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1 Introduction

Among the various modes of transportation, walking is probably the most
natural but also the most complicated to apprehend from an analyst view-
point. Contrary to most other travel modes, it is not associated with a
vehicle and the underlying infrastructure is highly heterogeneous (side-
walks, crossings, buildings, shopping malls, squares, etc.) Understanding
and predicting the evolution of pedestrians in these various environments
is important in many aspects. The first application that comes to mind is
the planning of building evacuation in case of emergency, or city evacua-
tion in case of a disaster. Another important application is the description
of congestion caused by heavy flows of pedestrians and their conflicting
movements. Indeed, it must be accounted for the efficient design of new
facilities (such as public buildings, train stations, airports or intersections
of urban streets) and the daily operations of these facilities. Focusing on
individual behavior in sparse conditions is also important. Among others,
travel guidance and information systems aim at helping the pedestrian in
implementing her journey, surveillance systems are interested in detecting
abnormal behavior, advertisers are interested in evaluating the global expo-
sure of their announcements, movie and video games makers are interested
in generating realistic synthetic behavior.

The flourishing scientific literature, as well as the increasing availability
of commercial tools, are evidences of the growing importance of this field,
but also of its multidisciplinary nature. Indeed, models inspired by physics,
artificial intelligence, computer vision, econometrics, biology and traffic
flow theory have been proposed.

In this chapter, we consider the models capturing the behavior of indi-
vidual pedestrians, described in terms of choices. Choice models have been
successfully applied to forecast behavior in many instances of travel de-
mand analysis for the past 40 years. Therefore, they immediately come to
mind for pedestrian behavior. In Section 2, we identify the types of choices
that a pedestrian is confronted to, and describe how each of them has been
addressed in the literature. Section 3 summarizes the discrete choice frame-
work and its underlying assumptions, and emphasizes how discrete choice
models could be or have been used in this context.



2 Choices of pedestrians

The concept of choice is present in many dimensions of the pedestrian be-
havior. Although most of these choice dimensions are highly interrelated
in reality, and usually considered jointly in the literature, it is more conve-
nient to analyze each of them separately. Let us consider a single individual
at a given location at a given point in time.

2.1 Activity choice

A first decision to be made is about what to do next. The choice of the next
activity will indeed trigger the travel. This type of choice is not necessarily
related to pedestrians, as it is relevant to any travel mode. Among the vast
literature, we refer the reader to Jones et al. (1990), Morey et al. (1991),
Axhausen and Garling (1992), Ettema and Timmermans (1997), Kitamura
and Fujii (1998), Bhat and Singh (2000), Bowman and Ben-Akiva (2001),
Bhat and Koppelman (2004), Abdelghany et al. (2007).

Few authors analyze the activity choice in the specific case of pedestri-
ans. Hoogendoorn and Bovy (2004) distinguish between the choice of an
actwity pattern, performed at a so called “strategic” level, from activity
scheduling, performed at a “tactical” level, and assume that pedestrians
make a simultaneous path-choice and activity area choice decision. Handy
(2007) analyzes the impact of the urban form on the choices of the pedes-
trians in Austin to test if appropriate urban design can discourage automo-
bile dependence. Borgers and Timmermans (1986) consider impulse stops,
where the choice of the activity is not planned, but triggered by stimuli in
the pedestrian’s environment.

2.2 Destination choice

The choice of the destination is related to the choice of the location of the
chosen activity. Again, such a choice is not specific to pedestrians, and has
been widely analyzed in the literature (Fotheringham, 1986, Fesenmaier,
1988, Woodside and Lysonki, 1989, Furuichi and Koppelman, 1994, Timmermans,
1996, Dellaert et al., 1998, Oppermann, 1999, Scarpa and Thiene, 2005,
Bigano et al., 2006 and many others)

With respect to pedestrians, Borgers and Timmermans (1986) develop
a destination choice model as part of a system of models to predict the
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total demand for retail facilities within inner-city shopping areas. Tim-
mermans et al. (1992) provide a review of models existing in 1992 and of a
few applications to urban and transportation planning in The Netherlands.
Zhu and Timmermans (2005) focus on shopping decision processes, using
bio-inspired heuristics to mimic the decision process. Eash (1999) has de-
veloped models for non motorized destination choice and vehicle versus non
motorized mode choice, with application to the Chicago Area.

2.3 Mode choice

Two types of mode choice are considered in the literature on pedestrian
travel. First, the usual transportation mode choice analysis, where walking
is one of the alternatives. For instance, Bhat (2000) presents a mode choice
model in the Bay Area for work travel. Ewing et al. (2007) analyze travel
decision of students going to school. Cervero and Radisch (1996) investigate
the effects of New Urbanism design principles on both non-work and com-
muting travel by comparing modal splits between two distinctly different
neighborhoods in the San Francisco Bay Area. Rodriguez and Joo (2004)
illustrate the link between mode choice and environmental attributes for
commuters to the University of North Carolina in Chapel Hill.

