meeting point by the pair m = (a, t), corresponding to the
meeting point at airport a and time interval t; the number ∆ of time in-
tervals is a fixed parameter, and M is the set of all meeting points, i.e.
M = {(a, t) | a ∈ A, t = 0, · · · , ∆}. The number | M | of meeting point
constraints is pseudo-polynomial (number of airports times number of time
intervals). Note that this technique is similar to the departure and arrival
capacity constraints.

We denote bm
r the binary coefficient being 1 if route r visits meeting

point m ∈ M and 0 otherwise. We then get the following set of constraints:

∑

r∈Ω

bm
r xr − ym ≥ 0 ∀m ∈ M (19)

Note that in constraints (19) the plane crossing count variable ym at
meeting point m is the number of planes at the meeting point minus one: a
plane crossing occurs iff at least two planes are at the same meeting point.
The UF corresponding to the plane crossing maximization is thus

µCROSS(x) =
∑

m∈M

(ym − 1),

and we have to maximize µCROSS(x) subject to the constraints (10)-(17)
and with the additional crossing count constraints (19).

With this formulation, the application of the Column Generation algo-
rithm is still possible. The reduced cost now contains the term

−
∑

m∈M

bm
r λm,

where λm, m ∈ M are the dual multipliers of constraints (19). When gen-
erating the column, the visited meeting points are thus contributing to the
reduced cost, which has to be taken into account for label domination in the
RCESPP algorithm. However, there are no additional requirements: unique-
ness of a meeting point is ensured since the constraint specific networks are
cycle free.

Implementation We implemented three ASP algorithms, IT, MIT and
CROSS, corresponding to the presented UFs, and the recovery algorithm
solving the ARP. All these algorithms are based on the same Column Gen-
eration based heuristic: column generation is performed only at the root
node; the branching scheme is meant to derive an integer solution from the
columns obtained at the root node. The solution may thus not be optimal,

14

but the lower bound at the root node provides a valid lower bound. We are
thus able to determine whether the solution is optimal or, if not, we provide
a valid optimality gap.

The algorithms are written in C++ using the COIN-OR BCP frame-
work2, each algorithm containing around 12,000 lines of code in addition to
the COIN-OR BCP framework.

Note that in the implemented version of the recovery algorithm reposi-
tioning flights are not used.

5 Computational Results

In this section we present some computational results for the ROADEF
Challenge 2009 data set. The results we present here are based on the A set,
the set of instances used for the Challenge qualification phase. The original
schedules (as provided in the data set) are labeled Or; the schedules obtained
by the UFO models are labeled with IT for the total idle time maximization,
MIT for the minimal idle time sum UF and CROSS for the plane crossing
UF. Additionally the UF solutions are followed by a number specifying the
allowed budget (total departure deviation in minutes). Thus, for example,
instance A01 CROSS 1000 corresponds to the solution of instance A01 with
the plane crossing maximization algorithm and a budget of 1000 minutes
total deviation from the original schedule.

5.1 The ROADEF Challenge 2009

The aim of the yearly ROADEF Challenge is to stimulate researchers to
solve real problems in the industry. The ROADEF Challenge 2009 is a com-
petition challenging researchers to develop efficient recovery algorithms to
solve instances of a large European airline. The provided data is an original
schedule and a given set of disruptions. The original schedule is composed
of the existing legs, the routes of each aircraft (including maintenances) and
the passenger’s itineraries. Additionally, there are airport arrival and de-
parture capacities, which are given for each one-hour interval of a typical
day.

Each disruption is one of the following possible disruptions:

• a flight’s delayed departure (arrival has same delay);

• a canceled flight;

• a modification in the airport’s arrival and/or departure capacity for a
given period;

• a forced rest period for an aircraft (period during which the plane is
not available).

The data is divided in two time periods: the (fixed) operation period and
the recovery period. The flight delays and cancellation affect only flights of
the fixed operation period; the operation period allows to determine the

2http://www.coin-or.org

15

plane’s initial state at the beginning of the recovery period. No flight sched-
uled in the recovery period has any observed delay nor forced cancellation.
Airport capacities and forced plane rest periods may occur during both pe-
riods.

Instances A01-A10 are based on the same schedule with 35 airports and
85 planes; the A01-A04 and A06-A09 are instances of same size, except for
the passengers: in A01-A04 we have 1943 OD pairs for 36010 passengers in
total whereas instances A06-A09 have 1872 OD pairs and 46619 passengers.
Instances A05 and A10 are the same schedule with an additional day. Again,
only passengers change: 3959 OD pairs and 71910 passengers for A05 and
3773 OD pairs and 95392 passengers for A10. Finally, A0i and A0(i+5) for
i = 1, · · · , 4 are due to the same disruption; see Table 1 for a more detailed
description of the instances.

Instance A01 A02 A03 A04 A05 A06 A07 A08 A09 A10

Flights 608 608 608 608 1216 608 608 608 608 1216

Total Duration 1680 1680 1680 1680 3120 1680 1680 1680 1680 3120

Recovery Period 960 720 840 1080 3120 960 720 840 1080 3120

Delayed Flts. 63 106 79 41 0 63 106 79 41 0

Canceled Flts. 0 1 4 0 0 0 1 4 0 0

Resting Planes 0 0 1 0 0 0 0 1 0 0

Mod. Capacity Slots 0 0 0 4 406 0 0 0 4 406

Table 1: Description of the A instance set of the ROADEF Challenge 2009.

The instances A05 and A10 are scenarios for a severe global capacity
reduction: the initial number of departures and arrivals are 3012 and 2892
respectively; in the disrupted scenario, there is a total reduction of 1110
departures and 1051 arrivals, i.e. a total airport capacity reduction of more
than 30%.

