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1 IntroductionAmong the various modes of transportation, walking is probably the mostnatural but also the most 
ompli
ated to apprehend from an analyst view-point. Contrary to most other travel modes, it is not asso
iated with avehi
le and the underlying infrastru
ture is highly heterogeneous (side-walks, 
rossings, buildings, shopping malls, squares, et
.) Understandingand predi
ting the evolution of pedestrians in these various environmentsis important in many aspe
ts. The �rst appli
ation that 
omes to mind isthe planning of building eva
uation in 
ase of emergen
y, or 
ity eva
ua-tion in 
ase of a disaster. Another important appli
ation is the des
riptionof 
ongestion 
aused by heavy 
ows of pedestrians and their 
on
i
tingmovements. Indeed, it must be a

ounted for the eÆ
ient design of newfa
ilities (su
h as publi
 buildings, train stations, airports or interse
tionsof urban streets) and the daily operations of these fa
ilities. Fo
using onindividual behavior in sparse 
onditions is also important. Among others,travel guidan
e and information systems aim at helping the pedestrian inimplementing her journey, surveillan
e systems are interested in dete
tingabnormal behavior, advertisers are interested in evaluating the global expo-sure of their announ
ements, movie and video games makers are interestedin generating realisti
 syntheti
 behavior.The 
ourishing s
ienti�
 literature, as well as the in
reasing availabilityof 
ommer
ial tools, are eviden
es of the growing importan
e of this �eld,but also of its multidis
iplinary nature. Indeed, models inspired by physi
s,arti�
ial intelligen
e, 
omputer vision, e
onometri
s, biology and traÆ

ow theory have been proposed.In this 
hapter, we 
onsider the models 
apturing the behavior of indi-vidual pedestrians, des
ribed in terms of 
hoi
es. Choi
e models have beensu

essfully applied to fore
ast behavior in many instan
es of travel de-mand analysis for the past 40 years. Therefore, they immediately 
ome tomind for pedestrian behavior. In Se
tion 2, we identify the types of 
hoi
esthat a pedestrian is 
onfronted to, and des
ribe how ea
h of them has beenaddressed in the literature. Se
tion 3 summarizes the dis
rete 
hoi
e frame-work and its underlying assumptions, and emphasizes how dis
rete 
hoi
emodels 
ould be or have been used in this 
ontext.
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2 Choices of pedestriansThe 
on
ept of 
hoi
e is present in many dimensions of the pedestrian be-havior. Although most of these 
hoi
e dimensions are highly interrelatedin reality, and usually 
onsidered jointly in the literature, it is more 
onve-nient to analyze ea
h of them separately. Let us 
onsider a single individualat a given lo
ation at a given point in time.
2.1 Activity choiceA �rst de
ision to be made is about what to do next. The 
hoi
e of the nexta
tivity will indeed trigger the travel. This type of 
hoi
e is not ne
essarilyrelated to pedestrians, as it is relevant to any travel mode. Among the vastliterature, we refer the reader to Jones et al. (1990), Morey et al. (1991),Axhausen and G�arling (1992), Ettema and Timmermans (1997), Kitamuraand Fujii (1998), Bhat and Singh (2000), Bowman and Ben-Akiva (2001),Bhat and Koppelman (2004), Abdelghany et al. (2007).Few authors analyze the a
tivity 
hoi
e in the spe
i�
 
ase of pedestri-ans. Hoogendoorn and Bovy (2004) distinguish between the 
hoi
e of ana
tivity pattern, performed at a so 
alled \strategi
" level, from a
tivitys
heduling, performed at a \ta
ti
al" level, and assume that pedestriansmake a simultaneous path-
hoi
e and a
tivity area 
hoi
e de
ision. Handy(2007) analyzes the impa
t of the urban form on the 
hoi
es of the pedes-trians in Austin to test if appropriate urban design 
an dis
ourage automo-bile dependen
e. Borgers and Timmermans (1986) 
onsider impulse stops,where the 
hoi
e of the a
tivity is not planned, but triggered by stimuli inthe pedestrian's environment.
2.2 Destination choiceThe 
hoi
e of the destination is related to the 
hoi
e of the lo
ation of the
hosen a
tivity. Again, su
h a 
hoi
e is not spe
i�
 to pedestrians, and hasbeen widely analyzed in the literature (Fotheringham, 1986, Fesenmaier,1988, Woodside and Lysonki, 1989, Furui
hi and Koppelman, 1994, Timmermans,1996, Dellaert et al., 1998, Oppermann, 1999, S
arpa and Thiene, 2005,Bigano et al., 2006 and many others)With respe
t to pedestrians, Borgers and Timmermans (1986) developa destination 
hoi
e model as part of a system of models to predi
t the2



