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AbstractIn this paper, we compare two methods to model the formation of choicesets in the context of discrete choice models. The �rst method is theprobabilistic approach proposed by (Manski, 1977), who models the choiceprobability as the joint probability of selecting a choice set and an alter-native from this set. This approach is theoretically sound and unbiased,but it is hard to implement due to the complexity that arises from thecombinatorial number of possible choice sets. The second method, knownas the Constrained Multinomial Logit (CMNL), uses explicit alternativeelimination. It is easier to implement but can only be understood as anapproximation of Manski's approach. We analyze in which situations thisapproximation is appropriate by estimating models with both approachesover synthetic data and comparing the results.1 IntroductionIn standard choice models, it is assumed that the alternatives consideredby the decision maker can be exogenously speci�ed by the analyst. Thechoice set is thus characterized by deterministic rules based on the decision-maker and the choice context. For example, single-room apartments are notconsidered by families with children in a house choice context, train is notconsidered as a possible transportation mode if it involves a long walk toreach the train station, etc. There are, however, many situations where thedeterministic choice set generation procedure is not satisfactory, or evenpossible. It may be due to fuzzy rules (how long is a �long walk�?), orunavailability of data (the number of children in the household is unknownto the analyst).Modeling explicitly the choice set generation process involves a combinato-rial complexity, which make the models intractable except for some speci�cinstances (Manski, 1977). Therefore, some heuristics have been proposedin the literature that derive tractable models by approximating the choiceset generation process, such as the Implicit Availability/Perception (IAP)model by (Cascetta & Papola, 2001) or the Constrained Multinomial Logit(CMNL, see (Martinez et al., 2009)). The objective of this paper is to2



empirically analyze the quality of the CMNL model when estimated fromsynthetic data for which the true choice set formation logic is known.The paper is organized as follows. In Section 2 and 3, we review the prob-abilistic choice set approach and the Constrained Multinomial Logit. InSection 4, we compare these two approaches, �rst through a very simpleexample and, second, by estimating both models over synthetic data. Sec-tion 5 concludes the paper and identi�es possible further work.2 Probabilistic choice set generationThe most commonly used discrete choice model, the Multinomial Logit(MNL), assumes that the decision maker considers a subset of feasible alter-natives (the choice set) when facing a choice. The probability of individual
n choosing alternative i is

Pn(i) =
eVin

∑
j∈Cn

eVjn
(1)where Vin is the deterministic utility of alternative i for individual n and

Cn is this individual's choice set. The choice set is a subset of the universalchoice set C and may vary across individuals. A very usual and convenientway to account for this is the use of deterministic rules to de�ne the avail-ability of an alternative. This is expressed through indicators that describethe availability of an alternative to a decision maker: Ain = 1 if alternative
i is available to individual n, 0 otherwise. Using these indicators, we canwrite any choice model as

Pn(i|Cn) = Pr (Uin ≥ Ujn, ∀j ∈ Cn)

= Pr (Uin + lnAin ≥ Ujn + lnAjn, ∀j ∈ C) (2)where Uin is the random utility of alternative i for decision maker n. Foran unavailable alternative, this adds ln 0 = −∞ to its utility, whereas theaddition of ln 1 = 0 has no e�ect on the utility of an available alternative.In the case of a Multinomial Logit, this generates choice probabilities ofthe form
Pn(i) =

eVin+lnAin

∑
j∈C eVjn+lnAjn

. (3)3



This probability is equivalent to (1) apart from the fact that (i) the utilitiesare modi�ed to account for the availability of alternatives and (ii) the sumin the denominator runs over all alternatives in the universal choice set.Usually, the availability indicators are de�ned from information about thedecision maker. A classical example of this is choosing the car mode onlyif a car is owned or not taking the train if the train station is locatedtoo far away. However, in many cases, the availability of an alternativemay depend on unobserved attributes or complex interactions between thedecision maker and his environment. In these cases, from the point of viewof the analyst, the choice set is a latent construct since nothing is observedabout it except the chosen alternative. This requires the use of a choice setgeneration model.The most general way to account for choice set generation is to de�ne theprobability of choosing an alternative i as conditional on the probability ofobserving the di�erent possible choice sets, as proposed by (Manski, 1977):
Pn(i) =