The second type of mode choice focuses on the choice among stairways,
escalators or elevators while walking. Several models have been proposed
in order to quantify the impact of such elements on the pedestrian be-
havior. Hamada et al. (2008) are interested in the configuration of a high
building , in terms of optimization of floor plan and elevator configuration.
Cheung and Lam (1998) reports on the behavior of pedestrians in choos-
ing between escalators and stairways in Hong Kong Mass Transit Railway
(MTR) stations during peak hours. Kinsey et al. (2008) propose an es-
calator model designed for circulation and evacuation analysis, involving
microscopic person-person interactions. Toshiaki et al. (2000) compare the
choice between the stairs and the escalator for healthy and disabled peo-
ple. Note that the analysis of this type of choice is of increasing interest
for health applications in general, and overweight and obesity issues in
particular (Eves et al., 2006).



2.4 Route choice

The choice of the itinerary (or route) is a critical dimension of the pedes-
trian behavior.

Kurose et al. (2001) analyze the impact of the attractiveness of a street
to the route choice in a shopping context. In the same spirit, Borst et al.
(2001) describe the relationships between the perceived attractiveness of
streets and the (physical) street characteristics. Seneviratne and Morrall
(1985) report a study done by the University of Calgary to evaluate the
factors affecting the choice of route. They emphasize the importance of
distance, while the level of congestion, safety or visual attractions appear
to be secondary. Tsukaguchi and Matsuda (2002) combine the street en-
vironment, the characteristics of pedestrians and the spatial relationship
between the current location and the destination to analyze route choice
behavior. Daamen, Bovy, Hoogendoorn and de Reijt (2005) have collected
route choice data in two Dutch train stations by following passengers from
their origins to their destinations through the facility, and estimated route
choice models. Hoogendoorn and Bovy (2004) combine route choice, ac-
tivity area choice, and activity scheduling using dynamic programming.
Okada and Asami (2007) incorporate utility at nodes in a pedestrian flow
model, and derive route choice probability using an aggregate logit model.
Millonig and Schechtner (2005) proposes a route choice model in the con-
text of pedestrian navigation services.

2.5 Walking behavior: the choice of the next step

The choice of the next step relates to the orientation of the walk, as well
as the speed. Muramatsu et al. (1999) and Kessel et al. (2002) propose a
so-called “driven” random walk model, where the probability of the next
step depends on the number of occupied cells. Cellular automata models
are built on a fixed spatial discretization (Blue and Adler, 2001, Burstedde
et al., 2001 , Schadschneider, 2002, Dijkstra et al., 2002, Weifeng et al.,
2003, Schadschneider et al., 2002, Yang et al., 2002) where transition rates
capture the dynamics of the pedestrians. Hoogendoorn et al. (2002) assume
that pedestrians follow given trajectories, and can choose among many of
them. Therefore, the next step behavior is driven by the current trajectory.
Helbing and Molnar (1995) introduce the concept of social forces to describe
the motion of pedestrians. Antonini, Bierlaire and Weber (2006) adopt a
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discrete choice framework for the next step where a dynamic and pedestrian
specific spatial discretization is used

2.6 Walking behavior: the choice of the speed

The choice of the speed is captured in different ways depending on the
modeling framework. Statistical analysis on real data have been used to
derive speed profiles. Knoblauch et al. (2007) focus on crosswalks in ur-
ban areas, while Young (2007) collect data in airport terminal corridors.
Tarawneh (2001) integrates the effect of age and gender in the analysis.
In the context of flow models, the fundamental relationship among speed,
flow and densities is the main modeling element ( Lam and Cheung, 2000,
AlGadhi et al., 2002, Hughes, 2002, Lam et al., 1994, Virkler and Elaya-
dath, 1994). Sugiyama et al. (2002) derive physic models, extending car
following models to pedestrians. At a more disaggregate level, Ishaque and
Noland (2008) model the pedestrian street crossing movements and speed
choice at a micro-scale. Antonini, Bierlaire and Weber (2006) combine the
choice of the speed with the choice of the direction using a dynamic spatial
discretization.

2.7 Interactions

The interactions among pedestrians play a key role in the analysis of their
behavior.

First, group behavior, where individual decisions are influenced by the
other members of a group (Goldstone and Janssen, 2005), has been analyzed
by several authors. James (1953) and Coleman (1962) analyze the size of
the groups, Goldstone et al. (2006) focus on group formation, Was (2008)
differentiate active and passive pedestrian behavior within familiar groups,
Miyazaki et al. (2003) performed a series of experiments to investigate the
behavior of groups of pedestrians and a wheelchair user. Yersin et al. (2008)
consider group behavior in real-time crowd motion planning.