The Challenge also provides a solution checker to verify a proposed recov-
ery plan is feasible, and a cost checker evaluating the quality of the recovery
plan according to a specified cost structure. Modification of flights during
the fixed observation period is not allowed, and it is not allowed to resched-
ule maintenances either: we thus impose for both the ASP and the ARP
algorithms to force maintenance as originally planned. Furthermore, both
the ASP and ARP have to comply with the airport arrival and departure
capacities.

In order to get comparable instances for the different computed sched-
ules, we adapt the original disruptions to each schedule generated by the
UFO framework. First of all, for each solution, we remove from the formu-
lation the passengers missing a connection due to the new flights’ departure
times; the removed passengers correspond to the loss of revenue allowed
by the budget relaxation; the number of removed passengers are shown for
each instance. We then identify all the flights incuring a delay in the orig-
inal schedule, and impose these delays on the flights in the UFO schedule;
propagated delays are not considered as incured delay, as the delay prop-
agation depends on the schedule. All flights scheduled before the start of
the recovery period, i.e. scheduled in the operation period, are fixed for all
instances; their delay is computed according to incurred delay and the prop-
agated delays (computed according to the schedule). No flight within the
recovery period is incuring any delay. Note that for flights canceled during

16

the operation period, we adopt the same strategy: if a flight is canceled in
the data (i.e. scheduled before the start of the recovery period), but in the
new UF schedule, the flight is now departing in the recovery period, then we
do not force the recovery algorithm to cancel this flight. For the recovery
algorithm, early departure for flights is not allowed.

Finally, the start of the recovery period, airport departure and arrival
capacity changes and forced rest periods for planes are the same for all
schedules. Note that in some cases, the observed delays of the fixed flights
force them to take-off or land in another airport’s capacity slot, which may
imply a capacity violation; as such violations occur outside the scope of the
recovery period, i.e. the recovery algorithm cannot reschedule fixed flights,
we accept the case, but notice it in the results.

We provide two types of information for the tests. The first is a set of
a priori statistics of the schedule such as value of the UFs or the number of
passengers lost due to the flight retimings. The second set of informations
provides the statistics of the recovery algorithm when applied to a schedule
and its corresponding disruption.

5.2 Results

The reported results are obtained from instances A01-A04 and A06-A09
mainly: instances A05 and A10 converge only with a relaxation of the origi-
nal Column Generation algorithm, where the root node is solve heuristically
for both the ASP models and the recovery problem.

For each instance A01-A04 and A06-A09 we generate one schedule for
five different budgets, namely 1000, 2500, 5000, 10000 and 20000 minutes;
the maximal deviation for one single flight is set to 60 minutes for all com-
putations. The complete proactive results are provided in Appendix A,
whereas the recovery statistics are shown in Appendix B. Table 2 summa-
rizes the average a priori statistics on the A01-A04 and A06-A09 instances,
where we provide information about used budget, the different UFs (total
idle time, minimum idle time, sum of minimum idle times and number of
plane crossings). We also display average idle time statistics: idle time per
plane and idle time per flight. Finally, computational statistics such as num-
ber of nodes, optimality gap and computation time show the computational
difficulty of the different models.

Note that as the schedule is the same for instances A01-A04 and A06-
A09, the obtained solutions for one model, i.e. same UF and same budget,
are the same (except the canceled passengers).

The first important observation is that no schedule is robust at all: the
minimum delay is always 0. This is due to one single plane’s schedule (al-
ways the same), for which the original schedule has 0 idle time for several
flights. Several tests with different parameters (especially the maximal al-
lowed deviation for a single flight) did not lead to schedules with non zero
minimal idle time. Relaxing the airport departure and arrival capacities and
penalizing with a high cost a schedule with 0 minimum idle time did not
help either.

Although we use an heuristic, optimality is proved for most of the in-
stances: only model MIT 5000 has a significative optimality gap (more than
20%). In terms of computation times, we see that the MIT model requires

17

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000

Used Budget 0 1000 2500 5000 9065 9005 1000 2500 4995
Modified Flts 0 23 56 101 190 188 59 107 164
Total Idle [min] 12000 13000 14500 17000 19155 19155 12645 13535 14140
Min Idle [min] 0 0 0 0 0 0 0 0 0
MinSum [min] 790 930 1025 1110 1255 1255 1645 2280 2225

Idle/Plane [min] 148.1 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6
Idle/Flight [min] 35.8 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0
Total Nbr Cross 3430 3447 3462 3501 3489 3489 3441 3448 3426
Max Nbr Cross 15 17 19 23 22 22 17 17 17
Nbr Lost Psg 0 0 57 93.5 244 253.5 27 126 327
Psg Lost [%] 0 0 0.14 0.23 0.57 0.60 0.07 0.3 0.8

Nodes 1 1 1 1 1 1 3 157 15
Opt Gap [%] 0 0 0 0 0 0 0 0.13 21.6
CPU Time [s] 0.2 509.0 357.7 433.3 481.5 510.2 883.7 1110.3 1085.7

Model MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 9980 10010 1000 2500 5000 5865 5865
Modified Flts 313 313 105 167 242 265 265
Total Idle [min] 16750 16760 11875 11480 11350 11115 11115
Min Idle [min] 0 0 0 0 0 0 0
MinSum [min] 3330 3330 705 570 550 515 515

Idle/Plane [min] 206.8 206.9 146.6 141.7 140.1 137.2 137.2
Idle/Flight [min] 51.2 51.2 35.5 34.3 33.9 33.5 33.5
Total Nbr Cross 3418 3418 3492 3510 3508 3522 3522
Max Nbr Cross 17 17 16 15 13 12 12
Nbr Lost Psg 453.5 453.5 76.5 213.5 404.5 475.5 475.5
Psg Lost [%] 1.11 1.11 0.21 0.54 1.01 1.17 1.17

Nodes 1 1 1 11 3 1 1
Opt Gap [%] 0 0 0 0.16 0 0 0
CPU Time [s] 953.5 946.5 1130.1 987.2 756.0 410.9 409.0

Table 2: Average a priori statistics on the instances A01-A04 and A06-A09.

more computational time than the other two methods. The reason is be-
cause the minimal idle time has to be recomputed at each label extension,
which is not the case for the total idle time nor the plane crossings. For the
original problem, there is absolutely no optimization, so the reported time
corresponds only to the data extraction, explaining why it is so much faster.
Also note the saturation effect of the optimum, which no longer improves
between a budget of 10000 and 20000 minutes: the reason is that the op-
timal solution is reached with a lower budget, and additional budget won’t
change the optimum. Remark that the level at which the saturation occurs
depends on the parameter limiting a single flight’s deviation, which is set to
60 minutes here. Increasing or decreasing the value of this parameter will
affect the level at which saturation occurs.