total demand for retail fa
ilities within inner-
ity shopping areas. Tim-mermans et al. (1992) provide a review of models existing in 1992 and of afew appli
ations to urban and transportation planning in The Netherlands.Zhu and Timmermans (2005) fo
us on shopping de
ision pro
esses, usingbio-inspired heuristi
s to mimi
 the de
ision pro
ess. Eash (1999) has de-veloped models for non motorized destination 
hoi
e and vehi
le versus nonmotorized mode 
hoi
e, with appli
ation to the Chi
ago Area.
2.3 Mode choiceTwo types of mode 
hoi
e are 
onsidered in the literature on pedestriantravel. First, the usual transportation mode 
hoi
e analysis, where walkingis one of the alternatives. For instan
e, Bhat (2000) presents a mode 
hoi
emodel in the Bay Area for work travel. Ewing et al. (2007) analyze travelde
ision of students going to s
hool. Cervero and Radis
h (1996) investigatethe e�e
ts of New Urbanism design prin
iples on both non-work and 
om-muting travel by 
omparing modal splits between two distin
tly di�erentneighborhoods in the San Fran
is
o Bay Area. Rodriguez and Joo (2004)illustrate the link between mode 
hoi
e and environmental attributes for
ommuters to the University of North Carolina in Chapel Hill.The se
ond type of mode 
hoi
e fo
uses on the 
hoi
e among stairways,es
alators or elevators while walking. Several models have been proposedin order to quantify the impa
t of su
h elements on the pedestrian be-havior. Hamada et al. (2008) are interested in the 
on�guration of a highbuilding , in terms of optimization of 
oor plan and elevator 
on�guration.Cheung and Lam (1998) reports on the behavior of pedestrians in 
hoos-ing between es
alators and stairways in Hong Kong Mass Transit Railway(MTR) stations during peak hours. Kinsey et al. (2008) propose an es-
alator model designed for 
ir
ulation and eva
uation analysis, involvingmi
ros
opi
 person-person intera
tions. Toshiaki et al. (2000) 
ompare the
hoi
e between the stairs and the es
alator for healthy and disabled peo-ple. Note that the analysis of this type of 
hoi
e is of in
reasing interestfor health appli
ations in general, and overweight and obesity issues inparti
ular (Eves et al., 2006).
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2.4 Route choiceThe 
hoi
e of the itinerary (or route) is a 
riti
al dimension of the pedes-trian behavior.Kurose et al. (2001) analyze the impa
t of the attra
tiveness of a streetto the route 
hoi
e in a shopping 
ontext. In the same spirit, Borst et al.(2001) des
ribe the relationships between the per
eived attra
tiveness ofstreets and the (physi
al) street 
hara
teristi
s. Seneviratne and Morrall(1985) report a study done by the University of Calgary to evaluate thefa
tors a�e
ting the 
hoi
e of route. They emphasize the importan
e ofdistan
e, while the level of 
ongestion, safety or visual attra
tions appearto be se
ondary. Tsukagu
hi and Matsuda (2002) 
ombine the street en-vironment, the 
hara
teristi
s of pedestrians and the spatial relationshipbetween the 
urrent lo
ation and the destination to analyze route 
hoi
ebehavior. Daamen, Bovy, Hoogendoorn and de Reijt (2005) have 
olle
tedroute 
hoi
e data in two Dut
h train stations by following passengers fromtheir origins to their destinations through the fa
ility, and estimated route
hoi
e models. Hoogendoorn and Bovy (2004) 
ombine route 
hoi
e, a
-tivity area 
hoi
e, and a
tivity s
heduling using dynami
 programming.Okada and Asami (2007) in
orporate utility at nodes in a pedestrian 
owmodel, and derive route 
hoi
e probability using an aggregate logit model.Millonig and S
he
htner (2005) proposes a route 
hoi
e model in the 
on-text of pedestrian navigation servi
es.
2.5 Walking behavior: the choice of the next stepThe 
hoi
e of the next step relates to the orientation of the walk, as wellas the speed. Muramatsu et al. (1999) and Kessel et al. (2002) propose aso-
alled \driven" random walk model, where the probability of the nextstep depends on the number of o

upied 
ells. Cellular automata modelsare built on a �xed spatial dis
retization (Blue and Adler, 2001, Bursteddeet al., 2001 , S
hads
hneider, 2002, Dijkstra et al., 2002, Weifeng et al.,2003, S
hads
hneider et al., 2002, Yang et al., 2002) where transition rates
apture the dynami
s of the pedestrians. Hoogendoorn et al. (2002) assumethat pedestrians follow given traje
tories, and 
an 
hoose among many ofthem. Therefore, the next step behavior is driven by the 
urrent traje
tory.Helbing and Molnar (1995) introdu
e the 
on
ept of so
ial for
es to des
ribethe motion of pedestrians. Antonini, Bierlaire and Weber (2006) adopt a4



dis
rete 
hoi
e framework for the next step where a dynami
 and pedestrianspe
i�
 spatial dis
retization is used
2.6 Walking behavior: the choice of the speedThe 
hoi
e of the speed is 
aptured in di�erent ways depending on themodeling framework. Statisti
al analysis on real data have been used toderive speed pro�les. Knoblau
h et al. (2007) fo
us on 
rosswalks in ur-ban areas, while Young (2007) 
olle
t data in airport terminal 
orridors.Tarawneh (2001) integrates the e�e
t of age and gender in the analysis.In the 
ontext of 
ow models, the fundamental relationship among speed,
ow and densities is the main modeling element ( Lam and Cheung, 2000,AlGadhi et al., 2002, Hughes, 2002, Lam et al., 1994, Virkler and Elaya-dath, 1994). Sugiyama et al. (2002) derive physi
 models, extending 
arfollowing models to pedestrians. At a more disaggregate level, Ishaque andNoland (2008) model the pedestrian street 
rossing movements and speed
hoi
e at a mi
ro-s
ale. Antonini, Bierlaire and Weber (2006) 
ombine the
hoi
e of the speed with the 
hoi
e of the dire
tion using a dynami
 spatialdis
retization.
2.7 InteractionsThe intera
tions among pedestrians play a key role in the analysis of theirbehavior.First, group behavior, where individual de
isions are in
uen
ed by theother members of a group (Goldstone and Janssen, 2005), has been analyzedby several authors. James (1953) and Coleman (1962) analyze the size ofthe groups, Goldstone et al. (2006) fo
us on group formation, Was (2008)di�erentiate a
tive and passive pedestrian behavior within familiar groups,Miyazaki et al. (2003) performed a series of experiments to investigate thebehavior of groups of pedestrians and a wheel
hair user. Yersin et al. (2008)
onsider group behavior in real-time 
rowd motion planning.Se
ond, the 
omplex self-organization of 
rowds (Helbing et al., 1998,Helbing et al., 2001, Hoogendoorn and Daamen, 2005, Goldstone and Roberts,2006), where leader-follower and 
ollision avoidan
e behavior generate spe-
i�
 patterns have been analyzed extensively. In parti
ular, the sponta-neous formation of lanes has been emphasized (Helbing and Molnar, 1995,5