Second, the complex self-organization of crowds (Helbing et al., 1998,
Helbing et al., 2001, Hoogendoorn and Daamen, 2005, Goldstone and Roberts,
2006), where leader-follower and collision avoidance behavior generate spe-
cific patterns have been analyzed extensively. In particular, the sponta-
neous formation of lanes has been emphasized (Helbing and Molnar, 1995,



Blue and Adler, 1999, Burstedde et al., 2001, Dzubiella et al., 2002). Colli-
sion avoidance and leader follower behavior have been specifically analyzed
and modeled in various contexts (Loscos et al., 2003, Daamen and Hoogen-
doorn, 2003b, Sakuma et al., 2005, Pelechano and Badler, 2006, Robin
et al., 2009).

The interactions with the environment are also important. Daamen
et al. (2002) account for the entire picture of the scene in their models.
Nagel (2002) includes walking in traffic simulations. Helbing et al. (1998)
propose the ‘active walker’ model that takes into account pedestrian mo-
tion and orientation and the concomitant feedbacks with the surrounding
environment. Dijkstra and Timmermans (2002) use a multi-agent model
to derive several performance indicators of building environments, which
are related to user reaction to design decisions. Guo and Ferreira (2008)
illustrate how the quality of pedestrian environments along transit egress
paths affects transfers inside a transit system, and how the impedance of
transferring affects egress walking path choices. Zacharias (2001) is inter-
ested in assumptions about how pedestrians respond to characteristics of
the environment as they formulate and enact their walking itineraries.

Finally, the interactions between pedestrians and drivers are relevant
as a major safety issue (Himanen and Kulmala, 1988, Tidwell and Doyle,
1995).

2.8 Pedestrian data

We conclude this section by describing various types of data that are col-
lected to analyze pedestrian behavior.

Questionnaires and “manually” collected data have been used in many
studies, to obtain behavioral data (Sisiopiku and Akin, 2003) or counts
(Cunningham and Cullen, 1993). But data collection using technology
is more and more common in various research communities interested in
pedestrian behavior.

Pedometers have been used mostly in the context of health research
programs. Whitt et al. (2004) combine pedometer and physical activity
reports to analyze walking patterns. Bassett et al. (2000) report that sub-
jects underestimated their daily walking distance in a survey compared to
the pedometer record. Bennett et al. (2007) use pedometers to analyze the
relation between walking and the perception of safety.



Location based-services provided namely by cell-phones generate rele-
vant data. Sohn et al. (2006) use GSM traces for mobility detection, Ratti
et al. (2006) analyze the potential of cell-phones location-based services to
the urban planning community, and Li (2006) uses location-based services
to analyze pedestrian wayfinding behavior. Millonig and Gartner (2009)
combine qualitative-interpretative and quantitative-statistical data leading
to the determination of a typology of lifestyle-based pedestrian mobility
styles.

The next obvious important data collection system is the Global po-
sitioning system (GPS). For instance, Liao et al. (2007) use GPS data
to calibrate activity and location choice models, as well as Ashbrook and
Starner (2003) who also consider collaborative scenarios. Patterson et al.
(2003) derives the current transportation mode and the most likely route
of a traveler from GPS data. Shoval and Isaacson (2006) review the use
of satellite navigation systems and land-based navigation systems for gath-
ering data on pedestrian spatial behavior. Flamm and Kaufmann (2007)
propose a survey design combining GPS-based person tracking and qual-
itative interviews to understand behavioral changes occurring during life
course transitions.

There is also an increasing interest in exploiting video sequences of
pedestrians within urban or building areas. In this context, two types of
data are considered: counts and trajectories. Pedestrian head counts are
useful to calibrate flow models whereas pedestrian trajectories are used for
the estimation of disaggregate models.

Several computer vision algorithms have been designed for counting
pedestrians. Sexton et al. (1995) propose an image processing counting
algorithm in unconstrained areas. Zhang and Sexton (1997) combine a
model-specified directional filter with a matching process to count pedes-
trians against a dynamic background. Chen (2003) propose an automatic
bi-directional pedestrians counting method through gates.

With respect to pedestrian trajectories, Teknomo et al. (2000) collect
data on a real pedestrian crossing road in Sendai, Japan. Daamen and
Hoogendoorn (2003b), Daamen and Hoogendoorn (2003a) and Daamen
(2004) provide videos of experimental pedestrian trajectories of volunteer
pedestrians performing walking tasks in controlled configurations. Several
parameters are considered such as free speed, direction, density and bottle-
necks. Trajectories are extracted from video sequences, by using computer



vision algorithms. Teknomo (2002) and Hoogendoorn et al. (2003) devel-
oped specific pedestrian tracking methods, Sullivan et al. (1995) use active
deformable models for the same purpose. Masoud and Papanikolopou-
los (1997) and Denzler and Niemann (1997) present real-time systems to
track pedestrians in video sequences. Antonini, Venegas, Bierlaire and Thi-
ran (2006) propose a framework combining state-of-the-art detection and
tracking methodologies with behavioral models.