Although our models did not consider missed connections, the maximal
loss of passengers is never exceeding 1.5%, and even 1.2% when looking
at the average solutions. Moreover, we did not consider the possibility of
attracting additional customers with the new connections. The resulting
gain in terms of robustness is impressive: the average idle time per plane is
increased by up to 59.6% and the average idle time per flight by up to 56.7%
for the IT 10000 model; this means that in average, each plane (or flight) is
able to absorb more than 50% more delay than in the original schedule.

We see that the IT solutions also increase the value of MIT and vice-versa:
the two UFs are clearly correlated. Interestingly, the CROSS solutions show
that increasing the number of plane crossings decreases both IT and MIT,
but increasing IT or MIT does not necessarily decrease the value of CROSS.
This means that there is no negative correlation between the number of
plane crossings and the idle time, but that it is the way the CROSS model is
built that induces the reduction of idle time.

The a priori results show that the IT and MIT clearly increase the sched-
ule’s ability to absorb delays, i.e. the schedule’s robustness. Note however

18

that, as we obtained the schedules using implicit measures of potential de-
lays, the schedule is expected to perform globally better, but not absolutely:
there might be instances for which a particular pattern of delays is handled
better by the original schedule.

To get some more insight about the real case study, we look at the re-
sults of the application of the recovery algorithm. Table 3 shows the average
results of the recovery algorithm applied to the instances A01-A04 and A06-
A09. The reported informations are the recovery costs as computed by the
cost checker provided for the ROADEF Challenge 2009, the total number
of canceled flights (including the forced cancellations from the operational
period), the number of canceled passengers, which does not include the lost
passengers from the scheduling phase (these are removed from the formu-
lation). The number of violations corresponds to the number of times an
arrival or departure capacity is violated at an airport.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500

RECOVERY COST 788775.1 574942.9 814866.5 633395.6 555400.3 557492.8 813811.5 722785.6
Canceled Flts 6.9 6 7.6 6.9 5.3 5.8 8.1 7.5
Total Delay [min] 2142.9 2140.5 2087.5 2083 2421.8 2194.5 2351.5 2012.4
Avg Delay[min] 41 36.7 38.1 37.9 42.0 38.2 42.5 37.5
Delayed. Flts 44.9 48.1 42.5 41 41 40.4 47.4 45.5
Canceled Psg 582.8 425.8 580 499.3 420 432.4 620.9 546.9
Delayed Psg 553.5 550.6 574 511.1 454.1 491.8 645.8 589.8

Avg Psg Delay [min] 34.6 35 35.1 38.7 24.6 23.6 26.2 30
Violations 0 0 0 0.5 1.3 1.3 0 0.8

Nodes 9038.5 3511.3 5065.3 2 1.8 3695 4117.3 6275.3
CPU Time [s] 921.3 474.1 471.3 26.1 25.9 473.7 463.4 919.7

Model MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

RECOVERY COST 488701.9 493521.8 346859.9 845281 674645.9 580297 574406.1 574406.1
Canceled Flts 5.8 5.9 4.5 7.4 7.3 6.6 7 7
Total Delay [min] 2214.9 1895.6 1949.3 2048.4 2262 2189.5 2304.9 2304.9
Avg Delay[min] 36.9 36.5 36.3 34.7 43.9 38.7 33.5 33.5
Delayed. Flts 48.5 39.4 42.3 49.6 47.1 46.9 54 54
Canceled Psg 384.5 385.3 285.9 621 500 422 429.4 429.4
Delayed Psg 501.1 448.1 404.1 651.1 629 609 689.4 689.4

Avg Psg Delay [min] 29.5 29.8 29.8 27.1 27.9 29.5 20.8 20.8
Violations 1.8 1. 3 1.3 1 1.4 1.8 2.3 2.3

Nodes 3796.5 4329.8 7548 7766.8 25195.5 8050 7355.5 7388.8
CPU Time [s] 471.0 465.7 484.1 919.5 942.2 921.2 918.1 918.0

Table 3: Average statistics for the recovery of the instances A01-A04 and
A06-A09.

The results after the application of the recovery algorithm show an ir-
regular pattern: more robust solutions, i.e. with additional idle time, do not
globally perform better.

Figures 1-4 show the repartition of the different UFs versus the obtained
results from the recovery algorithm. First of all, notice that the more a
point is located on the left, the lower it’s UF value; the higher the point
is located, the higher is it’s a posteriori value, meaning that the solution
perform poorly. Interestingly, the original schedule is mostly located at the
top left of the graphs, meaning the schedule performs poorly.

The Figures 1-4 show that for all four a posteriori measure, the CROSS

model does not seem to improve the efficiency of the recovery algorithm.
For the IT and MIT however, the slopes are slightly negative, i.e. there is a
correlation between the UF and the recoverability of the schedule. Figure 1
shows the most clearly this behavior for IT and MIT.

In terms of savings, the most relevant example is model MIT 20000:
in average, 56% of recovery costs can be saved while are only 1.11% of
passengers are lost.