Blue and Adler, 1999, Burstedde et al., 2001, Dzubiella et al., 2002). Colli-sion avoidan
e and leader follower behavior have been spe
i�
ally analyzedand modeled in various 
ontexts (Los
os et al., 2003, Daamen and Hoogen-doorn, 2003b, Sakuma et al., 2005, Pele
hano and Badler, 2006, Robinet al., 2009).The intera
tions with the environment are also important. Daamenet al. (2002) a

ount for the entire pi
ture of the s
ene in their models.Nagel (2002) in
ludes walking in traÆ
 simulations. Helbing et al. (1998)propose the `a
tive walker' model that takes into a

ount pedestrian mo-tion and orientation and the 
on
omitant feedba
ks with the surroundingenvironment. Dijkstra and Timmermans (2002) use a multi-agent modelto derive several performan
e indi
ators of building environments, whi
hare related to user rea
tion to design de
isions. Guo and Ferreira (2008)illustrate how the quality of pedestrian environments along transit egresspaths a�e
ts transfers inside a transit system, and how the impedan
e oftransferring a�e
ts egress walking path 
hoi
es. Za
harias (2001) is inter-ested in assumptions about how pedestrians respond to 
hara
teristi
s ofthe environment as they formulate and ena
t their walking itineraries.Finally, the intera
tions between pedestrians and drivers are relevantas a major safety issue (Himanen and Kulmala, 1988, Tidwell and Doyle,1995).
2.8 Pedestrian dataWe 
on
lude this se
tion by des
ribing various types of data that are 
ol-le
ted to analyze pedestrian behavior.Questionnaires and \manually" 
olle
ted data have been used in manystudies, to obtain behavioral data (Sisiopiku and Akin, 2003) or 
ounts(Cunningham and Cullen, 1993). But data 
olle
tion using te
hnologyis more and more 
ommon in various resear
h 
ommunities interested inpedestrian behavior.Pedometers have been used mostly in the 
ontext of health resear
hprograms. Whitt et al. (2004) 
ombine pedometer and physi
al a
tivityreports to analyze walking patterns. Bassett et al. (2000) report that sub-je
ts underestimated their daily walking distan
e in a survey 
ompared tothe pedometer re
ord. Bennett et al. (2007) use pedometers to analyze therelation between walking and the per
eption of safety.6



Lo
ation based-servi
es provided namely by 
ell-phones generate rele-vant data. Sohn et al. (2006) use GSM tra
es for mobility dete
tion, Rattiet al. (2006) analyze the potential of 
ell-phones lo
ation-based servi
es tothe urban planning 
ommunity, and Li (2006) uses lo
ation-based servi
esto analyze pedestrian way�nding behavior. Millonig and Gartner (2009)
ombine qualitative-interpretative and quantitative-statisti
al data leadingto the determination of a typology of lifestyle-based pedestrian mobilitystyles.The next obvious important data 
olle
tion system is the Global po-sitioning system (GPS). For instan
e, Liao et al. (2007) use GPS datato 
alibrate a
tivity and lo
ation 
hoi
e models, as well as Ashbrook andStarner (2003) who also 
onsider 
ollaborative s
enarios. Patterson et al.(2003) derives the 
urrent transportation mode and the most likely routeof a traveler from GPS data. Shoval and Isaa
son (2006) review the useof satellite navigation systems and land-based navigation systems for gath-ering data on pedestrian spatial behavior. Flamm and Kaufmann (2007)propose a survey design 
ombining GPS-based person tra
king and qual-itative interviews to understand behavioral 
hanges o

urring during life
ourse transitions.There is also an in
reasing interest in exploiting video sequen
es ofpedestrians within urban or building areas. In this 
ontext, two types ofdata are 
onsidered: 
ounts and traje
tories. Pedestrian head 
ounts areuseful to 
alibrate 
ow models whereas pedestrian traje
tories are used forthe estimation of disaggregate models.Several 
omputer vision algorithms have been designed for 
ountingpedestrians. Sexton et al. (1995) propose an image pro
essing 
ountingalgorithm in un
onstrained areas. Zhang and Sexton (1997) 
ombine amodel-spe
i�ed dire
tional �lter with a mat
hing pro
ess to 
ount pedes-trians against a dynami
 ba
kground. Chen (2003) propose an automati
bi-dire
tional pedestrians 
ounting method through gates.With respe
t to pedestrian traje
tories, Teknomo et al. (2000) 
olle
tdata on a real pedestrian 
rossing road in Sendai, Japan. Daamen andHoogendoorn (2003b), Daamen and Hoogendoorn (2003a) and Daamen(2004) provide videos of experimental pedestrian traje
tories of volunteerpedestrians performing walking tasks in 
ontrolled 
on�gurations. Severalparameters are 
onsidered su
h as free speed, dire
tion, density and bottle-ne
ks. Traje
tories are extra
ted from video sequen
es, by using 
omputer7



vision algorithms. Teknomo (2002) and Hoogendoorn et al. (2003) devel-oped spe
i�
 pedestrian tra
king methods, Sullivan et al. (1995) use a
tivedeformable models for the same purpose. Masoud and Papanikolopou-los (1997) and Denzler and Niemann (1997) present real-time systems totra
k pedestrians in video sequen
es. Antonini, Venegas, Bierlaire and Thi-ran (2006) propose a framework 
ombining state-of-the-art dete
tion andtra
king methodologies with behavioral models.
3 Discrete choice modelsDis
rete 
hoi
e models (M
Fadden, 1981, Ben-Akiva and Lerman, 1985,Train, 2003) have been widely applied in the 
ontext of travel de
isions(Ben-Akiva and Bierlaire, 1999). Disaggregate in nature, these models arebased on random utility theory. We 
onsider a de
ision-maker n who isperforming a 
hoi
e among a set Cn of Jn alternatives. It is assumed that
n asso
iates a utility Uin to ea
h alternative i within Cn, and sele
ts thealternative 
orresponding to the highest utility. The utility is modeled as arandom variable to a

ount for un
ertainty due to various issues, in
ludingunobserved variables and measurement errors. The utility is de
omposedinto a deterministi
 part Vin and an error term εin, so that