3 Discrete choice models

Discrete choice models (McFadden, 1981, Ben-Akiva and Lerman, 1985,
Train, 2003) have been widely applied in the context of travel decisions
(Ben-Akiva and Bierlaire, 1999). Disaggregate in nature, these models are
based on random utility theory. We consider a decision-maker n who is
performing a choice among a set C,, of J,, alternatives. It is assumed that
n associates a utility Ui, to each alternative i within C,,, and selects the
alternative corresponding to the highest utility. The utility is modeled as a
random variable to account for uncertainty due to various issues, including
unobserved variables and measurement errors. The utility is decomposed
into a deterministic part Vi, and an error term ¢;,, so that

uin — vin + €in, (1)
and the probability that individual n is selecting alternative 1 is
Pn(1|cn) - Pr(uin 2 ujn V) € Cn) (2)

Operational models are derived from explicit specifications of V;,, and dis-
tributional assumptions about €y;,.

The specification of V;,, includes the selection of the explanatory vari-
ables, that is the attributes of i relevant to n, as well as the socio-economic
characteristics of n. A functional form used to compute the utility from
these variables must also be assumed. The distributional assumptions de-
termine the complexity of the model. The most widely used model is
the logit model, which assumes that the ¢, are independent across both
i and n, and identically distributed with an extreme value distribution,
leading to a simple and tractable formulation. The more complex mod-
els such as the nested logit (Ben-Akiva, 1973, Williams, 1977, Daly and
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Zachary, 1978), the multivariate extreme value (McFadden, 1978), the pro-
bit model (Thurstone, 1927) or the mixture of logit models (McFadden and
Train, 2000) are designed to relax these assumptions that may be unrealistic
in some contexts.

In the following, we review how discrete choice models have been or
could be applied to model the various choices described in Section 2, focus-
ing on the features specific to pedestrians. Most of the time, we raise issues
instead of providing solutions. The objective is to stimulate new ideas and
new potential models.

3.1 Activity choice

Traditional travel demand analysis focus on the schedule of activities, where
the choice of activity patterns is modeled (Bowman and Ben-Akiva, 2001).
Due to the combinatorial nature of the choice set, operational models focus
on scheduling the most important activities, such as stay home, work,
school and shopping. The analysis of pedestrian movements require a
more detailed analysis of activities, where the set of considered activities
must be refined, and the choice of the next activity to be performed by a
pedestrian at any point in time is relevant. For instance, on her way back
home from work, a pedestrian may choose between rushing to catch the
train, or having a coffee and taking the next train. Clearly, this decision
will have significant impacts on her walking behavior, and may therefore be
important to model. Impulse stops are another typical example, where the
choice of the next activity is triggered by various stimuli in the environment.
This is particularly relevant for shopping (Borgers and Timmermans, 1986)
and tourism (Stewart and Vogt, 1997) activities, where individuals can
easily be diverted from their original plans.

Several challenges are associated with the derivation of a choice model
for the next activity. As discussed above, the characterization of the choice
set is highly context-dependent, and the list of the activities that may be
potentially considered is not always available to the analyst. Moreover,
walking may be a potential activity as such.

With respect to the explanatory variables, the location of an activity
plays an important role. Consequently, it is natural to combine the ac-
tivity choice model with the destination choice model, as discussed below.
Variables describing the design of existing stimuli (e.g. type and size of



an advertisement) are also important. Variables capturing the importance
of activity providers can also be considered. Borgers and Timmermans
(1986) use the retail turnover, the average per capita expenditure and the
turnover to floorspace ratio of a category of stops to explain impulse stops.
Contextual variables, such as the time of day (Dellaert et al., 1995) and the
weather conditions may also play an important role. Finally, several rel-
evant socio-economic characteristics should be considered, such as gender
(Jansen-Verbeke, 1987), age, or type of household (Krizek, 2006).

Due to the context-specific nature of pedestrian activity choice models,
no general recommendation can be made for the distributional assumptions
of the error terms, although it is likely that a simple logit model may not
be appropriate for many instances due to unobserved attributes shared by
several alternatives.

3.2 Destination choice

Influenced by traditional practice in travel demand analysis, several mod-
els are derived from origin-destination matrices (Nagel and Barrett, 1997,
Antonini, Bierlaire and Weber, 2006), where the set of potential origins
and destinations is predefined, and flows between origins and destinations
is estimated. In a disaggregate context, the choice of the destination can
be modeled conditional to a given activity, or as a joint choice of an ac-
tivity and a destination. In both cases, the choice set is typically large
and difficult to characterize. The size of the choice set depends on the
application. For example, in a building, the number of possible exits is
usually not huge. But in a shopping mall or a city center, the number of
possible destinations or intermediate stops, can be extremely large. It is
good practice to sample alternatives out of the full choice set to derive op-
erational models. If a logit or a multivariate extreme value model is used,
efficient estimators using samples of alternatives are available (Manski and
Lerman, 1977, Bierlaire et al., 2008).