∑

Cm⊆C

Pn(i|Cm) · Pn(Cm) (4)where Pn(i|Cm) is the conditional probability for individual n of choos-ing alternative i given the choice set Cm and Pn(Cm) is the probabilityof individual n considering choice set Cm. Since the true choice set (Cnin equation 1) is unknown, we must account for every possible subset Cmthat can be built from the universal choice set. This form for the choiceprobability can be understood as a a two stage approach, where the alter-native selection and the choice set generation are two di�erent processes.This approach, which we from now on call the �Probabilistic Choice Set�(PCS) model, is appealing because it is theoretically sound and allows us-ing di�erent models at each stage, but it is hardly applicable to large scalechoice problems due to the computational complexity that arises from thecombinatorial number of possible choice sets: If the number of alternativesin the universal choice set is J, the number of possible choice sets is (2J−1).Several authors, including (Swait & Ben-Akiva, 1987), (Ben-Akiva & Boc-cara, 1995), and (Swait, 2001), have addressed the choice set generationprocess starting from Manski's approach. We analyze them in the follow-ing, with an emphasis on the modeling of the choice set probability.Both (Swait & Ben-Akiva, 1987) and (Ben-Akiva & Boccara, 1995) propose4



the use of explicit random constraints to determine the choice set genera-tion probability. This methodology de�nes the probability of consideringa choice set as a function of the availability of the di�erent alternatives inthe universal choice set:
Pn(Cm) =

∏
i∈Cm

φin ·
∏

j/∈Cm
(1 − φjn)

1 −
∏

k∈C(1 − φkn)
(5)where φinis the probability of alternative i being available to user n. Theprevious expression assumes independency of the availability probabilities,which are modeled as binary logits that depend on some of the alternative'sattributes. As mentioned before, despite the sound theoretical base of thismodel, there are limitations for its application due to the combinatorialnumber of possible choice sets.(Swait, 2001) proposes to model the choice set generation as an implicit partof the choice process in a multivariate extreme value (MEV) framework,requiring no exogenous information. Here, choice sets are not separateconstructs but another expression of preferences. The probability of con-sidering a choice set is de�ned as the probability of that choice set givingthe maximum expected utility to an individual n:

Pn(Cm) =
eµIn,Cm

∑
Ck⊆C eµIn,Ck

(6)where µ is the scale parameter for the higher level decision (choice set selec-tion) and In,Cm
is the inclusive value (the �logsum� or expected maximumutility) of choice set Cm for decision maker n:

In,Cm
=

1
µm

ln ∑

j∈Cm

µmeVnj . (7)Swait's probabilistic choice set generation approach does not require addi-tional assumptions by the analyst on which attributes a�ect the alterna-tive's availability, but it is expensive to apply since it also requires the enu-meration of all possible sub-sets that can be constructed from the universalchoice set. Beyond this, it requires the estimation of a scale parameter µmfor each one of these subsets.
5