Uin = Vin + εin, (1)and the probability that individual n is sele
ting alternative i is
Pn(i|Cn) = Pr(Uin ≥ Ujn ∀j ∈ Cn). (2)Operational models are derived from expli
it spe
i�
ations of Vin and dis-tributional assumptions about εin.The spe
i�
ation of Vin in
ludes the sele
tion of the explanatory vari-ables, that is the attributes of i relevant to n, as well as the so
io-e
onomi

hara
teristi
s of n. A fun
tional form used to 
ompute the utility fromthese variables must also be assumed. The distributional assumptions de-termine the 
omplexity of the model. The most widely used model isthe logit model, whi
h assumes that the εin are independent a
ross both

i and n, and identi
ally distributed with an extreme value distribution,leading to a simple and tra
table formulation. The more 
omplex mod-els su
h as the nested logit (Ben-Akiva, 1973, Williams, 1977, Daly and8



Za
hary, 1978), the multivariate extreme value (M
Fadden, 1978), the pro-bit model (Thurstone, 1927) or the mixture of logit models (M
Fadden andTrain, 2000) are designed to relax these assumptions that may be unrealisti
in some 
ontexts.In the following, we review how dis
rete 
hoi
e models have been or
ould be applied to model the various 
hoi
es des
ribed in Se
tion 2, fo
us-ing on the features spe
i�
 to pedestrians. Most of the time, we raise issuesinstead of providing solutions. The obje
tive is to stimulate new ideas andnew potential models.
3.1 Activity choiceTraditional travel demand analysis fo
us on the s
hedule of a
tivities, wherethe 
hoi
e of a
tivity patterns is modeled (Bowman and Ben-Akiva, 2001).Due to the 
ombinatorial nature of the 
hoi
e set, operational models fo
uson s
heduling the most important a
tivities, su
h as stay home, work,s
hool and shopping. The analysis of pedestrian movements require amore detailed analysis of a
tivities, where the set of 
onsidered a
tivitiesmust be re�ned, and the 
hoi
e of the next a
tivity to be performed by apedestrian at any point in time is relevant. For instan
e, on her way ba
khome from work, a pedestrian may 
hoose between rushing to 
at
h thetrain, or having a 
o�ee and taking the next train. Clearly, this de
isionwill have signi�
ant impa
ts on her walking behavior, and may therefore beimportant to model. Impulse stops are another typi
al example, where the
hoi
e of the next a
tivity is triggered by various stimuli in the environment.This is parti
ularly relevant for shopping (Borgers and Timmermans, 1986)and tourism (Stewart and Vogt, 1997) a
tivities, where individuals 
aneasily be diverted from their original plans.Several 
hallenges are asso
iated with the derivation of a 
hoi
e modelfor the next a
tivity. As dis
ussed above, the 
hara
terization of the 
hoi
eset is highly 
ontext-dependent, and the list of the a
tivities that may bepotentially 
onsidered is not always available to the analyst. Moreover,walking may be a potential a
tivity as su
h.With respe
t to the explanatory variables, the lo
ation of an a
tivityplays an important role. Consequently, it is natural to 
ombine the a
-tivity 
hoi
e model with the destination 
hoi
e model, as dis
ussed below.Variables des
ribing the design of existing stimuli (e.g. type and size of9



an advertisement) are also important. Variables 
apturing the importan
eof a
tivity providers 
an also be 
onsidered. Borgers and Timmermans(1986) use the retail turnover, the average per 
apita expenditure and theturnover to 
oorspa
e ratio of a 
ategory of stops to explain impulse stops.Contextual variables, su
h as the time of day (Dellaert et al., 1995) and theweather 
onditions may also play an important role. Finally, several rel-evant so
io-e
onomi
 
hara
teristi
s should be 
onsidered, su
h as gender(Jansen-Verbeke, 1987), age, or type of household (Krizek, 2006).Due to the 
ontext-spe
i�
 nature of pedestrian a
tivity 
hoi
e models,no general re
ommendation 
an be made for the distributional assumptionsof the error terms, although it is likely that a simple logit model may notbe appropriate for many instan
es due to unobserved attributes shared byseveral alternatives.
3.2 Destination choiceIn
uen
ed by traditional pra
ti
e in travel demand analysis, several mod-els are derived from origin-destination matri
es (Nagel and Barrett, 1997,Antonini, Bierlaire and Weber, 2006), where the set of potential originsand destinations is prede�ned, and 
ows between origins and destinationsis estimated. In a disaggregate 
ontext, the 
hoi
e of the destination 
anbe modeled 
onditional to a given a
tivity, or as a joint 
hoi
e of an a
-tivity and a destination. In both 
ases, the 
hoi
e set is typi
ally largeand diÆ
ult to 
hara
terize. The size of the 
hoi
e set depends on theappli
ation. For example, in a building, the number of possible exits isusually not huge. But in a shopping mall or a 
ity 
enter, the number ofpossible destinations or intermediate stops, 
an be extremely large. It isgood pra
ti
e to sample alternatives out of the full 
hoi
e set to derive op-erational models. If a logit or a multivariate extreme value model is used,eÆ
ient estimators using samples of alternatives are available (Manski andLerman, 1977, Bierlaire et al., 2008).In addition to the variables des
ribing the attra
tiveness of a destina-tion, it is parti
ularly important to also a

ount for distan
e. Moreover,the impa
t of distan
e on the 
hoi
e usually intera
ts with so
io-e
onomi

hara
teristi
s of the pedestrian, su
h has age, sex, possible disabilities, et
.Also, the number of other a
tivities that may potentially be performed ata destination will in
uen
e the 
hoi
e, as illustrated by the attra
tiveness10