19

Figure 1: Plot of the IT, MIT and CROSS uncertainty features against the
recovery costs.

20

Figure 2: Plot of the IT, MIT and CROSS uncertainty features against the
total delay of the recovered schedule.

21

Figure 3: Plot of the IT, MIT and CROSS uncertainty features against the
average delay of the recovered schedule.

22

Figure 4: Plot of the IT, MIT and CROSS uncertainty features against the
number of canceled flights in the recovered schedule.

23

For the bigger instances, namely A05 and A10, the computational re-
sults are less satisfactory in terms of convergence speed. We therefore solve
each UFO model with only one budget, namely 5000 minutes. In order to
accelerate convergence of the recovery algorithm, we use a Columned gen-
eration based algorithm where the pricing is solved heuristically as well,
i.e. the lower bound at the root is no longer a valid lower bound. There
is an additional computational problem for the A05 and A10 instances: as
the scheduling period lasts two days, there are different flight copies for the
same leg. The way the data is structured, the flights of both days must be
scheduled at the same time, otherwise we get a conflict. To overcome this
problem, we create a different leg for each day. This way, we are able to
run the cost checker for the solution obtained by the recovery algorithm.
Unfortunately, this is not the case of the solution checker, which throws an
error.

The proactive results of instance A05 and A10 are reported in Table 4.

Model Or IT 5000 MIT 5000 CROSS 5000

Used Budget 0 5000 5000 5000
Modified Flts 0 109 245 333

Total Idle 77865 82790 79185 77585
Min Idle 0 0 0 0
MinSum 490 580 1590 200

Avg Idle/Plane 961.3 1022.1 977.6 957.8
Avg Idle/Flight 101.6 108.1 103.8 101.3
Total Nbr Cross 6100 6160 6108 6200
Max Nbr Cross 14 21 15 15
Nbr Lost Psg 0 106 176 289.5
Psg Lost [%] 0 0.135 0.21 0.35

Nodes 1 3 3 3
Opt Gap [%] 0 0.09 1.43 0.29
CPU Time [s] 0.5 10628.1 5947.1 7501.5

Table 4: Average robustness statistics for instances A05 and A10.

The proactive statistics in Table 4 are consistent with the results ob-
tained for the smaller instances, namely that the UFOand IT increase the
average idle time, whereas the CROSS solution reduces idle time.

The results reported in Table 5, which are the average recovery statistics
for instances A05 and A10 for the original model and the three UFO models.

Model Or IT 5000 MIT 5000 CROSS 5000

RECOVERY COST 48065632 52431137 47417640 42906601
Canceled Flts 693.5 731 690.5 628.5
Total Delay [min] 532.5 645 1040 1210
Avg Delay[min] 33.185 31.1 44.8 48.6
Delayed. Flts 353 22 23.5 26
Canceled Psg 56242 61458.5 56124.5 51220.5
Delayed Psg 4554 3839.5 4727 5271.5

Avg Psg Delay [min] 19.1 19.6 20.4 20.5
Nodes 1313 1361 905 1821

CPU Time [s] 3656.1 3641.2 1830 3624.7

Table 5: Average recoverability statistics for instances A05 and A10.

Remark that the recovery solutions show a massive flight cancellation,
which is due to the airport capacity reductions. Interestingly, the CROSS

model is the one performing best, and IT the one performing worst; a pos-
sible explanation is that idle time is not helping against airport capacity
reduction. The poor performance of the recovery algorithm makes it dif-
ficult to draw conclusions. We definitely should test the behavior of the
solutions for different budgets.

24

Synthesis We solve medium size instances with more than 1200 flights and
85 aircrafts within reasonable computation times. The obtained solutions
show that there is a negative correlation between a schedule’s robustness and
recoverability and the total idle time and the minimal idle time UFs. The
correlation is not evident for the plane crossings alone, which contradicts
the practitioners intuition.

There are two explanations for this. First of all, the results show a
reduction of idle time to gain plane crossings, thus also a diminution in
the schedule’s recoverability. On the other hand, although the recovery
algorithm allows for plane swappings, it is the case only for planes of the
same fleet. The CROSS uncertainty feature does not differentiate fleets, and
assumes homogeneous fleet. To distinguish fleets, we need the meeting point
constraints for each single fleet, increasing by another factor the size of the
model. This explains why the CROSS UF is not effective in our results.
This does not imply that the UF should be discarded, but only that the
combination of our CROSS model and our recovery algorithm does not lead
to significative gains in either robustness or recoverability. One possible
way to compensate this lack of efficiency is to combine the CROSS model
with either the IT or the MIT model.

The trade-off between loss of revenue at the scheduling phase and savings
at the recovery phase is impressive: a loss of less than 1.5% of passengers
enables to save more than 80% of the recovery costs, although the induced
cost by loosing a passenger it is not quantifyable from our data. Addition-
ally, we did only consider loss of revenues in terms of lost passengers, but
the additional connections created in the new schedule migh attract new
passengers.

Finally, we see that our recovery algorithm performs poorly for instances
A05 and A10, where airports have a severe capacity reduction. An explana-
tion for this is that the recovery algorithm we use does not consider repo-
sitioning flights, which would certainly improve the solution. However, it
is not clear if the repositioning flights are influenced by the used UFs or
not: the generation of repositioning flights should depend on the observed
disruption more than the original schedule.

6 Conclusion

In this paper, we present an application of the new UFO framework of
Eggenberg et al. (2008b) to the airline scheduling problem. Additionally,
we present a two-stage solution analysis, the first being a priori estimations
of the obtained solutions, i.e. a qualitative analysis of the robustness of
a solutions. The second is a quantitative simulation where the solution’s
performance on real instances is evaluated using a external evaluation tool,
which gives a real indicator of the solution’s recoverability.

