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Abstract

In this paper, we compare two methods to model the formation of choice
sets in the context of discrete choice models. The first method is the
probabilistic approach proposed by (Manski, 1977), who models the choice
probability as the joint probability of selecting a choice set and an alter-
native from this set. This approach is theoretically sound and unbiased,
but it is hard to implement due to the complexity that arises from the
combinatorial number of possible choice sets. The second method, known
as the Constrained Multinomial Logit (CMNL), uses explicit alternative
elimination. It is easier to implement but can only be understood as an
approximation of Manski’s approach. We analyze in which situations this
approximation is appropriate by estimating models with both approaches
over synthetic data and comparing the results.

1 Introduction

In standard choice models, it is assumed that the alternatives considered
by the decision maker can be exogenously specified by the analyst. The
choice set is thus characterized by deterministic rules based on the decision-
maker and the choice context. For example, single-room apartments are not
considered by families with children in a house choice context, train is not
considered as a possible transportation mode if it involves a long walk to
reach the train station, etc. There are, however, many situations where the
deterministic choice set generation procedure is not satisfactory, or even
possible. It may be due to fuzzy rules (how long is a “long walk”?), or
unavailability of data (the number of children in the household is unknown
to the analyst).

Modeling explicitly the choice set generation process involves a combinato-
rial complexity, which make the models intractable except for some specific
instances (Manski, 1977). Therefore, some heuristics have been proposed
in the literature that derive tractable models by approximating the choice
set generation process, such as the Implicit Availability/Perception (IAP)
model by (Cascetta & Papola, 2001) or the Constrained Multinomial Logit
(CMNL, see (Martinez et al., 2009)). The objective of this paper is to



empirically analyze the quality of the CMNL model when estimated from
synthetic data for which the true choice set formation logic is known.

The paper is organized as follows. In Section [2] and [3, we review the prob-
abilistic choice set approach and the Constrained Multinomial Logit. In
Section [4], we compare these two approaches, first through a very simple
example and, second, by estimating both models over synthetic data. Sec-
tion Bl concludes the paper and identifies possible further work.

2 Probabilistic choice set generation

The most commonly used discrete choice model, the Multinomial Logit
(MNL), assumes that the decision maker considers a subset of feasible alter-
natives (the choice set) when facing a choice. The probability of individual
n choosing alternative 1 is

Vin
V;
ZjeCn eon

where Vi, is the deterministic utility of alternative i for individual n and
C,, is this individual’s choice set. The choice set is a subset of the universal
choice set C and may vary across individuals. A very usual and convenient
way to account for this is the use of deterministic rules to define the avail-
ability of an alternative. This is expressed through indicators that describe
the availability of an alternative to a decision maker: A;, = 1 if alternative
i is available to individual n, O otherwise. Using these indicators, we can
write any choice model as

Pn(l) = (1)

Pn(1|cn) = Pr (uin > ujm \V/) € Cn)
= Pr (Uin +In Ain > an + In Ajn, \V/) c C) (2)

where U;, is the random utility of alternative i for decision maker n. For
an unavailable alternative, this adds In0 = —oo to its utility, whereas the
addition of In1 = 0 has no effect on the utility of an available alternative.

In the case of a Multinomial Logit, this generates choice probabilities of

the form

e\/in+1nAin
. 3

)
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This probability is equivalent to (I]) apart from the fact that (i) the utilities
are modified to account for the availability of alternatives and (ii) the sum
in the denominator runs over all alternatives in the universal choice set.
Usually, the availability indicators are defined from information about the
decision maker. A classical example of this is choosing the car mode only
if a car is owned or not taking the train if the train station is located
too far away. However, in many cases, the availability of an alternative
may depend on unobserved attributes or complex interactions between the
decision maker and his environment. In these cases, from the point of view
of the analyst, the choice set is a latent construct since nothing is observed
about it except the chosen alternative. This requires the use of a choice set
generation model.