3 Constrained Multinomial logitGiven the limitations of the probabilistic choice set approach presented inthe previous section, some authors have proposed simpli�ed approximationsfor modeling choice set generation as an implicit part of the choice process.(Cascetta & Papola, 2001) introduce the Implicit Availability/PerceptionLogit model as a way to incorporate awareness of paths into route choicemodeling without requiring an explicit choice set generation step. The IAPLogit has a similar form as (3) but, instead of using discrete availabilityindicators, the utility function is shifted using the probability of an alter-native being available. A similar approach that penalizes the utilities of�dominated� alternatives is proposed in (Cascetta et al., 2007).(Martinez et al., 2009) expand the IAP idea and propose the ConstrainedMultinomial Logit. They assume that the utility is separated in a com-pensatory and a non-compensatory part, where the compensatory partaccounts for the trade-o� between the alternative's attributes, while thenon-compensatory part indicates the availability of the alternative:�Vin = Vin + lnφn(i) (8)where Vin is the �classical� utility function of alternative i for decisionmaker n and lnφn(i) represents the non-compensatory part of the utility.Using this utility function, the expression for the logit choice probabilitybecomes (3) with the availability indicators Ain replaced by the cut-o�functions φn(i). These cut-o� functions can be interpreted as counterpartsto the availability probabilities used in the random constraints approach(5).The functional form for φn(i) is assumed to be a binary logit, consideringthat the availability of an alternative is related with constrains/thresholdsfor its attributes:
φn(i) =

1

1 + exp(ω(Yin − a))
(9)where Yin is a variable related to the availability of alternative i for decisionmaker n, the a parameter is the value at which the constraint is most likelyto bind, and ω is the scale parameter of the binary logit. Both a and ω areto be estimated. The intuition is that when the attribute Yin exceeds a,the availability φn(i) of alternative i tends to zero, while this availability6



tends to one when the value of the attribute is below a:
φn(i) =

1

1 + exp(ω(Yin − a))
=

{
1 if Yin − a → −∞

0 if Yin − a → +∞.
(10)The previous expression represents an upper value cut-o�, where a rep-resents the maximum value that the attribute Yin can have in order toconsider alternative i. To model a lower value cut-o� we only need toinvert the sign of the scale parameter ω.The term lnφn(i) can be interpreted as a penalty in the utility functionwhen the constraint is violated since it has no e�ect when φn(i) = 1(ln(1) = 0) and decreases the utility to minus in�nity when φn (i) = 0(ln(0) = −∞). Another way to interpret this function is as the probabilityof an alternative belonging to the true choice set that decision maker nconsiders when making his choice.The cut-o� function can be generalized to account for more than one con-straint using the following expression:�φn(i) =

∏

k

φnk(i) (11)where φnk represents a constraint function related with the kth attributeof the alternative.The CMNL approach has advantages over the PCS model from a practicalpoint of view since it does not require enumerating the choice sets, whichmakes it easier to specify and estimate. However, the CMNL is a heuristicthat is based on assumptions about the functional form of the utility func-tion. The CMNL can thus be understood as an approximation to the PCSmodel. The next section evaluate the quality of this approximation.4 Comparison of CMNL with PCSThis section compares the CMNL model with the PCS model. For this, we�rst present a simple example where we analytically analyze the di�erencebetween the choice probabilities obtained using both models. Second, weestimated CMNL and PCS models over synthetic data and compare theresults. For notational simplicity, we subsequently omit the index n forthe decision-maker. 7



Figure 1: Example of PCS4.1 Simple exampleConsider a multinomial logit model with only 2 alternatives, where alterna-tive 1 is always available (φ(1) = 1) and alternative 2 has a certain proba-bility φ(2) of being considered as available by the decision maker. Figure 1shows the structure of the decision tree if we consider every possible combi-nation of alternatives as a choice set. This can be seen as a situation wherethe decision maker is to some extent captive to alternative 1, see also thecaptivity logit model proposed in (Gaudry & Dagenais, 1979).Under the CMNL assumption, the probability of choosing alternative 1 iseasily speci�ed as
P(1) =

eV1

eV1 + eV1+lnφ(2)
. (12)Under the PCS assumption (equation 4), the probability of choosing alter-native 1 becomes

P (1) = P({1}) ·
eV1

eV1
+ P({1, 2}) ·

eV1

eV1 + eV2
(13)where P({1}) is the probability of considering the choice set composed onlyof alternative 1 and P({1, 2}) is the probability of considering the choice setincluding both alternatives. According to (5), the choice set probabilitiesare