of 
ommer
ial 
enters or leisure parks.The error stru
ture of destination 
hoi
e models 
an be 
omplex. First,if we are 
onsidering the joint 
hoi
e of an a
tivity and a destination, weare dealing with a multidimensional 
hoi
e set where alternatives are 
orre-lated by 
onstru
tion. If nested logit models have been histori
ally used tohandle part of the 
orrelation in multidimensional 
hoi
e sets (Ben-Akivaand Lerman, 1985, 
hapter 10), mixture of logit models provide a more a
-
urate representation of the 
orrelation (Bhat, 1998), although at the 
ostof higher 
omplexity. Se
ond, destination 
hoi
e in
lude a spatial dimen-sion, and the asso
iated spatial 
orrelation should be a

ounted for in themodel (Fotheringham, 1986). A typi
al example for pedestrians is whentwo doors are 
lose to ea
h other, or give a

ess to the same room or thesame street. Bhat and Guo (2004) suggest to a

ount for the 
orrelationamong neighboring destinations, and use a 
ross-nested logit to 
apture it.We 
on
lude this se
tion by noting that, in some 
ir
umstan
es, it mayhappen that no destination is expli
itly 
hosen by a pedestrian. It is typi
alwhen walking is the a
tivity as su
h, or in shopping and touristi
 a
tivities.In these 
ases, an itinerary is 
hosen without a known target, trying tomaximize the 
han
es to rea
h attra
tive pla
es along the way (Borst et al.,2001). This type of behavior is 
learly diÆ
ult to formalize, and is 
loselylinked with the route 
hoi
e behavior.
3.3 Mode choiceMode 
hoi
e models are probably the most traditional dis
rete 
hoi
e mod-els. As dis
ussed above, two types of mode de
ision 
an be 
onsidered.There is not mu
h to dis
uss about the standard mode 
hoi
e where walk-ing is one of the alternatives.With respe
t to the use of me
hanized devi
es su
h as elevators, es
a-lators, we �rst note that it is intrinsi
ally related to route 
hoi
e behavior(Daamen, Bovy and Hoogendoorn, 2005). Fo
using on the mode 
hoi
e, the
hoi
e is typi
ally small, as less than a handful of alternatives is in generalavailable to 
hange levels. With respe
t to explanatory variables, Cheungand Lam (1998) in
lude expe
ted delays in 
ongested situations, Ni
oll(2006) in
ludes the visibility of stairs, the \imageability" (Lyn
h, 1960),that is quality in a physi
al obje
t whi
h gives it a high probability ofevoking a strong image in any given observer (typi
ally, the type of stairs,11



the type of elevator, et
.), the intelligibility of the environment, 
hara
ter-ized for instan
e by the number of turns to rea
h the stairs, the settingappeal, that is the value of the view when using the stairs or the elevators.Comfort and safety variables 
an also be envisaged. Foster and Hillsdon(2004) 
onsider the possible impa
t of health 
ampaigns stimulating theuse of stairs, but they did not �nd signi�
ant eviden
e of their impa
t intheir studies.The stru
ture of the error term for these models should be similar totraditional mode 
hoi
e models, where the logit model is usually appropri-ate.
3.4 Route choiceRoute 
hoi
e models are traditionally based on a network stru
ture (Bovyand Stern, 1990, Ramming, 2001, Frejinger, 2008). In the pedestrian 
on-text, there is no physi
al network infrastru
ture asso
iated with the move-ments of the individuals (Hoogendoorn and Bovy, 2004). Within a dis
rete
hoi
e framework, two approa
hes 
an be 
onsidered.A �rst possibility is to design a virtual network stru
ture. The nodeswould 
orrespond to the key de
ision points (doors, interse
tions of 
or-ridors, 
rossways, stairs, elevators, et
.), and the links would 
onne
t ad-ja
ent nodes. Note that su
h a network would typi
ally be denser than aroad network, as a great deal of nodes may be ne
essary in the presen
e oflarge spa
es. Also, it must not be assumed that the pedestrians will exa
tlyfollow the link of this virtual networks, and the asso
iated walking modelmust be designed a

ordingly. Network-free model estimation, as proposedby Bierlaire and Frejinger (2008), is then ne
essary. When the virtual net-work is de�ned, the usual 
omplexities of route 
hoi
e models must beaddressed, in
luding the very large size of the 
hoi
e sets (Frejinger, 2007)and the high stru
tural 
orrelation among the paths (Frejinger and Bier-laire, 2007).Another possibility would 
onsist in assuming a more myopi
 behaviorof the pedestrians, where they would 
hoose the next intermediary pointon their way to the destination. The set of possible intermediary points
an be 
onstru
ted similarly to the nodes of the virtual network mentionedabove, but may also be dynami
ally updated as the pedestrian moves anddis
overs her environment. 12



Compared to a network-based approa
h, the 
hoi
e set 
ontains thelist of potential intermediary stops, whi
h has no 
ombinatorial dimension.The variables des
ribing ea
h of them should re
e
t not only the lo
ationof the pla
e itself, but also all the elements that will be met on the way toit. This is where a 
ombinatorial dimension may in
rease the 
omplexityof the model. However, this 
an be 
ontrolled by ex
luding from the 
hoi
eset the alternatives whi
h are quite distant from the 
urrent lo
ation, sothat the number of elements in between is bounded. The 
hoi
e set 
anthen be updated dynami
ally as the pedestrian moves.Inspired by the walking model proposed by Antonini, Bierlaire and We-ber (2006), and by suggestions from Fosgerau to address the 
omplexity oftraditional route 
hoi
e models, this modeling s
heme have several advan-tages. Stru
turally less 
omplex than network-based approa
hes, it mayalso be appropriate as a basis to derive models 
apturing phenomenonssu
h as impulse stops.The spatial dimension of this 
hoi
e would suggest an error stru
turebased on mixtures of logit models, with error 
omponents expli
itly 
ap-turing the 
orrelation. If the size of the 
hoi
e set is too large, multivariateextreme value models may be more appropriate, where the operational rep-resentation proposed by Daly and Bierlaire (2006) should be 
onsidered,together with sampling of alternatives (Bierlaire et al., 2008).
3.5 Walking behavior: the choice of the next stepThe 
hoi
e of the next step is 
entral in the pedestrian modeling. It rep-resents the instantaneous de
ision, and implies a lot of fa
tors. In this
ontext, Antonini, Bierlaire and Weber (2006) propose a dis
rete 
hoi
emodel where the pedestrian visual spa
e is dis
retized in a set of possiblenext steps, 
orresponding to the 
hoi
e set. It is dynami
, evolving withthe individual's 
urrent speed and dire
tion. The 
hoi
e set is multidimen-sional, 
ombining three a