The most general way to account for choice set generation is to define the
probability of choosing an alternative i as conditional on the probability of
observing the different possible choice sets, as proposed by (Manski, 1977):

Pn(i) = Z Pn(i’Cm) : Pn(Cm) (4)

CnCC

where P,(i1|C,,) is the conditional probability for individual n of choos-
ing alternative i given the choice set C,, and P,(C,,) is the probability
of individual n considering choice set C,,. Since the true choice set (C,,
in equation [1]) is unknown, we must account for every possible subset C,,
that can be built from the universal choice set. This form for the choice
probability can be understood as a a two stage approach, where the alter-
native selection and the choice set generation are two different processes.
This approach, which we from now on call the “Probabilistic Choice Set”
(PCS) model, is appealing because it is theoretically sound and allows us-
ing different models at each stage, but it is hardly applicable to large scale
choice problems due to the computational complexity that arises from the
combinatorial number of possible choice sets: If the number of alternatives
in the universal choice set is J, the number of possible choice sets is (2/ —1).

Several authors, including (Swait & Ben-Akiva, 1987), (Ben-Akiva & Boc-
cara, 1995), and (Swait, 2001), have addressed the choice set generation
process starting from Manski’s approach. We analyze them in the follow-
ing, with an emphasis on the modeling of the choice set probability.

Both (Swait & Ben-Akiva, 1987) and (Ben-Akiva & Boccara, 1995) propose
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the use of explicit random constraints to determine the choice set genera-
tion probability. This methodology defines the probability of considering
a choice set as a function of the availability of the different alternatives in
the universal choice set:

HiGCm Gin - ngcm (1— d)jn)
T— erc(] — Cbkn)

where ¢inis the probability of alternative i being available to user n. The
previous expression assumes independency of the availability probabilities,
which are modeled as binary logits that depend on some of the alternative’s
attributes. As mentioned before, despite the sound theoretical base of this
model, there are limitations for its application due to the combinatorial
number of possible choice sets.

Pn(cm) = (5)

(Swait, 2001) proposes to model the choice set generation as an implicit part
of the choice process in a multivariate extreme value (MEV) framework,
requiring no exogenous information. Here, choice sets are not separate
constructs but another expression of preferences. The probability of con-
sidering a choice set is defined as the probability of that choice set giving
the maximum expected utility to an individual n:

elJ-In,Cm

- FLIn,C
chgce *

where w is the scale parameter for the higher level decision (choice set selec-
tion) and I, ¢, is the inclusive value (the “logsum” or expected maximum
utility) of choice set C,, for decision maker n:

Pr(Cin) (6)

1
Lhc,=—1In umev‘”. 7
Cn = > (7)

JECm

Swait’s probabilistic choice set generation approach does not require addi-
tional assumptions by the analyst on which attributes affect the alterna-
tive’s availability, but it is expensive to apply since it also requires the enu-
meration of all possible sub-sets that can be constructed from the universal
choice set. Beyond this, it requires the estimation of a scale parameter u,,
for each one of these subsets.



3 Constrained Multinomial logit

Given the limitations of the probabilistic choice set approach presented in
the previous section, some authors have proposed simplified approximations
for modeling choice set generation as an implicit part of the choice process.
(Cascetta & Papola, 2001) introduce the Implicit Availability /Perception
Logit model as a way to incorporate awareness of paths into route choice
modeling without requiring an explicit choice set generation step. The IAP
Logit has a similar form as (3]) but, instead of using discrete availability
indicators, the utility function is shifted using the probability of an alter-
native being available. A similar approach that penalizes the utilities of
“dominated” alternatives is proposed in (Cascetta et al., 2007).

(Martinez et al., 2009) expand the IAP idea and propose the Constrained
Multinomial Logit. They assume that the utility is separated in a com-
pensatory and a non-compensatory part, where the compensatory part
accounts for the trade-off between the alternative’s attributes, while the
non-compensatory part indicates the availability of the alternative:

Vin = Vin + In ¢ (1) (8)

where Vi, is the “classical” utility function of alternative i for decision
maker n and In ¢, (i) represents the non-compensatory part of the utility.
Using this utility function, the expression for the logit choice probability
becomes (3) with the availability indicators A, replaced by the cut-off
functions ¢, (1). These cut-off functions can be interpreted as counterparts
to the availability probabilities used in the random constraints approach

B).
The functional form for ¢,,(i) is assumed to be a binary logit, considering

that the availability of an alternative is related with constrains/thresholds

for its attributes: 1

1+ exp(w(Yin—a)) (9)
where Y, is a variable related to the availability of alternative 1 for decision
maker n, the a parameter is the value at which the constraint is most likely
to bind, and w is the scale parameter of the binary logit. Both a and w are
to be estimated. The intuition is that when the attribute Y;, exceeds q,
the availability ¢, (i) of alternative i tends to zero, while this availability

$n (i)




tends to one when the value of the attribute is below a:

1 { 1if Yy, — a — —o0

bnll) = 1 Texp(w(Yin—a)) | 0if Yin —a — +oo.