P({1}) =
φ(1) · (1 − φ(2))

1 − (1 − φ(1)) · (1 − φ(2))
= 1 − φ(2) (14)and 8



Figure 2: Choice probability of alternative 1 (V1 = V2)
P({1, 2}) =

φ(1) · φ(2)

1 − (1 − φ(1)) · (1 − φ(2))
= φ(2). (15)The probability of considering choice set {2} is zero because alternative 1is always be available.In the deterministic limit (φ(2) = 0 or φ(2) = 1), both approaches collapseinto (3) and yield the same results. However, it is interesting to see whathappens when φ(2) takes values between zero and one. The resulting choiceprobabilities are shown in Figure 2, assuming the same utility level V1 = V2for both alternatives. Results for a plain multinomial logit model assumingonly the full choice set are included for comparison. This �gure shows thatthe CMNL is a good approximation of the PCS only when φ(2) becomeseither zero or one, but it underestimates the probability of alternative 1elsewhere. If the utility for alternative 1 is bigger than the utility foralternative 2, the approximation improves, which can be seen in Figure3. However, if the utility of alternative 1 is smaller than the utility ofalternative 2, the CMNL becomes a poor approximation of the PCS forintermediate φ(2) values, which is demonstrated in Figure 4.These results can be interpreted as an unwanted compensatory e�ect inthe CMNL: The constraint is enforced by modifying the utility of the con-strained alternative. However, as the utility of this alternative gets higher,9



Figure 3: Probability of alternative 1 (V1 > V2)

Figure 4: Choice probability of alternative 1 (V1 < V2)
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it eventually does compensate the constraint function to some extent. Thisexplains that for V1 > V2, where alternative 2 is relatively unattractiveanyway, the CMNL provides a good approximation to the PCS, whereasfor V1 < V2, where the attractiveness of alternative 2 works against itsconstraint, the deviation from the PCS becomes large.This indicates at least two situations in which the CMNL is a good ap-proximation of the PCS: (i) the constraint functions are steep enough toapproach a deterministic limit, and (ii) a positive correlation between theavailability of an alternative and its utility level exists. The performanceof the CMNL when applied to a data set with rather soft constraints isinvestigated in the next section.4.2 Synthetic dataThis section describes a series of controlled experiments where some of thedata is synthetically generated. We start from a real stated preference dataset that was collected for the analysis of a hypothetical high speed train inSwitzerland (Bierlaire et al., 2001). The alternatives are:1. Driving a car (CAR)2. Regular Train (TRAIN)3. Swissmetro, the future high speed train (SM)From this data set, which consists of 5607 observations, we use only theattributes of the alternatives to simulate synthetic choices based on pre-speci�ed utility functions and constraints.Regarding the constraints, it is assumed that the TRAIN and the SM alter-native are always available, whereas the availability of the CAR alternativedepends on the travel time according to
φ(CAR) =

1

1 + exp(ω(TTCAR/60 − a))
, (16)which states that the probability of considering CAR as an available al-ternative decreases with the travel time TTCAR, in minutes, and that thisprobability is 0.5 when the availability threshold a, in hours, is reached.11



Table 1: Parameter descriptions and valuesParameter Description Value UnitASCCAR Alternative speci�c constant for car 0.3 �ASCSM Alternative speci�c constant for Swissmetro 0.4 �
βcost Cost parameter -0.001 CHF
βtt In vehicle travel time parameter -0.001 Minutes
βhe Headway (betw. successive trains/metros) -0.005 Minutes
a Availability threshold 3 Hours
ω Availability dispersion 1,2,3,5,10 �This implies that, depending on the availability of the CAR alternative,there are two possible choice sets: the full choice set and the choice setcontaining only the TRAIN and the SM alternative. The random con-straints approach (Ben-Akiva & Boccara, 1995) de�nes the probability ofeach choice set as follows:

P(TRAIN, SM) =
φ(TRAIN)φ(SM)(1 − φ(CAR))

1 − (1 − φ(CAR))(1 − φ(TRAIN))(1 − φ(SM))

= 1 − φ(CAR) (17)and, accordingly,
P(CAR, TRAIN, SM) = φ(CAR). (18)The synthetic choices are simulated by (i) sampling a choice set for eachdecision maker and (ii) sampling an alternative for each decision makerfrom his choice set using a multinomial logit model with the followingspeci�cation for the utility functions:

Vn(CAR) = ASCCAR+βcost · COSTCAR + βtt ·TTCAR
Vn(TRAIN) = βcost · COSTTRAIN + βtt · TTTRAIN+βhe ·HETRAIN

Vn(SM) = ASCSM+βcost · COSTSM + βtt · TTSM + βhe · HESM(19)A description of the parameters and their values used for the choice sam-pling procedure are given in Table 1. 100 choice data sets were generatedfor each value of ω. These values generate constraints with di�erent levelsof dispersion, from very wide constraints (ω = 1) to very steep constraints12



Figure 5: Shape of the constraint for di�erent values of ω(ω = 10). Figure 5 shows the shape of some of these constraint functions.Estimation results for both the PCS and the CMNL model are given inTables 2 and 3. The presented values are averaged over all 100 experimentsper ω value.As expected, the results for the PCS model are unbiased and all estimatesare signi�cant with 95% probability when tested against the real values.The estimates for the CMNL are also close to the real values, but manyof them (marked with *) are not signi�cant when tested against the realvalues. The quality of the CMNL estimates improves with decreasing dis-persion (increasing ω). This is consistent with the �ndings of Section 4.1.Figure 6 shows the t-statistics for the cost and travel time parameter overdi�erent ω values for the PCS model and the CMNL model. The qualityof the estimates is constant across di�erent values of ω for the PCS model.The quality of the CMNL estimates increases with ω, and their t-statisticsreach acceptable values when the constraint functions become very steep.The frequent occurrence of insigni�cant CMNL parameters for smaller ωvalues results from the model's inadequacy in these conditions: If the func-tional form of the CMNL is inconsistent with that of the PCS model basedon which the synthetic data is generated, then the CMNL parameters be-come weak in explaining the data, which translates in estimation results oflow signi�cance. 13



Table 2: Estimation results for PCS modelreal ω value 1 2 3 5 10parameter real value estimate t-test estimate t-test estimate t-test estimate t-test estimate t-test
ASCCAR 0.3 0.304 0.027 0.288 0.113 0.300 0.010 0.301 0.012 0.314 0.184

ASCSM 0.4 0.396 0.044 0.399 0.010 0.405 0.053 0.401 0.017 0.410 0.151

βcost -0.01 -0.010 0.283 -0.010 0.001 -0.010 0.179 -0.010 0.052 -0.010 0.012

βhe -0.005 -0.005 0.241 -0.005 0.010 -0.005 0.048 -0.005 0.082 -0.005 0.078

βtime -0.01 -0.01 0.074 -0.010 0.050 -0.010 0.049 -0.010 0.003 -0.010 0.001

a 3 2.963 0.019 3.008 0.118 3.000 0.100 2.998 0.081 3.002 0.101

ω see top 1.003 0.028 2.014 0.079 3.066 0.210 5.095 0.170 10.523 0.353
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Table 3: Estimation results for CMNL modelreal ω value 1 2 3 5 10parameter real value estimate t-test estimate t-test estimate t-test estimate t-test estimate t-test

ASCCAR 0.3 0.503 0.950 0.421 1.153 0.406 1.365 0.380 0.988 0.326 0.313

ASCSM 0.4 0.565 2.013 * 0.550 2.375 * 0.536 1.804 0.506 1.485 0.463 0.872

βcost -0.01 -0.008 4.825 * -0.008 3.580 * -0.009 2.309 * -0.009 1.182 -0.010 0.613