eleration patterns (de
eleration to 0.75 timesthe 
urrent speed, same speed, and a

eleration to 1.25 times the 
urrentspeed) with 11 possible dire
tions. While the dis
retization of dire
tionsis relatively straightforward and natural, the dis
retization based on a
-
eleration patterns 
an be done in several ways, as dis
ussed in the nextsubse
tion.The 
hoi
e set 
ould be adapted to the environment. For example on13



a straight and large side-walk, the number of 
onsidered dire
tion 
ouldbe de
reased, if pedestrians are unlikely to make signi�
ant 
hanges ofdire
tion. It 
ould also be adapted to pedestrian 
hara
teristi
s, su
h asage, sex, height, visual angle, trip purpose, or group membership. Crassiniet al. (1988) performed visual experiments 
omparing young and elderlypeople and quantitatively measured the per
eptions di�eren
es.The utility fun
tion asso
iated with a given alternative, that is with agiven 
ombination of lo
ation and a

eleration, must 
apture various be-havioral patterns. Speed and intera
tion patterns are dis
ussed in the fol-lowing subse
tions. Two orientation patterns must also be 
onsidered. The�rst 
aptures the propensity of pedestrians to keep their 
urrent dire
tion,following a smooth and regular path. This is 
onsistent with the �ndingsof Turner (2001) who provide angular analysis of walking environmentssu
h as buildings. The se
ond 
aptures the attra
tion of the destination,
onsistently with Helbing et al. (2002) who state that pedestrians want torea
h as fast as possible their destinations in non 
rowed situations. There-fore, alternatives allowing the pedestrian to move 
loser to the destinationshould have a higher utility. Antonini, Bierlaire and Weber (2006) andRobin et al. (2009) in
lude the angle between the dire
tion di asso
iatedwith a given alternative i and the 
urrent dire
tion to 
apture the �rstpattern. They also in
lude the angle between di and the dire
tion towardsthe destination for the se
ond pattern, as well as the distan
e between theposition of the next step and the destination.The multi-dimensional nature of the 
hoi
e set indu
es stru
tural 
or-relation among the alternatives, whi
h suggests the use of a 
ross nestedlogit (CNL) model (Bierlaire, 2006) or an error 
omponent model (Walkeret al., 2007). Moreover, the typi
al panel nature of the data, where the sameindividual is observed over time, suggests the presen
e of unobserved het-erogeneity whi
h should be modeled using an error 
omponent distributeda
ross the population and not a
ross the observations (Train, 2003, Se
tion6.7).
3.6 Walking behavior: the choice of the speedSpeed modeling 
an be 
onsidered in two ways. We des
ribed above how it
an be integrated in the \next step" model. A se
ond approa
h 
onsists in
onsidering the 
hoi
e of the speed independently from other walking de
i-14



sions. In both 
ases, there are typi
ally two ways of de�ning the 
hoi
e set.It 
an be a list of possible absolute speeds, ranging from 0 to the maximumpossible speed that 
an be a
hieved by a pedestrian, dis
retized in someappropriate way. Although they do not use a dis
rete 
hoi
e framework,Blue and Adler (1998) adopt a similar approa
h in a 
ellular automata 
on-text. Wakim et al. (2004) 
onsider \standing still", \walking", \jogging"and \running" in a Markov 
hain pro
ess. It 
an also be a list of possi-ble modi�
ations relative to the 
urrent speed. These modi�
ations 
anbe de�ned in absolute terms (e.g. + 0.1m/s) or in relative terms (e.g. ×1.10). The former model is more natural, but must integrate me
hanismsavoiding unrealisti
 variations in speed.Many variables may explain the speed behavior and 
an be in
luded inthe model spe
i�
ation. The �rst set of variables is dire
tly inspired fromma
ros
opi
 
ow theory, where the relationships between 
ow, density andspeed of pedestrians are 
hara
terized. Therefore, 
urrent density, 
owor 
ombination of the two should be integrated as explanatory variables.Kessel et al. (2002) propose a mi
ros
opi
 model based on the fundamentalrelation between walking speed and 
rowd density. Seyfried et al. (2005)analyze experimentally the mi
ros
opi
 
auses of the velo
ity de
rease inthe presen
e of medium or high densities, su
h as frequen
y of passingmanoeuvres and internal 
rowd fri
tions. Also, pedestrians 
hara
teristi
s,su
h as age, height, sex, trip purpose in
uen
e the velo
ity. For instan
e,CoÆn and Morrall (1995) analyze the speed behavior of elderly peopleon 
rosswalks in order to improve su
h infrastru
ture in o

idental agingso
ieties.The pedestrian environment is of 
ourse predominant in the speed
hoi
e pro
ess. An arriving train, a traÆ
 light turning to red while inthe middle of the 
rosswalk, or the presen
e of a slow group of people areevents that trigger 
hange of speeds.Among the possible speeds that a pedestrian may sele
t, the zero speedhas a di�erent nature and must be treated separately. The variables ex-plaining the 
hoi
e of a zero speed may be di�erent from the variables ex-plaining another speed regime. For instan
e, the presen
e of an impassableobsta
le, the sudden per
eption of a danger or the o

urren
e of variousexternal stimuli (traÆ
 light, advertisements, et
.) may 
ause a pedestrianto stop.It is important also that the speed model is able to manage restarts15