= (10)
The previous expression represents an upper value cut-off, where a rep-
resents the maximum value that the attribute Y;, can have in order to
consider alternative i. To model a lower value cut-off we only need to
invert the sign of the scale parameter w.

The term In ¢,,(1) can be interpreted as a penalty in the utility function
when the constraint is violated since it has no effect when ¢, (i) = 1
(In(1) = 0) and decreases the utility to minus infinity when ¢, (i) = 0
(In(0) = —o0). Another way to interpret this function is as the probability
of an alternative belonging to the true choice set that decision maker n
considers when making his choice.

The cut-off function can be generalized to account for more than one con-
straint using the following expression:

&)n(l) = H d)nk(l) (11)
k

where ¢ represents a constraint function related with the kth attribute
of the alternative.

The CMNL approach has advantages over the PCS model from a practical
point of view since it does not require enumerating the choice sets, which
makes it easier to specify and estimate. However, the CMNL is a heuristic
that is based on assumptions about the functional form of the utility func-
tion. The CMNL can thus be understood as an approximation to the PCS
model. The next section evaluate the quality of this approximation.

4 Comparison of CMNL with PCS

This section compares the CMNL model with the PCS model. For this, we
first present a simple example where we analytically analyze the difference
between the choice probabilities obtained using both models. Second, we
estimated CMNL and PCS models over synthetic data and compare the
results. For notational simplicity, we subsequently omit the index n for
the decision-maker.
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Figure 1: Example of PCS

4.1 Simple example

Consider a multinomial logit model with only 2 alternatives, where alterna-
tive 1 is always available (¢(1) = 1) and alternative 2 has a certain proba-
bility ¢(2) of being considered as available by the decision maker. Figure
shows the structure of the decision tree if we consider every possible combi-
nation of alternatives as a choice set. This can be seen as a situation where
the decision maker is to some extent captive to alternative 1, see also the
captivity logit model proposed in (Gaudry & Dagenais, 1979).

Under the CMNL assumption, the probability of choosing alternative 1 is

easily specified as

eV

P(1) = eVi + eVithnd(2)” (12)

Under the PCS assumption (equation [4]), the probability of choosing alter-
native 1 becomes

A%

P(1) :P({1})~ETI+P({1,2})'6\/16W

Vi

(13)

where P({1}) is the probability of considering the choice set composed only
of alternative 1 and P({1, 2}) is the probability of considering the choice set
including both alternatives. According to (&), the choice set probabilities

are
(1) - (1—¢(2))
(T—=¢(1) - (1T—0(2)

PIY = — =1-6(2) (14)

and
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Figure 2: Choice probability of alternative 1 (V; =V,)

¢(1) - $(2)
1—=(T=¢(1) - (1—¢(2)

The probability of considering choice set {2} is zero because alternative 1
is always be available.

P({1,2})

=$(2). (15)

In the deterministic limit ($(2) = 0 or $(2) = 1), both approaches collapse
into (3]) and yield the same results. However, it is interesting to see what
happens when ¢ (2) takes values between zero and one. The resulting choice
probabilities are shown in Figure 2], assuming the same utility level V; =V,
for both alternatives. Results for a plain multinomial logit model assuming
only the full choice set are included for comparison. This figure shows that
the CMNL is a good approximation of the PCS only when ¢(2) becomes
either zero or one, but it underestimates the probability of alternative 1
elsewhere. If the utility for alternative 1 is bigger than the utility for
alternative 2, the approximation improves, which can be seen in Figure
Bl However, if the utility of alternative 1 is smaller than the utility of
alternative 2, the CMNL becomes a poor approximation of the PCS for
intermediate ¢(2) values, which is demonstrated in Figure [4l

These results can be interpreted as an unwanted compensatory effect in
the CMNL: The constraint is enforced by modifying the utility of the con-
strained alternative. However, as the utility of this alternative gets higher,
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Figure 3: Probability of alternative 1 (V; > V5)
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Figure 4: Choice probability of alternative 1 (V; < V,)
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it eventually does compensate the constraint function to some extent. This
explains that for V; > V,, where alternative 2 is relatively unattractive
anyway, the CMNL provides a good approximation to the PCS, whereas
for V; < V,, where the attractiveness of alternative 2 works against its
constraint, the deviation from the PCS becomes large.