βhe -0.005 -0.005 0.202 -0.005 0.151 -0.005 0.071 -0.005 0.120 -0.005 0.090

βtime -0.01 -0.007 3.929 * -0.008 3.645 * -0.008 2.813 * -0.009 2.316 * -0.009 1.523

a 3 2.186 1.753 2.656 3.073 * 2.773 3.762 * -2.869 3.305 * 2.948 1.864

ω see top 1.043 0.239 2.094 0.403 3.118 0.431 5.238 0.424 12.146 3.149 *
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Figure 6: T-statistics for the cost and time parameter over ω
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5 Conclusions and further workThe CMNL is a proper approximation of the PCS only when the constraints(or the availabilities of alternatives) tend to be deterministic. This reducesthe spectrum of possible applications of the CMNL but, at the same time,con�rms that it is convenient to use, especially when solving problemswith numerous alternatives where the behavior is expected to tend to adeterministic alternative elimination process.In further work, speci�c ways to determine when it is recommendable touse the CMNL will be investigated, together with exploring a possiblecorrection or modi�cation to the CMNL speci�cation in order to makeit a reasonable approximation to the PCS approach even in scenarios withlarge dispersion in the alternative availabilities. Appendix A provides someadditional insight into this problem. It demonstrates that the PCS alsocollapses into the CMNL if all possible choice sets have the same logsumvalue. An interesting question is to what extent this type of result can beused to evaluate ex post if the CMNL is an appropriate model speci�cationfor a given data set.A Equivalence of PCS and CMNL for constantlogsumsEquating the choice probabilities for PCS and CMNL and omitting thesubscript n, we have, for all i in C,
∑

Cm⊆C

1(i ∈ Cm)eVi

∑
j∈Cm

eVj
P(Cm) =

φ(i)eVi

∑
j∈Cφ(j)eVj

(20)and, equivalently,
∑

Cm⊆C

1(i ∈ Cm)
∑

j∈Cm
eVj

P(Cm) =
φ(i)

∑
j∈Cφ(j)eVj

(21)where 1(·) is the indicator function. We assume that
∑

j∈Cm

eVj = I (22)17



for all Cm with P(Cm) > 0. Then,
∑

Cm⊆C1(i ∈ Cm)P(Cm)

I
=

φ(i)
∑

j∈C φ(j)eVj
. (23)To begin with, we equate only the numerators

∑

Cm⊆C

1(i ∈ Cm)P(Cm) = φ(i), (24)which speci�es φ(i) as the marginal probability that alternative i is con-tained in any considered choice set. This is consistent with the de�nitiongiven in Section 3. Equating the denominators, substituting (24), and re-arranging terms then leads to
I =

∑

j∈C

φ(j)eVj

=
∑

j∈C

∑

Cm⊆C

1(j ∈ Cm)P(Cm)eVj

=
∑

Cm⊆C

P(Cm)
∑

j∈Cm

eVj , (25)where the right-hand-side is nothing but the expectation of the constant Ivalue de�ned in (22). Consequently, speci�cation (24) equates the PCS andthe CMNL for constant logsum terms. This also implies that the CMNLmodel is a reasonable approximation of the PCS model in situations whereall choice sets have approximately the same logsums. Operationally, thisposes the question of how to identify such situations.ReferencesM. E. Ben-Akiva & B. Boccara (1995). `Discrete choice models with latentchoice sets'. International Journal of Research in Marketing 12:9�24.M. Bierlaire, et al. (2001). `Acceptance of modal innovation: the case of theSwissMetro'. In Proceedings of the 1st Swiss Transportation ResearchConference, Ascona, Switzerland. www.strc.ch.E. Cascetta, et al. (2007). `The use of dominance variables in choice set gen-eration'. In Proceedings of the 11th World Conference on TransportResearch, University of California at Berkeley.18
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