The obtained results show that although our models do not consider any
explicit uncertainty characterization, the solutions ameliorate the original
schedule both in terms of robustness and recoverability. The results also
show that, for our recovery algorithm, a model with an increased number of
plane crossings does not perform significantly better, but increasing total or
minimum idle time is clearly profitable; the best obtained solution allows to
decrease the recovery costs up to 82.7%. Additionally, the loss in terms of

25

revenue are small, although the models do not consider missed connections:
the loss of passengers never exceed 1.31% of the total number of passengers.

This study opens many different research directions. From the computa-
tional part, the developed algorithms have still potential for improvements:
implement the exact version of the optimization based heuristic we use,
improve convergence speed with smart branching decisions, etc. The formu-
lation would also benefit from an efficient repositioning flight generator.

Further applications of the UFO framework to airline scheduling would
be required, especially to derive additional uncertainty features, to study
more in details the relations between them and the recovery algorithm and
also the relations between themselves. It would also be interesting to test
schedules obtained by simultaneously optimizing different UFs. A further
improvement of our model would be to include the crew into the formulation.

Finally, the obtained results of this study on the airline scheduling prob-
lem are very promising; they might encourage researches to use the UFO
framework in other fields dealing with uncertain problems.

References

Argüello, M., Bard, J. and Yu, G. (1997). A grasp for aircraft routing in
response to groundings and delays, Journal of Combinatorial Optimiza-
tion 5: 211–228.

Argüello, M., Bard, J. and Yu, G. (2001). Optimizing aircraft routings in
response to groundings and delays, IIE Transactions 33: 931–947.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M. and Vance, P.
(1998). Branch-and-price: Column generation for solving huge integer
programs, Operations Research 46(3): 316–329.

Bertsimas, D. and Sim, M. (2004). The price of robustness, Operations
Research 52: 35–53.

Bian, F., Burke, E., Jain, S., Kendall, G., Koole, G., Mulder, J. L. S. J.,
Paelinck, M., Reeves, C. and Suleman, I. R. M. (2004). Measuring the
robustness of airline fleet schedules.
URL: http://www.cs.nott.ac.uk/ gxk/papers/jdsmista2003sel.pdf

Bratu, S. and Barnhart, C. (2006). Flight operations recovery: New ap-
proaches considering passenger recovery, J Sched 9: 279–298.

Clausen, J., Larsen, A. and Larsen, J. (2005). Disruption management in
the airline industry - concepts, models and methods, Technical report,
Department of Informatics and Mathematical Modelling, The Technical
University of Denmark.

Cordeau, J.-F., Stojkovic, G., Soumis, F. and Desrosiers, J. (2001). Benders
decomposition for simultaneous aircrat routing and crew scheduling,
Transportation Sience 35(4): 375–388.

Eggenberg, N., Salani, M. and Bierlaire, M. (2008a). Constraint specific
recovery networks for solving airline recovery problems, Technical Re-
port TRANSP-OR 080828, Ecole Polytechnique Fdrale de Lausanne,
Switzerland.

26

Eggenberg, N., Salani, M. and Bierlaire, M. (2008b). Uncertainty feature
optimization: an implicit paradigm for problems with noisy data, Tech-
nical Report TRANSP-OR 080829, Ecole Polytechnique Fdrale de Lau-
sanne, Switzerland.

Fischetti, M. and Monaci, M. (2008). Light robustness, Technical report,
DEI, Universit di Padova, Italy.
URL: http://www.dei.unipd.it/∼fisch/papers/light robustness.pdf

Klabjan, D., Johnson, E., Nemhauser, G., Gelman, E. and Ramaswamy, S.
(2002). Airline crew scheduling with time windows and plane-count
constraints, Transportation Science 36(3): 337–348.

Kohl, N., Larsen, A., Larsen, J., Ross, A. and Tiourine, S. (2004). Air-
line disruption management - perspectives, experiences and outlook,
Technical report, Informatics and Mathematical Modelling, Technical
University of Denmark.

Lan, S., Clarke, J.-P. and Barnhart, C. (2006). Planning for robust airline
operations: Optimizing aircraft routings and flight departure times to
minimize passenger disruptions, Transportation Science 40: 15–28.

Liebchen, C., Lbbecke, M., Mhring, H. and Stiller, S. (2007). Recoverable
robustness, Technical Report FP6-021235-2, Project ARRIVAL.
URL: http://arrival.cti.gr/

Mercier, A. and Soumis, F. (2007). An integrated aircraft routing, crew
scheduling and flight retiming model, Computer & Operations Research
34: 2251–2265.

Rosenberger, J., Johnson, E. and Nemhauser, G. (2004). A robust fleet
assignment model with hub isolation and short cycles, Transportation
Science 38(3): 357–368.

Rosenberger, J., Schaefer, A., Golldsman, D., Johnson, E., Kleywegt, A.
and Nemhauser, G. (2003a). A stochastic model of airline operations,
Transportation science 36(4).

Schaefer, A., Johnson, E., Kleywegt, A. and Nemhauser, G. (2005). Airline
crew scheduling under uncertainty, Transportation Science 39(3): 340–
348.

Shavell, Z. A. (2000). The effects of schedule disruptions on the economics
of airline operations, Technical report, The MITRE Corporation.

Shebalov, S. and Klabjan, D. (2006). Robust airline scheduling: Move-up
crews, Transportation Science 40(3): 300–312.

Sojkovic, G. (1998). Gestion des Avions et des Equipages durant le Jour
d’Opration, PhD thesis, Universit de Montral.

Teodorvić, D. and Gubernić, S. (1984). Optimal dispatching strategy on
and airline network after a schedule perturbation, European Journal of
Operations Research 15: 178–182.

Teodorvić, D. and Stojković, G. (1990). Model for operational airline daily
scheduling, Transportation Planning and Technology 14(4): 273–285.

Thengvall, B. G., Bard, J. F. and Yu, G. (2000). Balancing user preferences
for aircraft schedule recovery during irregular operations, IIE Transac-
tions V32(3): 181–193.