This indicates at least two situations in which the CMNL is a good ap-
proximation of the PCS: (i) the constraint functions are steep enough to
approach a deterministic limit, and (ii) a positive correlation between the
availability of an alternative and its utility level exists. The performance
of the CMNL when applied to a data set with rather soft constraints is
investigated in the next section.

4.2 Synthetic data

This section describes a series of controlled experiments where some of the
data is synthetically generated. We start from a real stated preference data
set that was collected for the analysis of a hypothetical high speed train in
Switzerland (Bierlaire et al., 2001). The alternatives are:

1. Driving a car (CAR)
2. Regular Train (TRAIN)

3. Swissmetro, the future high speed train (SM)

From this data set, which consists of 5607 observations, we use only the
attributes of the alternatives to simulate synthetic choices based on pre-
specified utility functions and constraints.

Regarding the constraints, it is assumed that the TRAIN and the SM alter-
native are always available, whereas the availability of the CAR alternative
depends on the travel time according to

1
YA = el (TToan/60 — a))’ o)

which states that the probability of considering CAR as an available al-
ternative decreases with the travel time TTcag, in minutes, and that this
probability is 0.5 when the availability threshold a, in hours, is reached.
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Table 1: Parameter descriptions and values

Parameter | Description Value Unit
ASCcar Alternative specific constant for car 0.3 -
ASCgsum Alternative specific constant for Swissmetro | 0.4 -

Beost Cost parameter -0.001 CHF
Bt In vehicle travel time parameter -0.001 Minutes
Phe Headway (betw. successive trains/metros) -0.005 Minutes
a Availability threshold 3 Hours
w Availability dispersion 1,2,3,5,10 | -

This implies that, depending on the availability of the CAR alternative,
there are two possible choice sets: the full choice set and the choice set
containing only the TRAIN and the SM alternative. The random con-
straints approach (Ben-Akiva & Boccara, 1995) defines the probability of
each choice set as follows:

¢(TRAIN)P(SM)(1 — ¢(CAR))
1—(1—¢(CAR))(1 — ¢(TRAIN))(1 — $(SM))
— 1— &(CAR) (17)

P(TRAIN, SM)

and, accordingly,

P(CAR, TRAIN, SM) = ¢(CAR). (18)

The synthetic choices are simulated by (i) sampling a choice set for each
decision maker and (ii) sampling an alternative for each decision maker
from his choice set using a multinomial logit model with the following
specification for the utility functions:

VL(CAR) = ASCcar+Bcost - COSTcar + Bit - TTcar
VL(TRAIN) = Peost - COSTrraN + Btt - TTrrAINT Phe - HETRAIN
Vh(SM) = ASCsm+Peost - COSTsm + Pt - TTsy + Pre - HEsM(19)

A description of the parameters and their values used for the choice sam-
pling procedure are given in Table [Il 100 choice data sets were generated
for each value of w. These values generate constraints with different levels
of dispersion, from very wide constraints (w = 1) to very steep constraints

12
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Figure 5: Shape of the constraint for different values of w

(w = 10). Figure [l shows the shape of some of these constraint functions.
Estimation results for both the PCS and the CMNL model are given in
Tables P and [Bl The presented values are averaged over all 100 experiments
per w value.

As expected, the results for the PCS model are unbiased and all estimates
are significant with 95% probability when tested against the real values.
The estimates for the CMNL are also close to the real values, but many
of them (marked with *) are not significant when tested against the real
values. The quality of the CMNL estimates improves with decreasing dis-
persion (increasing w). This is consistent with the findings of Section [£1]

Figure [6l shows the t-statistics for the cost and travel time parameter over
different w values for the PCS model and the CMNL model. The quality
of the estimates is constant across different values of w for the PCS model.
The quality of the CMNL estimates increases with w, and their t-statistics
reach acceptable values when the constraint functions become very steep.
The frequent occurrence of insignificant CMNL parameters for smaller w
values results from the model’s inadequacy in these conditions: If the func-
tional form of the CMNL is inconsistent with that of the PCS model based
on which the synthetic data is generated, then the CMNL parameters be-
come weak in explaining the data, which translates in estimation results of
low significance.
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Table 2: Estimation results for PCS model