after stops. For instan
e, if the 
hoi
e set is de�ned based on relative mod-i�
ations of the 
urrent speed (e.g. +10%), it is obviously not appropriateto model the restart. Also, if an impassable obsta
le �lls in the visual �eldof a pedestrian, the restart 
annot o

ur before the dire
tion is updated,
learing the visual �eld.Finally, the speed may be in
uen
ed by the various intera
tions dis-
ussed below (group behavior, leader-follower, 
ollision avoidan
e).Depending on the nature of the 
hoi
e set, the type of 
orrelation be-tween the error terms may vary, but it is seldom the 
ase that independen
e
an be safely assumed. Indeed, among the possible speed 
hanges, the er-ror terms of all alternatives 
orresponding to an a

eleration are likely tobe 
orrelated, as well as the error terms of all alternatives 
orrespondingto a de
eleration. If the 
hoi
e set 
ontains a list of absolute speeds, two
onse
utive values are likely to be per
eived more similar than two di�erentvalues. In this 
ase, models similar to departure time 
hoi
e model (su
has the Ordered GEV model by Small, 1987, whi
h is a spe
ial instan
e ofa CNL) are appropriate. Clearly, more 
omplex MEV models, as well aserror 
omponent models are relevant here as well.
3.7 Interactions: group behaviorGroup behavior relates to the adjustment of individual behavior to 
omplyto groupwise behavioral patterns. It 
an be motivated by behavioral aÆni-ties (fast people passing slower individuals in a dense 
rowd), so
ial linksamong individuals, su
h as friends or relatives or simply fortuitous spatialproximity.Assuming that the groups are 
learly and unambiguously identi�ed(whi
h is by itself a 
hallenge, as groups 
an split or merge dynami
ally),there are two ways of modeling this behavior. First, the de
ision-maker
an be 
onsidered as the group itself, and its various moving de
isions aremodeled as a joined 
hoi
e a

ounting for the larger physi
al spa
e o

u-pied by the group. It is similar to the 
on
ept of \pa
kets" used in traÆ
simulation (Ben-Akiva et al., 1994, Corn�elis and Toint, 1998). Se
ond, thegroup 
hara
teristi
s, su
h as size, type or speed, 
an be 
onsidered as ex-ogenous to the model des
ribing the 
hoi
es of a spe
i�
 member of thegroup. Clearly, the two models 
an be merged in a two stages framework,where the group behavior is modeled at the higher level, and the individual16



behavior is modeled 
onditional to the group's.Note that in addition to the moving behavior, the de
ision for a givenindividual to belong to a group 
an also be modeled in a dis
rete 
hoi
eframework, where behavioral, so
ial and spatial similarities are typi
al ex-planatory variables.
3.8 Interactions: leader-followerA leader-follower model 
apture the propensity of an individual to adjust(
ons
iously or un
ons
iously) her speed and dire
tion to another individ-ual in order to make her way through a 
rowd. A similar type of behavior
an be modeled in an emergen
y 
ontext, where trained employees mayserve as leaders in an eva
uation pro
edure (Pele
hano and Badler, 2006).Two types of 
hoi
e 
an be modeled. First, the 
hoi
e of a leader (orthe de
ision not to follow anybody) is in
uen
ed by the 
hara
teristi
s ofthe surrounding 
rowd (density, speed, et
.) as well as the behavior of thepotential leaders. Pedestrians in the visual �eld, and with behavior 
loseto the desired target, parti
ularly in terms of desired speed and dire
tion,are more likely to be 
onsidered. In the literature, the deterministi
 
hoi
eof the nearest potential leader has been proposed by Blue and Adler (1999)and Robin et al. (2009), suggesting that the distan
e would be an importantexplanatory variable in a dis
rete 
hoi
e model.The se
ond type of 
hoi
e is the rea
tion to the leader's behavior. Robinet al. (2009) suggest an impa
t of the leader on the 
hoi
e of the speed andthe dire
tion. Other 
hoi
es, su
h as route or even destination 
an alsopotentially be a�e
ted by the leader's behavior.The estimation of su
h models is 
ompli
ated be
ause the 
hoi
e itselfis not really observed, and 
an only be guessed by the analyst. It shouldbe modeled as a latent 
onstru
t.Note that a great deal of insights 
an be derived from driving behaviormodels (Toledo et al., 2007) where 
ar-following (Chandler et al., 1958) andlane 
hanging (Ahmed et al., 1996) models play a key role.
3.9 Interactions: collision avoidanceInstead of being attra
ted by another individual, and positively in
uen
ed,a pedestrian in a 
ollision avoidan
e 
ontext is repelled and negatively17



in
uen
ed by somebody else.While the impa
ts themselves on the speed and dire
tion are 
learlydi�erent, the pro
ess of identifying the individual to avoid 
an be mod-eled with a dis
rete 
hoi
e framework, in a way similar to the sele
tion ofthe follower des
ribed above. As before, the identi�
ation of a potentially
olliding individual is in
uen
ed by the 
hara
teristi
s of the surrounding
rowd (density, speed, et
.) as well as the behavior of that person. Pedes-trians in the visual �eld with speed and dire
tion suggesting a possible
ollision are more likely to be 
onsidered in the 
hoi
e set. Robin et al.(2009) sele
t the \
andidate" su
h that the angle of the two dire
tions isthe 
losest to π, suggesting that the angle would be an important explana-tory variable in a dis
rete 
hoi
e model. Also, the distan
e and the speedare important variables, as they 
hara
terize the imminen
e of the 
ollision.
3.10 Interactions: other scene elementsDuring the walking pro
ess, individuals have to intera
t with various ele-ments of the s
ene, su
h as 
ars (on 
rossing road), side-walk environment,or even isolated obsta
les. Again, we distinguish between what elementsin
uen
e the behavior, and how.On 
rossing roads, pedestrians intera
t with 
ars. Himanen and Kul-mala (1988) propose a dis
rete 
hoi
e framework to model intera
tionsbetween drivers and pedestrians on 
rossing roads without traÆ
 lights.Pedestrian 
ould pass or stop , and drivers brake or weave. The explana-tory variables of their model are the number of pedestrians simultaneously
rossing, the 
ity size, the vehi
le speed and the vehi
le size.The 
rossing road modeling 
an be extended and adapted to the in-tera
tion between pedestrians and potentially dangerous elements of thes
ene, su
h as parking exits, or street
ar lines. Still, the pedestrian 
hoosesbetween passing, stopping or getting around (not always available). The
hoi
e is in
uen
ed by the pedestrian 
hara
teristi
s, su
h as determina-tion, or by the level of danger (
hara
terized, for instan
e, by the vehi
lespeed). Evans and Norman (1998) reports a study on the pedestrians road
rossing intentions based on the theory of planned behavior. Questionnaireswith several 
rossing manners and s
enarios were proposed to respondents.The per
eived 
ontrol of the situation appears to be 
ru
ial in the de
isionmaking pro
ess. 18