27

Weide, O., Ryan, D. and Ehrgott, M. (2008). Solving the robust and inte-
grated aircraft routing and crew pairing problem in practice - a discus-
sion of heuristic and optimization methods, Technical report, Depart-
ment of Engineering Science, University of Auckland.

Yen, J. W. and Brige, J. R. (2006). A stochastic programming approach to
the airline crew scheduling problem, Transportation Science 40: 3–14.

Yu, G., M.Argüello, G.Song, McCowan, S. and A.White (2003). A new era
for crew scheduling recovery at continental airlines, Interfaces 33(1): 5–
22.

28

A Complete Proactive Statistics

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 242 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 5000 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 133 255 444 471 471 0 47 85 155 174 23 101 306 433 433
Psg Lost[%] 0 0.37 0.71 1.23 1.31 1.31 0 0.13 0.24 0.43 0.48 0.06 0.28 0.85 1.2 1.2

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1124.5 981 752.2 409.7 413.1 508.6 358 431.3 483 512.6 914.3 1148.2 1122.6 961.7 951.2

Table 6: Robustness statistics for instance A01.

29

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 242 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 5000 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 133 255 444 471 471 0 47 85 155 174 23 101 306 433 433
Psg Lost[%] 0 0.37 0.71 1.23 1.31 1.31 0 0.13 0.24 0.43 0.48 0.06 0.28 0.85 1.2 1.2

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1128.9 983.2 756.2 411.1 405.9 502.7 356.8 432.1 478.4 507.5 883.1 1099.1 1080.8 960.4 941

Table 7: Robustness statistics for instance A02.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 242 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 5000 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 133 255 444 471 471 0 47 85 155 174 23 101 306 433 433
Psg Lost[%] 0 0.37 0.71 1.23 1.31 1.31 0 0.13 0.24 0.43 0.48 0.06 0.28 0.85 1.2 1.2

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1125.3 978.6 754.6 410.2 413.3 524 357.8 433.6 482.2 512.1 875.5 1113.1 1080.9 951.5 946.7

Table 8: Robustness statistics for instance A03.

30

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 242 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 5000 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 133 255 444 471 471 0 47 85 155 174 23 101 306 433 433
Psg Lost[%] 0 0.37 0.71 1.23 1.31 1.31 0 0.13 0.24 0.43 0.48 0.06 0.28 0.85 1.2 1.2

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1129 1004.3 760.5 412.7 408.4 508.7 356.7 432.7 484.8 508.4 881.1 1095.6 1086.4 944.7 955

Table 9: Robustness statistics for instance A04.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 5000 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 242 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 20 172 365 480 480 0 67 102 333 333 31 151 348 474 474
Psg Lost[%] 0 0.04 0.37 0.78 1.03 1.03 0 0.14 0.22 0.71 0.71 0.07 0.32 0.75 1.02 1.02

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1127.7 985.8 758.3 412 407.1 507 356.3 434.9 482.7 509.1 875 1113.1 1078.1 955.1 943

Table 10: Robustness statistics for instance A06.

31

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 5000 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 242 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 20 172 365 480 480 0 67 102 333 333 31 151 348 474 474
Psg Lost[%] 0 0.04 0.37 0.78 1.03 1.03 0 0.14 0.22 0.71 0.71 0.07 0.32 0.75 1.02 1.02

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1131.5 989.6 761.7 411.5 407.3 505.6 359 435.5 481 511.7 881.3 1108.9 1075.4 955.9 941.5

Table 11: Robustness statistics for instance A07.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 5000 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 242 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 20 172 365 480 480 0 67 102 333 333 31 151 348 474 474
Psg Lost[%] 0 0.04 0.37 0.78 1.03 1.03 0 0.14 0.22 0.71 0.71 0.07 0.32 0.75 1.02 1.02

Nodes 1 1 11 3 1 1 1 1 1 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1134.2 993.1 751.4 410.9 407.5 509.8 357.8 434.9 480.5 510.8 882.3 1096.4 1084.6 942.4 951.6

Table 12: Robustness statistics for instance A08.

32

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Used Budget 0 1000 2500 5000 5865 5865 1000 2500 5000 9065 9005 1000 2500 4995 9980 10010
Mod. Flts 0 105 167 242 265 265 23 56 101 190 188 59 107 164 313 313
Total Idle 12000 11875 11480 11350 11115 11115 13000 14500 17000 19155 19155 12645 13535 14140 16750 16760
Min Idle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MinSum 790 705 570 550 515 515 930 1025 1110 1255 1255 1645 2280 2225 3330 3330

Avg Idle/Plane 148.1 146.6 141.7 140.1 137.2 137.2 160.5 179.0 209.9 236.5 236.5 156.1 167.1 174.6 206.8 206.9
Avg Idle/Flight 35.8 35.5 34.3 33.9 33.5 33.5 39.5 43.8 50.9 56.1 56.1 39.6 42.8 44.0 51.2 51.2
Total Nbr Cross 3430 3492 3510 3508 3522 3522 3447 3462 3501 3489 3489 3441 3448 3426 3418 3418
Max Nbr Cross 15 16 15 13 12 12 17 19 23 22 22 17 17 17 17 17
Nbr Lost Psg 0 20 172 365 480 480 0 67 102 333 333 31 151 348 474 474
Psg Lost[%] 0 0.04 0.37 0.78 1.03 1.03 0 0.14 0.22 0.71 0.71 0.07 0.32 0.75 1.02 1.02

Nodes 1 1 11 3 1 1 1 1 1 1 1 3 157 15 1 1
Opt Gap[%] 0 0 0.16 0 0 0 0 0 0 0 0 0 0.13 21.57 0 0
CPU Time[s] 0.2 1139.8 982.3 752.7 409.3 409 505.3 359 431.5 479.6 509.6 876.6 1108 1076.5 956.3 942.2

Table 13: Robustness statistics for instance A09.