In addition to the variables describing the attractiveness of a destina-
tion, it is particularly important to also account for distance. Moreover,
the impact of distance on the choice usually interacts with socio-economic
characteristics of the pedestrian, such has age, sex, possible disabilities, etc.
Also, the number of other activities that may potentially be performed at
a destination will influence the choice, as illustrated by the attractiveness
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of commercial centers or leisure parks.

The error structure of destination choice models can be complex. First,
if we are considering the joint choice of an activity and a destination, we
are dealing with a multidimensional choice set where alternatives are corre-
lated by construction. If nested logit models have been historically used to
handle part of the correlation in multidimensional choice sets (Ben-Akiva
and Lerman, 1985, chapter 10), mixture of logit models provide a more ac-
curate representation of the correlation (Bhat, 1998), although at the cost
of higher complexity. Second, destination choice include a spatial dimen-
sion, and the associated spatial correlation should be accounted for in the
model (Fotheringham, 1986). A typical example for pedestrians is when
two doors are close to each other, or give access to the same room or the
same street. Bhat and Guo (2004) suggest to account for the correlation
among neighboring destinations, and use a cross-nested logit to capture it.

We conclude this section by noting that, in some circumstances, it may
happen that no destination is explicitly chosen by a pedestrian. It is typical
when walking is the activity as such, or in shopping and touristic activities.
In these cases, an itinerary is chosen without a known target, trying to
maximize the chances to reach attractive places along the way (Borst et al.,
2001). This type of behavior is clearly difficult to formalize, and is closely
linked with the route choice behavior.

3.3 Mode choice

Mode choice models are probably the most traditional discrete choice mod-
els. As discussed above, two types of mode decision can be considered.
There is not much to discuss about the standard mode choice where walk-
ing is one of the alternatives.

With respect to the use of mechanized devices such as elevators, esca-
lators, we first note that it is intrinsically related to route choice behavior
(Daamen, Bovy and Hoogendoorn, 2005). Focusing on the mode choice, the
choice is typically small, as less than a handful of alternatives is in general
available to change levels. With respect to explanatory variables, Cheung
and Lam (1998) include expected delays in congested situations, Nicoll
(2006) includes the visibility of stairs, the “imageability” (Lynch, 1960),
that is quality in a physical object which gives it a high probability of
evoking a strong image in any given observer (typically, the type of stairs,
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the type of elevator, etc.), the intelligibility of the environment, character-
ized for instance by the number of turns to reach the stairs, the setting
appeal, that is the value of the view when using the stairs or the elevators.
Comfort and safety variables can also be envisaged. Foster and Hillsdon
(2004) consider the possible impact of health campaigns stimulating the
use of stairs, but they did not find significant evidence of their impact in
their studies.

The structure of the error term for these models should be similar to
traditional mode choice models, where the logit model is usually appropri-
ate.

3.4 Route choice

Route choice models are traditionally based on a network structure (Bovy
and Stern, 1990, Ramming, 2001, Frejinger, 2008). In the pedestrian con-
text, there is no physical network infrastructure associated with the move-
ments of the individuals (Hoogendoorn and Bovy, 2004). Within a discrete
choice framework, two approaches can be considered.

A first possibility is to design a virtual network structure. The nodes
would correspond to the key decision points (doors, intersections of cor-
ridors, crossways, stairs, elevators, etc.), and the links would connect ad-
jacent nodes. Note that such a network would typically be denser than a
road network, as a great deal of nodes may be necessary in the presence of
large spaces. Also, it must not be assumed that the pedestrians will exactly
follow the link of this virtual networks, and the associated walking model
must be designed accordingly. Network-free model estimation, as proposed
by Bierlaire and Frejinger (2008), is then necessary. When the virtual net-
work is defined, the usual complexities of route choice models must be
addressed, including the very large size of the choice sets (Frejinger, 2007)
and the high structural correlation among the paths (Frejinger and Bier-
laire, 2007).

Another possibility would consist in assuming a more myopic behavior
of the pedestrians, where they would choose the next intermediary point
on their way to the destination. The set of possible intermediary points
can be constructed similarly to the nodes of the virtual network mentioned
above, but may also be dynamically updated as the pedestrian moves and
discovers her environment.
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Compared to a network-based approach, the choice set contains the
list of potential intermediary stops, which has no combinatorial dimension.
The variables describing each of them should reflect not only the location
of the place itself, but also all the elements that will be met on the way to
it. This is where a combinatorial dimension may increase the complexity
of the model. However, this can be controlled by excluding from the choice
set the alternatives which are quite distant from the current location, so
that the number of elements in between is bounded. The choice set can
then be updated dynamically as the pedestrian moves.

Inspired by the walking model proposed by Antonini, Bierlaire and We-
ber (2006), and by suggestions from Fosgerau to address the complexity of
traditional route choice models, this modeling scheme have several advan-
tages. Structurally less complex than network-based approaches, it may
also be appropriate as a basis to derive models capturing phenomenons
such as impulse stops.