real w value 1 2 3 5 10
parameter | real value | estimate | t-test | estimate | t-test | estimate | t-test | estimate | t-test | estimate | t-test
ASCcar 0.3 0.304 0.027 0.288 0.113 0.300 0.010 0.301 0.012 0.314 0.184
ASCsm 0.4 0.396 0.044 0.399 0.010 0.405 0.053 0.401 0.017 0.410 0.151
Beost -0.01 -0.010 0.283 -0.010 0.001 -0.010 0.179 -0.010 0.052 -0.010 0.012
Phe -0.005 -0.005 0.241 -0.005 0.010 -0.005 0.048 -0.005 0.082 -0.005 0.078
Btime -0.01 -0.01 0.074 -0.010 0.050 -0.010 0.049 -0.010 0.003 -0.010 0.001
a 3 2.963 0.019 3.008 0.118 3.000 0.100 2.998 0.081 3.002 0.101
w see top 1.003 0.028 2.014 0.079 3.066 0.210 5.095 0.170 10.523 0.353
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Table 3: Estimation results for CMNL model

real w value 1 2 3 5 10
parameter | real value | estimate | t-test estimate | t-test | estimate | t-test | estimate | t-test | estimate | t-test
ASCcar 0.3 0.503 0.950 0.421 1.153 0.406 1.365 0.380 0.988 0.326 0.313
ASCsm 0.4 0.565 2.013 * 0.550 2.375 * 0.536 1.804 0.506 1.485 0.463 0.872
Bcost -0.01 -0.008 4.825 * -0.008 3.580 * -0.009 2.309 * -0.009 1.182 -0.010 0.613
Phe -0.005 -0.005 0.202 -0.005 0.151 -0.005 0.071 -0.005 0.120 -0.005 0.090
Btime -0.01 -0.007 3.929 * -0.008 3.645 * -0.008 2.813 * -0.009 2.316 * -0.009 1.523
a 3 2.186 1.753 2.656 3.073 * 2.773 3.762 * -2.869 3.305 * 2.948 1.864
w see top 1.043 0.239 2.094 0.403 3.118 0.431 5.238 0.424 12.146 3.149 *
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Figure 6: T-statistics for the cost and time parameter over w

16



5 Conclusions and further work

The CMNL is a proper approximation of the PCS only when the constraints
(or the availabilities of alternatives) tend to be deterministic. This reduces
the spectrum of possible applications of the CMNL but, at the same time,
confirms that it is convenient to use, especially when solving problems
with numerous alternatives where the behavior is expected to tend to a
deterministic alternative elimination process.

In further work, specific ways to determine when it is recommendable to
use the CMNL will be investigated, together with exploring a possible
correction or modification to the CMNL specification in order to make
it a reasonable approximation to the PCS approach even in scenarios with
large dispersion in the alternative availabilities. Appendix[Al provides some
additional insight into this problem. It demonstrates that the PCS also
collapses into the CMNL if all possible choice sets have the same logsum
value. An interesting question is to what extent this type of result can be
used to evaluate ez post if the CMNL is an appropriate model specification
for a given data set.

A Equivalence of PCS and CMNL for constant
logsums

Equating the choice probabilities for PCS and CMNL and omitting the
subscript n, we have, for all i in C,

(i€Cm b(i)ev
P Cn) = mov 20
C%C ZJGCm ev (G Zjecd)())evi (20)
and, equivalently,
1(i € Cm) d(i)
s o Gl =—oney 21
CmCC ZjGCm er ( ) Z]GC(I)())CV’ ( )

where 1(-) is the indicator function. We assume that

Z eV =1 (22)



for all C,,, with P(C,,) > 0. Then,

2 cpccli€ C)P(Cr) (1) (23)
I Z]'EC d)())e\/) .
To begin with, we equate only the numerators
D 1(i€ Cn)P(C) = d(i), (24)
CmCC

which specifies ¢(i) as the marginal probability that alternative i is con-
tained in any considered choice set. This is consistent with the definition
given in Section 8l Equating the denominators, substituting (24)), and re-
arranging terms then leads to

I = ) de

jeC

= > ) 1(j€Cn)P(CnleY

jeC CnCC

= ) P(Cn) ) Y, (25)
CmCC j€Cm

where the right-hand-side is nothing but the expectation of the constant I
value defined in (22)). Consequently, specification (24]) equates the PCS and
the CMNL for constant logsum terms. This also implies that the CMNL
model is a reasonable approximation of the PCS model in situations where
all choice sets have approximately the same logsums. Operationally, this
poses the question of how to identify such situations.
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