33

B Complete Recovery Statistics

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 83992 99356 144372 42227 73932 73932 79764 90280 79757 140944 107275 93998 43581 62211 41721 17821
Canc. Flts 0 0 0 0 2 2 0 0 0 0 0 2 2 0 0 0

Tot. Delay[min] 1044 996 1953 763 1059 1059 870 918 750 693 703 746 978 1045 919 695
Avg Delay[min] 28.2 28.5 67.3 30.5 27.9 27.9 27.2 29.6 26.8 31.5 29.3 26.6 31.5 34.8 36.76 29
Delayed Flts 37 35 29 25 38 38 32 31 28 22 24 28 31 30 25 24
Canceled Psg 36 36 50 8 37 37 36 42 39 74 49 40 12 29 18 0
Delayed Psg 128 165 108 103 233 233 114 99 60 114 118 335 262 123 72 63

Avg Psg Delay[min] 46.5 29.1 51.7 50.7 25.7 25.7 52.4 41.4 52.8 25.3 24.5 17.2 18.5 41.9 47.8 45.9
Violations 0 1 1 2 1 1 0 0 0 1 1 0 0 1 1 1

Nodes 1 1 1 3 19 19 1 1 1 5 1 3 1 1 1 13
CPU Time[s] 23.41 18.2 21.39 16.33 15.47 15.49 21.02 14.79 17.46 13.42 15.74 17.49 18.96 15.02 18.4 23.98

Table 14: Recovery statistics for instance A01.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 309089 376335 335467 277556 374598 374598 317673 184232 177770 196150 193987 327851 331528 231832 194750 164330
Canc. Flts 1 2 4 2 2 2 2 2 2 3 3 2 3 2 2 2

Tot. Delay[min] 906 767 567 737 667 667 601 876 405 203 182 836 753 809 461 461
Avg Delay[min] 60.4 40.4 40.5 43.4 29 29 40.1 32.6 33.8 33.8 36.4 59.7 47.1 42.6 30.7 32.9
Delayed Flts 15 19 14 17 23 23 15 14 12 6 5 14 16 19 15 14
Canceled Psg 142 220 235 174 219 219 171 84 108 115 115 177 183 144 122 101
Delayed Psg 268 313 387 328 367 367 358 356 345 295 295 364 369 319 312 312

Avg Psg Delay [min] 41.7 35.2 28.3 27.8 23.5 23.5 30.7 27.1 31.9 29.8 29.8 31.8 29.6 28.5 26.9 26.9
Violations 0 1 2 1 3 3 0 0 1 3 3 0 1 2 3 3

Nodes 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
CPU Time [s] 2.63 2.61 2.35 1.67 1.73 1.73 2.71 2.36 1.57 1.79 1.92 2.3 1.85 2.28 1.93 2.4

Table 15: Recovery statistics for instance A02.

34

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 594300 592349 516401 536837 360927 360927 589663 573880 524740 457640 454611 613121 565635 575735 238563 238780
Canc. Flts 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Tot. Delay[min] 474 510 581 609 606 606 505 380 330 533 634 651 433 449 277 271
Avg Delay[min] 24.9 20.4 27.7 29 21.6 21.6 24 23.8 23.6 33.3 24.6 29.6 22.8 23.4 30.8 30.1
Delayed Flts 19 25 21 21 28 28 21 16 14 16 14 22 19 17 9 9
Canceled Psg 463 424 403 430 393 393 451 450 414 430 430 471 438 460 241 241
Delayed Psg 561 773 597 495 626 626 590 567 578 631 634 590 584 547 629 629

Avg Psg Delay[min] 18.1 16.1 18.2 17.4 16.1 16.1 17.8 19.5 21.3 17.7 16.7 19.8 20.5 23.9 17.7 17.9
Violations 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0

Nodes 1 55 167149 3 1 1 1 1 5 1 1 1 1 5 1 1
CPU Time[s] 5.31 7.94 3732.34 6.72 4.8 4.92 5.46 6.86 5.14 5.3 4.86 5.53 6.24 8.41 5.03 5.88

Table 16: Recovery statistics for instance A03.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 1095629 984382 322753 368615 189890 189890 221804 993972 344513 305530 309208 1732415 882069 751425 449875 588782
Canc. Flts 16 19 17 19 16 16 14 19 16 10 12 25 19 14 8 8

Tot Delay[min] 6887 6047 5589 6344 6125 6125 6530 6814 6839 8018 7239 6891 5969 6413 6541 6456
Avg Delay[min] 58.4 48 45.1 53.8 48.2 48.2 52.2 61.9 60 68.5 64.1 57.4 52.4 53.4 58.9 52.1
Delayed Flts 118 126 124 118 127 127 125 110 114 117 113 120 114 120 111 124
Canc. Psg 765 752 296 192 118 118 153 606 287 305 353 1199 654 523 317 433

Delayed Psg 1385 1559 1672 1781 1532 1532 1408 1656 1531 936 1012 1588 1440 1120 528 540
Avg Psg Delay[min] 22.2 16.8 13.3 10.6 11.4 11.4 16.9 19.8 11.7 13.1 12.8 17.1 16.3 16.7 24.8 25.4

Violations 0 2 2 3 5 5 0 0 1 1 1 0 1 2 1 1
Nodes 31069 29633 34401 28365 29583 29557 28081 1 3 1 29479 1 24661 30351 34609 3

CPU Time[s] 3662.65 3652.03 3651.61 3649.45 3647.95 3647.84 3636.96 76.05 74.97 79.73 3647.42 14.68 3643.53 3642.91 3662.53 61.86

Table 17: Recovery statistics for instance A04.