The spatial dimension of this choice would suggest an error structure
based on mixtures of logit models, with error components explicitly cap-
turing the correlation. If the size of the choice set is too large, multivariate
extreme value models may be more appropriate, where the operational rep-
resentation proposed by Daly and Bierlaire (2006) should be considered,
together with sampling of alternatives (Bierlaire et al., 2008).

3.5 Walking behavior: the choice of the next step

The choice of the next step is central in the pedestrian modeling. It rep-
resents the instantaneous decision, and implies a lot of factors. In this
context, Antonini, Bierlaire and Weber (2006) propose a discrete choice
model where the pedestrian visual space is discretized in a set of possible
next steps, corresponding to the choice set. It is dynamic, evolving with
the individual’s current speed and direction. The choice set is multidimen-
sional, combining three acceleration patterns (deceleration to 0.75 times
the current speed, same speed, and acceleration to 1.25 times the current
speed) with 11 possible directions. While the discretization of directions
is relatively straightforward and natural, the discretization based on ac-
celeration patterns can be done in several ways, as discussed in the next
subsection.

The choice set could be adapted to the environment. For example on
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a straight and large side-walk, the number of considered direction could
be decreased, if pedestrians are unlikely to make significant changes of
direction. It could also be adapted to pedestrian characteristics, such as
age, sex, height, visual angle, trip purpose, or group membership. Crassini
et al. (1988) performed visual experiments comparing young and elderly
people and quantitatively measured the perceptions differences.

The utility function associated with a given alternative, that is with a
given combination of location and acceleration, must capture various be-
havioral patterns. Speed and interaction patterns are discussed in the fol-
lowing subsections. T'wo orientation patterns must also be considered. The
first captures the propensity of pedestrians to keep their current direction,
following a smooth and regular path. This is consistent with the findings
of Turner (2001) who provide angular analysis of walking environments
such as buildings. The second captures the attraction of the destination,
consistently with Helbing et al. (2002) who state that pedestrians want to
reach as fast as possible their destinations in non crowed situations. There-
fore, alternatives allowing the pedestrian to move closer to the destination
should have a higher utility. Antonini, Bierlaire and Weber (2006) and
Robin et al. (2009) include the angle between the direction d; associated
with a given alternative i and the current direction to capture the first
pattern. They also include the angle between d; and the direction towards
the destination for the second pattern, as well as the distance between the
position of the next step and the destination.

The multi-dimensional nature of the choice set induces structural cor-
relation among the alternatives, which suggests the use of a cross nested
logit (CNL) model (Bierlaire, 2006) or an error component model (Walker
et al., 2007). Moreover, the typical panel nature of the data, where the same
individual is observed over time, suggests the presence of unobserved het-
erogeneity which should be modeled using an error component distributed
across the population and not across the observations (Train, 2003, Section
6.7).

3.6 Walking behavior: the choice of the speed

Speed modeling can be considered in two ways. We described above how it
can be integrated in the “next step” model. A second approach consists in
considering the choice of the speed independently from other walking deci-

14



sions. In both cases, there are typically two ways of defining the choice set.
It can be a list of possible absolute speeds, ranging from 0 to the maximum
possible speed that can be achieved by a pedestrian, discretized in some
appropriate way. Although they do not use a discrete choice framework,
Blue and Adler (1998) adopt a similar approach in a cellular automata con-
text. Wakim et al. (2004) consider “standing still”, “walking”, “jogging”
and “running” in a Markov chain process. It can also be a list of possi-
ble modifications relative to the current speed. These modifications can
be defined in absolute terms (e.g. + 0.1lm/s) or in relative terms (e.g. x
1.10). The former model is more natural, but must integrate mechanisms
avoiding unrealistic variations in speed.

Many variables may explain the speed behavior and can be included in
the model specification. The first set of variables is directly inspired from
macroscopic flow theory, where the relationships between flow, density and
speed of pedestrians are characterized. Therefore, current density, flow
or combination of the two should be integrated as explanatory variables.
Kessel et al. (2002) propose a microscopic model based on the fundamental
relation between walking speed and crowd density. Seyfried et al. (2005)
analyze experimentally the microscopic causes of the velocity decrease in
the presence of medium or high densities, such as frequency of passing
manoeuvres and internal crowd frictions. Also, pedestrians characteristics,
such as age, height, sex, trip purpose influence the velocity. For instance,
Coffin and Morrall (1995) analyze the speed behavior of elderly people
on crosswalks in order to improve such infrastructure in occidental aging
societies.

The pedestrian environment is of course predominant in the speed
choice process. An arriving train, a traffic light turning to red while in
the middle of the crosswalk, or the presence of a slow group of people are
events that trigger change of speeds.