Corners are present at 
rossings, either implying 
orridors or side-walks.Those immobile s
ene elements 
an in
rease the likelihood of pedestrian
ollisions, due to la
k of visibility. Di�erent options 
an be 
ombined bythe pedestrian to anti
ipate su
h 
ollisions, su
h as move away from thewall to improve the visual per
eption, or de
elerate (or even stop) at the
rossing to 
he
k if there is any potential 
ollider. Many fa
tors in
uen
ethese de
isions su
h as the pedestrian prior experien
e and 
hara
teristi
s(age, gender, et
.), 
rowd density, 
rossing geometry su
h as angle between
orridors or visibility.Visual advertisements su
h as posters, s
reens or shop windows are de-signed to attra
t pedestrians' attention. The walker 
an 
hoose to stop inorder to improve her knowledge of the displayed elements, to slow downto glan
e at it, or to ignore it and 
ontinue walking. Attra
tion must bein
luded in the next step 
hoi
e model and speed 
hoi
e model, in orderto a

ount for the walking 
hanges due to the advertisement. The stop de-
ision should be 
onsidered independently. In addition to the pedestrian'sso
io-e
onomi
 
hara
teristi
s, her 
urrent a
tivity and destination, as wellas her prior experien
e with the elements on display in
uen
e the 
hoi
e.The visual attributes of the poster are also 
ru
ial. For example, Kerr et al.(2001) perform several experiments in stations and shopping 
enters, to testthe in
uen
e of health promotion posters on the pedestrian 
hoi
e betweenstairs and es
alators. They show that posters size and message have a highin
uen
e on the individual per
eption. In addition, other attributes of thevisual form, su
h as 
olor, or lo
ation should also be 
onsidered.Doors are 
ommon in publi
 spa
es. A standard transparent door is anobsta
le that produ
es only sporadi
 speed de
rease in free-
ow-
onditions.In the presen
e of high densities, notion of priorities have to be 
onsidered.If a dense 
rowd tries to pass through the door in one dire
tion, and asingle pedestrian tries in the other dire
tion, the latter has a tenden
y tolet pass the 
rowd. Several meanings of 'let pass' 
an be 
onsidered. In-deed the pedestrian 
an anti
ipate the intera
tion by de
reasing her speed,or modify her traje
tory and speed, or even stop at the door. This de
i-sion 
an be modeled in a dis
rete 
hoi
e framework. Crowd density, door
hara
teristi
s, su
h as dimension and type, and pedestrian 
hara
teristi
sin
uen
e the 
hoi
e (Daamen et al., forth
oming).Side-walks are full of little elements su
h as ben
hes, trees, garbage
ans or streetlights. They 
ould possibly be modeled as stati
 pedestrians,19



so that the intera
tions issues des
ribed before are appli
able. But they
an also be 
onsidered independently, be
ause of their spe
i�
ities, su
h asasso
iated danger. Pedestrians have several possibilities to avoid 
ollisionswith those elements: go round by the left, or by the right, stop or turnba
k. The 
rowd density is 
ru
ial to deal with this de
ision, as well aspedestrian 
hara
teristi
s.
4 ConclusionPedestrian behavior is a 
omplex and important phenomenon. Capturingand fore
asting it require advan
ed modeling and simulation tools. Wehave tried here to analyze various behavioral dimensions in terms of 
hoi
e.Not only this is a standard approa
h in travel demand analysis, but theavailability of operational models, su
h as dis
rete 
hoi
e models, justi�esto investigate the behavior from the 
hoi
e viewpoint.We 
on
lude from this dis
ussion that, if indeed many behavioral di-mensions of pedestrian 
an be 
onsidered as 
hoi
es (as detailed in Se
tion2), deriving operational models for these 
hoi
es 
an be quite 
omplex.The most important reason is that most of these 
hoi
es are performed atthe same time, and a de
omposition into a sequen
e of 
hoi
es is often notappropriate. The \four-step" approa
h adopted in travel demand analy-sis, where travel behavior is de
omposed into lo
ation 
hoi
e, destination
hoi
e, mode 
hoi
e and route 
hoi
e, 
annot be applied for pedestrianwithout major adjustments. Consequently, the 
omplexity of the 
orre-sponding models may pre
lude their use in real appli
ations. A se
ondreason is the short lifetime of some of the 
hoi
es, as de
isions asso
iatedwith the destination, the route or even with the a
tivity itself are subje
tto frequent 
hanges. Consequently, the dynami
 of the 
hoi
es must bea

ounted for. A third major issue is the availability of appropriate data.Although re
ent developments in GPS data 
olle
tion and video image anal-ysis have allowed for the modeling of some 
omplex behavioral dimensions,the detailed observation of pedestrian behavior is still a very 
omplex issue.In summary, we believe that investigating pedestrian behavior in termsof 
hoi
e behavior is an ex
iting �eld of resear
h, with many open issuesand a high potential. We hope that this do
ument will stimulate resear
hin this dire
tion. 20
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