35

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 100908 302973 439270 111773 411826 411826 76688 75877 67395 227628 219148 354566 78597 59218 25456 21010
Canc. Flts 0 0 2 0 2 2 0 0 0 0 0 2 0 0 0 0

Tot Delay[min] 1012 977 1207 754 1099 1099 843 918 986 693 703 794 812 1010 600 839
Avg Delay[min] 30.7 29.6 44.7 29 28.9 28.9 28.1 29.6 41.1 31.5 29.3 24.8 25.4 31.6 27.3 32.3
Delayed Flts 33 33 27 26 38 38 30 31 24 22 24 32 32 32 22 26
Canc. Psg 44 158 279 62 306 306 28 28 20 116 110 222 32 21 6 0

Delayed Psg 86 158 280 83 289 289 91 87 62 134 127 261 63 162 71 89
Avg Psg Delay[min] 54.3 29.2 27.9 41.6 23.6 23.6 67.1 75.3 90.5 22.3 22.7 29.7 73 39.9 39.3 32.4

Violations 0 1 1 2 1 1 0 0 0 1 1 0 0 1 1 1
Nodes 1 1 1 3 15 15 3 5 1 1 3 7 1 3 23 60361

CPU Time[s] 25.46 22.42 21.34 17.2 13.2 12.61 17.32 17.44 15.91 12.4 13.81 17.52 19.68 15.36 21.89 3701.33

Table 18: Recovery statistics for instance A06.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 610482 610509 819738 610850 677415 677415 600191 585304 532125 620700 612861 626586 623420 662528 393649 393664
Canc. Flts 2 2 4 2 2 2 2 2 2 3 3 2 2 4 2 2

Tot Delay[min] 631 767 567 737 677 677 626 655 405 203 182 815 753 473 461 464
Avg Delay[min] 45.1 40.4 40.5 40.9 30.8 30.8 44.7 50.4 33.8 33.8 36.4 54.3 47.1 29.6 30.7 30.9
Delayed Flts 14 19 14 18 22 22 14 13 12 6 5 15 16 16 15 15
Canc. Psg 424 422 608 416 472 472 417 407 385 441 434 434 436 488 286 286

Delayed Psg 364 368 366 367 386 386 359 336 247 219 242 374 302 404 352 352
Avg Psg Delay[min] 38.9 39.8 30 40.2 25.4 25.4 36.8 37.9 45.9 36.9 32.8 39 32.5 29.5 33.4 33.4

Violations 0 1 2 1 3 3 0 0 1 3 3 0 1 2 3 3
Nodes 1 1 3 1 1 1 1 1 1 1 1 1 1 3 1 1

CPU Time[s] 2.21 2.26 2.44 1.41 2.03 2.03 2.62 2.08 2.03 1.56 1.45 1.44 1.5 2.81 2.17 2.45

Table 19: Recovery statistics for instance A07.

36

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 1258040 1342412 1173114 1049646 1236799 1236799 1236266 1208625 1223627 1152694 1146653 1272717 1225001 1132247 857719 914320
Canc. Flts 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Tot Delay[min] 474 512 585 635 591 591 499 380 330 523 344 669 439 452 223 277
Avg Delay[min] 24.9 19 30.8 28.9 22.7 22.7 25 23.8 23.6 34.9 24.6 27.9 22 28.3 24.8 30.8
Delayed Flts 19 27 19 22 26 26 20 16 14 15 14 24 20 16 9 9
Canc. Psg 1002 1011 916 836 966 966 987 969 985 891 886 1005 965 914 690 726

Delayed Psg 552 769 568 625 586 586 560 466 444 542 591 566 541 566 561 622
Avg Psg Delay[min] 30 26.3 25.7 23.5 23.1 23.1 29.9 32.1 32 28.2 27 29.8 30.2 31.2 27.3 29.7

Violations 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0
Nodes 3 1 1 1 5 5 1 3 1 3 3 1 1 3 1 1

CPU Time[s] 7.4 6.09 6.58 6.21 6.82 6.74 5.52 4.88 4.74 4.65 4.77 5.07 6.32 5.91 6.42 7.18

Table 20: Recovery statistics for instance A08.

Model Or IT 1000 IT 2500 IT 5000 IT 10000 IT 20000 MIT 1000 MIT 2500 MIT 5000 MIT 10000 MIT 20000 CROSS 1000 CROSS 2500 CROSS 5000 CROSS 10000 CROSS 20000

Rec. Costs 2257762 2453932 1646052 1644871 1269862 1269862 1477493 2806762 2117236 1341916 1416199 1489238 2032453 434419 1746442 436173
Canc. Flts 20 20 15 14 16 16 14 22 19 10 12 16 18 10 19 8

Tot Delay[min] 5715 5811 7047 6937 7615 7615 6650 5759 6619 8508 7569 7410 5962 7068 5683 6131
Avg Delay[min] 55 51.4 54.6 54.2 58.6 58.6 52 52.8 60.2 68.6 61 59.8 51.4 51.2 52.1 52.4
Delayed Flts 104 113 129 128 130 130 128 109 110 124 124 124 116 138 109 117
Canc. Psg 1786 1945 1213 1258 924 924 1163 2054 1756 988 1082 1419 1655 497 1402 500

Delayed Psg 1084 1104 1054 1090 1496 1496 925 1025 822 762 915 1088 1157 768 1060 626
Avg Psg Delay[min] 25.4 24 28 24.4 17.3 17.3 28 27.5 23.3 23.4 22.6 24.9 19.6 24.7 21.1 26.5

Violations 0 2 3 3 5 5 0 0 1 1 1 0 1 2 1 1
Nodes 41231 32441 5 36023 29219 29511 1 40509 3 1 71 32923 25535 5 1 3

CPU Time[s] 3641.1 3644.42 99.83 3670.52 3652.56 3652.42 101.42 3645.76 87.25 88.09 99.8 3642.9 3659.71 74.9 6.99 68.09

Table 21: Recovery statistics for instance A09.

37