Among the possible speeds that a pedestrian may select, the zero speed
has a different nature and must be treated separately. The variables ex-
plaining the choice of a zero speed may be different from the variables ex-
plaining another speed regime. For instance, the presence of an impassable
obstacle, the sudden perception of a danger or the occurrence of various
external stimuli (traffic light, advertisements, etc.) may cause a pedestrian
to stop.

It is important also that the speed model is able to manage restarts
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after stops. For instance, if the choice set is defined based on relative mod-
ifications of the current speed (e.g. +10%), it is obviously not appropriate
to model the restart. Also, if an impassable obstacle fills in the visual field
of a pedestrian, the restart cannot occur before the direction is updated,
clearing the visual field.

Finally, the speed may be influenced by the various interactions dis-
cussed below (group behavior, leader-follower, collision avoidance).

Depending on the nature of the choice set, the type of correlation be-
tween the error terms may vary, but it is seldom the case that independence
can be safely assumed. Indeed, among the possible speed changes, the er-
ror terms of all alternatives corresponding to an acceleration are likely to
be correlated, as well as the error terms of all alternatives corresponding
to a deceleration. If the choice set contains a list of absolute speeds, two
consecutive values are likely to be perceived more similar than two different
values. In this case, models similar to departure time choice model (such
as the Ordered GEV model by Small, 1987, which is a special instance of
a CNL) are appropriate. Clearly, more complex MEV models, as well as
error component models are relevant here as well.

3.7 Interactions: group behavior

Group behavior relates to the adjustment of individual behavior to comply
to groupwise behavioral patterns. It can be motivated by behavioral affini-
ties (fast people passing slower individuals in a dense crowd), social links
among individuals, such as friends or relatives or simply fortuitous spatial
proximity.

Assuming that the groups are clearly and unambiguously identified
(which is by itself a challenge, as groups can split or merge dynamically),
there are two ways of modeling this behavior. First, the decision-maker
can be considered as the group itself, and its various moving decisions are
modeled as a joined choice accounting for the larger physical space occu-
pied by the group. It is similar to the concept of “packets” used in traffic
simulation (Ben-Akiva et al., 1994, Cornélis and Toint, 1998). Second, the
group characteristics, such as size, type or speed, can be considered as ex-
ogenous to the model describing the choices of a specific member of the
group. Clearly, the two models can be merged in a two stages framework,
where the group behavior is modeled at the higher level, and the individual
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behavior is modeled conditional to the group’s.

Note that in addition to the moving behavior, the decision for a given
individual to belong to a group can also be modeled in a discrete choice
framework, where behavioral, social and spatial similarities are typical ex-
planatory variables.

3.8 Interactions: leader-follower

A leader-follower model capture the propensity of an individual to adjust
(consciously or unconsciously) her speed and direction to another individ-
ual in order to make her way through a crowd. A similar type of behavior
can be modeled in an emergency context, where trained employees may
serve as leaders in an evacuation procedure (Pelechano and Badler, 2006).

Two types of choice can be modeled. First, the choice of a leader (or
the decision not to follow anybody) is influenced by the characteristics of
the surrounding crowd (density, speed, etc.) as well as the behavior of the
potential leaders. Pedestrians in the visual field, and with behavior close
to the desired target, particularly in terms of desired speed and direction,
are more likely to be considered. In the literature, the deterministic choice
of the nearest potential leader has been proposed by Blue and Adler (1999)
and Robin et al. (2009), suggesting that the distance would be an important
explanatory variable in a discrete choice model.

The second type of choice is the reaction to the leader’s behavior. Robin
et al. (2009) suggest an impact of the leader on the choice of the speed and
the direction. Other choices, such as route or even destination can also
potentially be affected by the leader’s behavior.

The estimation of such models is complicated because the choice itself
is not really observed, and can only be guessed by the analyst. It should
be modeled as a latent construct.

Note that a great deal of insights can be derived from driving behavior
models (Toledo et al., 2007) where car-following (Chandler et al., 1958) and
lane changing (Ahmed et al., 1996) models play a key role.

3.9 Interactions: collision avoidance

Instead of being attracted by another individual, and positively influenced,
a pedestrian in a collision avoidance context is repelled and negatively

17



influenced by somebody else.

While the impacts themselves on the speed and direction are clearly
different, the process of identifying the individual to avoid can be mod-
eled with a discrete choice framework, in a way similar to the selection of
the follower described above. As before, the identification of a potentially
colliding individual is influenced by the characteristics of the surrounding
crowd (density, speed, etc.) as well as the behavior of that person. Pedes-
trians in the visual field with speed and direction suggesting a possible
collision are more likely to be considered in the choice set. Robin et al.
(2009) select the “candidate” such that the angle of the two directions is
the closest to 7, suggesting that the angle would be an important explana-
tory variable in a discrete choice model. Also, the distance and the speed
are important variables, as they characterize the imminence of the collision.

3.10 Interactions: other scene elements

During the walking process, individuals have to interact with various ele-
ments of the scene, such as cars (on crossing road), side-walk environment,
or even isolated obstacles. Again, we distinguish between what elements
influence the behavior, and how.

On crossing roads, pedestrians interact with cars. Himanen and Kul-
mala (1988) propose a discrete choice framework to model interactions
between drivers and pedestrians on crossing roads without traffic lights.
Pedestrian could pass or stop , and drivers brake or weave. The explana-
tory variables of their model are the number of pedestrians simultaneously
crossing, the city size, the vehicle speed and the vehicle size.

The crossing road modeling can be extended and adapted to the in-
teraction between pedestrians and potentially dangerous elements of the
scene, such as parking exits, or streetcar lines. Still, the pedestrian chooses
between passing, stopping or getting around (not always available). The
choice is influenced by the pedestrian characteristics, such as determina-
tion, or by the level of danger (characterized, for instance, by the vehicle
speed). Evans and Norman (1998) reports a study on the pedestrians road
crossing intentions based on the theory of planned behavior. Questionnaires
with several crossing manners and scenarios were proposed to respondents.
The perceived control of the situation appears to be crucial in the decision
making process.
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Corners are present at crossings, either implying corridors or side-walks.
Those immobile scene elements can increase the likelihood of pedestrian
collisions, due to lack of visibility. Different options can be combined by
the pedestrian to anticipate such collisions, such as move away from the
wall to improve the visual perception, or decelerate (or even stop) at the
crossing to check if there is any potential collider. Many factors influence
these decisions such as the pedestrian prior experience and characteristics
(age, gender, etc.), crowd density, crossing geometry such as angle between
corridors or visibility.

Visual advertisements such as posters, screens or shop windows are de-
signed to attract pedestrians’ attention. The walker can choose to stop in
order to improve her knowledge of the displayed elements, to slow down
to glance at it, or to ignore it and continue walking. Attraction must be
included in the next step choice model and speed choice model, in order
to account for the walking changes due to the advertisement. The stop de-
cision should be considered independently. In addition to the pedestrian’s
socio-economic characteristics, her current activity and destination, as well
as her prior experience with the elements on display influence the choice.
The visual attributes of the poster are also crucial. For example, Kerr et al.
(2001) perform several experiments in stations and shopping centers, to test
the influence of health promotion posters on the pedestrian choice between
stairs and escalators. They show that posters size and message have a high
influence on the individual perception. In addition, other attributes of the
visual form, such as color, or location should also be considered.

Doors are common in public spaces. A standard transparent door is an
obstacle that produces only sporadic speed decrease in free-flow-conditions.
In the presence of high densities, notion of priorities have to be considered.
If a dense crowd tries to pass through the door in one direction, and a
single pedestrian tries in the other direction, the latter has a tendency to
let pass the crowd. Several meanings of ’let pass’ can be considered. In-
deed the pedestrian can anticipate the interaction by decreasing her speed,
or modify her trajectory and speed, or even stop at the door. This deci-
sion can be modeled in a discrete choice framework. Crowd density, door
characteristics, such as dimension and type, and pedestrian characteristics
influence the choice (Daamen et al., forthcoming).

Side-walks are full of little elements such as benches, trees, garbage
cans or streetlights. They could possibly be modeled as static pedestrians,
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so that the interactions issues described before are applicable. But they
can also be considered independently, because of their specificities, such as
associated danger. Pedestrians have several possibilities to avoid collisions
with those elements: go round by the left, or by the right, stop or turn
back. The crowd density is crucial to deal with this decision, as well as
pedestrian characteristics.

4 Conclusion

Pedestrian behavior is a complex and important phenomenon. Capturing
and forecasting it require advanced modeling and simulation tools. We
have tried here to analyze various behavioral dimensions in terms of choice.
Not only this is a standard approach in travel demand analysis, but the
availability of operational models, such as discrete choice models, justifies
to investigate the behavior from the choice viewpoint.

We conclude from this discussion that, if indeed many behavioral di-
mensions of pedestrian can be considered as choices (as detailed in Section
2), deriving operational models for these choices can be quite complex.
The most important reason is that most of these choices are performed at
the same time, and a decomposition into a sequence of choices is often not
appropriate. The “four-step” approach adopted in travel demand analy-
sis, where travel behavior is decomposed into location choice, destination
choice, mode choice and route choice, cannot be applied for pedestrian
without major adjustments. Consequently, the complexity of the corre-
sponding models may preclude their use in real applications. A second
reason is the short lifetime of some of the choices, as decisions associated
with the destination, the route or even with the activity itself are subject
to frequent changes. Consequently, the dynamic of the choices must be
accounted for. A third major issue is the availability of appropriate data.
Although recent developments in GPS data collection and video image anal-
ysis have allowed for the modeling of some complex behavioral dimensions,
the detailed observation of pedestrian behavior is still a very complex issue.

In summary, we believe that investigating pedestrian behavior in terms
of choice behavior is an exciting field of research, with many open issues
and a high potential. We hope that this document will stimulate research
in this direction.
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